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Abstract: This paper is dedicated to the study of electricity generation expansion planning considering uncertainty. 

The method used for this problem is utilizing a highly constrained uncertainty optimization issue, as it were be 

solvable and complete classification. The demonstration uses a toll function to minimize environment effect and 

operational costs. A Neural Network is utilized to long-term forecast in electricity. The stochastic optimization 

model consists of finding the optimal long-term electricity generation planning for the construction of new 

generation capacity subject to various economic and technical constraints. The model can be showed experimental 

results that enable long-term planning of electricity generation with optimization of the costs, pollution emission and 

uncertainty of these generation resources in determining the best solution. The findings can help decision the 

government policy not only adjust the existing electricity generation but also coordinate the conflict interaction 

among system cost, energy supply, pollutant mitigation as constraint violation risk. 
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1. Introduction 

The model of electricity appears to be constantly 

important, not only for academic purposes but also 

in many government projects in the context of the 

formulation of electricity, energy security and 

climate change policies. Power systems require 

sustainable management to have an important role in 

Thailand’s social and economic development. Now, 

fossil fuels and renewable energy are major energy 

sources that have serious negative outcomes for the 

environment locally and globally [1]. We divided 

the plans on electricity production as follows: long-

term, mid-term, and short-term [2]. However, an 

optimal electric generation plan may be a 

troublesome issue due to the following types of 

power plants to work with: thermal, combined cycle, 

renewable and hydro power plants. This problem 

can be solved by various computer tools. We used 

least-cost generation expansion planning to figure 

the minimized cost capacity that meets the 

forecasted demand within the parameters on the 

planning horizon [3]. We now need to look at the 

costs, risks and benefits for an energy source 

compared with others. Thailand’s national policy on 

energy should be aimed at implementing the 

systems that ensure the diversity and security of 

supply [4]. The Electricity Generating Authority of 

Thailand (EGAT) established on the 1st of May 

1969 is a state enterprise which provides electric 

utility services for the public in Thailand, under the 

management of the Ministry of Finance (MOF) with 

the Ministry of Energy (MOE) has established a 

policy to provide an adequate electricity supply in 

the future, this policy referred as the Power 

Development Plan (PDP). The PDP is used to 

determine the future electricity expansion starting in 

2018 and ending in 2036 [5]. The objective of the 

PDP was to reduce emissions [6]. The government 

of Thailand’s policy on electricity for 

resourcefulness expansion to meet all energy 

demands for power generation in Thailand [7]. The 

PDP was completed in collaboration with the MOE 

and EGAT as the main power plan to enhance 

system stability, reduce natural gas dependence, 

increase the use of clean coal technology, decrease 

electricity purchase from other countries, and utilize 

of renewable energy. This research is different from 
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the other researchers have presented, with separate 

forecasting and production control planning or 

control emission affect method. The stochastic 

model in this paper, advantages are including 

production control and environmental impact in 

long-term planning for the optimization cost in 

expansion electrical power plant. In present, EGAT 

have 47 power plants located all over Thailand with 

introduced capacity of 16,876 MW. The power 

plants of EGAT, 3 thermal generating station, 6 

combined cycle generating station, 27 hydropower 

generating station, 9 renewable generating station, 4 

diesel generating station, and 1 gas turbine 

generating station (Table 1). Fig. 1 shows the 

system’s capacity as percentages of power plants of 

electricity station. Bulk purchases of electricity 

regarding 12 independent power producers (IPPs) of 

14,948 MW, small power producers (SPPs) of 7,536 

MW and from other regions (Laos and Malaysia) of 

3,877 MW. This research focuses on identifying a 

suitable model for energy resource proportion and 

power plant for long-term electricity generations 

expansion planning through 2036 in Thailand. This 

paper aims to propose a mathematical model, 

stochastic optimization for a long-term electricity 

power system planning with neural network 

forecasted electricity consumption under uncertainty 

conditions 

 
Table 1. The types of power plants capacity of EGAT 

Power Plant 

Type 

Capacity 

(MW) 

System 

(%) 

Thermal (TM) 

Combined cycle (CC) 

Hydropower (HP) 

Renewable (RE) 

Diesel (DE)  

Gas Turbine (GT) 

3,647.00 

8,896.00 

2,952.40 

45.33 

30.40 

500.00 

22.69 

55.36 

18.37 

0.28 

0.19 

3.11 

Total 16,071.13        100 

 

 
Figure.1 The capacity power plants of EGAT 

 

In this article, we present the forecasting of 

electricity demand using feed-forward artificial 

neural network and multiple linear regression 

methods in consumption demand and peak load. In 

peak load after NN forecasted will be used 

probability distribution with load curve method. 

