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Abstract: The existing method of graph-based process model discovery has weaknesses in detecting parallel 

relationship (XOR, AND, and OR). The algorithm only works on a particular graph structure, so it must be 

reconfigured when applied to other different structures. To answer this problem, this paper proposes an improved 

method of parallel model detection, which is designed in two phases. The first one consists of three steps; firstly is to 

count and record the value of relationship frequency into every node in a graph model. Then, the second step 

implements the algorithm to discover the concurrent relationship. The third step detects all possible split and join 

relationships. Based on the first phase, then a consistent and robust parallel discovery algorithm can be developed. 

The first parallel algorithm is to identify the XOR relationship. This algorithm is designed with the rule that the XOR 

pattern cannot have a concurrent relationship between its branch nodes. Next, the algorithm for detecting AND and 

OR must detect the existence of any concurrent relationship in its branches. Then, AND and OR pattern is 

differentiated by their unique characteristic of relationship frequency at branch nodes. To verify the ability of the 

proposed methods in which the existing method fails, we have designed four scenarios. Scenario 1 and 2 

consecutively were arranged with two and three branches parallel model. Scenario 3 located the AND and OR inside 

the XOR pattern. In scenario 4 the sequence relationships were inserted between split and join of parallel patterns. 

The experimental results show that the proposed method successfully recognizes and differentiates XOR, AND and 

OR patterns correctly in all scenarios. It also sounds in all discovered model and get 100% fitness.  

Keywords: Parallel model detection, Graph-based process model discovery, Relationship frequency, Concurrent 

relationship. 

 

 

1. Introduction 

The automatic process model discovery of the 

event log is an important aspect of the organization 

[1]. The produced process model is a real reflection 

of the field conditions obtained based on the event 

log [2]. The discovered model can be beneficial, 

starting from inspection and finding valuable 

insights to observing the conformance with the 

reference model. 

Several methods are known for discovering 

business process models from event logs, including 

alpha miner [2], heuristic miner [3], inductive miner 

[4], fuzzy miner [5], split miner [6, 7], and graph-

based miner [8, 9]. Graph-based miner algorithms 

outperform others in lower time complexity [10]. 

This algorithm is applied to Neo4j graph database, 

which stores activities and relationships. Several 

studies have used graph-based discovery models to 

detect anomalies [11, 12], the model also able to be 

combined with data perspectives for decision mining 

[13]. 

In previous graph-based miner studies, several 

algorithms have been introduced to find process 

models, including detecting parallel processes [8, 

11], recognize and insert the invisible task [9], and 

discovering Non-free Choice [14].  

The existing method use indegree and 

outdegree of nodes depicted in the Process Model as 

the basis of parallel detection. This approach 

encounters some difficulties when the structures of 
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two or more patterns in the model are figured out 

similarly, i.e., a concurrent relationship is the same 

as a split or join pattern, OR pattern looks similarly 

with AND pattern, etc. Another problem also arises 

when the concurrent relationship potentially 

disguises the parallel pattern that makes it unable to 

be detected. So it is clear that the existing method 

has a weakness in the ability to discover parallel 

process models.  

To overcome these weaknesses, we propose a 

more reliable method by improving the previous one 

as the contribution of this paper. There are six main 

contributions of this research; they are: 

1. Introducing relation frequency values for every 

relation in the graph sequence model. These 

values then are summed up and labeled to every 

node as an input relationship frequency and 

output relationship frequency. Both kinds of 

node's frequency are utilized to differentiate 

between AND and OR.   

2. Proposing an algorithm for detecting graph-

based concurrent relationships. The proposed 

algorithm accommodates the difference between 

a concurrent relationship with a short-loop 

pattern by investigating the pattern found in the 

model with the real condition in the trace.  

3. Detecting all possible split and join relationships 

as the foundation of next step parallel pattern 

detection.  

4. Proposing an algorithm to detect an XOR 

relationship based on the absence of concurrent 

relations 

5. Proposing an algorithm to detect AND relations 

based on input and output relationship 

frequency value between its branches nodes. 

6. Proposing an algorithm to detect OR relations 

based on input and output relationship 

frequency value between its branches nodes. 

The top three contributions are the first phase 

that aims as a means of supporting the algorithm of 

parallel process discovery. The next three steps are 

the second phase, which is the parallel process 

discovery algorithms. All six are designed and 

implemented to produce reliable methods used in 

any parallel cases. 

This study examines the ability of our new 

proposed method in several scenarios of event log 

cases. The results obtained from all experiments 

indicate that the proposed method successfully 

detects and distinguishes the XOR, AND and OR 

parallel relations in all cases. 

The next four sections organized as follows. 

Definitions and existing method are discussed in 

Section 2. The proposed method is discussed in 

Section 3. We then discuss and summarize the 

results of some scenarios for parallel process 

discovery in Section 4. Finally, the conclusion of 

this work is presented in Section 5. 

2. Research method 

2.1 Automated process discovery 

Automatic process model discovery techniques 

utilize event logs as input and generate business 

process models that closely match behavior 

observed in the event log or implied by traces in the 

event log. The event log is obtained from business 

activities.  

