
Received: December 3, 2019. Revised: January 2, 2020. 127

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.13

An Improved Method of Parallel Model Detection for Graph-Based Process

Model Discovery

Indra Waspada1,2* Riyanarto Sarno1 Kelly Rossa Sungkono1

1Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

2Department of Informatics, Universitas Diponegoro, Semarang, Indonesia
* Corresponding author’s Email: indrawaspada@lecturer.undip.ac.id

Abstract: The existing method of graph-based process model discovery has weaknesses in detecting parallel

relationship (XOR, AND, and OR). The algorithm only works on a particular graph structure, so it must be

reconfigured when applied to other different structures. To answer this problem, this paper proposes an improved

method of parallel model detection, which is designed in two phases. The first one consists of three steps; firstly is to

count and record the value of relationship frequency into every node in a graph model. Then, the second step

implements the algorithm to discover the concurrent relationship. The third step detects all possible split and join

relationships. Based on the first phase, then a consistent and robust parallel discovery algorithm can be developed.

The first parallel algorithm is to identify the XOR relationship. This algorithm is designed with the rule that the XOR

pattern cannot have a concurrent relationship between its branch nodes. Next, the algorithm for detecting AND and

OR must detect the existence of any concurrent relationship in its branches. Then, AND and OR pattern is

differentiated by their unique characteristic of relationship frequency at branch nodes. To verify the ability of the

proposed methods in which the existing method fails, we have designed four scenarios. Scenario 1 and 2

consecutively were arranged with two and three branches parallel model. Scenario 3 located the AND and OR inside

the XOR pattern. In scenario 4 the sequence relationships were inserted between split and join of parallel patterns.

The experimental results show that the proposed method successfully recognizes and differentiates XOR, AND and

OR patterns correctly in all scenarios. It also sounds in all discovered model and get 100% fitness.

Keywords: Parallel model detection, Graph-based process model discovery, Relationship frequency, Concurrent

relationship.

1. Introduction

The automatic process model discovery of the

event log is an important aspect of the organization

[1]. The produced process model is a real reflection

of the field conditions obtained based on the event

log [2]. The discovered model can be beneficial,

starting from inspection and finding valuable

insights to observing the conformance with the

reference model.

Several methods are known for discovering

business process models from event logs, including

alpha miner [2], heuristic miner [3], inductive miner

[4], fuzzy miner [5], split miner [6, 7], and graph-

based miner [8, 9]. Graph-based miner algorithms

outperform others in lower time complexity [10].

This algorithm is applied to Neo4j graph database,

which stores activities and relationships. Several

studies have used graph-based discovery models to

detect anomalies [11, 12], the model also able to be

combined with data perspectives for decision mining

[13].

In previous graph-based miner studies, several

algorithms have been introduced to find process

models, including detecting parallel processes [8,

11], recognize and insert the invisible task [9], and

discovering Non-free Choice [14].

The existing method use indegree and

outdegree of nodes depicted in the Process Model as

the basis of parallel detection. This approach

encounters some difficulties when the structures of

Received: December 3, 2019. Revised: January 2, 2020. 128

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.13

two or more patterns in the model are figured out

similarly, i.e., a concurrent relationship is the same

as a split or join pattern, OR pattern looks similarly

with AND pattern, etc. Another problem also arises

when the concurrent relationship potentially

disguises the parallel pattern that makes it unable to

be detected. So it is clear that the existing method

has a weakness in the ability to discover parallel

process models.

To overcome these weaknesses, we propose a

more reliable method by improving the previous one

as the contribution of this paper. There are six main

contributions of this research; they are:

1. Introducing relation frequency values for every

relation in the graph sequence model. These

values then are summed up and labeled to every

node as an input relationship frequency and

output relationship frequency. Both kinds of

node's frequency are utilized to differentiate

between AND and OR.

2. Proposing an algorithm for detecting graph-

based concurrent relationships. The proposed

algorithm accommodates the difference between

a concurrent relationship with a short-loop

pattern by investigating the pattern found in the

model with the real condition in the trace.

3. Detecting all possible split and join relationships

as the foundation of next step parallel pattern

detection.

4. Proposing an algorithm to detect an XOR

relationship based on the absence of concurrent

relations

5. Proposing an algorithm to detect AND relations

based on input and output relationship

frequency value between its branches nodes.

6. Proposing an algorithm to detect OR relations

based on input and output relationship

frequency value between its branches nodes.

The top three contributions are the first phase

that aims as a means of supporting the algorithm of

parallel process discovery. The next three steps are

the second phase, which is the parallel process

discovery algorithms. All six are designed and

implemented to produce reliable methods used in

any parallel cases.

This study examines the ability of our new

proposed method in several scenarios of event log

cases. The results obtained from all experiments

indicate that the proposed method successfully

detects and distinguishes the XOR, AND and OR

parallel relations in all cases.

The next four sections organized as follows.

Definitions and existing method are discussed in

Section 2. The proposed method is discussed in

Section 3. We then discuss and summarize the

results of some scenarios for parallel process

discovery in Section 4. Finally, the conclusion of

this work is presented in Section 5.

2. Research method

2.1 Automated process discovery

Automatic process model discovery techniques

utilize event logs as input and generate business

process models that closely match behavior

observed in the event log or implied by traces in the

event log. The event log is obtained from business

activities.

Definition 1 (Event, attribute): Given a set of all

possible event ℰ, and let 𝐴𝑁 be a set of attribute

names. For any event 𝑒 ∈ ℰ and name 𝑛 ∈ 𝐴𝑁 ,

 #𝑛(𝑒) is the value of attribute n for event e. So

#𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑒) is the activity associated with event e,

and #𝑡𝑖𝑚𝑒(𝑒) is the timestamp of event e.

