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Abstract: The rainy effect normally decreases the visual quality of the images that highly affects the outdoor vision 

system’s performance. Due to light scattering, the rain streaks generate the haziness and blurring effect. So, an 

effective model is required to remove rain streaks from the single image that assists an extensive range of 

applications such as object tracking, image enhancement, etc. In this research work, a new model has been proposed 

for rain streak removal in the single image. In the proposed work, a global sparse model with Singular Value 

Decomposition (SVD) and Huber loss function were used to remove rain streaks from the synthesized images. In the 

proposed model, three sparse terms (characteristics of image background information, structural knowledge and 

intrinsic direction of rain streaks) were used for depicting the directional smoothness of rain-free and rain streak 

images and also described the intrinsic and latent properties of rain streaks. The rain streaks sparsity was also 

enhanced by employing l_1 norm that effectively avoids the undesired features on the rain free regions. Then, 

Alternating Direction Method of Multipliers (ADMM) was used for tackling the proposed model in order to achieve 

optimal solutions. In the experimental phase, the proposed model was compared with the existing models like 

Cascading Attention Aggregation Network (CAAN) and Directional Global Sparse Model (DGSM) in terms of Peak 

Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), and Root Mean Square Error (RMSE). Through the 

experimental simulation, the proposed model almost showed 0.52-1 dB improvement in PSNR value. 

Keywords: Directional global sparse model, Huber loss function, Single image rain removal, Singular value 

decomposition. 

 

 

1. Introduction 

Generally, the performance of outdoor vision 

systems like autonomous navigation and 

surveillance is affected by the visual distortions on 

the image, which is caused due to bad weather 

conditions [1]. The adverse weather is categorized 

into two classes (dynamic and steady bad weather) 

on the basis of constituent particle size in 

atmosphere [2]. The steady bad weather occurs due 

to microscopic atmospheric particles like smoke, 

haze, fog, etc.  Correspondingly, the dynamic bad 

weather condition occurs due to large atmospheric 

particles like snow, hail, rain, etc. [3, 4]. Thus, the 

resulting effect of dynamic and steady bad weather 

conditions are the loss of image details that 

significantly lessen the performance of outdoor 

vision applications like event detection, image 

registration, classification, scene analysis, image 

retrieval, etc. [5]. Compared to steady bad weather, 

dynamic bad weather conditions have a huge impact 

on the outdoor vision systems. Hence, the large 

atmospheric particles are randomly distributed that 

leads to complex intensity fluctuations in small 

image regions. Also, it has a negative impact on the 

reliability of image feature detection modules of 

computer vision systems [6]. So, there is a need to 

develop an automated system to eliminate undesired 

visual effects from the images for enhancing the 

reliability of outdoor vision systems [7, 8].  

In recent decades, there are numerous systems 

available to recover original outdoor images from 

bad weather conditions, especially on rain [9]. Most 

of the existing systems cause non-rain regions that 

lead to the loss of image texture information and 
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over smoothed, because the background textures and 

rain streaks are inherently overlapped in the feature 

space [10]. In order to improve the performance of 

rain streak removal process, a new system was 

proposed in this research work. For the experimental 

analysis, two online datasets (rain100H and 

rain100L) and a real-time dataset were considered. 

The proposed work formulates an enhanced 

Directional Global Sparse Model (DGSM) for rain 

streak removal in combination with Huber loss 

function and SVD. In order to preserve the non-rain 

image pixel details and to remove the rain pixels, the 

Huber loss function and SVD were incorporated 

with DGSM. In addition, the proposed model 

comprises of three sparse terms; characteristics of 

image background information, structural 

knowledge and intrinsic direction of rain streaks. 

Finally, ADMM was applied for solving the 

proposed convex model that helps in obtaining the 

global optimal solution. The existing and proposed 

model’s performance was investigated in terms of 

PSNR, SSIM, and RMSE. 

This research paper is presented as follows. In 

section 2, related research articles on rain streak 

removal are surveyed. Section 3, explained about 

the proposed work with mathematical derivations. In 

section 4, the result and discussion are carried out 

with graphical comparisons. Finally, the conclusion 

is presented in the section 5. 

2. Literature survey 

Y. Luo, and J. Ling [11] presented a new single 

image deraining methodology based on Low Rank 

Matrix Approximation (LRMA). The developed 

method directly leverages the intrinsic 

characteristics of clear non-rain images without 

designing hand-crafted rain priors. Also, it 

formulates the deraining issue as a classical robust 

Principal Component Analysis (PCA) problem. The 

experimental consequences illustrate that the 

developed deraining methodology achieved better 

performance related to the existing methods on real-

time and most synthesized rain images. The major 

disadvantage of LRMA was not efficient in the rain 

streak removal process, so the convex nuclear norm 

was replaced with non-convex surrogates for 

improving the rain streak removal performance. 

