
Received: October 15, 2019. Revised: November 1, 2019. 135

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.13

A Heuristic Approach for Scheduling in Heterogeneous

Distributed Embedded Systems

Sethakarn Prongnuch1* Suchada Sitjongsataporn1 Theerayod Wiangtong2

1The Electrical Engineering Graduate Program, Faculty of Engineering,

Mahanakorn University of Technology, Bangkok, Thailand
2Department of Electrical Engineering, Faculty of Engineering,

King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand

* Corresponding author’s Email: sethakarn.pr@ieee.org

Abstract: This paper presents a heuristic approach for workflow scheduling in heterogeneous distributed embedded

system (HDES). A genetic algorithm (GA) and ant colony optimization (ACO) modified with the greedy algorithm

introduced to the system contains multiple heterogeneous embedded machines (HEMs) working as a cluster. Users

can remotely access and utilize their computational power. The communications on different types of buses are taken

into account to find an optimal solution. New meta-heuristic information based on forwarding dependency is

proposed to build probability for ACO to generate task priorities. Besides, a greedy algorithm for machine allocation

is incorporated to complete task scheduling. Experiments based on random task graphs running in the HEM cluster

demonstrate the effectiveness of the modified greedy ant colony optimization algorithm which outperforms the

others by 33% more result quality.

Keywords: Heterogeneous distributed embedded system, Network cluster, Meta-heuristic task scheduling, Genetic

algorithm, Ant colony optimization, Greedy algorithm.

1. Introduction

The evolution and growth of the heterogeneous

systems used for high-performance computing have

been surprising for many years. Generally,

heterogeneous systems [1] for parallel and

distributed computing, consist of the system

software, multiple processors, memories, and a

communication network. Nowadays, more than 60

percent of electronic control unit parts in both

automotive electronics and avionics systems employ

the heterogeneous distributed embedded system

(HDES) [2] because of the benefits in the resource

utilization, weight, scale, and power consumption

and high-performance. In the HDES architecture,

the specialized processing elements are used to

accelerate the complex tasks, also coprocessors for

general purpose computing cooperated with single

or multicore processors are exploited for tasks

require flexibilities. There are many types of

coprocessors such as application-specific integrated

circuit chips, FPGAs (field-programmable gate

arrays), GPUs (graphics processing units)

architecture. Similar to GPGPUs (general purpose

GPUs) produced by Intel Corporation, MIC (many

integrated core) is another kind of coprocessor,

which is targeted for highly parallel workloads in a

large set of scientific data.

Data-dominated applications in a variety of

fields, such as computational, engineering, and

scientific, are described by a DAG (directed acyclic

graph). Nodes represent tasks and edges represent

communication messages between tasks in the DAG.

The scheduling tasks on HDES processors [3] to

minimize the schedule length of a DAG-based

parallel scientific application is a well-known

nondeterministic polynomial-hard (NP-hard)

optimization problem, and numerous meta-heuristic

list scheduling algorithms have been proposed to

generate near-optimal solutions of the problem. To

Received: October 15, 2019. Revised: November 1, 2019. 136

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.13

implement and orchestrate tasks in HDES, generally,

message passing interface (MPI) is employed to

make full use of distributed clusters and ensure high

scalability. There are many application

programming interfaces (APIs) or high-level

programming languages used for MPI [3] such as

open computing language (OpenCL), open multi-

processing (OpenMP), and coprocessing threads

(COPRTHR) SDK from Brown Deer Technology.

2. Background and related work

In this paper, there are two study parts

conducted for related work consisting of the

embedded heterogeneous system (EHS)

architectures and meta-heuristic applications on

heterogeneous systems. The heterogeneous

computing platform (HCP) for data processing in [3]

presents the heterogeneous processors and partial

reconfigurable hardware accelerators work together

with efficiency through APIs consist of COPRTHR

SDK and Epiphany SDK on Parallella board. The

matrix-vector multiplication in a different size is the

benchmark application for HCP, the results show

that when data is increasing, the heterogeneous

processor and a hardware accelerator are the best

performance on the platform.

The work in [5] implements edge detection on

heterogeneous system architecture (HSA)

environment to compare an ARM multicore

processor, Coprocessor and FPGA, and x64

architecture in terms of energy efficiency and

optimal performance evaluated from image

processing application. The ARM multicore

processor with coprocessors (Epiphany multicore

processor + FPGA) provides 50 times more energy

efficiency better than an x64 architecture in

experimental results.

Another interesting use of heterogeneous

systems is related to clustering systems. The

research in [4] presents a large-scale parallel method

of moments on CPU/MIC heterogeneous clusters

that proposes hybrid MPI/OpenMP APIs

management for distributed CPU/MIC

heterogeneous platforms. An implementation of a

single board computer cluster for the crypto

algorithm is presented in [6] to study 64-board. The

cluster architecture is the Raspberry Pi 3 Model B to

problem-solving of implementation of the DOZEN

crypto algorithm. Towards a dataflow runtime

environment for Edge, Fog, and In-Situ computing

based on distributed Sucuri architecture [7], also

presents the implement on multicore embedded

board.

The research work on heuristic algorithms or

applications for minimizing the schedule length in

heterogeneous computing systems are widely

investigated.

The hybrid heuristic-genetic algorithm with

adaptive parameters for static task scheduling in a

heterogeneous computing system is presented in [8]

to further improve the performance of existing

algorithms. In [9], a greedy ant algorithm is used for

workflow scheduling for heterogeneous computing.

This shows a novel workflow scheduling algorithm

named Greedy-Ant to minimize the total execution

time of an application in heterogeneous

environments.