 

Definition 1 (Event, attribute): Given a set of all 

possible event  ℰ, and let 𝐴𝑁 be a set of attribute 

names. For any event 𝑒 ∈ ℰ  and name 𝑛 ∈ 𝐴𝑁 , 

 #𝑛(𝑒) is the value of attribute n for event e. So 

#𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑒) is the activity associated with event e, 

and #𝑡𝑖𝑚𝑒(𝑒) is the timestamp of event e. 

 

The event log consists of cases and cases consist 

of events. Events for a case are represented in the 

form of a trace, e.g., a sequence of unique events. In 

addition, cases, such as events, can have attributes. 

 

Definition 2 (Case, trace, event log): Given a set of 

case 𝒞 , for any case 𝑐 ∈ 𝒞  and name 𝑛 ∈
𝐴𝑁: #_𝑛(𝑐) is the value of attribute n for case c. 

Each case has a special mandatory attribute trace, 

#𝑡𝑟𝑎𝑐𝑒(𝑐) ∈ ℰ∗. �̂� = #𝑡𝑟𝑎𝑐𝑒(𝑐) refers to the trace of 

a case. A trace is a finite sequence of events 𝜎 ∈ ℰ∗ 

such that each event appears only once. An event 

log is a set of cases 𝐿 ⊆ 𝒞  such that each event 

appears at most once in the entire log. 

2.2 Graph database 

A graph database is a database management 

system with Create, Read, Update, and Delete 

methods that expose a graph data model [15]. The 

structure of the data looks like a directed graph in 

mathematics. The graph database consists of nodes 

and vertices. A node is a point that contains all 

information from an object, while vertices represent 

the relationship between objects.  

Graph databases are more flexible than relational 

databases because they can be developed without 

the need for any adjustments or changes to the initial 

design. Relationships of graph databases are stored 

at the level of individual records, whereas in a 

relational database the structure is defined at a 

higher level (table definition). 
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2.3 Graph-based process model 

Process modeling helps us to understand the 

process better and identify and prevent problems 

from occurring. Process models are a requirement 

for analyzing, redesigning, or process automation 

[16].  

A graph-based process model is a process 

model that is obtained through a graph-based 

algorithm applied to a graph database. The 

advantage of implementing a graph-based algorithm 

in business process modeling is because the graph 

database stores not only activities but also 

relationships so that the algorithm designed can 

produce a low time complexity [10]. 

2.4 Parallel process model 

Activities in the process model have relations 

with other activities. If an activity in the event log is 

obtained always and only followed by one type of 

the same activity then the type of relationship is 

sequential. Whereas the parallel type is when there 

is more than one different type of activity connected 

to the same activity.  

To illustrate the relationship between the event 

log and the corresponding parallel model. Table 1 

was showed an example of some event log trace for 

sequential and parallel relations. Then each relation 

is depicted using YAWL notation and graph (Neo4j). 

Table 2 describes the sequential relationship. Table 

3 presents the XOR parallel relationship. Table 4 is 

the AND relationship, and the OR relationship in 

Table 5. 
 

Table 1. Sample of traces 

Patterns Sample of traces in event log 

Sequence {Act_1,Act_2},{Act_1,Act_2}, 

{Act_1,Act_2} 

XOR {Act_1,Act_2,Act_5}, 

{Act_1,Act_3,Act_5}, 

{Act_1,Act_4,Act_5} 

AND {Act_1,Act_2,Act_3,Act_4,Act_5}, 

{Act_1,Act_4,Act_3,Act_2,Act_5}, 

{Act_1,Act_4,Act_2,Act_3,Act_5}, 

{Act_1,Act_3,Act_2,Act_4,Act_5} 

OR {Act_1,Act_2,Act_3,Act_5}, 

{Act_1,Act_3,Act_4,Act_5}, 

{Act_1,Act_4,Act_2,Act_5}, 

{Act_1,Act_4,Act_3,Act_2,Act_5}, 

{Act_1,Act_2,Act_4,Act_3,Act_5} 

 

Table 2. Sequence process model in YAWL and Graph 

YAWL Graph 

  
 

Table 3. XOR relationship of Parallel process model 

YAWL Graph 

 

 
  

 

Table 4. AND relationship of parallel process model 

YAWL Graph 

 

 
 

 

Table 5. OR relationship of parallel process model 

YAWL Graph 

 

 
 

2.5 Existing graph-based method for parallel 

process discovery 

The following will be discussed the algorithms 

used in [8–11, 13, 14]. These algorithms are 

executed in 3 steps: 

1. Load the event log as graph nodes. At this stage, 

the event log data is needed to be loaded into the 

graph database as two types of nodes. The first 

type of node is Trace. It represents the process 

instant of all events (with its accompanying 

attributes) from the log. The second type of 

node is Model. This node will be used to mount 

each unique activity name (with its supporting 

properties) as a process model.     

2. Create a sequence relationship model. By 

referring to the definition of a directly-follows 

graph (DFG) [17] as depicted in Definition 3 , 

we create DFG in graph database by matching a 

sequential pair of nodes in each unique case id.  

A relationship is used to connect both nodes, 

and then they are named as Sequence 

Relationship. The detailed algorithm explained 

in Table 6.  