D.Y. Chen, C.C. Chen, and L.W. Kang [12] 

presented a new framework for eliminating rain 

streaks from the single rainy colour image. At first, 

guided filter was used for decomposing the collected 

images into high and low frequency parts. In 

addition, the high frequency parts were decomposed 

into non-rain and rain components by utilizing 

dictionary learning and sparse coding, because the 

rain streak details would be in high frequency 

components with non-rain edges. Then, the hybrid 

features (Eigen color, histogram of oriented 

gradients, and field depth) were applied to separate 

rain streaks from the high frequency components. 

Related to the existing methodologies, the 

developed framework showed promising outcome in 

rain streak removal. In this literature, the detection 

and elimination of rain streaks from the single image 

will not be precise, if only pixel intensities are 

involved. 

X. Fu, J. Huang, X. Ding, Y. Liao, and J. Paisley 

[13] used a new deep learning network named as 

DerainNet for eliminating rain streaks from the 

collected images. In this literature, the digital 

images were acquired from the Berkeley 

segmentation dataset, uncompressed colour image 

dataset, and a few Google images. Initially, the 

undertaken network learns the mapping relation 

between clean and rainy images. In contrast to other 

approaches, the developed network increases the 

network depth by adjusting the objective function, 

which enhances the rain streak elimination 

performance. Compared to the existing deraining 

methodologies, the developed network (DerainNet) 

showed better performance in rain streak removal 

with faster computation time. Usually, the low 

resolution images deliver poor results in the 

DerainNet network, because the low resolution 

images do not support high level layers. 

Z. Shi, Y. Li, C. Zhang, M. Zhao, Y. Feng, and B. 

Jiang [14] developed a new filtering approach 

(median guided filter) to remove rain streaks from 

the collected images. The developed filtering 

approach contains two filtering operations, (i) 

weighted median filter was initially applied on the 

collected images for obtaining coarse rain free 

images and (ii) guided filter was used for achieving 

refined rainy free images. In this scenario, the coarse 

rain free images were utilized as guided images and 

then convolute the coarse rain free images with 

collected rainy images utilizing guided filter. 

Experimental consequences showed that the 

developed filtering approach attained good results 

compared to other algorithms. Still, the rain streak 

removal from a single image is an extremely 

challenging issue, due to the occurrence of non-

uniform rain masses in the images. 

C.H. Yeh, C.Y. Lin, K. Muchtar, and P.H. Liu 

[15] developed Non Negative Matrix Factorization 

(NNMF) to remove rain streaks from the collected 

images. Initially, Gaussian filter was employed on 

the collected images for separating high and low 

frequency components. Usually, the rain 
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components lie in the middle frequency range, 

which need to be discarded from the low and high 

frequency domains. In this literature paper, block 

copy approach and canny edge detection were 

utilized to eliminate the rain components from the 

high frequency domains. Then, NNMF method was 

employed for extracting the rain components from 

the low frequency domains. The developed 

framework attained better results in comparison with 

the existing methodologies. Still, it is hard to 

determine the angles of rain in the middle 

frequencies that is considered as one of the major 

concerns in the developed framework. 

L.J. Deng, T.Z. Huang, X.L. Zhao, and T.X. 

Jiang [16] presented a simple model, named as 

DGSM for eliminating rain streaks from the single 

rainy colour image. The developed model includes 

three sparse terms by considering the features of 

background image information, the structural 

knowledge and intrinsic direction of rain streaks. In 

addition, the ADMM was utilized for achieving the 

global optimum solution. From the experimental 

examination, the developed model achieved better 

results related to the existing rain removal 

approaches in terms of PSNR and SSIM. Moreover, 

the heavy rain normally incorporates haze and rain 

streaks, so the DGSM cannot remove the rain 

streaks individually. 

J. Wang, X. Huang, and S. Gai [17] developed a 

new algorithm (CAAN) for rain streak removal. At 

first, the dilated convolution kernels of different 

scale branches were utilized for extracting the 

features of dissimilar rain streak sizes. Then, local 

multi scale residual attention block was used to 

guide the learned features to be discriminative. The 

developed cascaded sub network propagates the 

information from lower to higher layers that 

decreases the loss of information. At last, the dual 

channel attention process was utilized to make 

feature fusion effective. From the experimental 

simulation, the developed algorithm attained better 

performance compared to the earlier methods in 

terms of both image visual quality and quantitative 

metrics. The CAAN algorithm’s performance 

usually depends on the amount of input data, if the 

data are fewer than the CAAN algorithm performs 

poorly. 