The well-known genetic algorithm is employed

for efficient parallel execution on Epiphany

manycore processors. The work in [10] shows an

evaluate Parallella which is a small board with the

Epiphany coprocessors consisting of sixteen MIMD

cores connected by a mesh network-on-a-chip. The

results are based on classical genetic algorithms.
The scheduling tasks on HDES processors [11] to

minimize the schedule length of a DAG-based
parallel scientific application is a well-known
nondeterministic polynomial-hard (NP-hard)
optimization problem, and numerous heuristic list
scheduling algorithms have been proposed to
generate near-optimal solutions of the problem.

In this paper, the motivation is to implement the

meta-heuristic algorithm to workflow scheduling in

the cluster-based HDES environment with

heterogeneous embedded machines. We conduct the

evaluation and implementation of the genetic

algorithm (GA), the ant colony optimization

algorithm (ACO), the modified greedy genetic

algorithm. (MGGA), the modified greedy ant colony

optimization algorithm (MGACO), and genetic

simulated annealing (GSA) on the proposed HDES

system architecture. Rather comparing with

conventional algorithms such GA and ACO, the

modified heuristic algorithm such GSA are also

included. The assumptions of HDES including task

execution and communication models based on the

architecture are described. The comparisons in terms

of the quality of the results, i.e. scheduling time or

makespan, are carried out. The contribution of this

research can be summarized by the following: the

design framework for data-dominated HDES, the

evaluation, and implementation of GA-based HDES

and the comparison of HDES with related works.

Received: October 15, 2019. Revised: November 1, 2019. 137

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.13

Switch

HEM N

GPP
CO-
PRO

Ethernet EX MEM

HW-ACC

Shared MEM

L. MEM L. MEM L. MEM

HEM 2

GPP
CO-
PRO

Ethernet EX MEM

HW-ACC

Shared MEM

L.MEM L.MEM L.MEM

NET Bus
[Read-Write]

NET Bus

Heterogeneous Embedded System (HEM) 1

General
Purpose

Processor

Hardware
Accelerator

Local
MEM

Coprocessor

Local
MEM

Local
MEM

GPP Bus[Read-Write] CO Bus[Read-Write] HW Bus[Read-Write]
SH Bus
[Read-
Write]

SH Bus SH Bus

Shared Memory

Ethernet PortExternal Memory EX Bus

EX Bus[Read-Write]

NET Bus

NET Bus

Multiple Users

Figure.1 A cluster of heterogeneous embedded machine

The remainder of this paper is organized as

follows. Section 3 presents an overview of design

and problem descriptions. Section 4, we propose the

heuristic algorithm implemented on HDES. Section

5 presents the experimental results and evaluation,

respectively. Finally, section 6 concludes the paper.

3. System design overview

This section presents an overview of the system

that includes the proposed HDES architecture,

design, and heuristic applications that will be

implemented and run in the system. HDES

architectural design is based on computer

architecture principles or embedded system

principles [12]. We propose HDES working as a

cluster that includes 𝑁 -heterogeneous embedded

machines (HEMs). Each embedded machine

contains multiple processing elements such as

processors, coprocessors, hardware accelerators also

memories, and interconnections. They connect to the

network devices for multiple-user services.

Rationally, the system performance can be limited

by the speed of the network. For this reason, it

makes sense to give only parallel processes access to

the HDES cluster connection network.

To the best of our knowledge, the optimal

arrangement for HDES should be in a mixed model

that has attributes of both the asymmetrical and

symmetrical design. For an asymmetrical

multiprocessor, the back-end processors are used

exclusively for executing parallel programs, while

asymmetrical multiprocessors, as all processors,

have identical functionality running in the same

manner.

3.1 HDES architectural design

The multiple users can be accessed to 𝑁-layer

HDES that includes 𝑁 heterogeneous embedded

machines (HEMs). All are connected and

communication through a network device (e.g.

router/switch/hub).

Generally, there are 4 layers involved in

implementing applications in heterogeneous systems,

namely an application layer, an API layer, an

operating system (OS) layer, and the hardware layer.

The proposed heterogeneous cluster is shown in Fig.

1. In this research, the application layer represents

data-dominated applications. The API layer is the

set of functions or libraries that are available for the

users to manage system resources and run

applications. For example, the OpenMP is designed

for shared memory, which can run on a HEM cluster

using both OpenMP and MPI designed for

distributed memory [13] such as local memory,

external memory, and bus system. There are many

buses used as the communication paths between

processing units in this system such as the processor

bus (GPP bus), coprocessor bus (CO bus), hardware

bus (HW bus), external bus (EX bus), and network

bus (NET bus) as shown in Fig. 1. All

communication times thru different types of buses

are taken into account when scheduling will be

shown later in Section 3.4. The OpenCL is an open

industry standard for programming a heterogeneous

processor, collection [14] of general purpose

Received: October 15, 2019. Revised: November 1, 2019. 138

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.13

processor, coprocessors, and hardware accelerators.

It provides efficient accesses to utilize the power of

the HEM cluster. Another interesting API is the

COPRTHR SDK that provides the libraries and

tools [15] for simplifying the use of the HEM cluster

for developers targeting coprocessors, and hardware

accelerators.

The operating system software layer such as

embedded Linux or embedded Windows provides

the common services for applications and acts as an

interface between API and the hardware. Lastly, the

hardware layer is a single board computer that

includes heterogeneous processors, buses, memories,

and storage. In this paper, we focus on the Parallella

board from Adapteva Inc [16] consists of the host

processor as Xilinx Zynq Dual-core ARM A9

XC7Z020, the coprocessor is Epiphany 16-core

CPU E16G301, 1GB DDR3 memory, gigabit high

speed Ethernet, 128MB QSPI Flash, micro-HDMI,

48GPIOs, as the hardware layer.

