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Abstract: Estimating the Remote Sensing Satellite’s Attitude variation is crucial during the acquisition in order to 

avoid distortions in images.  This paper focuses more specifically on a method based on the Horn-Schunck (HS) multi-

image recording technique associated with a piecewise polynomial model (HS-P) to estimate any variation in the 

attitude of satellite, and thus correct the images having undergone geometric distortion caused by slight variations in 

satellite attitude during acquisition taken by push-broom cameras. This linear sensor is a charge coupled device (CCD) 

that captures a 1-D image at a time. It is generally integrated on a platform, which moves perpendicular to its axis in 

time, and all the 1-D images combined form a 2-D image. The proposed method was tested on a sequence of 

dimensional images (400 × 800) pixels captured by the LANDSAT-ETM7 satellite. Obtained result show that the 

proposed approach gave satisfactory results with attitude error estimation rate of 95% and a correction of distorted 

images at 98%. To show the potential of our formulation considering the efficiency and the precision, the studied 

attitude estimation method presented was validated and compared with the LK-P differential method and other methods 

based on filtering techniques such as HSO-SVSPF and HORCKF. 

Keywords: Remote sensing, Push-broom cameras, Linear sensor, Satellite attitude, Horn and Schunck, Polynomial 

model by pieces. 
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1. Introduction 

The rise of satellite imagery technologies is 

manifested by a marked growth in the production of 

satellite images. To maintain the accurate pointing of 

the sensors of satellite earth observation cameras to 

the specified target location, an exact attitude 

estimate and a control system are essential. 

     The attitude of a satellite is defined by its three 

axes and their intersection form the Euler Angles [1] 

(Fig. 1). 

• The x-axis, called the roll axis, a unit of 

orbital speed, tangent to the orbit. 

• The axis y of the pitch, unit of the angular 

moment, normal to the trajectory 

• The z axis called the yaw axis, along the 

geocentric 

Today, Earth observation satellites mainly carry 

push broom cameras [2,3], this linear sensor can 

record more than 25,000 pixels on a single line of 1-

D images and uses the scrolling of the satellite around 

the earth to create bands of images [4]. 

       Satellites have so far been considered stable due 

to their inertia. Indeed a satellite is subjected to a 

multitude of forces and disturbing phenomena [5], 
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Figure. 1 The Euler angles 

 

 

 
 

Figure. 2 The Example of deformations observed on a 

regular checkerboard when the attitude of the push-broom 

camera varies during the acquisition 
 

such us the brake by the atmosphere, the irregularity 

of the terrestrial magnetic field, the vibrations linked 

to the motors and the improvement of the resolution 

of the sensors, which makes the imager's oscillation 

much more critical [6, 7]. These elements exert 

torques and make any solid body rotate, which causes 

the angles of Euler to tilt: the yaw varies the 

inclination of the horizontal lines; the roll oscillates 

the vertical lines and the pitch increases or decreases 

the height of the pixels (Fig. 2). 

       These cumulative factors mean that a change in 

attitude of certain micro-radians can cause significant 

geometric deformations in the acquired images.                                                                                                                                                                                                                  

Therefore, the need for a good estimation of the 

attitude of the satellite and a better correction of the 

distorted image are crucial [8], which is  the main 

contribution of this document. 

      In this paper, we opted for a HS  method [9, 10], 

in order to estimate the variations in attitude of the 

satellite using a multi-image registration [11]. These 

attitude variations will be modeled by a piecewise 

polynomial model [12], in order to have a corrected  

image similar to the real image of the ground. 

       HS-P method is characterized by the following 

parameters: the number of iterations and the 

smoothing parameters for the HS methods, the size of 

the window and the number of polynomials for the 

polynomial model. The results are optimized by 

varying the values of these parameters. The 

advantage of this method is to provide a dense flux 

 (a result for each pixel) and to minimize the weighted 

sum of the error in the optical flux and the variation 

of the speed from one pixel to another by using a 

smoothing constraint to have a more fluid set of 

solutions. Polynomial offers a good estimate of low 

frequencies with an acceptable improvement in 

verisimilitude performance in terms of precision and 

calculation time.  