The event log consists of cases and cases consist

of events. Events for a case are represented in the

form of a trace, e.g., a sequence of unique events. In

addition, cases, such as events, can have attributes.

Definition 2 (Case, trace, event log): Given a set of

case 𝒞 , for any case 𝑐 ∈ 𝒞 and name 𝑛 ∈
𝐴𝑁: #_𝑛(𝑐) is the value of attribute n for case c.

Each case has a special mandatory attribute trace,

#𝑡𝑟𝑎𝑐𝑒(𝑐) ∈ ℰ∗. �̂� = #𝑡𝑟𝑎𝑐𝑒(𝑐) refers to the trace of

a case. A trace is a finite sequence of events 𝜎 ∈ ℰ∗

such that each event appears only once. An event

log is a set of cases 𝐿 ⊆ 𝒞 such that each event

appears at most once in the entire log.

2.2 Graph database

A graph database is a database management

system with Create, Read, Update, and Delete

methods that expose a graph data model [15]. The

structure of the data looks like a directed graph in

mathematics. The graph database consists of nodes

and vertices. A node is a point that contains all

information from an object, while vertices represent

the relationship between objects.

Graph databases are more flexible than relational

databases because they can be developed without

the need for any adjustments or changes to the initial

design. Relationships of graph databases are stored

at the level of individual records, whereas in a

relational database the structure is defined at a

higher level (table definition).

Received: December 3, 2019. Revised: January 2, 2020. 129

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.13

2.3 Graph-based process model

Process modeling helps us to understand the

process better and identify and prevent problems

from occurring. Process models are a requirement

for analyzing, redesigning, or process automation

[16].

A graph-based process model is a process

model that is obtained through a graph-based

algorithm applied to a graph database. The

advantage of implementing a graph-based algorithm

in business process modeling is because the graph

database stores not only activities but also

relationships so that the algorithm designed can

produce a low time complexity [10].

2.4 Parallel process model

Activities in the process model have relations

with other activities. If an activity in the event log is

obtained always and only followed by one type of

the same activity then the type of relationship is

sequential. Whereas the parallel type is when there

is more than one different type of activity connected

to the same activity.

To illustrate the relationship between the event

log and the corresponding parallel model. Table 1

was showed an example of some event log trace for

sequential and parallel relations. Then each relation

is depicted using YAWL notation and graph (Neo4j).

Table 2 describes the sequential relationship. Table

3 presents the XOR parallel relationship. Table 4 is

the AND relationship, and the OR relationship in

Table 5.

Table 1. Sample of traces

Patterns Sample of traces in event log

Sequence {Act_1,Act_2},{Act_1,Act_2},

{Act_1,Act_2}

XOR {Act_1,Act_2,Act_5},

{Act_1,Act_3,Act_5},

{Act_1,Act_4,Act_5}

AND {Act_1,Act_2,Act_3,Act_4,Act_5},

{Act_1,Act_4,Act_3,Act_2,Act_5},

{Act_1,Act_4,Act_2,Act_3,Act_5},

{Act_1,Act_3,Act_2,Act_4,Act_5}

OR {Act_1,Act_2,Act_3,Act_5},

{Act_1,Act_3,Act_4,Act_5},

{Act_1,Act_4,Act_2,Act_5},

{Act_1,Act_4,Act_3,Act_2,Act_5},

{Act_1,Act_2,Act_4,Act_3,Act_5}

Table 2. Sequence process model in YAWL and Graph

YAWL Graph

Table 3. XOR relationship of Parallel process model

YAWL Graph

Table 4. AND relationship of parallel process model

YAWL Graph

Table 5. OR relationship of parallel process model

YAWL Graph

2.5 Existing graph-based method for parallel

process discovery

The following will be discussed the algorithms

used in [8–11, 13, 14]. These algorithms are

executed in 3 steps:

1. Load the event log as graph nodes. At this stage,

the event log data is needed to be loaded into the

graph database as two types of nodes. The first

type of node is Trace. It represents the process

instant of all events (with its accompanying

attributes) from the log. The second type of

node is Model. This node will be used to mount

each unique activity name (with its supporting

properties) as a process model.

2. Create a sequence relationship model. By

referring to the definition of a directly-follows

graph (DFG) [17] as depicted in Definition 3 ,

we create DFG in graph database by matching a

sequential pair of nodes in each unique case id.

A relationship is used to connect both nodes,

and then they are named as Sequence

Relationship. The detailed algorithm explained

in Table 6.

Definition 3 (Directly-Follows Graph): With

an event log 𝐿 where 𝐿 ∈ 𝔹(𝒜∗), the directly-

follows graph of 𝐿 is written as 𝐺(𝐿) =

(𝐴𝐿 , ↦𝐿 , 𝐴𝐿
𝑠𝑡𝑎𝑟𝑡 , 𝐴𝐿

𝑒𝑛𝑑) with:

• 𝐴𝐿 = {𝑎 ∈ 𝜎 |𝜎 ∈ 𝐿} is the set of activities

in L

Received: December 3, 2019. Revised: January 2, 2020. 130

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.13

• ↦𝐿= {(𝑎, 𝑏) ∈ 𝐴 𝑥 𝐴 |𝑎 >𝐿 𝑏} is the

directly follows relation,

• 𝐴𝐿
𝑠𝑡𝑎𝑟𝑡 = {𝑎 ∈ 𝐴 |∃𝜎∈𝐿𝑎= 𝑓𝑖𝑟𝑠𝑡(𝜎)} is the

set of start activities, and

• 𝐴𝐿
𝑒𝑛𝑑 = {𝑎 ∈ 𝐴 |∃𝜎∈𝐿𝑎= 𝑙𝑎𝑠𝑡(𝜎)} is the set

of end activities

A directly-follows graph 𝐺(𝐿). 𝑎 ↦𝐿 𝑏 exist if 𝑎

was directly followed by 𝑏 somewhere in any

sub log 𝐿.

