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Abstract: This paper presents a heuristic approach for workflow scheduling in heterogeneous distributed embedded 

system (HDES). A genetic algorithm (GA) and ant colony optimization (ACO) modified with the greedy algorithm 

introduced to the system contains multiple heterogeneous embedded machines (HEMs) working as a cluster. Users 

can remotely access and utilize their computational power. The communications on different types of buses are taken 

into account to find an optimal solution. New meta-heuristic information based on forwarding dependency is 

proposed to build probability for ACO to generate task priorities. Besides, a greedy algorithm for machine allocation 

is incorporated to complete task scheduling. Experiments based on random task graphs running in the HEM cluster 

demonstrate the effectiveness of the modified greedy ant colony optimization algorithm which outperforms the 

others by 33% more result quality. 

Keywords: Heterogeneous distributed embedded system, Network cluster, Meta-heuristic task scheduling, Genetic 

algorithm, Ant colony optimization, Greedy algorithm. 

 

 

1. Introduction 

The evolution and growth of the heterogeneous 

systems used for high-performance computing have 

been surprising for many years. Generally, 

heterogeneous systems [1] for parallel and 

distributed computing, consist of the system 

software, multiple processors, memories, and a 

communication network. Nowadays, more than 60 

percent of electronic control unit parts in both 

automotive electronics and avionics systems employ 

the heterogeneous distributed embedded system 

(HDES) [2] because of the benefits in the resource 

utilization, weight, scale, and power consumption 

and high-performance. In the HDES architecture, 

the specialized processing elements are used to 

accelerate the complex tasks, also coprocessors for 

general purpose computing cooperated with single 

or multicore processors are exploited for tasks 

require flexibilities. There are many types of 

coprocessors such as application-specific integrated 

circuit chips, FPGAs (field-programmable gate 

arrays), GPUs (graphics processing units) 

architecture. Similar to GPGPUs (general purpose 

GPUs) produced by Intel Corporation, MIC (many 

integrated core) is another kind of coprocessor, 

which is targeted for highly parallel workloads in a 

large set of scientific data. 

Data-dominated applications in a variety of 

fields, such as computational, engineering, and 

scientific, are described by a DAG (directed acyclic 

graph). Nodes represent tasks and edges represent 

communication messages between tasks in the DAG. 

The scheduling tasks on HDES processors [3] to 

minimize the schedule length of a DAG-based 

parallel scientific application is a well-known 

nondeterministic polynomial-hard (NP-hard) 

optimization problem, and numerous meta-heuristic 

list scheduling algorithms have been proposed to 

generate near-optimal solutions of the problem. To 
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implement and orchestrate tasks in HDES, generally, 

message passing interface (MPI) is employed to 

make full use of distributed clusters and ensure high 

scalability. There are many application 

programming interfaces (APIs) or high-level 

programming languages used for MPI [3] such as 

open computing language (OpenCL), open multi-

processing (OpenMP), and coprocessing threads 

(COPRTHR) SDK from Brown Deer Technology. 

2. Background and related work 

In this paper, there are two study parts 

conducted for related work consisting of the 

embedded heterogeneous system (EHS) 

architectures and meta-heuristic applications on 

heterogeneous systems. The heterogeneous 

computing platform (HCP) for data processing in [3] 

presents the heterogeneous processors and partial 

reconfigurable hardware accelerators work together 

with efficiency through APIs consist of COPRTHR 

SDK and Epiphany SDK on Parallella board. The 

matrix-vector multiplication in a different size is the 

benchmark application for HCP, the results show 

that when data is increasing, the heterogeneous 

processor and a hardware accelerator are the best 

performance on the platform. 

The work in [5] implements edge detection on 

heterogeneous system architecture (HSA) 

environment to compare an ARM multicore 

processor, Coprocessor and FPGA, and x64 

architecture in terms of energy efficiency and 

optimal performance evaluated from image 

processing application. The ARM multicore 

processor with coprocessors (Epiphany multicore 

processor + FPGA) provides 50 times more energy 

efficiency better than an x64 architecture in 

experimental results. 

Another interesting use of heterogeneous 

systems is related to clustering systems. The 

research in [4] presents a large-scale parallel method 

of moments on CPU/MIC heterogeneous clusters 

that proposes hybrid MPI/OpenMP APIs 

management for distributed CPU/MIC 

heterogeneous platforms. An implementation of a 

single board computer cluster for the crypto 

algorithm is presented in [6] to study 64-board. The 

cluster architecture is the Raspberry Pi 3 Model B to 

problem-solving of implementation of the DOZEN 

crypto algorithm. Towards a dataflow runtime 

environment for Edge, Fog, and In-Situ computing 

based on distributed Sucuri architecture [7], also 

presents the implement on multicore embedded 

board. 

The research work on heuristic algorithms or 

applications for minimizing the schedule length in 

heterogeneous computing systems are widely 

investigated.  

The hybrid heuristic-genetic algorithm with 

adaptive parameters for static task scheduling in a 

heterogeneous computing system is presented in [8] 

to further improve the performance of existing 

algorithms. In [9], a greedy ant algorithm is used for 

workflow scheduling for heterogeneous computing. 