3.2 Reconfigurable arrays

The flexibility and reusability of a

reconfigurable array or an FPGA as a hardware

accelerator is due to its configurable logic blocks

that are interconnected through configurable routing

resources [17]. The reconfigurable arrays are built to

support specific tasks or jobs such as digital signal

processing, image processing [5], and video

processing. In this section, we briefly demonstrate

two applications from reconfigurable arrays on the

Parallella board that contains a host processor, a

Xilinx Zynq, consist of an ARM dual core processor

and reconfigurable arrays. A high-speed Epiphany

Link (eLink) bus communication is between the host

processor and Epiphany 16-core coprocessor.
To utilize reconfigurable arrays, contain 80,000

logic cells and 220 digital signal processing (DSP)

slices, IP customization from RTL source files can

be written in HDL codes or automatically generated

using the Xilinx Vivado design suite as shown in

Fig. 2. This IP interface mode can be configured as

master or slave, also data width and memory sizes.

There are three AXI interfaces for IP customization

as AXI4; for memory-mapped interfaces, AXI4-

Lite; for single transaction memory-mapped

interfaces, and AXI4-Stream; for high-speed

streaming data.

3.3 Meta-Heuristic algorithms for HDES

partitioning and scheduling problem

There are many meta-heuristic algorithms for

searching efficient scheduling that aim for optimal

Architectural Design

IP Customization
RTL Source File

VHDL, Verilog, (XCI/XCIX)

Figure.2 IP customization and architectural design

0

1

2

3

4

5

7

8

6

10
15

10
5

10

5

15
5

10

10

Execution Time (ns)

Task

(𝐓)
GPP

CO-

PRO

HW-

ACC

0 35 20 10

1 40 20 10

2 45 15 25

3 35 40 10

4 40 35 25

5 50 15 40

6 30 35 30

7 30 20 10

8 25 15 30

Figure.3 A sample task DAG. The table shows execution

time of task on the processors

task scheduling such as genetic algorithm (GA),

simulated annealing (SA), Tabu search (TS), ant

colony optimization algorithm (ACO), and particle

swarm optimization (PSO). In this paper, we aim to

implementation GA and ACO to solve the

optimization problem based on HDES.

3.4 Problem description

We introduce a set of execution time model on

the right side of Fig. 3 of the heterogeneous system

processes consists of GPP, coprocessor, and a

hardware accelerator. The minimum execution time

is normally from hardware accelerator since it can

utilize parallel processing. The maximum execution

time is from GPP since it is designed for flexible

uses that support different types of jobs.

On the left side of Fig. 3, a data-dominated

application with nine tasks. A set of tasks with

precedence constraints is modeled in directed

acyclic graphs (DAGs). This paper, 𝐺(𝑉, 𝐸)

represents a task DAG, where 𝑉 is a set of tasks or

nodes and 𝐸 is a set of edges or data communication.

Each node 𝑣𝑖 ∈ 𝑉 indicates a task. Each directed

edge 𝑒(𝑖, 𝑗) ∈ 𝐸 represents dependency constraint

between 𝑣𝑖 and 𝑣𝑗 such that 𝑣𝑖 should be completed

Received: October 15, 2019. Revised: November 1, 2019. 139

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.13

before 𝑣𝑗 can be started, where 𝑖 and 𝑗 define as row

and column, respectively.

The nodes of the graph represent the tasks,

while the edges denote the precedence of the task.

The number on edges represents the amount of data

communication ranging from 5, 10, and 15 bytes.

Communication time, which is a product of data and

bus speed, depends on the types of buses in the

system including processor bus (GPP bus),

coprocessor bus (CO bus, hardware bus (HW bus),

external bus (EX bus), and network bus (NET bus)

as mentioned previously.

Fig. 4 shows the example of partitioning results

generated by GA in the HDES system contains 3

HEMs. As can be seen, Task 0, 1 and 2 are in

HEM1 where Task 0 is running in coprocessor while

Task 1 and 2 are running in hardware accelerator.

Fig. 5 shows the scheduling scheme. The

scheduling time or makespan obtained from this

simulation is 650ns. We can see that communication

time where tasks are located in different processing

elements and are taken into account. For example,

Task 2 (implemented in HEM1 coprocessor)

requires SH bus, EX Bus, and NET Bus for sending

output data thru the network switch to Task 4

(implemented in HEM2 GPP). Task 7 does not

require a network communication bus to send out

data to Task 8 since both are implemented in the

same HEM.

The 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 represents the actual finish time

(AFT) of the exit task 𝑣𝑒𝑥𝑖𝑡 and is defined as:

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝐴𝐹𝑇(𝑣𝑒𝑥𝑖𝑡), (1)

where 𝑣𝑒𝑥𝑖𝑡 is the summation value of all tasks 𝑣𝑖 and

𝑣𝑗.
The objective function defined as ℑ(𝑣𝑒𝑥𝑖𝑡) is a

goal of an optimization problem to be minimized, that
can be formulated as follows.

ℑ(𝑣𝑒𝑥𝑖𝑡) = 𝑚𝑖𝑛
𝑣𝑖𝜖𝑉,𝑒𝑖𝜖𝐸

{𝐴𝐹𝑇(𝑣𝑖 , 𝑣𝑗)}, (2)

𝐴𝐹𝑇(𝑣𝑖, 𝑣𝑗) = 𝛤𝑣𝑖,𝑑𝑖
+ 𝜅𝑝𝑒𝑛(𝑣𝑖, 𝑑𝑖), (3)

𝛤𝑣𝑖,𝑑𝑖
= [𝑡𝑒𝑥𝑒(𝑣𝑖, 𝑑𝑖) + 𝑡𝑐𝑜𝑚(𝑑𝑖) − 𝑡𝑐𝑜𝑛𝑐(𝑣𝑖, 𝑑𝑖)],

 (4)

where 𝑡𝑒𝑥𝑒(𝑣𝑖, 𝑑𝑖) is a set of task execution time in
directed acyclic graphs (DAGs), 𝑡𝑐𝑜𝑚(𝑑𝑖) is the data
communication dependencies between tasks,
𝑡𝑐𝑜𝑛𝑐(𝑣𝑖, 𝑑𝑖) is task concurrency value, and 𝑑𝑖 is the
𝑖𝑡ℎ of the communication time. This
𝑡𝑐𝑜𝑛𝑐(𝑣𝑖, 𝑑𝑖) equals to the minimum execution time if