3. Parallel detection and creation. The final step is

the implementation of the algorithm for parallel

discovery. The main idea of the existing

algorithm is utilizing the indegree and outdegree

of nodes which is depicted in the process model.

Based on it, then the XOR-Split can be

discovered with a rule that every branch should

have 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 = 1 and 𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 ≥ 1 . The

algorithm for detecting and creating this XOR

relationship detailed in Table 7.

The algorithm of AND-Split detector is

characterized with a rule that all outdegree of

nodes in AND pattern should be equal, as we

can see in Table 8. For OR-Split pattern, the

algorithm set a rule to detect a condition of

𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒𝑏𝑟𝑎𝑛𝑐ℎ < 𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒𝑔𝑎𝑡𝑒𝑤𝑎𝑦 as the

characteristics. The OR algorithm can be seen in

Table 9.

Table 6. Existing method for Sequence discovery

Relation

ship

Pseudocode Cipher Syntax

Sequ-

ence

For idx as index of

records of all

activities in the

traces:

MATCH (c:Activity)

WITH COLLECT(c) AS

Caselist

UNWIND

RANGE(0,Size(Caseli

st) - 2) as

idx

s1 = nodes[idx],

s2 = nodes[idx+1]

WITH Caselist[idx]

AS s1,

Caselist[idx+1] AS

s2

For "a" as each

node in the model,

and "b" as each

node in the model:

MATCH

(a:CaseActivity),(b

:CaseActivity)

If s1.Case_ID =

s2.CaseID, and

s1.Activity =

a.Activity, and

s2.Activity =

b.activity:

WHERE s1.CaseId =

s2.CaseId

AND s1.Name =

a.Name

AND s2.Name =

b.Name

Create sequence

relationship

between node a

and node b

MERGE (a)-

[r:SEQUENCE]->(b)

Table 7. Existing method for XOR relationship discovery

Relation

ship

Pseudocode Cipher Syntax

XOR

Split

For nodes a and b

and their

relationships:

MATCH (a)-[r]->(b)

If :

the outdegree of

a> 1 and the

indegree of b = 1

WHERE

size((a)-->())>1

AND size((b)<--

())=1

and the outdegree

of b> = 1:

AND

(size((b)-->())=1

OR size((b)--

>())>1)

Create an

XORSplit

relation

between nodes

a and b

CREATE (a)-

[:XORSPLIT]->(b)

DELETE r

XOR

Join

For nodes a and b

and their

relationships:

MATCH (b)-[r]->(a)

If the output

relation a> = 1

and the input

relation b> 1:

WHERE

size((a)<--())>1

AND (size((b)--

>())=1)

Create an

XORJoin relation

between nodes a

and b

CREATE

(b)-[:XORJOIN]->(a)

DELETE r

Table 8. Existing method for AND relationship discovery

Relation

ship

Pseudocode Cipher Syntax

AND

Split

For nodes a, b, c and

their relationships:

MATCH (a)<-[r]-

(b)-[s]->(c)

If:

the outdegree of b>

1,

WHERE

size((b)-->())>1

and the outdegree

of c = outdegree of

b = outdegree of a,

AND size((c)--

>())=size((b)--

>()) AND

size((a)--

>())=size((b)--

>())

and b is not the next

node of a or b:

AND not (a)-

[:SEQUENCE]->(b)

AND not (c)-

[:SEQUENCE]->(b)

Create an

ANDSplit relation

between b and a

and between b

and c

MERGE

(a)<-[:ANDSPLIT]-

(b)

DELETE r,s

Received: December 3, 2019. Revised: January 2, 2020. 131

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.13

AND

Join

For nodes a, b, c and

their relationships:

MATCH (a)-[r]-

>(b)<-[s]-(c)

If :

the indegree of b>

1, and the indegree

of c = indegree of b

= indegree of a,

WHERE size((b)<--

())>1

AND size((c)--

>())=size((b)<--

()) AND size((a)-

->())=size((b)<--

())

Create AND Join

relation between a

with b and between

c and b

MERGE

(a)-[:ANDJOIN]-

>(b)

DELETE r,s

Table 9. Existing method for OR relationship discovery

Relation

ship

Pseudocode Cipher Syntax

OR

Split

For nodes a, n, b

and their

relationships:

MATCH (a)<-[r]-

(n)-[k]->(b)

If :

 the outdegree

of b < the

outdegree of n,

and the

outdegree of b

> 1,

WHERE

(size((b)-->())<

size((n)-->())

and

(size((b)--

>())>1))

and n is not the

next node of

nodes a and b:

and not (b)-

[:SEQUENCE]->(n)

and not (a)-

[:SEQUENCE]->(n)

Create an

ORSplit

relation

between nodes

a and n nodes b

MERGE (n)-

[:ORSPLIT]->(a)

MERGE (n)-

[:ORSPLIT]->(b)

DELETE r,k

OR

Join

For nodes a, n, b

and their

relationships:

MATCH (a)-[r]-

>(n)<-[k]-(b)-

[l]->(a)

If :

the indegree of

n> 1 and the

outdegree of b

<the indegree

of n, and the

outdegree of

b> 1:

WHERE size((n)<--

())>1 and

(size((b)-->())

< size((n)<--())

and size((b)--

>()) > 1)

Create an

ORJoin relation

between node a

and n and

between node b

and n

MERGE (a)-

[:ORJOIN]->(n)

MERGE (b)-

[:ORJOIN]->(n)

DELETE r,k,l

3. The proposed method

Our proposed method following 9 steps which

start with getting the input of an event log data and

end with the resulting output of the graph-based

process model.