 

Definition 3 (Directly-Follows Graph): With 

an event log  𝐿 where 𝐿 ∈ 𝔹(𝒜∗), the directly-

follows graph of 𝐿  is written as  𝐺(𝐿) =

(𝐴𝐿 , ↦𝐿 , 𝐴𝐿
𝑠𝑡𝑎𝑟𝑡 , 𝐴𝐿

𝑒𝑛𝑑)  with: 

• 𝐴𝐿 = {𝑎 ∈ 𝜎 |𝜎 ∈ 𝐿} is the set of activities 

in L 
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• ↦𝐿= {(𝑎, 𝑏) ∈ 𝐴 𝑥 𝐴 |𝑎 >𝐿 𝑏} is the 

directly follows relation, 

• 𝐴𝐿
𝑠𝑡𝑎𝑟𝑡 = {𝑎 ∈ 𝐴 |∃𝜎∈𝐿𝑎= 𝑓𝑖𝑟𝑠𝑡(𝜎)} is the 

set of start activities, and 

• 𝐴𝐿
𝑒𝑛𝑑 = {𝑎 ∈ 𝐴 |∃𝜎∈𝐿𝑎= 𝑙𝑎𝑠𝑡(𝜎)} is the set 

of end activities 

A directly-follows graph 𝐺(𝐿). 𝑎 ↦𝐿 𝑏 exist if 𝑎 

was directly followed by 𝑏  somewhere in any 

sub log 𝐿. 

3. Parallel detection and creation. The final step is 

the implementation of the algorithm for parallel 

discovery. The main idea of the existing 

algorithm is utilizing the indegree and outdegree 

of nodes which is depicted in the process model. 

Based on it, then the XOR-Split can be 

discovered with a rule that every branch should 

have 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 = 1  and 𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 ≥ 1 . The 

algorithm for detecting and creating this XOR 

relationship detailed in Table 7.  

The algorithm of AND-Split detector is 

characterized with a rule that all outdegree of 

nodes in AND pattern should be equal, as we 

can see in Table 8. For OR-Split pattern, the 

algorithm set a rule to detect a condition of 

𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒𝑏𝑟𝑎𝑛𝑐ℎ < 𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒𝑔𝑎𝑡𝑒𝑤𝑎𝑦  as the 

characteristics. The OR algorithm can be seen in 

Table 9.  
 

Table 6. Existing method for Sequence discovery 

Relation

ship 

Pseudocode Cipher Syntax 

Sequ-

ence  

For idx as index of 

records of all 

activities in the 

traces:  

 

MATCH (c:Activity) 

WITH COLLECT(c) AS 

Caselist 

UNWIND 

RANGE(0,Size(Caseli

st) - 2) as 

idx 

s1 = nodes[idx],  

s2 = nodes[idx+1] 

WITH Caselist[idx] 

AS s1, 

Caselist[idx+1] AS 

s2 

For "a" as each 

node in the model, 

and "b" as each 

node in the model: 

MATCH 

(a:CaseActivity),(b

:CaseActivity) 

If s1.Case_ID = 

s2.CaseID, and 

s1.Activity = 

a.Activity, and 

s2.Activity = 

b.activity: 

WHERE s1.CaseId = 

s2.CaseId  

AND s1.Name = 

a.Name  

AND s2.Name = 

b.Name 

Create sequence 

relationship 

between node a 

and node b 

MERGE (a)-

[r:SEQUENCE]->(b) 

Table 7. Existing method for XOR relationship discovery 

Relation

ship 

Pseudocode Cipher Syntax 

XOR 

Split  

For nodes a and b 

and their 

relationships: 

MATCH (a)-[r]->(b) 

 

 

If : 

the outdegree of 

a> 1 and the 

indegree of b = 1  

 

WHERE  

size((a)-->())>1 

AND size((b)<--

())=1  

and the outdegree 

of b> = 1: 

AND  

(size((b)-->())=1 

OR size((b)--

>())>1 )   

Create an 

XORSplit 

relation 

between nodes 

a and b 

CREATE (a)-

[:XORSPLIT]->(b) 

DELETE r 

XOR 

Join 

For nodes a and b 

and their 

relationships: 

MATCH (b)-[r]->(a) 

 

 

If the output 

relation a> = 1 

and the input 

relation b> 1: 

WHERE  

size((a)<--())>1 

AND ( size((b)--

>())=1) 

Create an 

XORJoin relation 

between nodes a 

and b 

CREATE  

(b)-[:XORJOIN]->(a) 

DELETE r 

 

Table 8. Existing method for AND relationship discovery 

Relation

ship 

Pseudocode Cipher Syntax 

AND 

Split 

For nodes a, b, c and 

their relationships: 

MATCH (a)<-[r]-

(b)-[s]->(c) 

 

If: 

the outdegree of b> 

1,  

WHERE  

size((b)-->())>1  

 

and the outdegree 

of c = outdegree of 

b = outdegree of a,  

AND size((c)--

>())=size((b)--

>()) AND 

size((a)--

>())=size((b)--

>()) 

 

and b is not the next 

node of a or b: 

AND not (a)-

[:SEQUENCE]->(b) 

AND not (c)-

[:SEQUENCE]->(b) 

Create an 

ANDSplit relation 

between b and a 

and between b 

and c 

MERGE 

(a)<-[:ANDSPLIT]-

(b) 

DELETE r,s 
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AND 

Join 

For nodes a, b, c and 

their relationships: 

MATCH (a)-[r]-

>(b)<-[s]-(c) 