This shows a novel workflow scheduling algorithm 

named Greedy-Ant to minimize the total execution 

time of an application in heterogeneous 

environments. 

The well-known genetic algorithm is employed 

for efficient parallel execution on Epiphany 

manycore processors. The work in [10] shows an 

evaluate Parallella which is a small board with the 

Epiphany coprocessors consisting of sixteen MIMD 

cores connected by a mesh network-on-a-chip. The 

results are based on classical genetic algorithms. 
The scheduling tasks on HDES processors [11] to 

minimize the schedule length of a DAG-based 
parallel scientific application is a well-known 
nondeterministic polynomial-hard (NP-hard) 
optimization problem, and numerous heuristic list 
scheduling algorithms have been proposed to 
generate near-optimal solutions of the problem.  

In this paper, the motivation is to implement the 

meta-heuristic algorithm to workflow scheduling in 

the cluster-based HDES environment with 

heterogeneous embedded machines. We conduct the 

evaluation and implementation of the genetic 

algorithm (GA), the ant colony optimization 

algorithm (ACO), the modified greedy genetic 

algorithm. (MGGA), the modified greedy ant colony 

optimization algorithm (MGACO), and genetic 

simulated annealing (GSA) on the proposed HDES 

system architecture. Rather comparing with 

conventional algorithms such GA and ACO, the 

modified heuristic algorithm such GSA are also 

included. The assumptions of HDES including task 

execution and communication models based on the 

architecture are described. The comparisons in terms 

of the quality of the results, i.e. scheduling time or 

makespan, are carried out. The contribution of this 

research can be summarized by the following: the 

design framework for data-dominated HDES, the 

evaluation, and implementation of GA-based HDES 

and the comparison of HDES with related works. 
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Figure.1 A cluster of heterogeneous embedded machine 

 

The remainder of this paper is organized as 

follows. Section 3 presents an overview of design 

and problem descriptions. Section 4, we propose the 

heuristic algorithm implemented on HDES. Section 

5 presents the experimental results and evaluation, 

respectively. Finally, section 6 concludes the paper. 

3. System design overview 

This section presents an overview of the system 

that includes the proposed HDES architecture, 

design, and heuristic applications that will be 

implemented and run in the system. HDES 

architectural design is based on computer 

architecture principles or embedded system 

principles [12]. We propose HDES working as a 

cluster that includes 𝑁 -heterogeneous embedded 

machines (HEMs). Each embedded machine 

contains multiple processing elements such as 

processors, coprocessors, hardware accelerators also 

memories, and interconnections. They connect to the 

network devices for multiple-user services. 

Rationally, the system performance can be limited 

by the speed of the network. For this reason, it 

makes sense to give only parallel processes access to 

the HDES cluster connection network. 

To the best of our knowledge, the optimal 

arrangement for HDES should be in a mixed model 

that has attributes of both the asymmetrical and 

symmetrical design. For an asymmetrical 

multiprocessor, the back-end processors are used 

exclusively for executing parallel programs, while 

asymmetrical multiprocessors, as all processors, 

have identical functionality running in the same 

manner. 

3.1 HDES architectural design 

The multiple users can be accessed to 𝑁-layer 

HDES that includes 𝑁  heterogeneous embedded 

machines (HEMs). All are connected and 

communication through a network device (e.g. 

router/switch/hub). 

Generally, there are 4 layers involved in 

implementing applications in heterogeneous systems, 

namely an application layer, an API layer, an 

operating system (OS) layer, and the hardware layer. 

The proposed heterogeneous cluster is shown in Fig. 

1. In this research, the application layer represents 

data-dominated applications. The API layer is the 

set of functions or libraries that are available for the 

users to manage system resources and run 

applications. For example, the OpenMP is designed 

for shared memory, which can run on a HEM cluster 

using both OpenMP and MPI designed for 

distributed memory [13] such as local memory, 

external memory, and bus system. There are many 

buses used as the communication paths between 

processing units in this system such as the processor 

bus (GPP bus), coprocessor bus (CO bus), hardware 

bus (HW bus), external bus (EX bus), and network 

bus (NET bus) as shown in Fig. 1. All 

communication times thru different types of buses 

are taken into account when scheduling will be 

shown later in Section 3.4. The OpenCL is an open 

industry standard for programming a heterogeneous 

processor, collection [14] of general purpose 
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processor, coprocessors, and hardware accelerators. 

It provides efficient accesses to utilize the power of 

the HEM cluster. Another interesting API is the 

COPRTHR SDK that provides the libraries and 

tools [15] for simplifying the use of the HEM cluster 

for developers targeting coprocessors, and hardware 

accelerators. 

The operating system software layer such as 

embedded Linux or embedded Windows provides 

the common services for applications and acts as an 

interface between API and the hardware. Lastly, the 

hardware layer is a single board computer that 

includes heterogeneous processors, buses, memories, 

and storage. In this paper, we focus on the Parallella 

board from Adapteva Inc [16] consists of the host 

processor as Xilinx Zynq Dual-core ARM A9 

XC7Z020, the coprocessor is Epiphany 16-core 

CPU E16G301, 1GB DDR3 memory, gigabit high 

speed Ethernet, 128MB QSPI Flash, micro-HDMI, 

48GPIOs, as the hardware layer. 