      This approach is more applicable for the 

estimation of the satellite attitude error and gives 

better results for the correction of distorted images 

compared to other methods such as differential 

methods (LK-P) or methods which use filtering 

techniques (HSO-SVSPF) and (HORCKF), the 

proposed approach does not involve a costly 

calculation and gives a very low error rate without the 

need for regularization parameters, which the 

determination is often difficult. This article is 

organized as follows: Section 2 presents the work 

related to our research theme. Section 3  describes the 

proposed approach. Section 4 presents and 

reproduces the experimental results of this work; in 

section 5, the results obtained are compared with the 

LK-P, HSO-SVSPF and HORCKF methods. Finally, 

Section 6 draws conclusions. 

2.  Related works 

      The field of attitude control is one of the most 

studied in the field of space vehicle design and which 

has been increasingly developed in recent work: 

In 2019, Lu Cao et al. [13], authors have 

presented a new approach to estimate the high 

precision attitude of satellites using the Huber 

technique. This technique develops a new predictive 

filter with a second order variable structure. The filter 

can ensure a perfect estimation precision for the 

attitude of the satellite and stabilizes the 

measurement error and its difference. 

Xiaoqian Chen et al [14]. Have proposed an 

approach to reach the estimation attitude of satellites 

by preliminary deriving a Kalman filter with robust 

correlation of higher order with unknown modelling 

errors using the principle of orthogonal sequence. It 

has been proved that the proposed filter gives better 

results accuracy and robustness of the estimate. This 

modified filter can capture the information of the 

probability density function of the posterior system.  

In order to improve the accuracy of the attitude 

control system for observation satellites and to 

estimate its variations, Zhao-Xiang Zhang et al. [15], 

have proposed a new framework which merges 

gyroscope and tracking measurements stars with a 
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registration of the images. The calibration, 

gyroscopic polarization drift and star tracking error 

are defined by the derivative of the Kalman filter. The 

new frame is tested with realistically simulated data 

and satellite remote sensing images. 

Jiang Yong-hua et al. [16], have proposed a 

method based on parallel observations with high-

resolution push-broom cameras in order to examine 

the feasibility of an attitude error correction of the 

Chinese satellite ZY1- 02C. It contains an attitude 

measurement system very limited in precision, which 

caused complex distortions in the images, obtained 

and many errors in the attitude transfer. 

Alexandru-RazvanLuzi et al. [17], have used jet 

wheels as a satellite attitude control technique. They 

have put in place control laws that vary according to 

the operating conditions. In particular, it looks for 

correctors ensuring a fast response when the attitude 

error is weak, while limiting the control effort when 

the satellite is far from its set position. 

Perrier et al. [18], have proposed a Lucas Kanade 

multi-image registration method associated with a 

piecewise polynomial model of attitude variations. 

Allowing to estimate any variation of attitude of the 

satellite in order to rectify the acquired images. 

However, the calculation of the optical flow (OF) 

is an essential step to estimate any satellite attitude 

variation. The OF estimation method proposed by 

Horn and Schunck has been used in the problem of 

movement estimation.  

Enric Meinhardt-Lopis et al. [19], have described 

an implementation of the original HS method and 

have introduced a multi-scale strategy in the form of 

a pyramidal structure of subsampled images to 

manage larger displacements and create an equation 

optical flux constraint by a nonlinear formulation. 

A.Rafael et al. [20], have  developed a numerical 

scheme based on the technique of  HS, they have 

proposed a new regularization algorithm based on the 

symmetric gradient of the flow and which is 

discussed in terms of invariance. To show the 

efficiency and accuracy of this algorithm, he 

compared this method with the traditional HS 

algorithm. 

      A.Matías. Molina et al. [21], have proposed a new 

method, which combines the differential method of 

HS, and the exhaustive “variational” method of 

Steinbücke. With the use of the full image and a 

volume of costs, they have managed to obtain a 

reduction in the processing time of exhaustive 

methods close to 98% compared to a similar 

implementation in Matlab. 

unfortunatly, the abovementioned methods are 

sensitive to initialisation and they are also unable to 

analyse images with intensity inhomogeneity. Hence, 

these limitations abviously limit their practical 

applications. Here we focus in overcoming these 

drawbacks in this paper. 