In order to address the above mentioned concerns, 

an enhanced DGSM has been proposed for 

improving the performance of rain streak removal in 

the single color image. 

 

 

 

3. Methodology 

Generally, the weather conditions like fog, rain, 

haze, and snow leads to complex visual effects of 

temporal or spatial domains in the images that 

considerably lessen the performance of outdoor 

vision systems and models like object detection, 

event detection, image registration, tracking, scene 

analysis, image retrieval, etc. Recently, rain streak 

elimination from the single image gained more 

attention within the researcher’s community. In this 

work, a new model was proposed to enhance the 

performance of rain streak removal in the single 

images. The detailed explanation about the proposed 

model is given below. 

3.1 Data collection 

Initially, the input rainy images have been 

collected from rain100H dataset, rain100L dataset 

and a real time dataset [16]. The rain100H dataset 

comprises of 1800 training images and 200 testing 

images, which have five rain stripes in dissimilar 

directions. In addition, the rain100L dataset consists 

of 200 training images and 100 testing raining 

images with single style low-density rain streaks 

[18].  Meanwhile, the real time dataset includes 15 

rainy images in that 3 images are synthesized 

images and the remaining 12 images are collected 

from http://yu-li.github.io/paper/li_cvpr16_rain.zip   

The sample collected rainy images are 

graphically indicated in Fig. 1. 

 

 
 

 
Figure.1 Sample collected images 
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3.2 Proposed model 

3.2.1. Rain streaks sparsity 

Let us assume the rain streaks being sparse, 

while the rain is not high. Usually, the rain streaks 

sparsity is described using 𝑙0 norm, which is stated 

as the number of non-zero elements. In this research 

study, 𝑙1  norm is utilized for describing the rain 

streaks sparsity, due to the non-convexity nature of 

𝑙0 norm. The major benefit of using 𝑙1 norm is its 

convexity that promises the global optimum in some 

algorithms like ADMM. Also, the 𝑙1  norm 

significantly avoids the undesired features on the 

rainy free regions. Therefore, the 𝑙1 norm is utilized 

as one of the regularizers in this research, which is 

mathematically indicated in Eq. (1). 

 

𝑅𝑒𝑔(1)(𝑠) = ‖𝑠‖1      (1) 

 

Where, 𝑆 is denoted as rain streaks, and 𝑠  is 

indicated as vector version of 𝑆. 

3.2.2. Rain streaks sparsity along with vertical 

direction 

Generally, the rain streaks come down from top 

to bottom in the real scenes of rainfall that is 

theoretically called as vertical direction (y-direction) 

of the rainy colour images. Usually, the difference 

between the adjacent image pixel is small (roughly 

zero), due to the smoothness within the rain streaks. 

Additionally, the sparse prior is considered in 

evaluating the variations in y-direction of the rainy 

colour images. In some circumstances, the rain 

streaks do not fall in the vertical direction. So, 

finding the real direction of rainfall is a very 

challenging process. In this work, a rotation strategy 

is utilized for the large angle cases in order to find 

the real rain-fall direction and angle between the 

vertical directions. Eq. (2) states the final regularizer 

assumed for the variation within the rain streaks. 

 

𝑅𝑒𝑔(2)(𝑠) = ‖∇𝑦 𝑠‖1     (2) 

 

Where, ∇𝑦  is denoted as difference operator in 

light of the vertical direction, and ∇𝑦𝑠 is stated as 

vector version of ∇𝑦𝑆. 

3.2.3. Rain streaks sparsity along with horizontal 

direction 

The variational information in the direction of 

rain streak is utilized to estimate the discontinuity of 

rain streak that helps in obtaining the robust rain 

removal. In this scenario, the across rain streak 

direction is called as horizontal direction. Due to 

relationship of 𝑡 = 𝑟 − 𝑠, Eq. (3) indicates the final 

regularizer assumed for the rain free image across 

the rain streak direction. 

 

𝑅𝑒𝑔(3)(𝑠) = ‖∇𝑥(𝑟 − 𝑠)‖1    (3) 

 

Where, ∇𝑥  is denoted as difference operator in 

light of the horizontal direction, and ∇𝑥(𝑟 − 𝑠)  is 

indicated as vector version of  ∇𝑥(𝑅 − 𝑆) , 𝑅  is 

represented as observed rainy image, and 𝑆 is stated 

as rain streaks. 

3.2.4. Non-negative constraint 

Usually, the rain streaks 𝑠  are non-negative, 

which have bright pixel intensity in a rainy image. 