Finally, electric generation in long-term planning 

using a mathematical model in stochastic method for 

expansion the power plant under uncertainty of 

energy supply and technology disruption. 

2. The method development in long-term 

planning for electricity generation 

The model was accounted for all various 

electricity generation: the energy resources fossil 

(coal or lignite, natural gas, and fuels); and 

renewable resources (biomass energy, hydropower, 

solar, and wind) in power system. Therefore, final 

decision is to look at the issue with minimizing the 

expected value of costs by using various optimized 

the resource, allocation arrangement and installed 

capacity expansion for long-term planning schemes 

[8].  

2.1 Electricity demand forecasting 

In the study, the historical data of Electricity 

Consumption (EC) from 1990–2017 are used as the 

influential input indicators data, using GDP and 

POP for NN model, which is also proposed for 

2018–2036 forecast by comparing them with a 

model, multiple linear regression which is optimized 

for forecasting period of 2018–2036 using 1990–

2017 (Table 2). This study used the following data 

types: (i) EC and (ii) economic indicators GDP and 

POP in 1993–2017 (Fig. 2). NNs are used on 

forecasting problems characterized with unknown 

inputs and outputs. After training, various NN 

architectures, such as a multilayer perceptron (MLP) 

and a radial basis function networks (RBFNs) are 

used for EC forecasting [9]. 

In Thailand, EC and peak power demand have 

increased rate between 7.0–7.5% per annum from 

1989–2008 [10]. EC will likely continue to increase 

in the future as well. Fig. 3 shows EC and peak power 

demand from 1969–2017. Conversely, EC and peak 

power demand slump as a consequence various 

economic crises in 1998–1999, 2008–2009, and 

2011–2012. Electricity utility planning utilizes and 

identifies the importance of electricity forecasting 

[11]. In this research, NN architecture is used MLP 

by a feed-forward propagation training algorithm. 

The proposed NN for this study show the output as 

EC and peak demands from 2018–2036. 
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Table 2. The historical data of influential input 

Year 
          Power Generation Capacity by Fuel Type (GWh)                    POP GDP EC 

HP TM CC GT DS Total (Million) (Billion) (GWh) 

1990 4,858 31,259 4,888 1,444 21 43,189 55.84 3,373.5 39,368 

1991 4,413 31,700 11,541 909 8 49,225 57.03 3,656.9 44,773 

1992 4,506 36,688 13,345 945 9 56,007 57.62 3,994.5 50,771 

1993 3,826 37,975 18,667 1,126 13 62,180 58.44 4,341.0 56,558 

1994 3,431 39,194 25,084 1,085 9 69,651 59.24 4,688.2 63,642 

1995 6,684 42,391 20,400 1,687 2 78,880 59.28 5,068.9 72,779 

1996 7,233 45,310 19,204 2,704 4 85,924 59.90 5,355.4 79,450 

1997 7,055 44,818 21,863 2,554 3 92,724 60.50 5,207.9 85,896 

1998 5,881 42,147 24,323 1,566 4 92,134 61.20 4,810.3 85,597 

1999 3,433 38,374 25,379 1,252 3 90,413 61.80 5,030.3 84,512 

2000 5,296 36,151 25,556 1,153 2 96,780 61.88 5,254.4 90,724 

2001 6,310 31,617 22,685 1,138 2 103,165 62.31 5,435.4 97,412 

2002 6,480 30,127 23,529 1,117 5 108,389 62.80 5,769.6 102,485 

2003 7,741 30,826 19,346 1,084 4 116,743 63.08 6,184.4 110,675 

2004 5,915 31,538 20,652 1,090 2 125,318 61.97 6,573.3 118,938 

2005 5,845 33,570 23,534 1,315 2 133,621 62.42 6,848.6 127,025 

2006 7,950 33,648 25,137 1,088 1 142,004 62.83 7,188.8 134,060 

2007 7,960 32,146 24,762 901 1 146,925 63.04 7,579.5 139,445 

2008 6,950 29,128 27,209 675 2 148,266 63.39 7,710.3 141,558 

2009 6,941 23,463 33,164 306 1 145,286 63.53 7,657.1 141,692 

2010 5,325 27,289 38,338 275 3 160,189 63.88 8,232.4 156,125 

2011 7,912 24,996 37,211 338 0.5 158,963 64.08 8,301.6 155,207 

2012 8,408 26,168 42,551 370 0.4 173,250 64.46 8,902.8 169,369 

2013 5,390 25,732 40,531 453 0.8 173,535 64.79 9,142.1 169,530 

2014 5,141 24,764 43,052 370 1 177,580 65.12 9,232.1 173,603 

2015 3,724 20,560 45,225 308 0.5 183,466 65.73 9,510.9 179,537 

2016 3,521 20,296 43,679 261 0.5 188,999 65.93 9,823.1 185,046 

2017 4,685 49,717 38,290 1,242 27 188,934 66.19 10,237.0 185,130 

 

2.1.1. Multiple linear regression model 

EC as it may be assessed with the 

mathematical, a linear combination of various 

independent variables because of characteristics of 

the regressions model, MLR technique. The 

regression model occurs when observational data 

are modeled with the least square function and is a 

linear combination of the parameters of the MLR 

model as follows in Eq. (1). 