GPP

CO-PRO

HW-ACC

Precedence
0

1 2

3

4

5

6

7

8

0
3

2

12
25

12

25

2

25

3

3

70

2

85

1
115

4
115

3

110

5

60

8

60

7

105
6

80

HEM 1

HEM 2

HEM 3

Figure.4 Partitioning result of HDES by GA

100

200

300

400

500

600

PL 0

PL 1

PL 2

PL 4

PL 5

GPPGPP
CO-

PRO CO-PRO

HW-

ACC
SH EX NETHW-

ACC0

0

1
2

7

3

4

5

PL 7

6

8

675

650ns

PL 3

PL 6

Bus system Single processor Parallel processor

Read

Execute

Write

 Figure.5 Scheduling result of HDES by GA

there are multiple tasks running in parallel. In a task
graph, 𝑒(𝑖, 𝑗) is associated with a weight which
represents the communication time between 𝑣𝑖 and 𝑣𝑗
when 𝑣𝑖 and 𝑣𝑗 are assigned to different processing
elements. Note that the communication time is
negligible if there are two tasks implemented in the
same place.

Only the longest execution time will be

accumulated into the objective function. 𝜅𝑝𝑒𝑛(𝑣𝑖 , 𝑑𝑖)

is calculated by the constraint values as shown in

Algorithm 1. Line 1 shows the create parameters,

Received: October 15, 2019. Revised: November 1, 2019. 140

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.13

𝑁𝑐𝑜𝑟𝑒𝑠 is number of cores per a HEM cluster, 𝑃𝑒𝑟𝑙𝑜𝑔𝑖𝑐

is percentage of logic cells per HEM. Line 2-9 show

the decision of the constraint values using in the

objective function. Note that the 𝑀𝑎𝑥𝑐𝑜𝑟𝑒𝑠 is the

maximum number of coprocessor cores in the

system, i.e. Epiphany has 16 cores.

Algorithm 1. Constraint

1: CREATE the parameters: 𝑁𝑐𝑜𝑟𝑒𝑠, 𝑃𝑒𝑟𝑙𝑜𝑔𝑖𝑐

2: if (1 ≤ 𝑁𝑐𝑜𝑟𝑒𝑠 ≤ 𝑀𝑎𝑥𝑐𝑜𝑟𝑒𝑠) do

3: | Constraint <= 0;

4: else if (1 ≤ 𝑃𝑒𝑟𝑙𝑜𝑔𝑖𝑐 ≤ 𝑀𝑎𝑥𝑐𝑜𝑟𝑒𝑠) do

5: | Constraint <= 0;

6: else

7: | Constraint <= 1;

8: end if

9: OUTPUT the constraint

In this paper, the 𝑙 × 𝑚 computation matrix 𝑀𝐴𝑇
stores the execution time of tasks 𝑉 running on HEM
𝑀 . 𝑙 = |𝑉| is the number of tasks and 𝑚 = |𝑀|
represents the number of processing elements in the
system. The element 𝑀𝐴𝑇𝑖,𝑗 is the execution time of
task 𝑣𝑖 on HEM 𝑚𝑡.

𝑀𝐴𝑇 =

[

𝑀𝐴𝑇𝑖,𝑗 𝑀𝐴𝑇𝑖,𝑗+1

𝑀𝐴𝑇𝑖+1,𝑗 𝑀𝐴𝑇𝑖+1,𝑗+2

⋯ 𝑀𝐴𝑇𝑖,𝑗+𝑙

⋯ 𝑀𝐴𝑇𝑖+1,𝑗+𝑙

⋮ ⋮
𝑀𝐴𝑇𝑖+𝑙,𝑗 𝑀𝐴𝑇𝑖+𝑙,+𝑙

⋱ ⋮
⋯ 𝑀𝐴𝑇𝑖+𝑙,𝑗+𝑙]

.

 (5)

The comparisons are performed based on the

metrics of schedule length ratio (SLR) and speedup.
The 𝑆𝐿𝑅 , a key measurement of a scheduling

algorithm is the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 of the schedule obtained.
Due to the distinct graph topology, 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 should
be normalized to a lower bound. The 𝑆𝐿𝑅 is defined
as:

𝑆𝐿𝑅 =
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛

∑ (𝑚𝑖𝑛𝑀𝐴𝑇𝑖,𝑗)𝑣𝑖∈𝐶𝑃𝑚𝑖𝑛

. (6)

The summation of the minimum execution time

of tasks is on the critical path 𝐶𝑃𝑚𝑖𝑛 . For any
scheduling algorithms, the 𝑆𝐿𝑅 value of a graph is
larger than one. Therefore, the lower 𝑆𝐿𝑅 value is the
better performance the algorithm will have.

The 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 is defined as the ratio of the
sequential execution time to the parallel execution
time (i.e., 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛):

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
∑𝑣𝑖𝜖 𝐺𝑃𝑃𝑡𝑐𝑜𝑚

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
, (7)

where ∑𝑣𝑖𝜖 𝐺𝑃𝑃𝑡𝑐𝑜𝑚 is the sequential execution time with

the data communication dependencies between tasks

computed by assigning all tasks to a single machine as

GPP.

4. Proposed heuristic algorithms based on

the HDES architecture

We introduce four meta-heuristic algorithms for

scheduling problem based on the proposed HDES

architecture. The algorithms include genetic

algorithm (GA), ant colony optimization algorithm

(ACO), modified greedy genetic algorithm (MGGA),

and modified greedy ant colony optimization

algorithm (MGACO).