3.2 Reconfigurable arrays 

The flexibility and reusability of a 

reconfigurable array or an FPGA as a hardware 

accelerator is due to its configurable logic blocks 

that are interconnected through configurable routing 

resources [17]. The reconfigurable arrays are built to 

support specific tasks or jobs such as digital signal 

processing, image processing [5], and video 

processing. In this section, we briefly demonstrate 

two applications from reconfigurable arrays on the 

Parallella board that contains a host processor, a 

Xilinx Zynq, consist of an ARM dual core processor 

and reconfigurable arrays. A high-speed Epiphany 

Link (eLink) bus communication is between the host 

processor and Epiphany 16-core coprocessor.  
To utilize reconfigurable arrays, contain 80,000 

logic cells and 220 digital signal processing (DSP) 

slices, IP customization from RTL source files can 

be written in HDL codes or automatically generated 

using the Xilinx Vivado design suite as shown in 

Fig. 2. This IP interface mode can be configured as 

master or slave, also data width and memory sizes. 

There are three AXI interfaces for IP customization 

as AXI4; for memory-mapped interfaces, AXI4-

Lite; for single transaction memory-mapped 

interfaces, and AXI4-Stream; for high-speed 

streaming data. 

3.3 Meta-Heuristic algorithms for HDES 

partitioning and scheduling problem 

There are many meta-heuristic algorithms for 

searching efficient scheduling that aim for optimal 
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Figure.3 A sample task DAG. The table shows execution 

time of task on the processors 

 

task scheduling such as genetic algorithm (GA), 

simulated annealing (SA), Tabu search (TS), ant 

colony optimization algorithm (ACO), and particle 

swarm optimization (PSO). In this paper, we aim to 

implementation GA and ACO to solve the 

optimization problem based on HDES. 

3.4 Problem description 

We introduce a set of execution time model on 

the right side of Fig. 3 of the heterogeneous system 

processes consists of GPP, coprocessor, and a 

hardware accelerator. The minimum execution time 

is normally from hardware accelerator since it can 

utilize parallel processing. The maximum execution 

time is from GPP since it is designed for flexible 

uses that support different types of jobs. 

On the left side of Fig. 3, a data-dominated 

application with nine tasks. A set of tasks with 

precedence constraints is modeled in directed 

acyclic graphs (DAGs). This paper, 𝐺(𝑉, 𝐸) 

represents a task DAG, where 𝑉 is a set of tasks or 

nodes and 𝐸 is a set of edges or data communication. 

Each node 𝑣𝑖 ∈ 𝑉  indicates a task. Each directed 

edge 𝑒(𝑖, 𝑗)  ∈  𝐸  represents dependency constraint 

between 𝑣𝑖  and 𝑣𝑗  such that 𝑣𝑖  should be completed 
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before 𝑣𝑗 can be started, where 𝑖 and 𝑗 define as row 

and column, respectively. 

The nodes of the graph represent the tasks, 

while the edges denote the precedence of the task. 

The number on edges represents the amount of data 

communication ranging from 5, 10, and 15 bytes. 

Communication time, which is a product of data and 

bus speed, depends on the types of buses in the 

system including processor bus (GPP bus), 

coprocessor bus (CO bus, hardware bus (HW bus), 

external bus (EX bus), and network bus (NET bus) 

as mentioned previously. 

Fig. 4 shows the example of partitioning results 

generated by GA in the HDES system contains 3 

HEMs. As can be seen, Task 0, 1 and 2 are in 

HEM1 where Task 0 is running in coprocessor while 

Task 1 and 2 are running in hardware accelerator. 

Fig. 5 shows the scheduling scheme. The 

scheduling time or makespan obtained from this 

simulation is 650ns. We can see that communication 

time where tasks are located in different processing 

elements and are taken into account. For example, 

Task 2 (implemented in HEM1 coprocessor) 

requires SH bus, EX Bus, and NET Bus for sending 

output data thru the network switch to Task 4 

(implemented in HEM2 GPP). Task 7 does not 

require a network communication bus to send out 

data to Task 8 since both are implemented in the 

same HEM. 

The 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 represents the actual finish time 

(AFT) of the exit task 𝑣𝑒𝑥𝑖𝑡 and is defined as: 

 

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝐴𝐹𝑇(𝑣𝑒𝑥𝑖𝑡),        (1) 

 
where 𝑣𝑒𝑥𝑖𝑡   is the summation value of all tasks 𝑣𝑖 and 

𝑣𝑗.  
The objective function defined as ℑ(𝑣𝑒𝑥𝑖𝑡)  is a 

goal of an optimization problem to be minimized, that 
can be formulated as follows. 