 

𝑦𝑡 = 𝑎𝑥1 + 𝑏𝑥2 + 𝑐𝑥3 + 𝑑𝑥4 + 𝑒                (1)  

 

Where, 𝑦𝑡 is the dependent variable EC, 𝑥1, 𝑥2, 𝑥3 

and 𝑥4  are the independent variable (POP, GDP, 

IMP and EXP respectively), a, b, c and d are the 

coefficients of regression model and e is a constant 

parameter of the regression model. In constant, the 

parameter represents unrecognized variation in the 

dependent variable and random variable. The POP, 

GDP, IMP, and EXP parameters are estimated to 

best fit of the data. The best fit is evaluated with 

the method of least squares regression. 

2.1.2. Neural networks model 

   The NN method is used to forecast EC, where 

the outputs are unknown [12, 13]. It is possible to 

become trapped in local minimal or to become 

subjective in selecting the NN model, architecture 

using the feed-forward propagation method as 
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based on a gradient descent [14]. We normalized 

the input data for designing an NN [15] as follow: 

�̅�𝑖 =  
𝑥𝑖− min (𝑥𝑖)

max(𝑥𝑖)−min (𝑥𝑖)
   ,𝑖 = 1,2, . . , 𝑛      (2) 

Where, 𝑛 is number of data, �̅�𝑖 are normalized data 

and 𝑥𝑖 are actual values of historical data.  

 

 

 
(a) 

 

 
(b) 

Figure.2 The electricity consumption and economic data: 

(a) Electricity Consumption vs. Electricity Generation and (b) Gross Domestic Product vs. Population 
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Figure.3 Peak power demand and EC in Thailand from 1969 – 2017 

 

 
(a) 

 

 
(b) 

Figure.4 Feed-forward artificial neural network: 

 (a) NN structure, (b) NN process 

Feed-Forward artificial neural networks 

(FANNs) have only one condition which is 

unidirectional information that flows from input to 

output. In the feed-forward process, the 

information is only moving in the forward 

direction from the input nodes x passing through 

the hidden nodes to the output nodes y with no 

looping in the network. The model uses a simple 

sigmoid activation function (f) to produce output 

values (y). The multi-layer FANNs (Fig. 4) are 

corresponding analytical description with sets of 

Eqs. (3), (4) (5), and (7) driven to generally long 

mathematical descriptions where solving by hand 

is not feasible. Computers and specialized 

software are required to build, describe and 

optimize any types of NN. 
 

Definition 

𝑥, 𝑛, 𝑚, 𝑝, 𝑦 𝑎𝑟𝑒 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 𝑤, 𝑞, 𝑟, 𝑠 𝑎𝑟𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠,   

𝐹 𝑖𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑏 𝑖𝑠 𝑏𝑖𝑎𝑠𝑒𝑠. 

The historical data are x1: EC, x2: GDP, x3: 

POP, x4: IMP, x5: EXP, weights and biases are 

coefficient. 

The NN uses a tanh function that is not 

bounded or continuously differentiable. This 

function is piece-wise linear and saturates at 0 

whenever the input x is less than 0. The equation 

indicates that a nonlinear activation function f 

takes a weighted sum of input x values and returns 

a value for 𝐹𝑛
𝑙 as: 
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 𝐹𝑗
𝑙 = 𝑓(∑ 𝑤𝑖𝑗

𝑙

𝑘

𝑖=1

𝑥𝑖) 

𝑛0 =   𝐹0(𝑤0 𝑥0 + 𝑏0) 

𝑛1 =   𝐹1(𝑤1 𝑥1 + 𝑏1) 

𝑛2 =   𝐹2(𝑤2 𝑥2 + 𝑏2)  

𝑛3 =   𝐹3(𝑤3 𝑥3 + 𝑏3) 

𝑛4 =   𝐹4(𝑤4 𝑥4 + 𝑏4) 

𝑛5 =   𝐹5(𝑤5 𝑥5 + 𝑏5)                                       (3) 

                
𝑚1 =  𝐹6(𝑞0 𝑛0 + 𝑞1 𝑛1 + 𝑏6)                              

𝑚2 =  𝐹7(𝑞2 𝑛2 +  𝑞3 𝑛3 + 𝑏7)                              