Eq. (4) states the relationship between the rain 

streaks 𝑠 and rainy colour images 𝑟. 

 

𝑟 ≥ 𝑠 ≥ 0      (4) 

 

After investigating the characteristics of rain 

streaks, find the naïve sparse model along the 

vertical (y-direction) and horizontal (x-direction) for 

rain removal problem. Sometimes, the undertaken 

regularizers seem to be unreasonable, when the 

direction of rain streaks is far away from the vertical 

direction (900). So, a rotation operation 𝐷𝜃  is 

utilized with the rotation angle 𝜃 for the all three 

regularizers

‖𝐷𝜃 𝑠‖1, ‖∇𝑦(𝐷𝜃 𝑠)‖1, 𝑎𝑛𝑑 ‖∇𝑥(𝐷𝜃 (𝑟 − 𝑠))‖1 . 

Henceforth, the final minimization model to solve 

the rain removal issue is denoted in Eq. (5). 

 

min
𝑠

𝜆1‖∇𝑥(𝐷𝜃 (𝑟 − 𝑠))‖1 + 𝜆2 ‖∇𝑦(𝐷𝜃 𝑠)‖1 +

‖𝐷𝜃 𝑠‖1                              (5) 

 

Where, 𝜆1 𝑎𝑛𝑑 𝜆2  are indicated as two positive 

regularization parameters. 

3.3 Proposed model algorithm 

The proposed 𝑙1 model is not differentiable, so 

variable substitution is performed to solve the 

equivalent problem, as mentioned in Eq. (6). 

 

min 𝜆1‖𝑢‖1 + 𝜆2 ‖𝑣‖1 + ‖𝑤‖1   (6)  

 

Where,  𝑢 = ∇𝑥(𝐷𝜃 (𝑟 − 𝑠)), 𝑣 = 𝐷𝜃 𝑠, 𝑎𝑛𝑑 𝑤 =

∇𝑦(𝐷𝜃 𝑠). The non-negative constraints in the Eq. 

(5) is implemented by using a projection strategy. 

For the convenience purpose,  𝐷𝜃 (𝑟 −
𝑠), 𝐷𝜃𝑠, 𝑎𝑛𝑑 𝐷𝜃 𝑟  are represented as  𝑟𝐷𝜃

−
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𝑠𝐷𝜃
, 𝑠𝐷𝜃

, 𝑎𝑛𝑑 𝑟𝐷𝜃
, respectively. Therefore, the 

augmented lagrangian function is mathematically 

denoted in Eq. (7). 

 

𝜁(𝑢, 𝑣, 𝑤, 𝑠, 𝑝1, 𝑝2, 𝑝3) = 𝜆1‖𝑢‖1 +

˂𝑝1, ∇𝑥(𝑟𝐷𝜃
− 𝑠𝐷𝜃

) − 𝑢˃ +
𝛽1

2
‖∇𝑥(𝑟𝐷𝜃

− 𝑠𝐷𝜃
) −

𝑢‖
2

2
+ 𝜆2‖𝑣‖1 + ˂𝑝2, 𝑠𝐷𝜃

− 𝑣˃ +
𝛽2

2
‖𝑠𝐷𝜃

− 𝑣‖
2

2
+

‖𝑤‖1 + ˂𝑝3, ∇𝑦𝑠𝐷𝜃
− 𝑤˃ +

𝛽3

2
‖∇𝑦𝑠𝐷𝜃

− 𝑤‖
2

2
  (7) 

 

Where, 𝑝1, 𝑝2, 𝑎𝑛𝑑 𝑝3  are indicated as three 

Lagrange multipliers, and 𝛽1, 𝛽2, 𝑎𝑛𝑑 𝛽3  are stated 

as regularization parameters. ADMM is a popular 

methodology to solve 𝑙1 issue, and also it is utilized 

to solve four sub-problems such as u-subproblem, v-

subproblem, w-subproblem, and 𝑠𝐷𝜃
-subproblem. 

3.3.1. The u-subproblem 

�̂� = argmin
𝑢

𝜆1‖𝑢‖1 + ˂𝑝1, ∇𝑥(𝑟𝐷𝜃
− 𝑠𝐷𝜃

) −

𝑢˃ +
𝛽1

2
‖∇𝑥(𝑟𝐷𝜃

− 𝑠𝐷𝜃
) − 𝑢‖

2

2
,  

= argmin
𝑢

𝜆1‖𝑢‖1 +
𝛽1

2
‖∇𝑥(𝑟𝐷𝜃

− 𝑠𝐷𝜃
) −

𝑢
𝑝1

𝛽1
‖

2

2
      (8) 

 

The u-subproblem in Eq. (8) is solved precisely 

using soft-thresholding methodology that is 

mathematically denoted in Eq. (9). 