 

ℑ(𝑣𝑒𝑥𝑖𝑡) = 𝑚𝑖𝑛
𝑣𝑖𝜖𝑉,𝑒𝑖𝜖𝐸

{𝐴𝐹𝑇(𝑣𝑖 , 𝑣𝑗)}, (2) 

 

𝐴𝐹𝑇(𝑣𝑖, 𝑣𝑗) = 𝛤𝑣𝑖,𝑑𝑖
+ 𝜅𝑝𝑒𝑛(𝑣𝑖, 𝑑𝑖), (3) 

 

𝛤𝑣𝑖,𝑑𝑖
= [𝑡𝑒𝑥𝑒(𝑣𝑖, 𝑑𝑖) + 𝑡𝑐𝑜𝑚(𝑑𝑖) − 𝑡𝑐𝑜𝑛𝑐(𝑣𝑖, 𝑑𝑖)],

 (4) 

 
where 𝑡𝑒𝑥𝑒(𝑣𝑖, 𝑑𝑖) is a set of task execution time in 
directed acyclic graphs (DAGs), 𝑡𝑐𝑜𝑚(𝑑𝑖) is the data 
communication dependencies between tasks, 
𝑡𝑐𝑜𝑛𝑐(𝑣𝑖, 𝑑𝑖) is task concurrency value, and 𝑑𝑖 is the 
𝑖𝑡ℎ  of the communication time. This 
𝑡𝑐𝑜𝑛𝑐(𝑣𝑖, 𝑑𝑖) equals to the minimum execution time if  
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there are multiple tasks running in parallel. In a task 
graph, 𝑒(𝑖, 𝑗)  is associated with a weight which 
represents the communication time between 𝑣𝑖 and 𝑣𝑗 
when 𝑣𝑖  and 𝑣𝑗  are assigned to different processing 
elements. Note that the communication time is 
negligible if there are two tasks implemented in the 
same place. 

Only the longest execution time will be 

accumulated into the objective function. 𝜅𝑝𝑒𝑛(𝑣𝑖 , 𝑑𝑖) 

is calculated by the constraint values as shown in 

Algorithm 1. Line 1 shows the create parameters, 
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𝑁𝑐𝑜𝑟𝑒𝑠 is number of cores per a HEM cluster, 𝑃𝑒𝑟𝑙𝑜𝑔𝑖𝑐  

is percentage of logic cells per HEM. Line 2-9 show 

the decision of the constraint values using in the 

objective function. Note that the 𝑀𝑎𝑥𝑐𝑜𝑟𝑒𝑠  is the 

maximum number of coprocessor cores in the 

system, i.e. Epiphany has 16 cores. 
 

Algorithm 1. Constraint 

1: CREATE the parameters: 𝑁𝑐𝑜𝑟𝑒𝑠, 𝑃𝑒𝑟𝑙𝑜𝑔𝑖𝑐 

2: if (1 ≤ 𝑁𝑐𝑜𝑟𝑒𝑠 ≤ 𝑀𝑎𝑥𝑐𝑜𝑟𝑒𝑠 ) do 

3:    |     Constraint <= 0; 

4: else if (1 ≤ 𝑃𝑒𝑟𝑙𝑜𝑔𝑖𝑐 ≤ 𝑀𝑎𝑥𝑐𝑜𝑟𝑒𝑠  ) do 

5:    |     Constraint <= 0; 

6: else 

7:    |     Constraint <= 1; 

8: end if 

9: OUTPUT the constraint 

 

In this paper, the 𝑙 × 𝑚 computation matrix 𝑀𝐴𝑇 
stores the execution time of tasks 𝑉 running on HEM 
𝑀 . 𝑙 = |𝑉|  is the number of tasks and 𝑚 = |𝑀| 
represents the number of processing elements in the 
system. The element 𝑀𝐴𝑇𝑖,𝑗 is the execution time of 
task 𝑣𝑖 on HEM 𝑚𝑡.  

 

𝑀𝐴𝑇 =

[
 
 
 

𝑀𝐴𝑇𝑖,𝑗 𝑀𝐴𝑇𝑖,𝑗+1

𝑀𝐴𝑇𝑖+1,𝑗 𝑀𝐴𝑇𝑖+1,𝑗+2

⋯ 𝑀𝐴𝑇𝑖,𝑗+𝑙

⋯ 𝑀𝐴𝑇𝑖+1,𝑗+𝑙

⋮ ⋮
𝑀𝐴𝑇𝑖+𝑙,𝑗 𝑀𝐴𝑇𝑖+𝑙,+𝑙

⋱ ⋮
⋯ 𝑀𝐴𝑇𝑖+𝑙,𝑗+𝑙 ]

 
 
 

.

 (5) 
 
The comparisons are performed based on the 

metrics of schedule length ratio (SLR) and speedup. 
The 𝑆𝐿𝑅 , a key measurement of a scheduling 

algorithm is the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 of the schedule obtained. 
Due to the distinct graph topology, 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 should 
be normalized to a lower bound. The 𝑆𝐿𝑅 is defined 
as: 

 

𝑆𝐿𝑅 =
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

∑ (𝑚𝑖𝑛𝑀𝐴𝑇𝑖,𝑗)𝑣𝑖∈𝐶𝑃𝑚𝑖𝑛

.          (6) 

 
The summation of the minimum execution time 

of tasks is on the critical path 𝐶𝑃𝑚𝑖𝑛 . For any 
scheduling algorithms, the 𝑆𝐿𝑅  value of a graph is 
larger than one. Therefore, the lower 𝑆𝐿𝑅 value is the 
better performance the algorithm will have. 