𝑚3 =  𝐹8(𝑞4 𝑛4 +  𝑞5 𝑛5 + 𝑏8)                         (4) 

 
𝑝1  =  𝐹9(𝑟1 𝑚1 +  𝑟2 𝑚2 + 𝑏9) 

𝑝2  =  𝐹10(𝑟3 𝑚2 + 𝑟4 𝑚3 + 𝑏10)           (5) 

 

𝑦   =  𝐹11(𝑠1 𝑝1 + 𝑠2 𝑝2 + 𝑏11)  

 𝑦   =   𝐹11(𝑠1 (𝐹9(𝑟1 (𝐹6(𝑞0 (𝐹0(𝑤0 𝑥0 + 𝑏0) +
 𝑞1 (𝐹1(𝑤1 𝑥1 + 𝑏1) + 𝑏6) +
 𝑟2 (𝐹7(𝑞2 (𝐹2(𝑤2 𝑥2 + 𝑏2) + 𝑞3 (𝐹3(𝑤3 𝑥3 +
𝑏3) + 𝑏7) + 𝑏9) + 𝑠2 (𝐹10(𝑟3 (𝐹7(𝑞2 ( 𝐹2(𝑤2 𝑥2 +
𝑏2) +  𝑞3 (𝐹3(𝑤3 𝑥3 + 𝑏3) + 𝑏7) +
 𝑟4 (𝐹8(𝑞4 ( 𝐹4(𝑤4 𝑥4 + 𝑏4) +  𝑞5 (𝐹5(𝑤5 𝑥5 +
𝑏5) + 𝑏8) + 𝑏10) + 𝑏11)                                     (6) 

       

𝑤𝑛  =  𝑤𝑜 − 𝜂∇𝑤𝐽(𝑤𝑜; 𝑥𝑘; 𝑦𝑘)                         (7) 

 

Where,  𝐹𝑗
𝑙  is the 𝑗𝑡ℎ  hidden node in layer l, 

𝑤𝑖𝑗
𝑙  is the weight between node i in layer (l-1) and 

node j in layer l, F is activation function, 𝑤𝑛,
𝑤𝑜  are updated weight value and old weight value 

respectively, J is gradient value, 𝜂 is learning rate 

and 𝑥𝑘 , 𝑦𝑘 are pair of a training sample at the kth 

iteration. 

The error during the NN design phase is 

ECMAPE which serves as the fitness function that 

must be minimized as: 

 

min   𝐸𝐶𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝐴𝑖−𝐹𝑖

𝐴𝑖
| × 100𝑛

𝑖=1           (8) 

 

Where, 𝐴𝑖 and 𝐹𝑖 are the target and the forecasted 

EC value at period i, respectively. 

The uncertain factors in the power capacity 

forecast include electricity demand which higher 

than estimated, fluctuating renewable energy 

sources, power purchasing and relying on 

neighboring countries, high consumption of 

natural gas in power generation and rescheduling 

of large power plants’ commercial operation dates. 

 
(a) 

 
(b) 

Figure.5 Load duration curve: (a) basic curve and         

(b) load duration curve in demand forecasted with NN    

in Thailand 2036 

 

Nevertheless, an appropriate level of generation 

capacity has been set to be not less than 15% of 

peak demand to ensure the security of electricity 

supply and to cope with uncertainties. 

2.1.3. Load model 

First, we investigated data using an annual 

hourly load curve. Then used the energy load 

duration curve (Fig. 5) to develop the generation 

system model to obtain the reliability indices, i.e., 

conventional unsupplied resource of energy. 

Electricity demand is a single product with 

demand levels varying over time. Electricity 

producers use a "load-curve" to describe demand 

over time increasing, forecasted with NN shown in 

Fig. 6. The problem in concern is the long-term 

investments, so for the study we considered the 

load curve as having occurred over a year.  

The electricity demand under uncertainty is the 

possibility of the electric load to increase or 

decrease from the baseline of the fixed load. The 

method uses the distribution to illustrate forecasted 

peak loads. We divided the distribution into 

intervals. The normal distribution was divided into 

seven parts with a 5% standard deviation (SD) of 

intervals for the purposes of this study. Reliability 

for power system uses the load forecast 

uncertainty model as follows: 

1. Load-curve (LC) is picked in the SD against 

the mean of peak level. The LC is generated 

with accumulate the peak electricity demand 

value in uncertainty. The value is then 
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combined to the peak value which represents 

expand; or conversely, subtracted from the 

peak value to represent a decline in peak 

uncertainty. 

2. LC is probability that obtains the weighted 

values for particular level. 

3. The corresponding reliability index of load 

forecasted is the sum of all weighted loads. 