 

𝑢𝑘+1 = 𝑠ℎ𝑟𝑖𝑛𝑘(∇𝑥(𝑟𝐷𝜃
− 𝑠𝐷𝜃

𝑘 ) +
𝑝1

𝑘

𝛽1
,

𝜆1

𝛽1
)  (9) 

 

Where, 𝑠ℎ𝑟𝑖𝑛𝑘(𝑎, 𝑏) = 𝑠𝑖𝑔𝑛(𝑎) max(|𝑎| − 𝑏, 0) 

as mentioned in Eq. (10). 

 

𝑠𝑖𝑔𝑛(𝑎) = {
1, 𝑎 > 0
0, 𝑎 = 0

−1, 𝑎 < 0
              (10) 

3.3.2. The v-subproblem 

𝑣 = argmin
𝑣

𝜆2‖𝑣‖1 + ˂𝑝2, 𝑠𝐷𝜃
− 𝑣˃ +

𝛽2

2
‖𝑠𝐷𝜃

− 𝑣‖
2

2
,  

= argmin
𝑣

𝜆2‖𝑣‖1 +
𝛽2

2
‖𝑠𝐷𝜃

− 𝑣 +
𝑝2

𝛽2
‖

2

2
      (11) 

 

Henceforth, the closed form solution of v-

subproblem in Eq. (11) is achieved by utilizing soft 

thresholding strategy that is mathematically denoted 

in Eq. (12). 

 

𝑣𝑘+1 = 𝑠ℎ𝑟𝑖𝑛𝑘(𝑠𝐷𝜃

𝑘 +
𝑝2

𝑘

𝛽2
,

𝜆2

𝛽2
)             (12) 

3.3.3. The w-subproblem 

�̂� = argmin
𝑤

‖𝑤‖1 + ˂𝑝3, ∇𝑦𝑠𝐷𝜃
− 𝑤˃ +

𝛽3

2
‖∇𝑦𝑠𝐷𝜃

− 𝑤‖
2

2
,  

= argmin
𝑤

‖𝑤‖1 +
𝛽3

2
‖∇𝑦𝑠𝐷𝜃

− 𝑤
𝑝3

𝛽3
‖

2

2
        (13) 

 

The closed form solution of sub-problem (13) is 

mathematically denoted in Eq. (14). 

 

𝑤𝑘+1 = 𝑠ℎ𝑟𝑖𝑛𝑘(∇𝑦𝑠𝐷𝜃

𝑘 +
𝑝3

𝑘

𝛽3
,

1

𝛽3
)             (14) 

3.3.4. The 𝒔𝑫𝜽
-subproblem 

�̂�𝐷𝜃
= argmin

𝑠𝐷𝜃

 ˂𝑝1, ∇𝑥(𝑟𝐷𝜃
− 𝑠𝐷𝜃

) − 𝑢˃ +

˂𝑝2, 𝑠𝐷𝜃
− 𝑣˃ + ˂𝑝3, ∇𝑦𝑠𝐷𝜃

− 𝑤˃ +

                            
𝛽1

2
‖∇𝑥(𝑟𝐷𝜃

− 𝑠𝐷𝜃
) − 𝑢‖

2

2
+

𝛽2

2
‖𝑠𝐷𝜃

− 𝑣‖
2

2
+

𝛽3

2
‖∇𝑦𝑠𝐷𝜃

− 𝑤‖
2

2
                            

= argmin
𝑠𝐷𝜃

𝛽1

2
‖∇𝑥(𝑟𝐷𝜃

− 𝑠𝐷𝜃
) − 𝑢 +

𝑝1

𝛽1
‖

2

2
+

𝛽2

2
‖𝑠𝐷𝜃

− 𝑣 +
𝑝2

𝛽2
‖

2

2
+

𝛽3

2
‖∇𝑦𝑠𝐷𝜃

− 𝑤 +
𝑝3

𝛽3
‖

2

2
    (15) 

 

The quadratic 𝑠𝐷𝜃
- subproblem (15) is 

differentiable and the closed form solution is 

estimated by using the Eq. (16). 