1. Load event logs as graph nodes. This step is

similar to the existing method as described in

section 2.5.

2. Create a sequential relationship and its

frequency. Here we add two things to the

existing method. First, the directly-follows

graph is not only created in the process model

but also in the traces. This trace with sequence

pattern will make benefit when we use it for

matching the purpose, i.e, in concurrent

relationship detection. Second, each time a

relationship established in the graph model, a

frequency counter of the relation also increased.

This kind of value is termed in [6] as directly-

follows frequency (DFF) as defined in definition

4.

Definition 4 (Directly-Follows Frequency):

Given an event log ℰ, and two events label l1,l2

∈ L, the directly-follows frequency between l1

and l2 (|𝑙1 → 𝑙2|) is |{(𝑒𝑖, 𝑒𝑗) ∈ ℰ 𝑥 ℰ | 𝑒𝑖
𝑙 =

𝑙1 ∧ 𝑒𝑗
𝑙 = 𝑙2 ∧ ∃𝑡∈ ℰ [∃𝑒𝑥 ∈ 𝑡[𝑒𝑥 = 𝑒𝑖 ∧ 𝑒𝑥+1 =

𝑒𝑗]]}|

Having two additional conditions, then we

design the algorithm in Table 10.

3. Counting the frequency relationship of each

node. Based on the DFF value, it is summed up

in every node as their value of input frequency

relations (𝑖𝑓𝑟) and output frequency relations

(𝑜𝑓𝑟). The algorithm is presented in Tables 11

and 12.
4. Identify a concurrent relationship. Concurrent

relations are detected when there is a direct

relationship from node A to node B and vice

versa. This condition can arise in models

because in reality both of them actually work in

parallel. It is necessary to pay attention that in

the graph process model, the pattern of

concurrent relations looks similar to the short-

loops pattern. We use the definition of short-

loop and concurrent relationships as defined in

[6]. So that the algorithm we designed must be

able to distinguish between the two. To

distinguish them we search the candidate pattern

in the graph-based process model and do pattern

matching with its real trace in graph-based

process instances. The detailed algorithm is

presented in Table 13.

Received: December 3, 2019. Revised: January 2, 2020. 132

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.13

Definition 5 (Short-loop): Given two

activities a and b, a short-loop (𝑎 ↻ 𝑏) exists iff

meet the requirement in (1) and (2) [6].

 |𝑎 → 𝑎| = 0 ∧ |𝑏 → 𝑏| = 0 (1)

 |𝑎 ⟷ 𝑏| + |𝑏 ⟷ 𝑎| ≠ 0 (2)

The rule in Condition 1 gives a constraint that a

and b are not allowed in a self-loop. Condition 2

ensure the pattern of short-loop 𝑎 ↻ 𝑏.

Definition 6 (Concurrent relationship):

Given activities a and b, they are concurrent

𝑎‖𝑏 iff meet condition in (3),(4), and (5) [6].

 |𝑎 → 𝑏| > 0 ∧ |𝑏 → 𝑎| > 0 (3)

 |𝑎 ⟷ 𝑏| + |𝑏 ⟷ 𝑎| = 0 (4)

 ||𝑎→𝑏|−|𝑏→𝑎||

|𝑎→𝑏|+|𝑏→𝑎|
< 𝜀 (𝜀 ∈ [0,1]) (5)

Condition 3 is the main prerequisite for 𝑎‖𝑏 .

Condition 4 is the requirement to avoid a short-

loop. Condition 5 is required when we require

the frequency of both directions of concurrent

relationships are in specific similar (threshold,

𝜀) value.

5. Identify potential Split and Join relationship. All

sequential relations which are split or joint

relationship need to be recognized. With the

concurrent relationship was detected in the

previous step, we can make a rule for Split and

Join that must in sequential relations. These

Split and Join are the main foundation of the

parallel detection algorithm being executed in

the next phase. The algorithm for split relations

is presented in Table 14 and the join relationship

can be seen in Table 15.

6. XOR identification and creation. The XOR

relation can be identified by utilizing its unique

characteristics compared to other parallel

relations. This algorithm is designed with the

requirement that between branch nodes in the

XOR relation cannot have a concurrent

relationship. The proposed algorithm for XOR

identification and creation is depicted in Table

16.

7. AND identification and creation. Both

algorithms of detecting AND and OR require

concurrent relationships in their branches, but

the AND pattern is characterized by the

condition when the relationship frequency (𝑖𝑓𝑟

or 𝑜𝑓𝑟) values at the branches is equal. The

proposed algorithm is described in Table 17.

8. OR identification and creation. The algorithm to

find OR relationship is design by detecting

concurrent relationships in branches and having

a branching pattern with gateway nodes that

have a higher relation frequency value than each

branch node. A more detail description of the

proposed algorithm can be seen in Table 18.

9. Remove all Concurrent relationships. We

remove all concurrent relationship process

model.