3. Proposed approach 

      In this paper, the implemented simulations use a 

sequence of images taken by the different push-

broom sensors. The first TM1 image has been taken 

as the ground truth reference whose values angles 

(Roll, Yaw and Pitch) are considered exact values of 

the satellite. We will first illustrate our proposed 

approach, by following the different steps (Fig. 3). 

4. Modeling  

        Let 𝐶 the set of images taken by push-broom 

Channels, 𝜃  the set of radiometric values of each 

channel. Each pixel of each image is referenced by its 

coordinates [𝑥, 𝑦], and belong to the set 𝛦. 

 𝑇𝑖𝑗 is the time that interspace the capture of the 

same scene by push-broom channels 𝑖  and 𝑗 .           

Assuming that the speed of constant satellite, in the 

ideal case of the attitude of a satellite is given by: 

 

𝐶𝑖(𝑥, 𝑦) − Ϝ𝑖𝑗 (𝐶𝑗(𝑥 + 𝑇𝑖𝑗 , 𝑦)) ∼ ℕ(0, 𝜎2)           (1) 

 

Figure. 3 Different steps of the global HS method         

associated with the piecewise polynomial model 

 

➢ Image 1 and 2 

➢ Parameter: Smoothing constraint (α), 

Number of iterations (r) 

➢ Initialization of convolution masks and 

laplacian 

➢ Initialization of velocity fields to zero 

 

➢ Calculation of partial derivatives Ε𝑥,Ε𝑦 

et Ε𝑡 

 

➢ Laplacian's estimate ∇2𝑢 and ∇2𝑣 

➢ Minimization 

➢ Recovery of the velocity field of this 

iteration 

➢ Go to next iteration 

➢ Model attitude variations by a 

polynomial function in piece 
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Where,   Ϝ𝑖𝑗 ∶  𝜃 → 𝜃 is a linear function whose role 

is to compensate for radiometric differences between 

images  𝑖  and  𝑗 , ℕ(0, 𝜎2) denotes a Gaussian 

function of zero (0) mean and noise variance 𝜎2.𝐶
𝑗

𝑇𝑖𝑗
 

designates the image Cj shifted in time. Eq. (1) can be 

written in another way as following: 

 

𝐶𝑖(𝛶) − Ϝ𝑖𝑗 (𝐶
𝑗

𝑇𝑖𝑗(𝛶)) ∼ ℕ(0, 𝜎2)                         (2) 

 

We call 𝛫 the vector (3𝐷 × 1) that gathers the 

attitude for every moment of time and 𝛫(𝑥) ∈  𝛩 the 

unknown attitude of the satellite for the moment of 

time which 𝑥 is a vector (3 × 1)  whose respective 

components are 𝛫𝛼(𝑥) or 𝛼 corresponds respectively 

to Yaw: 𝛫𝑙(𝑥),  Roll: 𝛫𝑟(𝑥)and  Pitch: 𝛫𝑡(𝑥). 

 

𝛫 = [𝛫𝑙(1). . 𝛫𝑙(𝐷), 𝛫𝑟(1). . 𝛫𝑟(𝐷), 𝛫𝑡(1). . 𝛫𝑡(𝐷)]𝑇 

(3) 

 

Let 𝛽 ∶  𝛨 × 𝛩 → 𝛨  be the deformation function 

containing the variations of attitude that have 

parasitized the images and that moves the pixel to a 

new position according to the attitude of the satellite 

from  Eq. (2): 

 

       𝐶𝑖 (𝛽(𝛶; 𝛫(𝑥))) 

−Ϝ𝑖𝑗 (𝐶
𝑗

𝑇𝑖𝑗 (𝛽 (𝛶; 𝛽(𝑥 + 𝑇𝑖𝑗)))) ∼ ℕ(0, 𝜎2)                                                     

(4) 

 

It is important to note here that the two images are 

distorted by 𝛫, but for different time instants. 