 

𝛽1∇𝑥
𝑇∇𝑥 + 𝛽2𝐼 + 𝛽3∇𝑦

𝑇∇𝑦)𝑠𝐷𝜃

−𝑘+1 =

∇𝑦
𝑇(𝛽3𝑤𝑘+1 − 𝑝3

𝑘) + ∇𝑥
𝑇(𝛽1∇𝑥𝑟𝐷𝜃

− 𝛽1𝑢𝑘+1 −

𝑝1
𝑘) + 𝛽2𝑣𝑘+1 −  𝑝2

𝑘               (16) 

 

Where, 𝐼 is indicated as identity matrix, and the 

Eq. (16) is solved effectively by utilizing Fast 

Fourier Transform (FFT). Because of non-negative 

constraint, the resultant 𝑠𝐷𝜃

−𝑘+1 is estimated by using 

the Eq. (17). 

 

𝑠𝐷𝜃

−𝑘+1 = min (𝑟𝐷𝜃
, max(𝑠𝐷𝜃

−𝑘+1, 0))             (17) 

 

On the basis of ADMM, updated the Lagrange 

multipliers 𝑝1, 𝑝2, 𝑎𝑛𝑑 𝑝3 by utilizing the Eq. (18). 

Therefore, the 𝑣, 𝑢  and 𝑤  subproblems are 

effectively solved by applying soft thresholding 

methodology, and 𝑠𝐷𝜃
subprobelm is computed by 

utilizing FFT algorithm.  
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𝑝1
𝑘+1 = 𝑝1

𝑘 + 𝛽1(∇𝑥(𝑟𝐷𝜃
− 𝑠𝐷𝜃

𝑘+1) − 𝑢𝑘+1)  

𝑝2
𝑘+1 = 𝑝2

𝑘 + 𝛽2(𝑠𝐷𝜃

𝑘+1 − 𝑣𝑘+1)  

𝑝3
𝑘+1 = 𝑝3

𝑘 + 𝛽3(∇𝑦𝑠𝐷𝜃

𝑘+1 − 𝑤𝑘+1)             (18) 

 

As mentioned earlier, heavy rain generally 

incorporates haze and rain streaks, so the proposed 

DGSM cannot remove the rain streaks individually. 

So, a decomposition approach and Huber loss 

function are incorporated with DGSM for removing 

the rain streaks far away from the vertical direction. 

The SVD is an effective method that splits the 

system into a set of linearly independent 

components, which bears own energy contribution. 

The general equation of SVD is mathematically 

denoted in Eq. (19). 

 

𝐴 = 𝑢𝑑𝑣𝑇                (19) 

 

Where, 𝑣 is denoted as 𝑛 × 𝑛 orthogonal matrix, 

𝑢  is indicated as 𝑚 × 𝑛  orthogonal matrix, 𝑑  is 

represented as 𝑛 × 𝑛 diagonal matrix, 𝐴 is stated as 

𝑚 × 𝑛 matrix, 𝑚  is denoted as number of rows in 

the images, and 𝑛 is indicated as number of columns 

in the images. In addition, the Huber loss function 

generally utilizes in robust regression, which is less 

sensitive to outliers in the rainy images. The general 

equation of Huber loss function is specified in Eq. 

(20).  

 

𝐿𝛿(𝑅) = {

1

2
𝑅2                𝑓𝑜𝑟 |𝑅| ≤ 𝛿

𝛿 (|𝑅| −
1

2
𝛿)        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

  (20) 

 

Where, 𝛿  is represented as tunable parameter, 

and 𝑅  is indicated as rainy images. Eq. (21) 

represents the combination of SVD and Huber loss 

function need to be substituted in Eq. (18).  

 

𝐴𝐾1 = 𝐴 + 𝐿𝛿(𝑅)               (21) 

  

The Eq. (18) is updated as shown in Eq. (22). 

Respectively, Fig. 2 represent the both input and 

denoised images. 

 

𝑝1
𝑘+1 = 𝑝1

𝑘 + 𝛽1(∇𝑥(𝑟𝐷𝜃
− 𝑠𝐷𝜃

𝑘+1) − 𝑢𝑘+1) −

𝐴𝐾1  

𝑝2
𝑘+1 = 𝑝2

𝑘 + 𝛽2(𝑠𝐷𝜃

𝑘+1 − 𝑣𝑘+1) − 𝐴𝐾1  

𝑝3
𝑘+1 = 𝑝3

𝑘 + 𝛽3(∇𝑦𝑠𝐷𝜃

𝑘+1 − 𝑤𝑘+1) − 𝐴𝐾1   (22) 

 

   
(a)     (b) 

Figure.2 Sample images: (a) input image and (b) denoised image 
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4. Result and discussion 

In this paper, MATLAB (2018a) software was 

used for experimental simulation with Intel (R) Core 

(TM) i3-3220 CPU @ 3.30 GHz and 8 GB (RAM). 