Table 10. Proposed algorithm for Sequence discovery

Relation

ship

Pseudocode Cipher Syntax

Sequ-

ence

For idx as index of

records of all

activities in the

trace of process

instant:

MATCH (c:Trace)

WITH COLLECT(c) AS

Caselist

UNWIND

RANGE(0,Size(Caseli

st) - 2) as

idx

Prepare the DFG

from events in s1

and s2 where (𝑠1 ↦
𝑠2)

WITH Caselist[idx]

AS s1,

Caselist[idx+1] AS

s2

For all nodes with

label Model are

assigned to 𝑎 and b:

MATCH (a:Model)

MATCH (b:Model)

If:

Both events in

same Case Id,

WHERE

s1.CaseId =

s2.CaseId

Find the

corresponding

activity in the

Model with the

same name as S1

name

AND s1.Name =

a.Name

Find the

corresponding

activity in the

Model with same

name S2 name

AND s2.Name =

b.Name

Create sequence

relationship in

process instant

MERGE (s1)-

[q:SEQUENCE

{dff:0}]->(s2)

Create sequence

relationship in

process model

MERGE (a)-

[r:SEQUENCE

{dff:0}]->(b)

Count DFF in

Model

with

a,r,b,count((a)--

>(b)) as dff

set r.dff = dff

Received: December 3, 2019. Revised: January 2, 2020. 133

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.13

Table 11. Counting input relationship frequencies

Pseudocode Cipher Syntax

For all nodes 𝑎 in

process model with

pattern (𝑎 ↤ 𝑥) and

input relation 𝑖:

match (a:Model)<-

[i]-(x)

Sum up the frequency

from all input relation

with a, collect(i)

as ilist, sum(i.dff)

as ifr

Update node 𝑎 with

the total input

frequency value

set a.ifr = ifr;

Table 12. Counting output relationship frequencies

Pseudocode Cipher Syntax

For all nodes 𝑎 in

process model with

pattern (𝑎 ↦ 𝑥) and

output relation 𝑜:

match (a:Model)-[o]-

>(x)

Sum up the frequency

from all output relation

with a, collect(o)

as olist, sum(o.dff)

as ofr

Update node 𝑎 with

the total output

frequency value

set a.ofr = ofr;

Table 13. Concurrent relationship detection

Relation

ship

Pseudocode Cipher Syntax

Conc

urrent

relati

onshi

p

For nodes with

pattern (𝑥 ↦ 𝑦 ↦
𝑧) in Trace

MATCH (x:Trace)-

[p:SEQUENCE]-

>(y:Trace)-

[q:SEQUENCE]-

>(z:Trace)

For nodes with

pattern (𝑎 ↦ 𝑏 ↦
𝑐) in Model

MATCH (a:Model)-

[r:SEQUENCE]-

>(b:Model)-

[s:SEQUENCE]-

>(c:Model)

If in Model:

c = a,

If (x=a) in Trace:

x <> z

WHERE

c.Name = a.Name AND

x.Name = a.Name AND

x.Name <> z.Name

Create

concurrent

relationship in

Model

MERGE (a)-

[:CONCURRENT

{dff:r.dff}]->(b)

DELETE r

Table 14. Split relationship detection

Pseudocode Cipher Syntax

For all nodes 𝑛 in

process model with

pattern (𝑎 ↤ 𝑛 ↦ 𝑏)

with SEQUENCE

relationship:

MATCH (a:Model)<-

[r:SEQUENCE]-(n)-

[s:SEQUENCE]->(b)

Update the relationship

into SPLIT

WITH a,count(a) as

asum,n,r,s

MERGE (a)<-[:SPLIT

{dff:r.dff}]-(n)

DELETE r

Table 15. Join relationship detection

Pseudocode Cipher Syntax

For all nodes 𝑛 in

process model with

pattern (𝑎 ↦ 𝑛 ↤ 𝑏)

with SEQUENCE

relationship:

MATCH (a:Model)-

[r:SEQUENCE]->(n)<-

[s:SEQUENCE]-(b)

Update the relationship

into JOIN

WITH a,count(a) as

asum,n,r,s

MERGE (a)-[:JOIN

{dff:r.dff}]->(n)

DELETE r

Table 16. Proposed algorithm for XOR relationship

detection

Relation

ship

Pseudocode Cipher Syntax

XOR

Split

For nodes with

pattern (𝑎 ↤ 𝑛 ↦
𝑏) in Model and

have Split

relationship:

MATCH

(a:Model)<-

[r:SPLIT]-(n)-

[:SPLIT]->(b)

If:

𝑎 and 𝑏 do not

have a

CONCURRENT

relationship:

WHERE

NOT (a)<-

[:CONCURRENT]->(b)

Create

XORSPLIT

relationship

between 𝑎 and

𝑛

WITH a,count(a) as

asum,n,r

MERGE

(n)-[:XORSPLIT

{dff:r.dff}]->(a)

DELETE r

XOR

Join

For nodes with

pattern (𝑎 ↦ 𝑏 ↤
𝑐) in Model and

have a Join

relationship:

MATCH

(a:Model)-[r:JOIN]-

>(n)<-[:JOIN]-(b)

If:

𝑎 and 𝑏 do not

have a

CONCURRENT

relationship:

WHERE

AND NOT (a)<-

[:CONCURRENT]->(b)

 Create

XORJOIN

relationship

between 𝑎 and

𝑛

WITH a,count(a) as

asum,n,r

MERGE

(n)<-[:XORJOIN

{dff:r.dff}]-(a)