4.1 Retiming of multi-temporal images by the 

method of Horn and Schunck 

A common technique for solving Eq. (4) is the 

Horn and Schunck method, in order to evaluate the 

displacement of each pixel, HS used the Lagrange 

multiplier method to minimize a weighted sum of the 

error in the optical flow and the variation of the speed 

from one pixel to another [20, 21]: 

 

      𝑢(𝓍, 𝑦, 𝑡), 𝑣(𝓍, 𝑦, 𝑡) 

= 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑢,𝑣

∫ (𝑒𝑏
2(𝑢, 𝑣) + 𝛼𝑒𝑐

2(𝑢, 𝑣)) 𝑑𝑥𝑑𝑦    (5) 

 

Where 𝛼 : is a parameter that controls the 

smoothing constraint, it is low for a fluid movement 

and high for a less smooth movement. It acts as a 

lubricant, where on each iteration it smooths out to 

produce the best movement of the optical flow 

𝑒𝑏: Error in the equation of the optical flow. 

𝑒𝑐: Pixel-to-pixel variation of speed. 

 

𝐸(𝑥, 𝑦, 𝑡) = 𝛦(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡)            (6) 

Eq. (6) is the luminosity distribution of a point 

(𝑥, 𝑦) in the plane of the image at time 𝑡 .The 

luminosity of a particular point taken in the plane of 

the image such as:  
𝑑𝐸

𝑑𝑡
= 0 

Using the rule of the chain of differentiation  

Eq. (6) will become: 

 
𝜕𝛦

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝛦

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝛦

𝜕𝑡
= 0                                    (7) 

 

By posing  𝑢 =
𝑑𝑥

𝑑𝑡
   and  𝑣 =

𝑑𝑦

𝑑𝑡
   we then notice that 

we have a linear equation two strangers 𝑢 and 𝑣 

 

𝛦𝑥𝑢 + 𝛦𝑦𝑣 + 𝛦𝑡 = 0                                          (8) 

𝛦𝑥  and 𝛦𝑦 are additional abbreviations for partial 

derivatives of brightness of the image compared to 

𝑥  ,  𝑦  and 𝑡  respectively. Eq. (8) can be written in 

another way: 

 

(𝛦𝑥 , 𝛦𝑦). (𝑢, 𝑣) = −𝛦𝑡                                       (9) 

 

The component of the movement in the direction 

of the gradient (𝛦𝑥 , 𝛦𝑦) is equal to: −
𝛦𝑡

√𝛦𝑥
2+𝛦𝑦

2
 

However, it is impossible to define the 

component of movement that forms a right angle with 

the component in the direction of the gradient. The 

flow velocity (𝑢, 𝑣) cannot be calculated without the 

integration of new constraints: smoothing constraint. 

4.1.1. Smoothing constraint 

The optical flow must be smooth or continuous; 

it is therefore assumed that neighboring points on a 

rigid surface have locally displacement vectors 

approximately identical. This amount to minimize the 

following error functional: 

 

(
𝜕𝑢

𝜕𝑥
)

2
+ (

𝜕𝑢

𝜕𝑦
)

2
and  (

𝜕𝑣

𝜕𝑥
)

2
+ (

𝜕𝑣

𝜕𝑦
)

2
               (10)  

 

Another measure of the smoothing of the optical 

flow is the sum of the squares of the Laplacian 

components 𝑥 and y of the flow. The Laplacian of 𝑢 

and 𝑣 are defined as follows: 
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 𝛻2𝑢 =
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2   𝑎𝑛𝑑   𝛻2𝑣 =
𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2     (11)   

                             

In simple situations, the two Laplacians are void. 

If the observer is positioned parallel to a flat object, 

turns around a line perpendicular to the surface or 

travel orthogonally with respect to the surface, then 

the partial second derivatives of 𝑢  and 𝑣  will 

disappear. We will use here the square of the 

amplitudes of the gradient as a measure of smoothing. 

4.1.2. Estimation of partial derivatives 

We must estimate the drifts of the brightness of 

the series of discrete measurements available from 

the image. It is important that the estimates 

of   𝛦𝑥 , 𝛦𝑦 and 𝛦𝑡  are compatible. That means they 

should all refer to the same point of the image at the 

same time. 