Each unit is assumed to generate electricity 

from an adequate fossil resource. However, some 

power generating units, example hydro resources, 

are an energy-limited type, because the amount of 

water varies over time. As such, hydro resources 

are used as peak shaving units, i.e. leaving the 

remaining demand to be supplied by other types of 

units. Fig. 6 and Table 3 show the characteristics 

for demand as probability distribution. 

2.2 Stochastic optimization model 

Those responsibilities are in charge of the 

decisions for allocating electricity generation 

patterns and any capacity expansions with minimal 

system costs over a long-term planning horizon 

[16]. To effectively manage energy resources and 

facilities, the components are integrated into the 

modeling framework. The following are the 

challenges for the planning: (i) identifying optimal 

capacity-expansion schemes; (ii) maximizing 

hydropower generation; (iii) reflecting on the 

stochastic features for any uncertain parameters 

such as demands, allowable capacities of water for 

hydropower plants; (iv) analyzing any tradeoffs 

between efficiency and reliability; and (v) 

minimizing environment harm. 

Table 4 shows the capacity for Thailand’s 

power system. Fig. 8 shows the electric power 

plants diagram by technology. Power plants are 

rated in accordance with production capacity as 

measured in megawatts (MW).  

 

 
Figure.6 Probability distribution approximation 

 

Table 5 shows investments and operational 

costs for each plant type.  

 
Table 3. The reliability indices consolidate load forecast 

uncertainty 
SD Load (MW) RI Prob. Weighted 

-3 
41693 - (15% × 

41693)  = 35439 
i 0.006 i × 0.006 

-2 
41693 - (10% × 

41693)  = 37524 
ii 0.061 ii × 0.061 

-1 
41693 - (5% × 

41693)   = 39608 
iii 0.242 iii × 0.242 

0 
41693 - (0% × 

41693)   = 41693 
iv 0.382 iv × 0.382 

+1 
41693 + (5% × 

41693)   = 43778 
v 0.242 v × 0.242 

+2 
41693 + (10% × 

41693)   = 45862 
vi 0.061 vi × 0.061 

+3 
41693 + (15% × 

41693)   = 47947 
vii 0.006 vii × 0.006 

Reliability  = ∑ weighted of reliability index  

   (RI)         = i × 0.006 + ii × 0.061 + iii × 0.242 + iv ×   

                0.382 + v × 0.242 + vi × 0.061 + vii × 0.006 

 

Table 4. The power plants capacity in Thailand. 

Power  

Plant  

Number of  

Power Plant 

Capacity 

Factor 

Total Capacity 

(MW) 

 (TM) 3 0.8-0.9 3,647 

 (CC) 6 0.8-0.9 8,896 

 (GT) 1 0.8-0.9 500 

 (HP) 27 0.2-0.5 2,952 

 (DS) 4 0.8-0.9 30 

 (RW) 9 0.15-0.25 45 

 

Table 5. The construction and operation cost with fuel. 

Energy  

Types 

Construction  

(Bath / kw) 

Operation  

(Bath/kw /Year) 

 (CC) 24,718 7,500 

 (TM) 52,700 6,760 

 (GT) 14,858 10,125 

(HP) 

Large > 50 MW 

Small < 50 MW 

 

132,000 

148,500 

 

1,980 

2,150 

Nuclear 104,959 14,560 

 

Table 6. The environmental, tax and cost of 

technological 

Energy 

Types 

CO2 

 

NOx 

 

SO2 

 

TSP 

 

Tax 

Fees 

Cost 

 

HP 15 0.02 0.01 0.01 - 2.92 

Coal 960 3.79 3.76 0.33 0.42 2.93 

Natural 

Gas 

512 1.25 0.31 0.01 0.23 3.10 

Nuclear 170 0.00 0.00 0.00 - 3.60 

RW 30 0.01 0.02 0.02 - 4.19 

Oil 770 2.90 4.90 0.25 - 4.93 

Diesel 650 2.90 1.29 0.25 - 4.93 
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Table 7. The pollutant of emission used electricity generation each technology 

Year 

Pollutant Emission 

(Ton/Year) 

Electricity 

Generation 

(GWh) 

Natural 

Gas 

Oil Fuel Diesel Coal 

Lignite 

GHG 

(CO2) 

NOx SO2 TSP Fossil 

Fuel 

RW 

2015 23,412,473 546,719 34,544 15,322,740 39,316,476 79,151 28,732 1,845 66,093 3,745 

2016 21,228,208 226,962 32,254 17,748,799 38,836,323 73,613 26,722 1,736 64,237 3,528 

2017 17,494,788 77,127 115,484 16,811,959 34,499,359 59,319 21,778 1,713 56,124 4,667 

 

Table 6 shows the factors regarding preventing 

harm to the environment for each type of plant, 

additionally the costs of electricity as Bath/kwh.  