DELETE r

Table 17. Proposed algorithm for AND relationship

detection

Relation

ship

Pseudocode Cipher Syntax

AND

Split

For nodes with

pattern (𝑎 ↤ 𝑏 ↦
𝑐) in Model and

Split relationship:

MATCH (a: Model)<-

[r:SPLIT]-(n)-

[:SPLIT]->(b)

Received: December 3, 2019. Revised: January 2, 2020. 134

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.13

If

a has a concurrent

relationship with

b,

WHERE

(a)<-[:CONCURRENT]-

>(b)

and all branches

nodes' frequency

is the same,

AND(a.ifr)=(b.ifr)=

(n.ofr)

and no incoming

relation to node

from its branch:

AND

(not ((a)-->(n))

AND not ((b)--

>(n)))

Create

ANDSPLIT

relationship

between a and n

WITH a, count(a) as

asum, n, r

MERGE (a)<-

[:ANDSPLIT

{dff:r.dff}]-(n)

DELETE r

AND

Join

For nodes with

pattern (𝑎 ↦ 𝑏 ↤
𝑐) in Model and

Join relationship:

MATCH (a: Model)-

[r:JOIN]->(n)<-

[:JOIN]-(b)

If

a has concurrent

relationship with

b,

WHERE

(a)<-[:CONCURRENT]-

>(b)

 and all branches

nodes' frequency

is the same,

AND(a.ofr)=(b.ofr)=

(n.ifr)

and no outgoing

relation from

node to its

branch:

AND

(not ((a)<--(n))

AND not ((b)<--

(n)))

Create

ANDJOIN

relationship

between a and n

WITH a, count(a) as

asum, n, r

MERGE (a)-[:ANDJOIN

{dff:r.dff}]->(n)

DELETE r

Table 18. Proposed algorithm for OR relationship

detection

Relation

ship

Pseudocode Cipher Syntax

OR

Split

For nodes with

pattern a<=n=>b:

match (a: Model)<-

[r:SPLIT]-(n)-->(b)

If:

𝑎 has concurrent

relationship with

𝑏,

where

(a)<-[:CONCURRENT]-

>(b)

and output

relationship

frequencies of

gateway's node is

larger than each

of its branch

node's

relationship

frequencies input,

AND (a.ifr)<n.ofr

AND (b.ifr)<n.ofr

and no incoming

relation to node

from its branch:

AND

(not ((a)-->(n))

AND not ((b)--

>(n)))

Create

ORSPLIT

relationship

between a and n

WITH a, count(a) as

asum, r, n

MERGE (n)-[:ORSPLIT

{dff:r.dff}]->(a)

DELETE r

OR

Join

For nodes with

pattern (𝑎 ↦ 𝑏 ↤
𝑐) in Model and

Join relationship:

MATCH (a: Model)-

[r:JOIN]->(x)<--(b)

If:

a has a concurrent

relationship with

b, and Not

ANDJOIN:

where

(a)<-[:CONCURRENT]-

>(b)

and input

relationship

frequencies of

gateway's node is

larger than each

of its branch

node's

relationship

frequencies

output,

AND (a.ofr)<x.ifr

and (b.ofr)<x.ifr

and no outgoing

relation from

node to its

branch:

AND (not ((a)<--

(n)) AND not ((b)<-

-(n)))

Create

ORSPLIT

relationship

between a and n

with a, count(a)

as asum, x, r

MERGE (a)-[:ORJOIN

{dff:r.dff}]->(x)

DELETE r

4. Results and discussion

Experiments to compare and prove the ability of

the proposed method in detecting parallel processes

are carried out through several scenarios that

provide event log data to identify XOR, AND, and

OR types. Scenario 1 is a case with a 2-branch

structure, scenario 2 uses 3-branches, scenario 3

with a nested structure, and scenario 4 inserts a

sequential relation in a parallel pattern. For each

scenario, three graph model visualizations are

displayed, which are the directly-follows frequency

result, parallel discovery using the existing method,

and parallel discovery using the proposed method.

We use some symbols to mark the results of the

experiments. The symbols state in Table 19.

In order to get the soundness and fitness of each

discovered model, we utilize prom tool. Prom

provides some plugin, i.e., the Woflan [18] plugin to

analyze the soundness, and conformance checking

of DPN [19] plugin to get the fitness.

Received: December 3, 2019. Revised: January 2, 2020. 135

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.13

Table 19. Symbols to mark the experiment result

Symbol Meaning

√ The pattern succeed to recognize
x The pattern fail to recognize

*[pattern]
The expected pattern is recognize as

another pattern

4.1 Scenario 1

Scenario 1 is an event log that contains XOR,

AND, and OR parallel processes with two branches.

The results of sequential pair detection can be seen

in Fig. 1. Here, we represent the sequence of a graph

process model in directly-follows frequency (DFF).

Supposedly, the E-F-G-H will be detected as AND

relationship while the H-I-J-K is OR relationship.

We can see that both of them have identical

structures and degrees, though they have a different

in concurrency frequency.

With this scenario, the experimental results

show that the existing method able to detect XOR

and AND relationship. But the AND algorithm also

detects H-I-J-K as AND because it only analyzes the

degree, as presented in Fig. 2 (a). Meanwhile, the

OR algorithm unable to recognize the OR pattern

using rule describe in Table 9, this is due to the

value of outdegree in brach of H-I-J-K, which is I

and J have the same value to H. We can see the

result of the existing method in Fig. 2 (b).