 

𝛦𝑥 ≈
1

4
{𝛦𝑖,𝑗+1,𝑘 − 𝛦𝑖,𝑗,𝑘 + 𝛦𝑖+1,𝑗+1,𝑘 − 𝛦𝑖+1,𝑗,𝑘 +

𝛦𝑖,𝑗+1,𝑘+1 − 𝛦𝑖,𝑗;𝑘+1 + 𝛦𝑖+1,𝑗+1,𝑘+1 − 𝛦𝑖+1,𝑗,𝑘+1}  

 

𝛦𝑦 ≈
1

4
{𝛦𝑖+1,𝑗,𝑘 − 𝛦𝑖,𝑗,𝑘 + 𝛦𝑖+1,𝑗+1,𝑘 − 𝛦𝑖,𝑗+1,𝑘 +

𝛦𝑖+1,𝑗,𝑘+1 − 𝛦𝑖,𝑗;𝑘+1 + 𝛦𝑖+1,𝑗+1,𝑘+1 − 𝛦𝑖,𝑗+1,𝑘+1}  

 

𝛦𝑥 ≈
1

4
{𝛦𝑖,𝑗,𝑘+1 − 𝛦𝑖,𝑗,𝑘 + 𝛦𝑖+1,𝑗,𝑘+1 − 𝛦𝑖+1,𝑗,𝑘 +

𝛦𝑖,𝑗+1,𝑘+1 − 𝛦𝑖,𝑗+1,𝑘 + 𝛦𝑖+1,𝑗+1,𝑘+1 − 𝛦𝑖+1,𝑗+1,𝑘}   

 (12) 

4.1.3. Laplacian's estimate 

In order to estimate the Laplacians of 𝑢 and 𝑣. A 

method of approaching these values takes the 

following form:  

 

                         𝛻2𝑢 ≈ 𝛫(�̅�𝑖,𝑗,𝑘 − 𝑢𝑖,𝑗,𝑘)   

and     𝛻2𝑣 ≈ 𝛫(�̅�𝑖,𝑗,𝑘 − 𝑣𝑖,𝑗,𝑘)                 (13) 

 

Or the local averages �̅�  and �̅� are defined as 

follows: 

 

�̅�𝑖,𝑗,𝑘 =
1

6
{𝑢𝑖−1,𝑗,𝑘 + 𝑢𝑖,𝑗+1,𝑘 + 𝑢𝑖+1,𝑗,𝑘 + 𝑢𝑖,𝑗−1,𝑘}

+
1

12
{𝑢𝑖−1,𝑗−1,𝑘 + 𝑢𝑖−1,𝑗+1,𝑘

+ 𝑢𝑖+1,𝑗+1,𝑘 + 𝑢𝑖+1,𝑗−1,𝑘} 

�̅�𝑖,𝑗,𝑘 =
1

6
{𝑣𝑖−1,𝑗,𝑘 + 𝑣𝑖,𝑗+1,𝑘 + 𝑣𝑖+1,𝑗,𝑘 + 𝑣𝑖,𝑗−1,𝑘}

+
1

12
{𝑣𝑖−1,𝑗−1,𝑘 + 𝑣𝑖−1,𝑗+1,𝑘

+ 𝑣𝑖+1,𝑗+1,𝑘 + 𝑣𝑖+1,𝑗−1,𝑘} 

          (14) 

4.1.4. Minimization 

The problem then, is to minimize the sum of the 

errors in the equation of the rate of change of the 

brightness of the image. 

 

𝑒𝑏 = 𝛦𝑥𝑢 + 𝛦𝑦𝑣 + 𝛦𝑡                                       (15) 

 

The measurement of the error in the flow velocity 

pixel-to-pixel. 