 

If : 

the indegree of  b> 

1, and the indegree 

of c = indegree of b 

= indegree of a,  

WHERE size((b)<--

())>1  

AND size((c)--

>())=size((b)<--

()) AND size((a)-

->())=size((b)<--

()) 

Create AND Join 

relation between a 

with b and between 

c and b 

MERGE 

(a)-[:ANDJOIN]-

>(b) 

DELETE r,s 

 

Table 9. Existing method for OR relationship discovery 

Relation

ship 

Pseudocode Cipher Syntax 

OR 

Split 

For nodes a, n, b 

and their 

relationships: 

MATCH (a)<-[r]-

(n)-[k]->(b) 

 

If : 

 the outdegree 

of b < the 

outdegree of n, 

and the 

outdegree of b 

> 1,  

WHERE  

(size((b)-->())< 

size((n)-->())  

and  

(size((b)--

>())>1)) 

 

and n is not the 

next node of 

nodes a and b: 

and not (b)-

[:SEQUENCE]->(n) 

and not (a)-

[:SEQUENCE]->(n) 

Create an 

ORSplit 

relation 

between nodes 

a and n nodes b 

MERGE (n)-

[:ORSPLIT]->(a) 

MERGE (n)-

[:ORSPLIT]->(b) 

DELETE r,k 

OR 

Join 

For nodes a, n, b 

and their 

relationships: 

MATCH (a)-[r]-

>(n)<-[k]-(b)-

[l]->(a) 

 

If : 

the indegree of 

n> 1 and the 

outdegree of b 

<the indegree 

of n, and the 

outdegree of  

b> 1: 

WHERE size((n)<--

())>1 and 

( size((b)-->()) 

< size((n)<--()) 

and size((b)--

>()) > 1 )  

 

Create an 

ORJoin relation 

between node a 

and n and 

between node b 

and n 

MERGE (a)-

[:ORJOIN]->(n) 

MERGE (b)-

[:ORJOIN]->(n) 

DELETE r,k,l 

3. The proposed method 

Our proposed method following 9 steps which 

start with getting the input of an event log data and 

end with the resulting output of the graph-based 

process model. 

1. Load event logs as graph nodes. This step is 

similar to the existing method as described in 

section 2.5.  

2. Create a sequential relationship and its 

frequency. Here we add two things to the 

existing method. First, the directly-follows 

graph is not only created in the process model 

but also in the traces. This trace with sequence 

pattern will make benefit when we use it for 

matching the purpose, i.e, in concurrent 

relationship detection. Second, each time a 

relationship established in the graph model, a 

frequency counter of the relation also increased. 

This kind of value is termed in [6] as directly-

follows frequency (DFF) as defined in definition 

4.  

 

Definition 4 (Directly-Follows Frequency): 

Given an event log ℰ, and two events label l1,l2 

∈ L, the directly-follows frequency between l1 

and l2 (|𝑙1 → 𝑙2|)  is |{(𝑒𝑖, 𝑒𝑗) ∈ ℰ 𝑥 ℰ | 𝑒𝑖
𝑙 =

𝑙1 ∧ 𝑒𝑗
𝑙 = 𝑙2 ∧ ∃𝑡∈ ℰ [∃𝑒𝑥 ∈ 𝑡[𝑒𝑥 = 𝑒𝑖 ∧ 𝑒𝑥+1 =

𝑒𝑗]]}| 

 

Having two additional conditions, then we 

design the algorithm in Table 10. 

3. Counting the frequency relationship of each 

node. Based on the DFF value, it is summed up 

in every node as their value of input frequency 

relations (𝑖𝑓𝑟 ) and output frequency relations 

(𝑜𝑓𝑟). The algorithm is presented in Tables 11 

and 12. 
4. Identify a concurrent relationship. Concurrent 

relations are detected when there is a direct 

relationship from node A to node B and vice 

versa. This condition can arise in models 

because in reality both of them actually work in 

parallel. It is necessary to pay attention that in 

the graph process model, the pattern of 

concurrent relations looks similar to the short-

loops pattern. We use the definition of short-

loop and concurrent relationships as defined in 

[6]. So that the algorithm we designed must be 

able to distinguish between the two. To 

distinguish them we search the candidate pattern 

in the graph-based process model and do pattern 

matching with its real trace in graph-based 

process instances. The detailed algorithm is 

presented in Table 13. 
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Definition 5 (Short-loop): Given two 

activities a and b, a short-loop (𝑎 ↻ 𝑏) exists iff 

meet the requirement in (1) and (2) [6].  

 

 |𝑎 → 𝑎| = 0 ∧ |𝑏 → 𝑏| = 0 (1)  

 

 |𝑎 ⟷ 𝑏| + |𝑏 ⟷ 𝑎| ≠ 0 (2)  

 

The rule in Condition 1 gives a constraint that a 

and b are not allowed in a self-loop. Condition 2 

ensure the pattern of short-loop 𝑎 ↻ 𝑏. 

Definition 6 (Concurrent relationship): 

Given activities a and b, they are concurrent 

𝑎‖𝑏 iff meet condition in (3),(4), and (5) [6]. 