4.1 GA implementation on HDES

The genetic algorithm to the matching problem

requires the setting up some parameters and some

adaptation. There are six steps of GA proposed as

follows.
At first step, the chromosome encoding

represents a sequence of task 𝑡 = {𝑡0, 𝑡1, … , 𝑡𝑛} of 𝑁

layers of HEM cluster. Each HEM obtains 3

consecutive genes partly inside the chromosome that

represent the mapping results in processing element,

i.e. processors (GPP), coprocessor (CO-PRO) and

hardware accelerator (HW-ACC). For example, a

HEM0 contains the series of tasks 𝑆 = {𝑠0, 𝑠1, 𝑠2}
implemented in GPP, HW-ACC, and CO-PRO

respectively. The task sα can be expressed as:

𝑠𝛼 = 𝛼 + (𝑛 + 2), 𝛼 = 0, 1, 2; 𝑛 = 1, 2, … ,𝑁; (8)

where 𝛼 denotes as a type of processors.

The second step, an initial population is

generated randomly as a sequence of integers inside

a chromosome representing the class indices in one

of the matched DAG.

The third step, an evaluation that each candidate

solution represents a sequence of tasks in the DAG.

This sequence is given as GA to find the

corresponding injective match. The sum of the

similarities between the matched elements in this

injective match is used as the objective function, the

higher summation is the fitter result.

The fourth step, the selection is the procedure by

which 𝑅, where 𝑅 < 𝑁 individuals that are chosen

from the population of HDES for reproduction. We

employ a roulette wheel selection to select parents

from the population. Each chromosome 𝑘 belongs to

the parent population with the probability of 𝑃𝑘. The

roulette wheel is created by calculating a cumulative

probability for all chromosomes as follows:

𝑄𝑖 = ∑ 𝑃𝑘
𝑖
𝑘=1 , 𝑖 = 0,1,2,… ,𝑁; (9)

Received: October 15, 2019. Revised: November 1, 2019. 141

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.13

where 𝑄𝑖 is a cumulative probability of the 𝑖𝑡ℎ
solution.

The selection of 𝑅 parents is accomplished by
spinning the wheel 𝑅 times. Each spin is tantamount
to a generated random number in the range [0,1].

In the fifth step, the crossover occurs between the
two parents. We use a simple technique, random one-
point crossover. A random rate is 25 percent. The
crossover operator builds an offspring by random
choosing to cut-points in the two parents, copying the
subsequences between the cut points in the two
parents into new two offspring, one each, and then
the remaining indices are filled, position wise, from
the other parent.

The one-point crossover is the generation of two
children from two 𝑁 ‐dimensional parent
𝑃𝑎𝑟𝑒𝑛𝑡1 (𝛽

0
 , 𝛽

1
 , … , 𝛽

𝑁
)and 𝑃𝑎𝑟𝑒𝑛𝑡2 (𝛼0 , 𝛼1 , … , 𝛼𝑁) ,

where 𝛽𝑁 and 𝛼𝑁 are individual task 𝑁. Let 𝜉 denote
the crossover point. Therefore, the offspring of
parents are generated as follows:

𝐶ℎ𝑖𝑙𝑑0
𝑛𝑒𝑤 = (𝛽0, 𝛽1, … , 𝛽𝜉,𝛼𝜉+1,, 𝛼𝜉+2, … , 𝛼𝑁), (10)

𝐶ℎ𝑖𝑙𝑑1
𝑛𝑒𝑤 = (𝛼0, 𝛼1, … , 𝛼𝜉,𝛽𝜉+1,, 𝛽𝜉+2, … , 𝛽𝑁). (11)

The final step, the mutation is performed by a

random selection of a position in the chromosome
and swapping its task probabilistically with a
nonuniform mutation technique from the pool of
chromosomes. Nonuniform mutation induces an
increasingly localized search for optimal solutions in
which the sets of genes that are chosen for mutation
are defined utilizing boundaries.

Let 𝑆𝑜𝑙𝑛 (𝛾0 , 𝛾1 , … , 𝑦𝑖 , … , 𝛾𝑁) be a system
solution of an optimization problem and its 𝑖 decision
variable (𝛾𝑖) be selected for mutation. Nonuniform
mutation produces a mutated solution
𝑆𝑜𝑙𝑛 (𝛿0 , 𝛿1 , … , 𝛿𝑖 , … , 𝛿𝑁), whereby 𝛿𝑖 is calculated as
follows:

𝛿𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝛾𝑖 − ℏ, 𝛾𝑖 + ℏ), (12)

ℏ = ℏ0 ×
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥−𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑤

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥
, (13)

where ℏ0 is an initial value of ℏ , 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑛𝑜𝑤
defines as current iteration, and 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥 is a
maximum iteration.

4.2 MGGA implementation on HDES

The modified greedy genetic algorithm (MGGA)
is shown on the left side of Fig. 6, to a matching
problem in DAGs. As it can be seen that MGGA is
similar to the GA, but one greedy step is added on.
The extra step of MGGA called Greedy GA as shown
in Algorithm 2. The input of this algorithm is a size

Algorithm 2. Greedy GA

1: CREATE the parameters: 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 , 𝑝𝑜𝑝𝑛𝑒𝑥𝑡, 𝑐𝑜𝑛

2: INITIAL 𝑐𝑜𝑛𝑔𝑟𝑒𝑒𝑑𝑦

3: for (j = 0; j < (𝑝𝑜𝑝𝑠𝑖𝑧𝑒 - 1); j++)

4: | for (i = 0; i < (popsize - 1); i++)

5: | | if (𝑝𝑜𝑝𝑛𝑒𝑥𝑡[i + 1]. 𝑐𝑜𝑛 <

𝑝𝑜𝑝𝑛𝑒𝑥𝑡[i]. 𝑐𝑜𝑛𝑔𝑟𝑒𝑒𝑑𝑦) then

6: | | | select the best constraint of 𝑝𝑜𝑝𝑛𝑒𝑥𝑡

7: | | end if

8: | end

9: end

10: OUTPUT the 𝑝𝑜𝑝𝑛𝑒𝑥𝑡 is the best solution

of the population with constraint. Line 1 shows
creating parameters as 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 is population size,
𝑝𝑜𝑝𝑛𝑒𝑥𝑡 is next population and 𝑐𝑜𝑛 is a constraint.
Line 2 shows initial 𝑐𝑜𝑛𝑔𝑟𝑒𝑒𝑑𝑦 as greedy constraints,
which is set to zero. Line 3 shows loop process of
row of population size subtracted by one. Line 4
shows for the loop process of column of population
size subtracted by one. Line 5-7 show the decision
instead of the solutions to find the best greedy
constraint for population next. And Line 10 shows the
best solution of MGGA output.