 

𝑒𝑐
2 = (

𝜕𝑢

𝜕𝑥
)

2
+ (

𝜕𝑢

ð𝑦
)

2
+ (

𝜕𝑣

𝜕𝑥
)

2
+ (

𝜕𝑣

𝜕𝑥
)

2
            (16) 

 

We will choose an appropriate weighting factor, 

noted 𝛼2,let be the total error to be minimized: 

 

       𝑒2 = ∬(𝛼2𝑒𝑐
2 + 𝑒𝑏

2) 𝑑𝑥𝑑𝑦                                    (17) 

 

The minimization consists of finding suitable 

values for the optical flow rate (𝑢, 𝑣). By using the 

calculation of the variations, we obtain: 

 

       𝛦𝑥
2𝑢 + 𝛦𝑥𝛦𝑦𝑣 = 𝛼2𝛻2𝑢 − 𝛦𝑥𝛦𝑡 

𝛦𝑥𝛦𝑦𝑢 + 𝛦𝑦
2𝑣 = 𝛼2𝛻2𝑣 − 𝛦𝑦𝛦𝑡                    (18) 

 

Using the Laplacian approximation introduced in 

the previous section: 

 

        (𝛼2 + 𝛦𝑥
2)𝑢 + 𝛦𝑥𝛦𝑦𝑣 = (𝛼2�̅� − 𝛦𝑥𝛦𝑡) 

       (𝛼2 + 𝛦𝑦
2)𝑣+𝛦𝑥𝛦𝑦𝑢 = (𝛼2�̅� − 𝛦𝑦𝛦𝑡)        (19) 

 

The determinant of the coefficient of the matrix is 

 equal to:   𝛼2(𝛼2 + 𝛦𝑥
2 + 𝛦𝑦

2) 

 

The resolution for 𝑢  and 𝑣  gives us 

(diagonalization on the left): 

 

(𝛼2 + 𝛦𝑥
2 + 𝛦𝑦

2)𝑢 = (𝛼2 + 𝛦𝑦
2)�̅� − 𝛦𝑥𝛦𝑦�̅� − 𝛦𝑥𝛦𝑡 

(𝛼2 + 𝛦𝑥
2 + 𝛦𝑦

2)𝑣 = (𝛼2 + 𝛦𝑥
2)�̅� − 𝛦𝑥𝛦𝑦�̅� − 𝛦𝑦𝛦𝑡 

                                                                        (20) 

 

This equation can be written in the following 

form: 

 

(𝛼2 + 𝛦𝑥
2 + 𝛦𝑦

2)(𝑢 − 𝑢) = −𝛦𝑥[𝛦𝑥�̅� + 𝛦𝑦�̅� + 𝛦𝑡] 

 

(𝛼2 + 𝛦𝑥
2 + 𝛦𝑦

2)(𝑣 − �̅�) = −𝛦𝑦[𝛦𝑥�̅� + 𝛦𝑦�̅� + 𝛦𝑡] 

                                                                        (21) 

 

This shows that the value of the flow 

velocity (𝑢, 𝑣) , which minimizes the error 𝑒2 lies 
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along a line in the direction of the stress line 

intersecting it at right angles. 

4.1.5. Iterative solution 

We use the iterative Gauss-Seidel methods; we 

can calculate a new set of velocity fields 

(𝑢𝑛+1, 𝑣𝑛+1) from the derivatives and the average of 

the estimates of the previous fields (𝑢𝑛, 𝑣𝑛) as 

follows: 

 

𝑢𝑛+1 = 𝑢𝑛 − 𝛦𝑥[𝛦𝑥�̅�𝑛 + 𝛦𝑦�̅�𝑛 + 𝛦𝑡] 

                         /(𝛼2 + 𝛦𝑥
2 + 𝛦𝑦

2)  

𝑣𝑛+1 = �̅�𝑛 − 𝛦𝑦[𝛦𝑥�̅�𝑛 + 𝛦𝑦�̅�𝑛 + 𝛦𝑡] 

/(𝛼2 + 𝛦𝑥
2 + 𝛦𝑦

2)                            (22) 

 

It is important to note that the estimated flow 

values at a specific point do not immediately depend 

on previous estimates of the same point. 

4.2 Piecewise polynomial model 

To model the variations of the attitude, it is 

appropriate to do polynomial interpolation in pieces 

where each polynomial is linked to its neighbors by 

constraints [12, 23]. 