In the enhanced DGSM model, the parametric 

values were set as follows;  𝜆1 = 0.95,  𝜆2 =
0.08,  𝛽1,  𝛽2  and  𝛽3 = 200. In this research work, 

the enhanced DGSM model was compared with 

DGSM [16], and CAAN [17] to assess the efficacy 

of the proposed model. Here, the proposed work’s 

performance was computed by using the 

performance metrics like SSIM, RMSE, and PSNR. 

The mathematical expression of SSIM, RMSE, and 

PSNR were represented in the Eq. (23), (24), and 

(25). The RMSE is a cumulative squared error 

between the original and denoised rainy colour 

image that is mathematically denoted in Eq. (23). 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (ℎ𝑖 − ℎ̂𝑖)2𝑁

𝑖=1                           (23) 

 

Where, ℎ̂𝑖  is denoted as vector form of de-rain 

image, ℎ𝑖 is represented as vector form of input or 

ground truth image, and  𝑁  is stated as number of 

image pixels. In addition, PSNR is utilized for 

measuring the quality of original and denoised rainy 

colour image that is mathematically denoted in Eq. 

(24). 

 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10(
𝑀𝐴𝑋1

2

𝑀𝑆𝐸
)              (24) 

 

Where, 𝑀𝑆𝐸 =  
1

𝑚𝑛
∑ ∑ [𝐼(𝑖, 𝑗) −𝑛−1

𝑗=0
𝑚−1
𝑖=0

𝑘(𝑖, 𝑗)]2, 𝑚 × 𝑛  is indicated as monochrome image 

as  𝐼 , 𝐾  is specified as noisy approximation, and 

𝑀𝐴𝑋1is indicated as maximum possible pixel value 

of rainy image. The SSIM is used for measuring the 

similarity between the original and denoised rainy 

colour image, and it is mathematically stated in Eq. 

(25). 

 

𝑆𝑆𝐼𝑀 =  
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥2+𝜇𝑦2+𝐶1)(𝜎𝑥2+𝜎𝑦2+𝐶2)
             (25) 

 

Where,  𝜎𝑦2  is the variance of  𝑦 , 𝜎𝑥2  is the 

variance of 𝑥, 𝜎𝑥𝑦 is the covariance of 𝑥 and 𝑦, 𝜇𝑦 is 

the average of 𝑦, and 𝜇𝑥 is the average of 𝑥. 

4.1 Quantitative analysis on synthesized images 

In this segment, three synthesized images 

(bamboo, panda, and tree) used for investigating the 

performance of the proposed model.  In the Table 1 

and 2, the proposed model performance is verified 

in terms of PSNR, RMSE, and SSIM. From the 

experimental study, the PSNR value of DGSM [16] 

for bamboo image is 30 dB, and the proposed 

approach (enhanced DGSM) attained 31.009 dB. 

Similarly, the PSNR value of DGSM [16] for panda 

image is 30.96 dB, and the proposed model achieved 

31.12 dB. In addition, the PSNR value of DGSM 

[16] for tree image is 32.41 dB, and the proposed 

model attained 32.93 dB. In this consequence, the 

proposed enhanced DGSM model almost showed 

0.5-1 dB improvement in PSNR compared to the 

existing model (DGSM [16]). Correspondingly, the 

RMSE value of DGSM [16] model for bamboo 

image is 7.227 dB, and the proposed model achieved 

7.17 error value. For panda image, the RMSE value 

of DGSM [16] is 7.219 and the enhanced DGSM 

model attained 7.08 error value. Similarly, in tree 

image, the RMSE value of DGSM [16] is 6.112 and 

the enhanced DGSM model attained 6.10 error value. 

The experimental analysis showed that the proposed 

model attained decent performance in terms of 

PSNR and RMSE. Graphical comparison of the 

proposed model in light of PSNR and RMSE on 

synthesized images is denoted in Fig. 3. 

In Table 2, the performance investigation of the 

proposed model is done by means of SSIM value. 

From the inspection, the SSIM value of the 

enhanced DGSM of bamboo, panda, and tree images 

are highly related to the existing model (DGSM 

[16]). In this scenario, the proposed model almost 

showed 0.005 value improvement in SSIM 

compared to DGSM [16]. Graphical comparison of 

the proposed model in light of SSIM on synthesized 

images is denoted in Fig. 4. 