4.3 ACO implementation on HDES

To employ the ant colony optimization algorithm,
we require the setting up some parameters and some
adaptation.

The first step, initial parameters includes the
decision variable values (𝜀1, 𝜀2, 𝜀3, … , 𝜀𝑁) which are
chosen from a set of predefined values. Each decision
variable 𝑖 takes a value from a predefined set of
values Ε𝑖 as follows:

𝛦𝑖 = {𝜀𝑖,1, 𝜀𝑖,2, . . , 𝜀𝑖,𝜁 , … , 𝜀𝑖,𝛧𝑖
} , 𝑖 = 1,2, … ,𝑁; (14)

In which set of 𝛦𝑖 predefined values for the

decision variable, 𝜀𝑖,𝜁 is a possible value for the
decision variable, and 𝛧𝑖 is a total number of possible
values for the decision variable.

The second step, to generate a set of ants as an
array of 1 × 𝑁 that describes the ant’s path. This
array is defined as:

𝐴𝑛𝑡 = {𝜂1, 𝜂2, 𝜂3, … , 𝜂𝑖, … , 𝜂𝑁}, (15)

where 𝐴𝑛𝑡 is a solution of the optimization problem,
𝜂𝑖 the decision variable of solution 𝐴𝑛𝑡, and 𝑁 is the
number of decision variables.

The third step, to allocate pheromone into
objective function, the pheromone is a set of values
that make better solutions achieve higher
concentration of pheromone in comparison with

Received: October 15, 2019. Revised: November 1, 2019. 142

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.13

values that make worse solutions. 𝑁 arrays of size
1 × Η𝑖 are employed to allocate pheromone to the
decision space so that each of them is assigned to one
decision variable as follows:

 𝛷𝑖 = {𝜙𝑖,1, 𝜙𝑖,2, . . , 𝜙𝑖,ℎ, … , 𝜙𝑖,𝛨𝑖
} , (16)

where 𝑖 = 1,2, … , 𝑁.

In which 𝛷𝑖 is pheromone matrix for the decision
variable and 𝜙𝑖,ℎ is pheromone concentration of the
ℎ possible value of the 𝑖 decision variable. The
elements of the matrix 𝛷𝑖 are equal to zero at the
beginning of the algorithm optimization. The
pheromone allocation is achieved by increasing the
pheromone levels associated with a chosen set of
good solutions. The concentration of pheromone for
the possible value of the decision variable is updated
as:

𝜙𝑖,ℎ
𝑛𝑒𝑤 = (1 − 𝜌) × 𝜙𝑖,ℎ + ∑ 𝛥𝜙𝑖,ℎ(𝑗)𝑛

𝑗=1 , (17)

where 𝜙i,h

new is new concentration of pheromone of
the possible value of the decision variable, 𝜌 is an
evaporation rate, and 𝛥𝜙𝑖,ℎ(𝑗) defines as the quantity
of pheromone laid on the ℎ possible value of the
𝑖𝑡ℎ decision variable by the 𝑗𝑡ℎ ant.

The fourth step, a generation of new ants for each
decision variable 𝑖 is assigned a value with a
probability that depends on the concentration of
pheromone. A cumulative probability for all the
possible values of each decision variable as follows:

𝛹𝑖,𝑔 = ∑ 𝑃𝑖,𝑞
𝑔
𝑞=1 , (18)

where 𝑖 = 0,1,2, … , 𝑁 and 𝑔 = 1,2, … , 𝛩𝑖 .

In which Ψ𝑖,𝑔 defines as cumulative probability of
the 𝑔 possible value of the 𝑖𝑡ℎ decision variable.

4.4 MGACO implementation on HDES

The modified greedy ant colony optimization

(MGACO) algorithm is shown on the right side of

Fig. 6 with one greedy step adding. The step is

called Greedy ACO in Algorithm 3. The input

parameters of this algorithm are the path of ant

named 𝑙𝑒𝑛𝑔𝑡ℎ with a constraint, levels, and route of

the pheromone. Line 1 shows creating parameters as

𝑙𝑒𝑛𝑔𝑡ℎ𝑏𝑒𝑠𝑡 is the optimal solution, 𝑙𝑒𝑛𝑔𝑡ℎ is a good

solution, 𝑐𝑜𝑛 is a constraint, 𝑟𝑜𝑢𝑡𝑒𝑏𝑒𝑠𝑡 is the route

of increasing pheromone levels. Line 2 shows initial

𝑙𝑒𝑛𝑔𝑡ℎ𝑏𝑒𝑠𝑡 greedy constraints of optimization

solutions. Line 3-8 show the decision instead of the

solutions to find the optimal solution. Line 5 shows

the loop process of replacing pheromone levels. And

Line 9 shows the MGACO output.