The 𝑆𝑝𝑒𝑒𝑑𝑢𝑝  is defined as the ratio of the 
sequential execution time to the parallel execution 
time (i.e., 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛):  

 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
∑𝑣𝑖𝜖 𝐺𝑃𝑃𝑡𝑐𝑜𝑚

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
,         (7) 

 

where ∑𝑣𝑖𝜖 𝐺𝑃𝑃𝑡𝑐𝑜𝑚 is the sequential execution time with 

the data communication dependencies between tasks 

computed by assigning all tasks to a single machine as 

GPP. 

4. Proposed heuristic algorithms based on 

the HDES architecture 

We introduce four meta-heuristic algorithms for 

scheduling problem based on the proposed HDES 

architecture. The algorithms include genetic 

algorithm (GA), ant colony optimization algorithm 

(ACO), modified greedy genetic algorithm (MGGA), 

and modified greedy ant colony optimization 

algorithm (MGACO). 

4.1 GA implementation on HDES 

The genetic algorithm to the matching problem 

requires the setting up some parameters and some 

adaptation. There are six steps of GA proposed as 

follows.  
At first step, the chromosome encoding 

represents a sequence of task 𝑡 =  {𝑡0, 𝑡1, … , 𝑡𝑛} of 𝑁 

layers of HEM cluster. Each HEM obtains 3 

consecutive genes partly inside the chromosome that 

represent the mapping results in processing element, 

i.e. processors (GPP), coprocessor (CO-PRO) and 

hardware accelerator (HW-ACC). For example, a 

HEM0 contains the series of tasks 𝑆 =  {𝑠0, 𝑠1, 𝑠2} 
implemented in GPP, HW-ACC, and CO-PRO 

respectively. The task sα  can be expressed as: 

 

𝑠𝛼 = 𝛼 + (𝑛 + 2), 𝛼 = 0, 1, 2; 𝑛 = 1, 2, … ,𝑁; (8) 

 

where 𝛼 denotes as a type of processors. 

The second step, an initial population is 

generated randomly as a sequence of integers inside 

a chromosome representing the class indices in one 

of the matched DAG.  

The third step, an evaluation that each candidate 

solution represents a sequence of tasks in the DAG. 

This sequence is given as GA to find the 

corresponding injective match. The sum of the 

similarities between the matched elements in this 

injective match is used as the objective function, the 

higher summation is the fitter result. 

The fourth step, the selection is the procedure by 

which 𝑅, where 𝑅 <  𝑁 individuals that are chosen 

from the population of HDES for reproduction. We 

employ a roulette wheel selection to select parents 

from the population. Each chromosome 𝑘 belongs to 

the parent population with the probability of 𝑃𝑘. The 

roulette wheel is created by calculating a cumulative 

probability for all chromosomes as follows: 

 

𝑄𝑖 = ∑ 𝑃𝑘
𝑖
𝑘=1 , 𝑖 = 0,1,2,… ,𝑁;             (9) 
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where 𝑄𝑖  is a cumulative probability of the 𝑖𝑡ℎ 
solution.  

The selection of 𝑅  parents is accomplished by 
spinning the wheel 𝑅 times. Each spin is tantamount 
to a generated random number in the range [0,1]. 

In the fifth step, the crossover occurs between the 
two parents. We use a simple technique, random one-
point crossover. A random rate is 25 percent. The 
crossover operator builds an offspring by random 
choosing to cut-points in the two parents, copying the 
subsequences between the cut points in the two 
parents into new two offspring, one each, and then 
the remaining indices are filled, position wise, from 
the other parent. 

The one-point crossover is the generation of two 
children from two 𝑁 ‐dimensional parent 
𝑃𝑎𝑟𝑒𝑛𝑡1 (𝛽

0
 , 𝛽

1
 , … , 𝛽

𝑁
 )and 𝑃𝑎𝑟𝑒𝑛𝑡2 (𝛼0 , 𝛼1 , … , 𝛼𝑁 ) , 

where 𝛽𝑁  and 𝛼𝑁 are individual task 𝑁. Let 𝜉 denote 
the crossover point. Therefore, the offspring of 
parents are generated as follows: 

 

𝐶ℎ𝑖𝑙𝑑0
𝑛𝑒𝑤 = (𝛽0, 𝛽1, … , 𝛽𝜉,𝛼𝜉+1,, 𝛼𝜉+2, … , 𝛼𝑁),  (10) 

 

𝐶ℎ𝑖𝑙𝑑1
𝑛𝑒𝑤 = (𝛼0, 𝛼1, … , 𝛼𝜉,𝛽𝜉+1,, 𝛽𝜉+2, … , 𝛽𝑁).  (11) 

 
The final step, the mutation is performed by a 

random selection of a position in the chromosome 
and swapping its task probabilistically with a 
nonuniform mutation technique from the pool of 
chromosomes. Nonuniform mutation induces an 
increasingly localized search for optimal solutions in 
which the sets of genes that are chosen for mutation 
are defined utilizing boundaries.  