 

 |𝑎 → 𝑏| > 0  ∧  |𝑏 → 𝑎| > 0  (3)  

 

 |𝑎 ⟷ 𝑏| + |𝑏 ⟷ 𝑎| = 0  (4)  

 

 ||𝑎→𝑏|−|𝑏→𝑎||

|𝑎→𝑏|+|𝑏→𝑎|
< 𝜀      (𝜀 ∈ [0,1])  (5)  

 

Condition 3 is the main prerequisite for 𝑎‖𝑏 . 

Condition 4 is the requirement to avoid a short-

loop. Condition 5 is required when we require 

the frequency of both directions of concurrent 

relationships are in specific similar (threshold, 

𝜀) value.  

5. Identify potential Split and Join relationship. All 

sequential relations which are split or joint 

relationship need to be recognized. With the 

concurrent relationship was detected in the 

previous step, we can make a rule for Split and 

Join that must in sequential relations. These 

Split and Join are the main foundation of the 

parallel detection algorithm being executed in 

the next phase. The algorithm for split relations 

is presented in Table 14 and the join relationship 

can be seen in Table 15. 

6. XOR identification and creation. The XOR 

relation can be identified by utilizing its unique 

characteristics compared to other parallel 

relations. This algorithm is designed with the 

requirement that between branch nodes in the 

XOR relation cannot have a concurrent 

relationship. The proposed algorithm for XOR 

identification and creation is depicted in Table 

16.  

7. AND identification and creation. Both 

algorithms of detecting AND and OR require 

concurrent relationships in their branches, but 

the AND pattern is characterized by the 

condition when the relationship frequency (𝑖𝑓𝑟 

or 𝑜𝑓𝑟 ) values at the branches is equal. The 

proposed algorithm is described in Table 17. 

8. OR identification and creation. The algorithm to 

find OR relationship is design by detecting 

concurrent relationships in branches and having 

a branching pattern with gateway nodes that 

have a higher relation frequency value than each 

branch node. A more detail description of the 

proposed algorithm can be seen in Table 18. 

9. Remove all Concurrent relationships. We 

remove all concurrent relationship process 

model.  
 

Table 10. Proposed algorithm for Sequence discovery 

Relation

ship 

Pseudocode Cipher Syntax 

 

Sequ-

ence 

For idx as index of 

records of all 

activities in the 

trace of process 

instant:  

MATCH (c:Trace) 

WITH COLLECT(c) AS 

Caselist 

UNWIND 

RANGE(0,Size(Caseli

st) - 2) as 

idx 

Prepare the DFG 

from events in s1 

and s2 where (𝑠1 ↦
𝑠2) 

WITH Caselist[idx] 

AS s1, 

Caselist[idx+1] AS 

s2 

For all nodes with 

label Model are 

assigned to 𝑎 and b: 

MATCH (a:Model) 

MATCH (b:Model) 

If: 

Both events in 

same Case Id, 

WHERE  

s1.CaseId = 

s2.CaseId  

 

Find the 

corresponding 

activity in the 

Model with the 

same name as S1 

name 

 

AND s1.Name = 

a.Name  

 

 

 

 

 

Find the 

corresponding 

activity in the 

Model with same 

name S2 name 

 

 

AND s2.Name = 

b.Name 

Create sequence 

relationship in 

process instant 

MERGE (s1)-

[q:SEQUENCE 

{dff:0}]->(s2) 

Create sequence 

relationship in 

process model 

MERGE (a)-

[r:SEQUENCE 

{dff:0}]->(b) 

Count DFF in 

Model 

with 

a,r,b,count((a)--

>(b)) as dff 

set r.dff = dff 
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Table 11. Counting input relationship frequencies 

Pseudocode Cipher Syntax 

For all nodes 𝑎 in 

process model with 

pattern (𝑎 ↤ 𝑥) and 

input relation 𝑖: 

match (a:Model)<-

[i]-(x) 

 

 

Sum up the frequency 

from all input relation 

with a, collect(i) 

as ilist, sum(i.dff) 

as ifr 

Update node 𝑎 with 

the total input 

frequency value   

set a.ifr = ifr; 

 

Table 12. Counting output relationship frequencies 

Pseudocode Cipher Syntax 

For all nodes 𝑎  in 

process model with 

pattern (𝑎 ↦ 𝑥) and 

output relation 𝑜: 

match (a:Model)-[o]-

>(x) 

 

 

Sum up the frequency 

from all output relation 

with a, collect(o) 

as olist, sum(o.dff) 

as ofr 

Update node 𝑎  with 

the total output 

frequency value   

set a.ofr = ofr; 

 

Table 13. Concurrent relationship detection 

Relation

ship 

Pseudocode Cipher Syntax 

Conc

urrent 

relati

onshi

p 

 

 

 

 

 

 

 

 

 

 

 

 

 

For nodes with 

pattern (𝑥 ↦ 𝑦 ↦
𝑧) in Trace 

MATCH (x:Trace)-

[p:SEQUENCE]-

>(y:Trace)-

[q:SEQUENCE]-

>(z:Trace) 

For nodes with 

pattern (𝑎 ↦ 𝑏 ↦
𝑐) in Model 

MATCH (a:Model)-

[r:SEQUENCE]-

>(b:Model)-

[s:SEQUENCE]-

>(c:Model) 