Figure.6 The flow chart of proposed MGGA (left) and

MGACO (right)

Algorithm 3. Greedy ACO

1: CREATE the parameters 𝑙𝑒𝑛𝑔𝑡ℎ𝑏𝑒𝑠𝑡 , 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑐𝑜𝑛 ,

and routebest

2: INITIAL 𝑙𝑒𝑛𝑔𝑡ℎ𝑏𝑒𝑠𝑡

3: if (𝑙𝑒𝑛𝑔𝑡ℎ < 𝑙𝑒𝑛𝑔𝑡ℎ𝑏𝑒𝑠𝑡) then

4: | 𝑙𝑒𝑛𝑔𝑡ℎ𝑏𝑒𝑠𝑡 = 𝑙𝑒𝑛𝑔𝑡ℎ.𝑐𝑜𝑛;

5: | for (𝑖 = 0; 𝑖 < number of tasks; 𝑖++)

6: | | 𝑟𝑜𝑢𝑡𝑒𝑏𝑒𝑠𝑡 [𝑖] = 𝑟𝑜𝑢𝑡𝑒.𝑐𝑜𝑛[𝑖];

7: | end

8: end if

9: OUTPUT the best of solution

5. Experiments and results

In this section, experiments are carried out with

the comparison of the results using the heuristic

algorithms to find optimal solutions for HDES. The

experimental design of HDES that includes the 9-

layer of HEM connected by a network switch based

on a star topology. The algorithms with different

task graphs are simulated in this heterogeneous

embedded system.

5.1 HDES hardware setup

The HDES hardware environment as shown in

Fig. 7 consists of nine the Parallella boards, known

as HEM, and a 16-port of D-Link DGS-1016D

Received: October 15, 2019. Revised: November 1, 2019. 143

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.13

Figure.7 The HDES hardware setup

gigabit switch connects with CAT5e LAN cable.

The users can monitor on the laptop through

wireless LAN. The operating system is the

Parabuntu 2016.11.1, embedded Linux, official

Ubuntu distro for Parallella installed that is open

source from the community of www.parallella.org.

The APIs are operated using a collection of

COPRTHR SDK from Brown Deer Technology

with the Epiphany SDK from Adapteva.

5.2 Parameters and random task graphs

configuration

For GA and MGGA, the chromosome encoding,

represents a sequence of task 𝑡 = {𝑡0, 𝑡1, … , 𝑡𝑛} of 𝑁

layers of HEM cluster as described in Section 4. The

roulette wheel is employed as a selection technique.

For ACO and MGACO, there are 50 ants. The

pheromone parameter Φ𝑖 is 1.

The DAGs random task graphs are randomly

generated. The parameters for DAG generating

software are set as below.

• The number of task nodes in a DAG is {10, 20,

30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400,

500}.

• Communication-to-computation ratio (CCR)

is the ratio of average communication cost to

the average computation cost as {0.1, 0.2, 0.5,

0.8, 1, 2, 5, 8, 10} [9].

• Range of computation costs on machines: the

heterogeneity complex factor for the machine

performance on speed is {0.1, 0.2, 0.5, 1, 2}

[9].

• The number of levels spanned by

communications is {1, 2, 4}.

• The similarity of task numbers between {0.2,

0.5, 0.8} which a high value indicates the

higher similarity.

• The parallelism degree of a DAG is {0.1, 0.4,

0.8} which is a shorter DAG with high

parallelism.

• The dependency degree of the nodes in a

graph is {0.2, 0.5, 0.8} which the high

dependency is larger density.

All algorithms are written in C/C++, complied

by GCC/G++ on HEMs inside the HDES. For each

problem instance, the algorithm will run for 3000

iterations, which is our stopping criterion, and the

most feasible solution is then acquired.

5.3 The Results and Discussion

With MPI, the meta-heuristic algorithms can be

managed to run on selected HEM using master-slave

technique. The results from different sizes of task

graphs in this heterogeneous embedded system types

of algorithms are collected at the HEM master. The

best solutions are averaged and compared using

makespan, speedup, and SLR metrics.

Figure.8 The average makespan compared with different

algorithms on random task graphs.

Figure.9 The average speedup compared with different

algorithms on random task graphs.

Received: October 15, 2019. Revised: November 1, 2019. 144

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.13

Figure.10 The average SLR compared with different

algorithms on random task graphs

Fig. 8, shows the average makespan from all

DAG graph sizes obtained from GA, ACO, MGGA,

MGACO, and genetic simulated annealing (GSA).

The GSA algorithm [18] utilizes the simulated

annealing (SA) algorithm in the part of mutation

operation based on GA for finding the optimization

value. The average makespan of MGACO is 240

minutes which is the best of overall average

makespan while ACO is 247 minutes, GSA is 251

minutes, MGGA is 259 minutes, and GA is 266

minutes, respectively.

In Fig. 9, the proposed MGACO performs better

than other algorithms. Compared with GA and GSA,

MGACO improves speedup by 30 percent for a

small graph size. When the task number increases,

MGACO shows dramatically in advantage. It is

found that the performance of MGACO tends to

converge rapidly at the steady state, when the

number of tasks is larger than 30. Although, ACO

performs better than GSA, MGGA, and GA, when

the task number exceeds 50, its performance

decreases afterwards. When number of tasks is equal

to 80, MGACO improves speedup about 33 percent.

For the SLR, Fig. 10 shows the details of the

comparisons on random tasks graphs. It is obvious

that MGACO performs better than the other

algorithms. However, when 𝑛 = 60, 70, 80 due to

the lower boundary of SLR has been reached, all the

algorithms are roughly equal. In term of speed up

and SLR, the overall results reveal that MGACO

outperforms ACO, GSA, MGGA and GA to find

optimal task scheduling in the proposed HDES

architecture.

All algorithms in the experiments simulate an

initial task sequence generated randomly. GA, GSA,

and MGGA are based on the genetic algorithms,

while MGACO and ACO are list-based on the ant

colony method. Figs. 8, 9, and 10 clearly

demonstrate that MGACO outperforms ACO, GSA,

MGGA, and GA concerning the metrics, including

makespan, Speedup, and SLR.

As can be seen, the performance of the

algorithm searching for more quality solution can be

increased by using a simple greedy algorithm

inserted into a selection stage of conventional

heuristic algorithms. It usually finds a near optimal

solution in polynomial time. Theoretically, the

performance analysis of using greedy algorithm to

solve basic optimization problems of acyclic graphs

is elaborated in [19]. The ratio of a feasible solution

with an optimal solution is never more than twice

for most problem instances.