Let 𝑆𝑜𝑙𝑛 (𝛾0 , 𝛾1 , … , 𝑦𝑖 , … , 𝛾𝑁 )  be a system 
solution of an optimization problem and its 𝑖 decision 
variable (𝛾𝑖)  be selected for mutation. Nonuniform 
mutation produces a mutated solution 
𝑆𝑜𝑙𝑛 (𝛿0 , 𝛿1 , … , 𝛿𝑖 , … , 𝛿𝑁 ), whereby 𝛿𝑖 is calculated as 
follows: 

 

𝛿𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝛾𝑖 − ℏ, 𝛾𝑖 + ℏ),              (12) 

 

ℏ = ℏ0 ×
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥−𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑤

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥
, (13) 

 
where ℏ0  is an initial value of ℏ , 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑤 
defines as current iteration, and 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥  is a 
maximum iteration. 

4.2 MGGA implementation on HDES 

The modified greedy genetic algorithm (MGGA) 
is shown on the left side of Fig. 6, to a matching 
problem in DAGs. As it can be seen that MGGA is 
similar to the GA, but one greedy step is added on. 
The extra step of MGGA called Greedy GA as shown 
in Algorithm 2. The input of this algorithm is a size 
 

Algorithm 2. Greedy GA 

1: CREATE the parameters: 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 , 𝑝𝑜𝑝𝑛𝑒𝑥𝑡, 𝑐𝑜𝑛 

2: INITIAL 𝑐𝑜𝑛𝑔𝑟𝑒𝑒𝑑𝑦  

3: for (j = 0; j < (𝑝𝑜𝑝𝑠𝑖𝑧𝑒  - 1); j++)  

4:    |   for (i = 0; i < (popsize - 1); i++)  

5:    |      |   if (𝑝𝑜𝑝𝑛𝑒𝑥𝑡[i + 1]. 𝑐𝑜𝑛 <    

𝑝𝑜𝑝𝑛𝑒𝑥𝑡[i]. 𝑐𝑜𝑛𝑔𝑟𝑒𝑒𝑑𝑦)  then 

6:    |      |     |     select the best constraint of 𝑝𝑜𝑝𝑛𝑒𝑥𝑡 

7:    |      |   end if 

8:    |     end 

9: end 

10: OUTPUT the 𝑝𝑜𝑝𝑛𝑒𝑥𝑡 is the best solution 

 
 
of the population with constraint. Line 1 shows 
creating parameters as 𝑝𝑜𝑝𝑠𝑖𝑧𝑒  is population size, 
𝑝𝑜𝑝𝑛𝑒𝑥𝑡  is next population and 𝑐𝑜𝑛  is a constraint. 
Line 2 shows initial 𝑐𝑜𝑛𝑔𝑟𝑒𝑒𝑑𝑦  as greedy constraints, 
which is set to zero. Line 3 shows loop process of 
row of population size subtracted by one. Line 4 
shows for the loop process of column of population 
size subtracted by one. Line 5-7 show the decision 
instead of the solutions to find the best greedy 
constraint for population next. And Line 10 shows the 
best solution of MGGA output. 

4.3 ACO implementation on HDES 

To employ the ant colony optimization algorithm, 
we require the setting up some parameters and some 
adaptation. 

The first step, initial parameters includes the 
decision variable values (𝜀1, 𝜀2, 𝜀3, … , 𝜀𝑁)  which are 
chosen from a set of predefined values. Each decision 
variable 𝑖  takes a value from a predefined set of 
values Ε𝑖 as follows: 

 

𝛦𝑖 = {𝜀𝑖,1, 𝜀𝑖,2, . . , 𝜀𝑖,𝜁 , … , 𝜀𝑖,𝛧𝑖
} , 𝑖 = 1,2, … ,𝑁;  (14) 

 
In which set of 𝛦𝑖  predefined values for the 

decision variable, 𝜀𝑖,𝜁  is a possible value for the 
decision variable, and 𝛧𝑖 is a total number of possible 
values for the decision variable.  

The second step, to generate a set of ants as an 
array of 1 ×  𝑁  that describes the ant’s path. This 
array is defined as: 

 

𝐴𝑛𝑡 = {𝜂1, 𝜂2, 𝜂3, … , 𝜂𝑖, … , 𝜂𝑁},          (15) 

 
where 𝐴𝑛𝑡 is a solution of the optimization problem, 
𝜂𝑖 the decision variable of solution 𝐴𝑛𝑡, and 𝑁 is the 
number of decision variables. 

The third step, to allocate pheromone into 
objective function, the pheromone is a set of values 
that make better solutions achieve higher 
concentration of pheromone in comparison with 
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values that make worse solutions. 𝑁  arrays of size 
1 ×  Η𝑖  are employed to allocate pheromone to the 
decision space so that each of them is assigned to one 
decision variable as follows: 

 

 𝛷𝑖 = {𝜙𝑖,1, 𝜙𝑖,2, . . , 𝜙𝑖,ℎ, … , 𝜙𝑖,𝛨𝑖
} ,  (16) 

 
where 𝑖 = 1,2, … , 𝑁. 