 
Table 1. Performance analysis of the proposed model in 

light of PSNR and RMSE on synthesized images 

Images PSNR (dB) RMSE 

DGSM 

[16] 

Enhanced 

DGSM 

DGSM 

[16] 

Enhanced 

DGSM 

Bamboo 30.95 31.009 7.227 7.17 

Panda 30.96 31.12 7.219 7.08 

Tree 32.41 32.93 6.112 6.10 

 

Table 2. Performance analysis of the proposed model by 

means of SSIM on synthesized images 

Images SSIM 

DGSM [16] Enhanced DGSM 

Bamboo 0.9176 0.9179 

Panda 0.9324 0.9328 

Tree 0.9358 0.9408 
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Figure.3 Graphical comparison of the proposed model in 

light of PSNR and RMSE on synthesized images 

 

 

Figure.4 Graphical comparison of the proposed model by 

means of SSIM on synthesized images 

 

In Table 3, the performance of the proposed 

model is analyzed for the remaining twelve images. 

In Table 3, the average PSNR value of DGSM [16] 

is 33.18±3.5 dB, and the proposed model attained 

33.55+5.1 dB, which is almost 0.37 dB higher than 

the existing model. Likewise, the average SSIM 

value of DGSM [16] is 0.9365±0.02, and the 

proposed model attained 0.9372+0.05, which is 

0.005 value greater than the existing model.  

Table 3. Performance analysis of the proposed model by 

means of PSNR, SSIM, and RMSE on a new dataset 

Ima

ges 

PSNR SSIM RMSE 

DGS

M 

[16] 

Enha

nced 

DGS

M 

DGSM 

[16] 

Enhan

ced 

DGSM 

DGS

M 

[16] 

Enha

nced 

DGS

M 

Mea

n 

valu

e of 

all 

12 

ima

ges 

33.18

±3.5 

33.55

+5.1 

0.9365

±0.02 

0.9372

+0.05 

6.033

±2.4 

5.72+

3.01 

 

Table 4. Performance analysis of the proposed model by 

means of PSNR, and SSIM on rain 100H and rain 100L 

datasets 

Datasets Rain100H Rain100L 

Methods SSIM PSNR 

(dB) 

SSIM PSNR 

(dB) 

CAAN [17] 0.820 24.03 0.971 36.25 

Enhanced 

DGSM 

0.831 25.051 0.98 37.24 

 

In addition, the error value of proposed model is 

5.72+3.01, which is 0.31 value lower than the 

existing model (DGSM [16]). The major benefit of 

using enhanced DGSM is to effectively preserve the 

non-rain image pixel details and to remove the rain 

image pixels that helps in attaining better rain streak 

removal performance. 

4.2 Quantitative analysis on rain100H and 

rain100L datasets 

 

 

Figure.5 Graphical comparison of the proposed and existing model on rain100H and rain100L datasets 



Received:  December 27, 2019.     Revised:  February 12, 2020.                                                                                         9 

International Journal of Intelligent Engineering and Systems, Vol.13, No.4, 2020           DOI: 10.22266/ijies2020.0831.01 

 

 

In this segment, rain100H and rain100L datasets 

used, to validate the performance of the proposed 

and existing model (CAAN [17]). In this scenario, 

the performance evaluation performed for 200 

images in rain100H dataset and 100 images in 

rain100L dataset. The validation consequence 

showed that the proposed model outperformed the 

existing model (CAAN [17]) in light of PSNR and 

SSIM. In rain100H dataset, the proposed model 

showed 0.831 of SSIM and 25.051 dB of PSNR 

value, but the existing model obtained 0.820 of 

SSIM and 24.03 dB of PSNR value. Similarly, in 

rain100L dataset, the proposed model obtained 0.98 

of SSIM and 37.24 dB of PSNR value, and the 

existing model attained 0.971 of SSIM and 36.25 dB 

of PSNR value. From the experimental analysis, the 

enhanced DGSM model outperformed the existing 

model (CAAN [17]) in terms of SSIM and PSNR. 

Graphical comparison of the proposed and existing 

model on rain100H and rain100L datasets is denoted 

in Fig. 5. 

5. Conclusion 

The rain streaks not only decrease the image 

visibility and makes computer vision systems fail to 

function appropriately. In this work, a global sparse 

model with SVD and Huber loss function is 

employed for removing rain streaks from the 

synthesized color images. The proposed model uses 

three sparse terms for describing the intrinsic and 

latent properties of rain streaks, and also to smooth 

the rain free and streak image regions. In addition, 𝑙1 

norm was used to eliminate undesired features on 

the rainy free regions that helps in achieving better 

rain removal performance. Compared to the 

previous research works (DGSM, and CAAN), the 

proposed model attained good performance in light 

of RMSE, PSNR and SSIM value. The proposed 

model almost showed 0.52-1 dB enhancement in 

PSNR value. In future work, an optimization 

technique can be included in the proposed model to 

further remove the heavy rain streaks in the single 

colour image. 
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