 By introducing a simple greedy algorithm in

meta-heuristic searching for a shortest makespan in

this paper, MGACO can generate better scheduling

results compared to GA and MGGA because an ant

colony can help to find the best pathway. As the

complexity of the task graph grows, the task graph

becomes harder for them to produce consistent

results on a variety of graphs. The resource

constraints are addressed in the cost function since

the number of reconfigurable cells and coprocessors

are limited.

6. Conclusion

This paper considers the genetic algorithm and

the ant colony optimization modified with the

greedy algorithm and presents an approach for ACO

based workflow scheduling. A new meta-heuristic

information based on forward dependency is

proposed to build probability for ACO to generate

task priorities. Additionally, a greedy algorithm for

machine allocation is incorporated to complete

scheduling. Based on the random task graphs,

experimental results in the HEM cluster demonstrate

the effectiveness of the modification of greedy ant

colony optimization algorithm which outperforms

the others by 33% more result quality. Future work

would be a real implementation of data-dominated

applications in this HDES based on the optimal

scheduling results.

References

[1] M. Zahran, Heterogeneous Computing:

Hardware and Software Perspectives, Vol.1,

ACM Books, New York, N.Y.2019.

[2] J. Huang, R. Li, J. An, D. Ntalasha, F. Yang

and K. Li, “Energy-Efficient Resource

Utilization for Heterogeneous Embedded

Computing Systems”, IEEE Trans. on

Computers, Vol.66, No.9, pp.1518-1531, 2017.

Received: October 15, 2019. Revised: November 1, 2019. 145

International Journal of Intelligent Engineering and Systems, Vol.13, No.1, 2020 DOI: 10.22266/ijies2020.0229.13

[3] S. Prongnuch and T. Wiangtong,

“Heterogeneous Computing Platform for data

processing”, In: Proc. ISPACS, pp.1-4, 2016.

[4] Y. Chen, S. Zuo, Y. Zhang, X. Zhao, and H.

Zhang, “Large-Scale Parallel Method of

Moments on CPU/MIC Heterogeneous

Clusters”, IEEE Trans. on Antennas and

Propagation, Vol.65, No.7, pp.3782-3787,

2017.

[5] S. Prongnuch and T. Wiangtong, “The

Implementation of Edge Detection on HSA

Environment”, In: Proc. iEECON, pp.1-4, 2017.

[6] A. B. Vavrenyuk, A. S. Rusakova, A. A.

Radiskhlebova, M. A. Ivanov, and V. V.

Makarov, “Implementation of the DOZEN

Cryptoalgorithm on the Cluster of Single-board

Computers”, In: Proc. ELConRus., pp.369-372,

2019.

[7] S. N. Agathos and V. V. Dimakopoulos,

“Adaptive OpenMP Runtime System for

Embedded Multicores”, In: Proc. BUC,

pp.174-181, 2018.

[8] S. Ding, J. Wu, G. Xie, and G. Zeng, “A

Hybrid Heuristic-Genetic Algorithm with

Adaptive Parameters for Static Task

Scheduling in Heterogeneous Computing

System”, In: Proc. IEEE Trustcom/

BigDataSE/ICESS, pp.761-766, 2017.

[9] B. Xiang, B. Zhang, and L. Zhang, “Greedy-

Ant: Ant Colony System-Inspired Workflow

Scheduling for Heterogeneous Computing”,

IEEE Access, Vol. 5, pp.11404-11412, 2017.

[10] L. Faber and K. Boryczko, “Efficient Parallel

Execution of Genetic Algorithms on Epiphany

Manycore Processor”, In: Proc. FedCSIS,

pp.865-872, 2016.

[11] G. Xie, G. Zeng, X. Xiao, R. Li and K. Li,

“Energy-Efficient Scheduling Algorithms for

Real-Time Parallel Applications on

Heterogeneous Distributed Embedded

Systems”, IEEE Trans. on Parallel and

Distributed Systems, Vol.28, No.12, pp.3426-

3442, 2017.

[12] J. L. Hennessy and D. A. Patterson, Computer

Architecture: A Quantitative Approach, Vol.6,

Morgan Kaufmann, San Francisco, C.A.2017.

[13] P. Czarnul, Parallel Programming for Modern

High Performance Computing Systems, Vol.1,

Chapman and Hall/CRC, New York, N.Y.2018.

[14] L. Howes, The OpenCL Specification, Version:

2.1, Khronos OpenCL Working Group, [Online]

Available: https://www.khronos.org/registry/
OpenCL/specs/opencl-2.1.pdf. Accessed on:

Sep. 2, 2019.

[15] Brown Deer Technology, COPRTHR-2

Overview, [Online]. Available: http://www.

browndeertechnology.com/docs/COPRTHR-2

Overview rev-b-20160629.pdf. Accessed on:

Sep. 2, 2019.

[16] Adapteva, Parallella-1.x Reference Manual,

[Online]. Available: https://www.parallella.org

/docs/parallella manual.pdf. Accessed on:

Sep.2, 2019.

[17] O. Terzo, K. Djemame, A. Scionti, and C.

Pezuela, Heterogeneous Computing

Architectures: Challenges and Vision, Vol.1,

CRC Press, Florida, F.L.2019.

[18] M. Zhao, X. Yin, and H. Yue, “Genetic

Simulated Annealing-Based Kernel Vector
Quantization Algorithm”, International

Journal of Pattern Recognition and Artificial

Intelligence, Vol.31, No.5, pp. 1-28, 2017.

[19] L. C. Thanh, “Performance Analysis of Greedy

Algorithms for Max-IS and Min-Maxl-Match”,

Vietnam Journal of Mathematics, Vol.36, No.3,

pp.327-336, 2008.