If in Model: 

c = a, 

If (x=a) in Trace: 

x <> z 

WHERE  

c.Name = a.Name AND 

x.Name = a.Name AND 

x.Name <> z.Name 

Create 

concurrent 

relationship in 

Model 

MERGE (a)-

[:CONCURRENT 

{dff:r.dff}]->(b) 

DELETE r 

 

Table 14. Split relationship detection 

Pseudocode Cipher Syntax 

For all nodes 𝑛 in 

process model with 

pattern (𝑎 ↤ 𝑛 ↦ 𝑏) 

with SEQUENCE 

relationship: 

MATCH (a:Model)<-

[r:SEQUENCE]-(n)-

[s:SEQUENCE]->(b) 

Update the relationship 

into SPLIT 

WITH a,count(a) as 

asum,n,r,s 

MERGE (a)<-[:SPLIT 

{dff:r.dff}]-(n) 

DELETE r 

Table 15. Join relationship detection 

Pseudocode Cipher Syntax 

For all nodes 𝑛 in 

process model with 

pattern (𝑎 ↦ 𝑛 ↤ 𝑏) 

with SEQUENCE 

relationship: 

MATCH (a:Model)-

[r:SEQUENCE]->(n)<-

[s:SEQUENCE]-(b) 

Update the relationship 

into JOIN 

WITH a,count(a) as 

asum,n,r,s 

MERGE (a)-[:JOIN 

{dff:r.dff}]->(n) 

DELETE r 

 

Table 16. Proposed algorithm for XOR relationship 

detection 

Relation

ship 

Pseudocode Cipher Syntax 

XOR 

Split 

For  nodes with 

pattern (𝑎 ↤ 𝑛 ↦
𝑏) in Model and 

have Split 

relationship: 

MATCH 

(a:Model)<-

[r:SPLIT]-(n)-

[:SPLIT]->(b) 

 

If: 

𝑎 and 𝑏 do not 

have a 

CONCURRENT 

relationship: 

WHERE 

NOT (a)<-

[:CONCURRENT]->(b)  

 

 

 

Create 

XORSPLIT 

relationship 

between 𝑎 and 

𝑛 

WITH a,count(a) as 

asum,n,r 

MERGE  

(n)-[:XORSPLIT 

{dff:r.dff}]->(a) 

DELETE r 

XOR 

Join 

For  nodes with 

pattern (𝑎 ↦ 𝑏 ↤
𝑐) in Model and 

have a Join 

relationship: 

MATCH  

(a:Model)-[r:JOIN]-

>(n)<-[:JOIN]-(b) 

 

If: 

𝑎 and 𝑏 do not 

have a 

CONCURRENT 

relationship: 

WHERE 

AND NOT (a)<-

[:CONCURRENT]->(b)  

 

 

 

 

 Create 

XORJOIN 

relationship 

between 𝑎 and 

𝑛 

WITH a,count(a) as 

asum,n,r 

MERGE  

(n)<-[:XORJOIN 

{dff:r.dff}]-(a) 

DELETE r 

 

Table 17. Proposed algorithm for AND relationship 

detection 

Relation

ship 

Pseudocode Cipher Syntax 

AND 

Split 

For  nodes with 

pattern (𝑎 ↤ 𝑏 ↦
𝑐) in Model and 

Split relationship: 

MATCH (a: Model)<-

[r:SPLIT]-(n)-

[:SPLIT]->(b) 
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If 

a has a concurrent 

relationship with 

b,  

WHERE  

 

(a)<-[:CONCURRENT]-

>(b)  

 

and all branches 

nodes' frequency 

is the same, 

AND(a.ifr)=(b.ifr)=

(n.ofr)  

 

 

and no incoming 

relation to node 

from its branch: 

AND 

(not ((a)-->(n)) 

AND not ((b)--

>(n)) ) 

Create 

ANDSPLIT 

relationship 

between a and n 

 

WITH a, count(a) as 

asum, n, r 

MERGE (a)<-

[:ANDSPLIT 

{dff:r.dff}]-(n) 

DELETE r 

AND 

Join 

For  nodes with 

pattern (𝑎 ↦ 𝑏 ↤
𝑐) in Model and 

Join relationship: 

MATCH (a: Model)-

[r:JOIN]->(n)<-

[:JOIN]-(b) 

 

If 

a has concurrent 

relationship with 

b, 

WHERE  

(a)<-[:CONCURRENT]-

>(b)  

 and all branches 

nodes' frequency 

is the same, 

AND(a.ofr)=(b.ofr)=

(n.ifr)  

 

and no outgoing 

relation from 

node to its 

branch: 

AND 

(not ((a)<--(n)) 

AND not ((b)<--

(n)) ) 

Create 

ANDJOIN 

relationship 

between a and n 

WITH a, count(a) as 

asum, n, r 

MERGE (a)-[:ANDJOIN 

{dff:r.dff}]->(n) 

DELETE r 

 

Table 18. Proposed algorithm for OR relationship 

detection 

Relation

ship 

Pseudocode Cipher Syntax 

OR 

Split 

For  nodes with 

pattern a<=n=>b: 

match (a: Model)<-

[r:SPLIT]-(n)-->(b) 

If: 

𝑎 has concurrent 

relationship with 

𝑏, 

 

where  

(a)<-[:CONCURRENT]-

>(b)   

and output 

relationship 

frequencies of 

gateway's node is 

larger than each 

of its branch 

node's 

relationship 

frequencies input, 

 