Table 7 shows the historical data used for 

testing from 2015–2017. The operational costs of 

hydropower plants are the lowest because there is 

a minimum requirement in fuel consumption and 

least environmental harm emission. 

The operational costs for nuclear based power 

plants are unable to be used to estimate costs 

because of nuclear waste products will be around 

well after the plant has closed however; data might 

be easily included for this task. 

 

Definition GHG: greenhouse gases (CO2) and 

TSP: total suspended particulate. In CO2, NOx, 

SO2 and   TSP: g/kwh and tax fee and cost: 

bath/kwh. 

2.2.1. A multi-stage stochastic model 

The following elements justify the use of a 

dynamic multi-stage method for the electricity 

generation planning to investment:  

1. The total costs in long-term  

2. The load curve in long-term 

3. New technologies 

4. Presently available equipment will become 

obsolete 

5. The emission environment cost from power 

generation 

The equipment costs are influenced by 

changing technologies and growing fuel costs and 

emission tax fees. The most important aspect as 

demand grows is the total energy demanded and 

peak-levels. These determine the total capacity 

available to meet power demands. As new 

technologies appear, the specialized and 

commercial accomplishment of the study and 

improvement depends on past decisions with the 

technical and lifetime value of any equipment. We 

developed a multiple stage stochastic optimization 

model based on [17, 18] with advantage 

environments effects of cost and LC with NN 

forecasted in electricity consumption demand as 

illustrated below: 

      min E  ∑ (∑ 𝒄𝒑
𝒕 𝜹𝒑

𝒕 + ∑ ∑ 𝒒𝒑
𝒕

𝒌

𝒋=𝟏

𝒏

𝒑=𝟏

𝒏

𝒑=𝟏

𝑻𝒋
𝒕𝒚𝒑𝒋

𝒕 𝒆𝒑
𝒕 )

𝑵

𝒕=𝟏

     (8) 

 

Subject to 

∑ 𝑐𝑝
𝑡 𝛿𝑝

𝑡  ≤  𝑏𝑝
𝑡  

𝑛

𝑝=1

 

𝛿𝑝
𝑡 =  𝛿𝑝

𝑡−1 + 𝑥𝑝
𝑡 − 𝑥𝑝

𝑡−𝐿𝑝
 

 𝑝 = 1, … , 𝑛 ;  𝑡 = 1, … , 𝑁                                                        

∑ 𝑦𝑝𝑗
𝑡 ≥  𝑑𝑗

𝑡

𝑛

𝑝=1

;  𝑗 = 1, … , 𝑘 ;  𝑡 = 1, … , 𝑁 

∑ 𝑦𝑝𝑗
𝑡 ≥  𝑤𝑗

𝑡

𝑛

𝑝=1

;  𝑗 = 1, … , 𝑘 ;  𝑡 = 1, … , 𝑁 

∑ 𝑦𝑝𝑗
𝑡 ≤  𝑎𝑝 (𝑔𝑝

𝑡 + 𝛿𝑝

𝑡−∆𝑝)

𝑘

𝑗=1

                     

𝑝 = 1, … , 𝑛  ;  𝑡 =  1, … , 𝑁 

𝑎𝑛(𝑔𝑛
𝑡 + 𝛿𝑛

𝑡−1 + 𝑥𝑛
𝑡 )

≥ 𝐷𝑚
𝑡 − ∑ 𝑎𝑝 (𝑔𝑝

𝑡 + 𝛿𝑝

𝑡−∆𝑝)

𝑛−1

𝑝=1

 

 𝑝 = 1, … , 𝑛 ;  𝑡 = 1, … , 𝑁 

𝛿, 𝑥, 𝑦 ≥ 0 

𝛿𝑝
𝑡 = 𝛿𝑝

𝑡−1 + 𝑥𝑝
𝑡  

 
Definition The following multi-stage 

stochastic model can be proposed. Let as: 

 

𝑝     = power plant type 

𝑗      = resource supply fuel 

𝑛     = number of technologies available for power 

plant 

𝑚    = demand of peak load forecasted with load 

curve  

𝑥𝑝
𝑡    =  new capacity made available for 

technology p at time t 

𝛿𝑝
𝑡    = total capacity of i available at time t 
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𝑎𝑝    = availability factor of p 

𝐿𝑝    = life-time of p 

𝑔𝑝
𝑡    =  existing capacity of p at time t, decided 

before  

        t = 1 

𝑑𝑗
𝑡    = maximal demanded resource at time t 

𝑇𝑗
𝑡    = duration of mode p at time t 

𝑦𝑝𝑗𝑡 = capacity of p effectively used at time t  

𝑐𝑝
𝑡    = unit investment cost for p at time t (on a 

yearly equivalent basis) 