Call 𝑇𝑇𝑖,𝑗
 the operator who shifts the samples of 

𝐾 by a factor 𝑇𝑖,𝑗 , this operator is a hollow matrix 

(3𝐷, 3𝐷),which for each line 𝑥 ∈ [1,3𝐷] and column 

𝑦 ∈ [1,3𝐷] is: 

 

𝑇𝑇𝑖,𝑗
(𝑥, 𝑦) =

{

1 𝑝𝑜𝑢𝑟𝑥 = 𝑦 − 𝑇𝑖,𝑗, 𝑒𝑡𝑥 ∉ ]𝐷 − 𝑇𝑖,𝑗, 𝐷] ∪

]2𝐷 − 𝑇𝑖,𝑗, 2𝐷] ∪ ]3𝐷 − 𝑇𝑖,𝑗, 3𝐷]

0    𝑂𝑡ℎ𝑒𝑟𝑠

         (23)                                                

 

The general equation to be minimized is this: 

 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐾

∑ ∑ (𝐶𝑖(𝛽(𝛶; 𝐾)) −𝛶∈𝐸𝑖,𝑗;𝑖≠𝑗

Ϝ𝑖𝑗 (𝐶
𝑖

𝑇𝑖,𝑗 (𝛽 (𝛶; 𝑇𝑇𝑖,𝑗
𝐾))))

2

              (24) 

 

𝑃𝑏,𝛼𝑏 ∈  [1, 𝑆],𝑆 is the number of polynomials 

necessary to restore the attitude variations. 

𝑛𝑏 for  𝑏 ∈  [1, 𝑆 − 1]  the moment of time or 

constraints between two polynomials are defined. 

The variations of attitude: 

 

𝐾𝛼(𝑛) = ∑ 𝑤𝑏(𝑛)𝑃𝑏,𝛼(𝑛)𝑆
𝑏=1                         (25) 

Where 𝑤𝑏(𝑛)  corresponds to the weighting 

functions such as: 

 

𝑤𝑏(𝑛) = {
1  𝑓𝑜𝑟 𝑛 ∈ [𝑛𝑏−1, 𝑛𝑏]

0 𝑜𝑡ℎ𝑒𝑟𝑠
                   (26) 

 

Directly estimating K  from Eq. (24) is a bad 

problem if no constraint is defined to direct 

minimization. It would be possible to add a priori on 

𝐾 in the equation to be minimized 

The polynomials of orders 𝑀 are defined such 

that: 

 

𝑃𝑏,𝛼(𝑛) = ∑ 𝑎𝑚,𝑏,𝛼
𝑀
𝑚=0 𝑛𝑚                            (27) 

 

The coefficients 𝑎𝑚,𝑏,𝛼  characterize the 

variations of the attitude. 

𝑎 ∶ is the vector (3𝑆𝑀 × 1) that contains the set 

of polynomial coefficients. 

The constraints between each polynomial at the 

point𝑛𝑏, 𝑏 ∈  [1, 𝑆 − 1]  are: 

 

𝑃𝑏,𝛼
(𝑚)(𝑛𝑏) = 𝑃𝑏+1,𝛼

(𝑚) (𝑛𝑏), for 𝑚 ∈ [0, 𝑀 − 1] (28) 

 

Eq. (14) imposes continuity at points nb for the 

derivatives until the order 𝑀 − 1 .This equation 

defines the constraints of linear equality in  𝑎 , so we 

have the following matrix equation: 

 

𝐺𝑎 = 0                                                             (29) 

 

Or 𝐺  is a hollow matrix of size (3(𝑆 − 1)𝑀 ×
3𝑆𝑀)  and 0 is the zero vector of dimension 
(3(𝑆 − 1)𝑀 × 1).The combination of linear Eq. (25), 

Eq. (26) and Eq. (27) gives us the following matrix 

equation: 

 

𝐾 = 𝐻𝑎                                                            (30) 

 

Where 𝐻 is a hollow matrix of size (3𝐷 × 3𝑆𝑀). 