AND (a.ifr)<n.ofr 

AND (b.ifr)<n.ofr 

 

 

 

 

 

 

 

 

and no incoming 

relation to node 

from its branch: 

AND 

(not ((a)-->(n)) 

AND not ((b)--

>(n))) 

Create 

ORSPLIT 

relationship 

between a and n 

 

WITH a, count(a) as 

asum, r, n 

MERGE (n)-[:ORSPLIT 

{dff:r.dff}]->(a) 

DELETE r 

OR 

Join 

For  nodes with 

pattern (𝑎 ↦ 𝑏 ↤
𝑐) in Model and 

Join relationship: 

MATCH (a: Model)-

[r:JOIN]->(x)<--(b) 

 

If: 

a has a concurrent 

relationship with 

b, and Not 

ANDJOIN: 

where  

(a)<-[:CONCURRENT]-

>(b) 

and input 

relationship 

frequencies of 

gateway's node is 

larger than each 

of its branch 

node's 

relationship 

frequencies 

output, 

AND (a.ofr)<x.ifr 

and (b.ofr)<x.ifr 

 

 

and no outgoing 

relation from 

node to its 

branch: 

AND (not ((a)<--

(n)) AND not ((b)<-

-(n)) ) 

Create 

ORSPLIT 

relationship 

between a and n 

with  a, count(a) 

as asum, x, r 

MERGE (a)-[:ORJOIN 

{dff:r.dff}]->(x) 

DELETE r 

4. Results and discussion 

Experiments to compare and prove the ability of 

the proposed method in detecting parallel processes 

are carried out through several scenarios that 

provide event log data to identify XOR, AND, and 

OR types. Scenario 1 is a case with a 2-branch 

structure, scenario 2 uses 3-branches, scenario 3 

with a nested structure, and scenario 4 inserts a 

sequential relation in a parallel pattern. For each 

scenario, three graph model visualizations are 

displayed, which are the directly-follows frequency 

result, parallel discovery using the existing method, 

and parallel discovery using the proposed method. 

We use some symbols to mark the results of the 

experiments. The symbols state in Table 19. 

In order to get the soundness and fitness of each 

discovered model, we utilize prom tool. Prom 

provides some plugin, i.e., the Woflan [18] plugin to 

analyze the soundness, and conformance checking 

of DPN [19] plugin to get the fitness. 
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Table 19. Symbols to mark the experiment result 

Symbol Meaning 

√ The pattern succeed to recognize 
x The pattern fail to recognize 

*[pattern] 
The expected pattern is recognize as 

another pattern  

4.1 Scenario 1 

Scenario 1 is an event log that contains XOR, 

AND, and OR parallel processes with two branches. 

The results of sequential pair detection can be seen 

in Fig. 1. Here, we represent the sequence of a graph 

process model in directly-follows frequency (DFF). 

Supposedly, the E-F-G-H will be detected as AND 

relationship while the H-I-J-K is OR relationship. 

We can see that both of them have identical 

structures and degrees, though they have a different 

in concurrency frequency.  

With this scenario, the experimental results 

show that the existing method able to detect XOR 

and AND relationship. But the AND algorithm also 

detects H-I-J-K as AND because it only analyzes the 

degree, as presented in Fig. 2 (a). Meanwhile, the 

OR algorithm unable to recognize the OR pattern 

using rule describe in Table 9, this is due to the 

value of outdegree in brach of H-I-J-K, which is I 

and J  have the same value to H. We can see the 

result of the existing method in Fig. 2 (b).  

The proposed method tested in scenario 1 

succeeds to detects and distinguishes all parallel 

process models correctly. This method differentiates 

the AND and OR patterns using an algorithm that 

basically utilizes the concurrent relationship 

frequency. The results of the experiment using the 

proposed method in scenario 1 can be seen in Fig. 3.  

4.2 Scenario 2 

Scenario 2 uses event log data similar to 

scenario 1 but with three branches. The detection 

results of graph-based sequential pairs are presented 

in Fig. 4. We can see that the concurrent relationship 

has no different from the regular sequence 

relationship. It is the main problem when the 

existing method relies on the degree of nodes. As a 

result, the existing method fails to detect OR as 

AND, and cannot detect OR as shown in Figs. 5 (a) 

and (b).  

The proposed method takes benefit of the 

concurrency existence and the relationship 

frequency of nodes to detect parallel processes. The 

XOR, AND, and OR are successfully identified as 

we can see in Fig. 6.  