𝑞𝑝
𝑡    = unit production cost for p at time t 

𝜉𝑡     = represents the random variable at time t 

𝑒𝑝
𝑡     = unit emission tax fees cost for p at time t 

(only coal/lignite and natural gas fuel) 

𝑤𝑗
𝑡    = the limitation of fresh water of mode p at 

time t 

𝑏𝑝
𝑡     =  the upper bound budget for construction 

cost of mode p at time t 

𝐷𝑚   
𝑡 =  the power demanded in load curve with 

NN forecasted at time t 
 

The stochastic optimization model (SOM) 

finds the best structure for power plant capacity 

required to satisfy regional power demands as 

forecasted by vector x. The objective function 

minimizes the expected value of system costs and 

is related to the following: (i) supply costs, energy 

resource; (ii) variable operational costs regarding 

power conversion; (iii) investment construction 

costs expand capacity; and (iv) shouldering 

environmental emissions. We classified the 

decision variables into the following categories: (i) 

continuous variables - coal and natural gas 

production, conversion technologies capacity, and 

electricity generation amounts; and (ii) generation 

variables if capacity expansion is necessary. 

2.3 Implementation to power generation 

planning 

Over 2018–2036, the electricity demand is 

expected to increase 2.7% per year and reach 

49,655 MW and expect the stochastic model plan 

to save 89,672 million units, which will make the 

 
Table 8. Thailand’s power systems capacity 

Power 

generation 

Capacity 

(MW) 

Percentage 

(%) 

CC  21,145 56.2 

RW  8,476 22.5 

TM (Thermal) 7,538 20.0 

EGAT-TNB  300 0.8 

GT and DS  153 0.5 

Total 37,612 100.0 

total contracted capacity to be at 70,335 MW by 

the end of 2036. 

The stochastic model is summed up best as 

follows in 2036. Fig. 7 is the flowchart for long-

term EC modeling forecasting and stochastic 

optimization modeling while considering various 

input types. Thailand’s power systems capacity is 

as follows shown in Table 8 – 9. 

3. Results 

The EC forecasting and stochastic optimization 

models for long-term planning focus on the power 

development plan 2018–2036 in Thailand, (i) 

Security: meeting increasing power demands in 

 
Table 9. Thailand producer’s power systems capacity 

Power 

generation 

Capacity 

(MW) 

Percentage 

(%) 

EGAT 15,482 41.2 

IPPs 13,167 35.0 

SPPs 4,530 12.0 

VSPPs  2,029 5.4 

Import  2,404 6.4 

Total 37,612 100.0 

 
Table 10. The generating capacity in expansion 

planning during 2018 -2036 

Power Plant  

Types 

2017  

(%) 

2026  

(%) 

2036 

 (%) 

Import & Hydropower 7 12 15 

Coal / Lignite 20 22 24 

Natural Gas (LNG) 64 50 30 

Renewable 8 15 25 

Diesel / Oil Fuel 1 1 1 

Nuclear - - 5 

 

Table 11. The summary of generating capacity in 

expansion planning classify by technology 

Power Plant Type 

(MWh) 

 

2017 

2018 

- 

 2026 

2027 

- 

2036 

 

Total  

Renewable  

-Domestic & HP 

-Import neighbor  

-Buy in domestic  

8,746 

3,500 

3,246 

2,000 

15,500 

9,100 

5,500 

900 

9,600 

5,000 

4,000 

600 

25,100 

14,100 

9,500 

1,500 

Combined Cycle 

-Natural Gas 

-Buy in domestic  

21,145 

8,896 

12,249 

15,500 

14,500 

1,000 

3,500 

3,000 

500 

19,000 

17,500 

1,500 

Thermal 

-Coal / Lignite 

-Buy in domestic  

-Import neighbor  

7,538 

3,647 

3,591 

300 

5,500 

4,000 

700 

800 

4,700 

3,400 

600 

700 

10,200 

7,400 

1,300 

1,500 

Other 

-Gas turbine 

-Diesel / Oil  

153 

123 

30 

230 

200 

30 

1,070 

1,050 

20 

1,300 

1,250 

50 

Nuclear - - 2,000 2,000 

Total expansion  37,582 36,730 20,870 57,600 
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Table 12. The forecasted results of the MLR and NN 

model 

 Year Electricity Generation, Electricity Demand 

and Peak Load (GWh) 