In which 𝛷𝑖 is pheromone matrix for the decision 
variable and 𝜙𝑖,ℎ  is pheromone concentration of the 
ℎ possible value of the 𝑖 decision variable. The 
elements of the matrix 𝛷𝑖  are equal to zero at the 
beginning of the algorithm optimization. The 
pheromone allocation is achieved by increasing the 
pheromone levels associated with a chosen set of 
good solutions. The concentration of pheromone for 
the possible value of the decision variable is updated 
as: 

 

𝜙𝑖,ℎ
𝑛𝑒𝑤 = (1 − 𝜌) × 𝜙𝑖,ℎ + ∑ 𝛥𝜙𝑖,ℎ(𝑗)𝑛

𝑗=1 ,    (17) 

 
where 𝜙i,h

new  is new concentration of pheromone of 
the possible value of the decision variable, 𝜌 is an 
evaporation rate, and 𝛥𝜙𝑖,ℎ(𝑗) defines as the quantity 
of pheromone laid on the ℎ possible value of the 
𝑖𝑡ℎ decision variable by the 𝑗𝑡ℎ ant. 

The fourth step, a generation of new ants for each 
decision variable 𝑖  is assigned a value with a 
probability that depends on the concentration of 
pheromone. A cumulative probability for all the 
possible values of each decision variable as follows: 

 

𝛹𝑖,𝑔 = ∑ 𝑃𝑖,𝑞
𝑔
𝑞=1 ,               (18) 

where 𝑖 = 0,1,2, … , 𝑁 and  𝑔 = 1,2, … , 𝛩𝑖 . 

In which Ψ𝑖,𝑔 defines as cumulative probability of 
the 𝑔 possible value of the 𝑖𝑡ℎ decision variable. 

4.4 MGACO implementation on HDES 

The modified greedy ant colony optimization 

(MGACO) algorithm is shown on the right side of 

Fig. 6 with one greedy step adding. The step is 

called Greedy ACO in Algorithm 3. The input 

parameters of this algorithm are the path of ant 

named 𝑙𝑒𝑛𝑔𝑡ℎ with a constraint, levels, and route of 

the pheromone. Line 1 shows creating parameters as 

𝑙𝑒𝑛𝑔𝑡ℎ𝑏𝑒𝑠𝑡  is the optimal solution, 𝑙𝑒𝑛𝑔𝑡ℎ is a good 

solution, 𝑐𝑜𝑛 is a constraint, 𝑟𝑜𝑢𝑡𝑒𝑏𝑒𝑠𝑡  is the route 

of increasing pheromone levels. Line 2 shows initial 

𝑙𝑒𝑛𝑔𝑡ℎ𝑏𝑒𝑠𝑡  greedy constraints of optimization 

solutions. Line 3-8 show the decision instead of the 

solutions to find the optimal solution. Line 5 shows 

the loop process of replacing pheromone levels. And 

Line 9 shows the MGACO output. 

 

 
 

Figure.6 The flow chart of proposed MGGA (left) and 

MGACO (right) 

 

 
Algorithm 3. Greedy ACO 

1: CREATE the parameters 𝑙𝑒𝑛𝑔𝑡ℎ𝑏𝑒𝑠𝑡 , 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑐𝑜𝑛 , 

and routebest 

2: INITIAL 𝑙𝑒𝑛𝑔𝑡ℎ𝑏𝑒𝑠𝑡  

3: if (𝑙𝑒𝑛𝑔𝑡ℎ < 𝑙𝑒𝑛𝑔𝑡ℎ𝑏𝑒𝑠𝑡) then 

4:   |     𝑙𝑒𝑛𝑔𝑡ℎ𝑏𝑒𝑠𝑡  = 𝑙𝑒𝑛𝑔𝑡ℎ.𝑐𝑜𝑛; 

5:   |      for (𝑖 = 0; 𝑖 < number of tasks; 𝑖++) 

6:   |        |     𝑟𝑜𝑢𝑡𝑒𝑏𝑒𝑠𝑡  [𝑖] = 𝑟𝑜𝑢𝑡𝑒.𝑐𝑜𝑛[𝑖]; 

7:   |      end 

8: end if 

9: OUTPUT the best of solution 

5. Experiments and results 

In this section, experiments are carried out with 

the comparison of the results using the heuristic 

algorithms to find optimal solutions for HDES. The 

experimental design of HDES that includes the 9-

layer of HEM connected by a network switch based 

on a star topology. The algorithms with different 

task graphs are simulated in this heterogeneous 

embedded system. 

5.1 HDES hardware setup 

The HDES hardware environment as shown in 

Fig. 7 consists of nine the Parallella boards, known 

as HEM, and a 16-port of D-Link DGS-1016D 
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Figure.7 The HDES hardware setup 

 

gigabit switch connects with CAT5e LAN cable. 

The users can monitor on the laptop through 

wireless LAN. The operating system is the 

Parabuntu 2016.11.1, embedded Linux, official 

Ubuntu distro for Parallella installed that is open 

source from the community of www.parallella.org. 

The APIs are operated using a collection of 

COPRTHR SDK from Brown Deer Technology 

with the Epiphany SDK from Adapteva. 

5.2 Parameters and random task graphs 

configuration 

For GA and MGGA, the chromosome encoding, 

represents a sequence of task 𝑡 =  {𝑡0, 𝑡1, … , 𝑡𝑛} of 𝑁 

layers of HEM cluster as described in Section 4. The 

roulette wheel is employed as a selection technique. 

For ACO and MGACO, there are 50 ants. The 

pheromone parameter Φ𝑖 is 1. 

The DAGs random task graphs are randomly 

generated. The parameters for DAG generating 

software are set as below.  