 
 

Table 20. Experiment result for scenario 1 

Expected 

Relationship 

Existing 

Method 

Proposed 

Method 

XOR-Split √ √ 

AND-Split √ √ 

OR-Split *AND √ 

XOR-Join √ √ 

AND-Join √ √ 

OR-Join *AND √ 

Soundness Yes Yes 

Fitness 0.98 1.00 

 

Table 21. Experiment result for scenario 2 

Expected 

Relationship 

Existing 

Method 

Proposed 

Method 

XOR-Split √ √ 

AND-Split √ √ 

OR-Split x √ 

XOR-Join √ √ 

AND-Join √ √ 

OR-Join x √ 

Soundness Yes Yes 

Fitness 0.96 1.00 

 

Table 22. Experiment result for scenario 3 

Expected 

Relationship 

Existing 

Method 

Proposed 

Method 

XOR-Split *AND √ 

AND-Split √ √ 

OR-Split x √ 

XOR-Join √ √ 

AND-Join √ √ 

OR-Join x √ 

Soundness No Yes 

Fitness - 1.00 

 
Table 23. Experiment result for scenario 4 

Expected 

Relationship 

Existing 

Method 

Proposed 

Method 

XOR-Split √ √ 

AND-Split x √ 

XOR-Join √ √ 

AND-Join x √ 

Soundness No Yes 

Fitness - 1.00 

4.3 Scenario 3 

Scenario 3 is an event log containing the AND 

and OR processes in XOR. The results of sequential 

pair detection can be seen in Fig. 7. There is a 

challenge for the parallel detection algorithm to not 

misguided by the nested structure. It is supposed 

that B-D-C and J-I-K are XOR-Split and XOR-Join, 

C-E-F-I is an AND, and the D-G-H-J is detected as 

OR. 
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Scenario 1 

 
Figure. 1 Result of scenario 1 in directly-follows frequency (DFF) 

 

 
Figure. 2 Scenario 1 results with Existing method: detects OR as AND relationship and fail to detect OR relationship 

 
Figure. 3 Scenario 1 results using the proposed method succeed detecting all parallel 

 

Scenario 2 

 
Figure. 4 Result of scenario 2 in directly-follows frequency (DFF) 

 

 
Figure. 5 Scenario 2 results with Existing method: detects OR as AND and fail to detect OR relationship 

 

 
Figure. 6 Scenario 2 results using the proposed method succeed in detecting all parallel 
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Scenario 3 

 
Figure. 7 Result of scenario 3 in directly-follows frequency (DFF) 

 

 
Figure. 8 Scenario 3 results using Existing method: detect OR as AND, detects XORSplit as ANDSplit, and fail to detect 

OR relationship 

 
Figure. 9 Scenario 3 results using the proposed method succeed in detecting all parallel 

 
The results of the existing method are presented 

in Figs. 8 (a) and (b). The AND algorithm is 

incorrectly detecting D-G-H-J as AND, while the 

OR algorithm still unable to recognize the OR. 

Moreover, the AND algorithm detects the XOR-

Split pattern in B-D-C as AND-Split due to the 

outdegree of D and C are detected two, which is 

caused by the following nested parallel. 

The proposed method shows that it is reliable in 

a nested structure. This method takes advantage of 

concurrent relationship existence to differentiate the 

XOR and the other parallel patterns strictly. The 

experiment successfully detects all parallel 

processes correctly as shown in Fig. 9. 

4.4 Scenario 4 

In scenario 4 the event log contains the AND 

process in XOR with the Sequence inserted in it. 

The resulting sequential pair model can be seen in 

Fig. 10. This scenario has a main pitfall from the 
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Scenario 4 

 

 
Figure. 10 Result of scenario 4 in directly-follows frequency (DFF) 

 
Figure. 11 Scenario 4 results using Existing method fail to detect AND relationship 

 
Figure. 12 Scenario 4 results using the proposed method succeed in detecting all parallel  

 

concurrent relationship. We can see in E-F-G-H that 

F seems to have 3 outdegrees, in which 2 of them 

are a concurrent relationship with G and H. So, 

using the existing method will produce a model in 

Fig. 11, which cannot detect both AND and OR.  

Experiments using the proposed method show the 

relevant results, i.e., all parallel patterns and inserted 

sequences correctly recognized, as we can see in Fig. 

12. 

5. Conclusion 

We propose an improved method to discover 

parallel process patterns. Our strategy is to split the 

discovery process into two phases. The first is to 

enrich the process model semantically. This phase 

executes in three steps, namely counting the 

relationship frequency of each node, identifying 

concurrent relationships, and detecting split and join 

relationships.  

The second phase is the process of executing 

parallel detection algorithms (XOR, AND, and OR). 

Among the three of them, XOR is the one supposed 

to have no concurrency.  The difference between 

AND and OR is characterized by the value of 

relationship frequencies in branch nodes. The AND 

pattern should have the equal frequency for all of its 

nodes, which the OR is not. 

To verify the ability of both methods in various 

cases in which the existing method fails, we have 

design four scenarios. The experiment result shows 

some problems with the existing method. In scenario 

1 it detects OR pattern as AND, this discovered 

model results in a sound model with 0.98 score in 

fitness. Scenario 2 is also sound, and 0.96 for the 

fitness score. The existing method makes wrong 

detection in scenario 3 and 4 that results in not 

sound model, so we cannot measure the fitness score.  

The experiment with our proposed method able 

to recognize all parallel patterns and successfully 



Received:  December 3, 2019.     Revised:  January 2, 2020.                                                                                            139 

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020           DOI: 10.22266/ijies2020.0430.13 

 

differentiates AND and OR patterns in all scenarios 

correctly. All model discovered also sound and get 

fitness value 1.00. This result proof that the 

proposed method successfully improves the existing 

method and outperform perfectly in all given 

scenarios. 

For future work, further research needs to carry 

out to advance this method's ability. Some of them 

are the ability to deal with noise, detect invisible 

tasks, and handle the non-free choice condition. 
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