The proposed method tested in scenario 1

succeeds to detects and distinguishes all parallel

process models correctly. This method differentiates

the AND and OR patterns using an algorithm that

basically utilizes the concurrent relationship

frequency. The results of the experiment using the

proposed method in scenario 1 can be seen in Fig. 3.

4.2 Scenario 2

Scenario 2 uses event log data similar to

scenario 1 but with three branches. The detection

results of graph-based sequential pairs are presented

in Fig. 4. We can see that the concurrent relationship

has no different from the regular sequence

relationship. It is the main problem when the

existing method relies on the degree of nodes. As a

result, the existing method fails to detect OR as

AND, and cannot detect OR as shown in Figs. 5 (a)

and (b).

The proposed method takes benefit of the

concurrency existence and the relationship

frequency of nodes to detect parallel processes. The

XOR, AND, and OR are successfully identified as

we can see in Fig. 6.

Table 20. Experiment result for scenario 1

Expected

Relationship

Existing

Method

Proposed

Method

XOR-Split √ √

AND-Split √ √

OR-Split *AND √

XOR-Join √ √

AND-Join √ √

OR-Join *AND √

Soundness Yes Yes

Fitness 0.98 1.00

Table 21. Experiment result for scenario 2

Expected

Relationship

Existing

Method

Proposed

Method

XOR-Split √ √

AND-Split √ √

OR-Split x √

XOR-Join √ √

AND-Join √ √

OR-Join x √

Soundness Yes Yes

Fitness 0.96 1.00

Table 22. Experiment result for scenario 3

Expected

Relationship

Existing

Method

Proposed

Method

XOR-Split *AND √

AND-Split √ √

OR-Split x √

XOR-Join √ √

AND-Join √ √

OR-Join x √

Soundness No Yes

Fitness - 1.00

Table 23. Experiment result for scenario 4

Expected

Relationship

Existing

Method

Proposed

Method

XOR-Split √ √

AND-Split x √

XOR-Join √ √

AND-Join x √

Soundness No Yes

Fitness - 1.00

4.3 Scenario 3

Scenario 3 is an event log containing the AND

and OR processes in XOR. The results of sequential

pair detection can be seen in Fig. 7. There is a

challenge for the parallel detection algorithm to not

misguided by the nested structure. It is supposed

that B-D-C and J-I-K are XOR-Split and XOR-Join,

C-E-F-I is an AND, and the D-G-H-J is detected as

OR.

Received: December 3, 2019. Revised: January 2, 2020. 136

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.13

Scenario 1

Figure. 1 Result of scenario 1 in directly-follows frequency (DFF)

Figure. 2 Scenario 1 results with Existing method: detects OR as AND relationship and fail to detect OR relationship

Figure. 3 Scenario 1 results using the proposed method succeed detecting all parallel

Scenario 2

Figure. 4 Result of scenario 2 in directly-follows frequency (DFF)

Figure. 5 Scenario 2 results with Existing method: detects OR as AND and fail to detect OR relationship

Figure. 6 Scenario 2 results using the proposed method succeed in detecting all parallel

Received: December 3, 2019. Revised: January 2, 2020. 137

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.13

Scenario 3

Figure. 7 Result of scenario 3 in directly-follows frequency (DFF)

Figure. 8 Scenario 3 results using Existing method: detect OR as AND, detects XORSplit as ANDSplit, and fail to detect

OR relationship

Figure. 9 Scenario 3 results using the proposed method succeed in detecting all parallel

The results of the existing method are presented

in Figs. 8 (a) and (b). The AND algorithm is

incorrectly detecting D-G-H-J as AND, while the

OR algorithm still unable to recognize the OR.

Moreover, the AND algorithm detects the XOR-

Split pattern in B-D-C as AND-Split due to the

outdegree of D and C are detected two, which is

caused by the following nested parallel.

The proposed method shows that it is reliable in

a nested structure. This method takes advantage of

concurrent relationship existence to differentiate the

XOR and the other parallel patterns strictly. The

experiment successfully detects all parallel

processes correctly as shown in Fig. 9.

4.4 Scenario 4

In scenario 4 the event log contains the AND

process in XOR with the Sequence inserted in it.

The resulting sequential pair model can be seen in

Fig. 10. This scenario has a main pitfall from the

Received: December 3, 2019. Revised: January 2, 2020. 138

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.13

Scenario 4

Figure. 10 Result of scenario 4 in directly-follows frequency (DFF)

Figure. 11 Scenario 4 results using Existing method fail to detect AND relationship

Figure. 12 Scenario 4 results using the proposed method succeed in detecting all parallel

concurrent relationship. We can see in E-F-G-H that

F seems to have 3 outdegrees, in which 2 of them

are a concurrent relationship with G and H. So,

using the existing method will produce a model in

Fig. 11, which cannot detect both AND and OR.

Experiments using the proposed method show the

relevant results, i.e., all parallel patterns and inserted

sequences correctly recognized, as we can see in Fig.

12.

5. Conclusion

We propose an improved method to discover

parallel process patterns. Our strategy is to split the

discovery process into two phases. The first is to

enrich the process model semantically. This phase

executes in three steps, namely counting the

relationship frequency of each node, identifying

concurrent relationships, and detecting split and join

relationships.

The second phase is the process of executing

parallel detection algorithms (XOR, AND, and OR).

Among the three of them, XOR is the one supposed

to have no concurrency. The difference between

AND and OR is characterized by the value of

relationship frequencies in branch nodes. The AND

pattern should have the equal frequency for all of its

nodes, which the OR is not.