Generation  Consumption Peak Load 

1990 44,765 39,369 7,221 

1991 50,713 44,773 8,045 

1992 57,509 50,771 8,904 

1993 63,982 56,558 9,839 

1994 71,973 63,642 11,064 

1995 80,436 72,780 12,268 

1996 87,797 79,451 13,311 

1997 93,407 85,897 14,506 

1998 91,156 85,598 14,180 

1999 91,414 84,512 13,712 

2000 98,487 90,724 14,918 

2001 103,856 97,412 16,126 

2002 111,256 102,486 16,681 

2003 117,290 110,676 18,121 

2004 121,534 118,939 19,326 

2005 134,798 127,025 20,538 

2006 141,919 134,061 21,064 

2007 147,026 139,446 22,586 

2008 148,264 141,559 22,568 

2009 145,159 141,693 22,045 

2010 160,152 156,125 24,010 

2011 158,937 155,207 23,900 

2012 173,320 169,370 26,121 

2013 173,377 169,530 26,598 

2014 177,261 173,604 26,942 

Testing 

Model 

Actual  

Testing 

Value 

MLR 

Demand & 

Peak load 

NN 

Demand & 

Peak load 

2015 179,537 

27,346 

179,137  

27,015 

179,456 

27,340 

2016   185,047 

29,619 

184,747  

28,385 

184,850 

28,590 

2017 185,131 

28,578 

184,831  

29,075  

185,355 

28,940 

 

Error 

R Square 0.95 0.98 

MAPE (%) 1.87 1.15 

RMSE 2,685 2,077 

Time 

Periods 

PDP   

Forecasted 

MLR 

Forecasted 

NN 

Forecasted 

2018 200,500 

28,338 

210,500  

29,535 

205,150 

29,215 

2022 248,500 

36,776 

236,001  

37,350  

240,395 

36,850 

2026 303,137 

40,791 

270,816  

41,135 

281,596 

41,050  

2030 341,032 

44,424 

314,385  

45,050 

323,885 

44,750 

2036 393,335 

49,655 

365,050  

50,015 

379,850  

49,985 

concerned with the economic and Nation 

Development as well as considering fuel 

diversification to dependency on any one power -

source; (ii) Economic: developing appropriate 

costs for power generation to engender long-term 

economic competitiveness and energy efficiency; 

and (iii) Ecological: the reduction of 

environmental seeking lessened co2 in electricity 

generation process. 

In 2036, the demand capacity will need to be 

70,335 MW and will have a present capacity of 

37,612 MW, a further capacity of 57,459 MW, and 

a removed capacity (2018–2036) as 24,736 MW. 

These are shown as follows: 

-Generating and retired capacity between 2018 

until 2036 

-Present capacity 37,612 MW (end of 2017)  

-New capacity more over 57,459 MW 

-Removed capacity 24,736 MW 

-Further demand capacity 70,335 MW in 2036  

The results from stochastic optimized model 

and forecasting in long-term are power plant 

technology installed and environmental affect cost. 

In the end, we will have summary of generating 

capacity expansion planning classify by 

technology in time period shown in Table 10 and 

11. The forecasted results with the MLR and NN 

models in electricity consumption are shown in 

Table 12. The production of renewable energy will 

be used instead of oil and gas production to 

consider the impact on the environment and cost. 

4. Conclusion 

The following targets for 2036’s installed 

capacity: 57,600 MW for renewable; and wind, 

solar, and small-hydro were set at 3,000 MW, 

6,000 MW, and 5,100 MW, respectively. The 

current status of renewable energy sources in 

Thailand makes these goals ambitious. The 

installed capacity for wind power tripled from 

2014 to 2017 to 627.82 MW. The capacity for 

solar power nearly doubled to 2,692.26 MW of 

2014–2017. Thailand is halfway to its 6,000 MW 

goal for installed solar capacity by 2036. Both the 

demand and supply of solar power are growing 

and the future will require upward revisions. The 

pivot to renewable power sources will satisfy the 

stochastic optimization model. Thailand has shown 

great potential for continuing growth of the 

renewable energy sector. 

Based on the limitations of the long-term 

electricity generation planning established by the 

government, the current study produced a power 

generation system operation plan model that can 

calculate realistic operation and construction costs, 

moreover it can be solve the optimization for 

generation in best value. 
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In the future, if any researchers want to use the 

proposed stochastic model, it must be 

consideration factors in the topography that affects 

the production of renewable energy. A constrain 

will be adjust according to the efficiency of 

electricity production in each country; hydro 

power, solar and wind power plant. For 

sustainability, enough production capacity of 

electrical should be increased without the need to 

purchase energy from different countries, will be 

decrease a risk in uncertainty and must be improve 

the model. 

Fig. 8 shows forecasting results of electricity 

consumption from 2018-2036. In Fig. 9 shows the 

types of power plant of Thailand in future. 

 

 

 
Figure.7 Flowchart for long-term of EC forecasting and stochastic optimization method 
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Figure.8 Forecasting results of electricity consumption. 

 

Figure.9 Thailand types of power plants in the future 
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