• The number of task nodes in a DAG is {10, 20, 

30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 

500}. 

• Communication-to-computation ratio (CCR) 

is the ratio of average communication cost to 

the average computation cost as {0.1, 0.2, 0.5, 

0.8, 1, 2, 5, 8, 10} [9]. 

• Range of computation costs on machines: the 

heterogeneity complex factor for the machine 

performance on speed is {0.1, 0.2, 0.5, 1, 2} 

[9]. 

• The number of levels spanned by 

communications is {1, 2, 4}. 

• The similarity of task numbers between {0.2, 

0.5, 0.8} which a high value indicates the 

higher similarity. 

• The parallelism degree of a DAG is {0.1, 0.4, 

0.8} which is a shorter DAG with high 

parallelism. 

• The dependency degree of the nodes in a 

graph is {0.2, 0.5, 0.8} which the high 

dependency is larger density. 

All algorithms are written in C/C++, complied 

by GCC/G++ on HEMs inside the HDES. For each 

problem instance, the algorithm will run for 3000 

iterations, which is our stopping criterion, and the 

most feasible solution is then acquired. 

5.3 The Results and Discussion 

With MPI, the meta-heuristic algorithms can be 

managed to run on selected HEM using master-slave 

technique. The results from different sizes of task 

graphs in this heterogeneous embedded system types 

of algorithms are collected at the HEM master. The 

best solutions are averaged and compared using 

makespan, speedup, and SLR metrics. 
 

 
Figure.8 The average makespan compared with different 

algorithms on random task graphs. 

 

 
Figure.9 The average speedup compared with different 

algorithms on random task graphs. 
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Figure.10 The average SLR compared with different 

algorithms on random task graphs 

 

Fig. 8, shows the average makespan from all 

DAG graph sizes obtained from GA, ACO, MGGA, 

MGACO, and genetic simulated annealing (GSA). 

The GSA algorithm [18] utilizes the simulated 

annealing (SA) algorithm in the part of mutation 

operation based on GA for finding the optimization 

value. The average makespan of MGACO is 240 

minutes which is the best of overall average 

makespan while ACO is 247 minutes, GSA is 251 

minutes, MGGA is 259 minutes, and GA is 266 

minutes, respectively. 

In Fig. 9, the proposed MGACO performs better 

than other algorithms. Compared with GA and GSA, 

MGACO improves speedup by 30 percent for a 

small graph size. When the task number increases, 

MGACO shows dramatically in advantage. It is 

found that the performance of MGACO tends to 

converge rapidly at the steady state, when the 

number of tasks is larger than 30. Although, ACO 

performs better than GSA, MGGA, and GA, when 

the task number exceeds 50, its performance 

decreases afterwards. When number of tasks is equal 

to 80, MGACO improves speedup about 33 percent. 

For the SLR, Fig. 10 shows the details of the 

comparisons on random tasks graphs. It is obvious 

that MGACO performs better than the other 

algorithms. However, when 𝑛 = 60, 70, 80 due to 

the lower boundary of SLR has been reached, all the 

algorithms are roughly equal. In term of speed up 

and SLR, the overall results reveal that MGACO 

outperforms ACO, GSA, MGGA and GA to find 

optimal task scheduling in the proposed HDES 

architecture. 

All algorithms in the experiments simulate an 

initial task sequence generated randomly. GA, GSA, 

and MGGA are based on the genetic algorithms, 

while MGACO and ACO are list-based on the ant 

colony method. Figs. 8, 9, and 10 clearly 

demonstrate that MGACO outperforms ACO, GSA, 

MGGA, and GA concerning the metrics, including 

makespan, Speedup, and SLR.  

As can be seen, the performance of the 

algorithm searching for more quality solution can be 

increased by using a simple greedy algorithm 

inserted into a selection stage of conventional 

heuristic algorithms. It usually finds a near optimal 

solution in polynomial time. Theoretically, the 

performance analysis of using greedy algorithm to 

solve basic optimization problems of acyclic graphs 

is elaborated in [19]. The ratio of a feasible solution 

with an optimal solution is never more than twice 

for most problem instances.  

 By introducing a simple greedy algorithm in 

meta-heuristic searching for a shortest makespan in 

this paper, MGACO can generate better scheduling 

results compared to GA and MGGA because an ant 

colony can help to find the best pathway. As the 

complexity of the task graph grows, the task graph 

becomes harder for them to produce consistent 

results on a variety of graphs. The resource 

constraints are addressed in the cost function since 

the number of reconfigurable cells and coprocessors 

are limited. 

6. Conclusion 

This paper considers the genetic algorithm and 

the ant colony optimization modified with the 

greedy algorithm and presents an approach for ACO 

based workflow scheduling. A new meta-heuristic 

information based on forward dependency is 

proposed to build probability for ACO to generate 

task priorities. Additionally, a greedy algorithm for 

machine allocation is incorporated to complete 

scheduling. Based on the random task graphs, 

experimental results in the HEM cluster demonstrate 

the effectiveness of the modification of greedy ant 

colony optimization algorithm which outperforms 

the others by 33% more result quality. Future work 

would be a real implementation of data-dominated 

applications in this HDES based on the optimal 

scheduling results. 
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