To verify the ability of both methods in various

cases in which the existing method fails, we have

design four scenarios. The experiment result shows

some problems with the existing method. In scenario

1 it detects OR pattern as AND, this discovered

model results in a sound model with 0.98 score in

fitness. Scenario 2 is also sound, and 0.96 for the

fitness score. The existing method makes wrong

detection in scenario 3 and 4 that results in not

sound model, so we cannot measure the fitness score.

The experiment with our proposed method able

to recognize all parallel patterns and successfully

Received: December 3, 2019. Revised: January 2, 2020. 139

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.13

differentiates AND and OR patterns in all scenarios

correctly. All model discovered also sound and get

fitness value 1.00. This result proof that the

proposed method successfully improves the existing

method and outperform perfectly in all given

scenarios.

For future work, further research needs to carry

out to advance this method's ability. Some of them

are the ability to deal with noise, detect invisible

tasks, and handle the non-free choice condition.

References

[1] W. van der Aalst, “Process mining: discovering

and improving Spaghetti and Lasagna

processes”, In: Proc. of 2011 IEEE Symposium

on Computational Intelligence and Data

Mining (CIDM), No. c, pp. 1–7, 2011.

[2] W. M. P. van der Aalst, A. J. M. M. Weijters,

and L. Maruster, “Workflow Mining:

Discovering process models from event logs”,

IEEE Trans. Knowl. Data Eng., Vol. 16, No. 9,

pp. 1128–1142, 2004.

[3] A. J. M. M. Weijters and J. T. S. Ribeiro,

“Flexible heuristics miner (FHM)”, In: Proc. of

IEEE SSCI 2011: Symposium Series on

Computational Intelligence - CIDM 2011: 2011

IEEE Symposium on Computational

Intelligence and Data Mining, pp. 310–317,

2011.

[4] S. J. J. Leemans, D. Fahland, and W. M. P. van

der Aalst, “Discovering Block-Structured

Process Models From Event Logs - A

Constructive Approach”, In: Proc. of

Applications and Theory of Petri Nets 2013,

Vol. 7927, pp. 311–329, 2013.

[5] C. W. Günther and W. M. P. Van Der Aalst,

“Fuzzy mining - Adaptive process

simplification based on multi-perspective

metrics”, Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in

Bioinformatics), Vol. 4714 LNCS, pp. 328–343,

2007.

[6] A. Augusto, R. Conforti, M. Dumas, and M. La

Rosa, “Split Miner: Discovering Accurate and

Simple Business Process Models from Event

Logs”, In: Proc. of 2017 IEEE International

Conference on Data Mining (ICDM), 2017.

[7] A. Augusto, R. Conforti, M. Dumas, M. La

Rosa, and A. Polyvyanyy, “Split miner:

automated discovery of accurate and simple

business process models from event logs”,

Knowledge and Information Systems, Vol. 59,

No. 2, pp. 251–284, 2019.

[8] R. Sarno, K. R. Sungkono, and R.

Septiarakhman, “Graph-Based Approach for

Modeling and Matching Parallel Business

Processes”, Information, Vol. 21, No. 5, pp.

1603–1614.

[9] R. Sarno, K. R. Sungkono, R. Johanes, and D.

Sunaryono, “Graph-based algorithms for

discovering a process model containing

invisible tasks”, International Journal of

Intelligent Engineering and Systems, Vol. 12,

No. 2, pp. 85–94, 2019.

[10] R. Sarno and K. R. Sungkono, “A survey of

graph-based algorithms for discovering

business processes,” International Journal of

Advances in Intelligent Informatics, Vol. 5, No.

2, p. 137, 2019.

[11] H. Darmawan, R. Sarno, and A. S. Ahmadiyah,

“Anomaly Detection Based on Control-flow

Pattern of Parallel Business Processes”,

Telkomnika, Vol. 16, No. 6, pp. 2808–2815,

2018.

[12] C. Stephanie and R. Sarno, “Detecting Business

Process Anomaly Using Graph Similarity

Based on Dice Coefficient, Vertex Ranking and

Spearman Method”, In: Proc. of 2018

International Seminar on Application for

Technology of Information and Communication,

pp. 171–176, 2018.

[13] R. S. A. Wiratmo and K. R. Sungkono, “Graph-

based Algorithm for Checking Wrong Indirect

Relationships of Process Model Containing

Non-Free Choice”, Telkomnika, Vol. 13, No. 2,

pp. 281–289, 2015.

[14] R. Sarno, K. R. Sungkono, A. Y. Hadiwijaya,

and C. Fatichah, “An Algorithm for

Discovering Process Models Containing Non-

Free Choice Using Graph Database”,

International Journal of Intelligent Engineering

and Systems, Vol. 9, No. 3, pp. 1–8, 2019.

[15] I. Robinson, J. Webber, and E. Eifrem, Graph

Databases. O’Reilly, 2015.

[16] M. Dumas, M. La Rosa, J. Mendling, and H. A.

Reijers, Fundamentals of Business Process

Management 2nd Edition. Springer, 2018.

[17] W. Van Der Aalst, Process Mining: Data

Science in Action. Springer, 2016.

[18] H. M. W. Verbeek, T. Basten, and W. M. P.

Van Der Aalst, “Diagnosing workflow

processes using Woflan”, The Computer

Journal, Vol. 44, No. 4, pp. 246–279, 2001.

[19] F. Mannhardt, M. de Leoni, H. A. Reijers, and

W. M. P. van der Aalst, “Balanced multi-

perspective checking of process conformance”,

Computing, Vol. 98, No. 4, pp. 407–437, 2016.