We can reformulate Eq. (24) by minimizing a 

nonlinear equation under constraint of linear 

equalities: 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑎

∑ ∑ (𝐶𝑖(𝛽(𝛶, 𝐻𝑎)) −𝛶∈𝐸𝑖,𝑗;𝑖≠𝑗

Ϝ𝑖𝑗 (𝐶
𝑖

𝑇𝑖,𝑗 (𝛽 (𝛶; 𝑇𝑇𝑖,𝑗
𝐻𝑎))))

2

                              (31) 

 

Such that 𝐶𝑎 = 0. 
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Table 1. Details about LANDSAT ETM-7 satellite 

Landsat 7 

EnhancedThematic 

Mapper Plus 

(ETM+) 

Bands Spatial resolution (meter) Wavelength (micrometer) 

TM1-Blue 30 0.45-0.52 
TM2Green 30 0.52-0.60 
TM3-Red 30 0.63-0.69 
TM4- NIR 30 0.77-0.90 

TM5-SWIR 1 30 1.55-1.75 
TM6-Thermal 60 10.40-12.50 
TM7-SWIR 2 30 2.09-2.35 

 

      
Figure. 4 the Landsat ETM-7 dataset   

5. Experiment 

 To test the studied approach, a sequence of 

dimensional multispectral images (400 × 800) pixels 

of the Oran region are used. This region is located in 

the west of Algeria, captured by the LANDSAT 

ETM-7 satellite (Fig. 4). The details about these 

datasets are shown in (Table 1). The images TM1 

represent the real terrain and is considered as the 

reference image in our tests. The images TM2, TM3, 

TM4, TM5 and TM7 are the distorted images 

captured by push-broom cameras. The resolution of 

the TM6 image is higher than the reference image 

resolution, so this image is not considered in tests.  

The implemented algorithm depends on four 

parameters: The value of the degree "M", the size of 

the polynomial windows, value of the parameter "α" 

and the number of iterations. The parameter "α" 

controls the smoothing constraint, its value is 

between 0 and 1. In the data set, the velocity vector 

field (𝑢0, 𝑣0) is initialized to zero and the cameras 1-

2 are respectively spaced 10 time samples (T12 = 10). 

The piecewise polynomial model applies well in 

our estimation context.  The residual error always 

exists in the form of high frequency components.                         

This is mainly due to the choice of window size when 

estimating. More than the size of the window is small 

more than the components at high frequencies are 

well restored. On the contrary, more than this window 

is large more than the components at low frequencies 

are restored (Table 2). 

It can be seen experimentally that the choice of a 

high degree polynomial penalizes the method, the 

computing time increases, the numerical system 

therefore becomes unstable, as well as the difference 

in value between the first to the last window is 

important, which destabilizes solving numerically of 

the problem . Polynomials of degrees 2 or 3 with 

window sizes between 10 and 15 is often enough to 

eliminate this difficulty. After several tests, we set the 

degree M to 3 and the size of the polynomial windows 

to 15 time samples since they have generally 

produced better results in most cases and the 

recording has good sub-pixel accuracy and most of 

the low frequencies are restored. 

We make soft alpha "α" towards 0 and the number 

of iterations tends towards infinity to obtain a suitable 

result. It is noted that, it is necessary to make more 

iteration to detect all the moving pixels and more than 

the value of the smoothing constraint "α" is high and 

close to 1 more than we get a bad estimate and we 

lose precision on pixel movements. Conversely, the 

smaller the alpha is, the more precision you gain. 

After several tests, we set the value of "α" to 0.001 

and the number of iterations to 40 , these values  give 

best results of the flow velocity (𝑢,𝑣) in an acceptable 

execution time (Table 3). 

The verisimilitude denotes the estimation error 

between the real attitude of the Euler angles Eq. (2) 

and its estimation provided by Eq. (5), [22]. 

 
Table 2. Results of the piecewise polynomial model on 

the Landsat ETM-7 dataset 

canal window 

size 

Processing 

time (s) 

the standard error  

roll yaw pitch 

 

TM2 

 

5 10.09 0.56 0.45 0.27 

10 10.06 0.38 0.44 0.25 

15 10.04 0.25 0.39 0.23 

 

TM3 

 

5 10.09 0.58 0.83 1.23 

10 10.06 0.39 0.81 0.94 

15 10.04 0.29 0.79 0.89 

 

TM4 

5 10.09 0.53 0.97 1.25 

10 10.06 0.37 0.95 1.19 

15 10.04 0.19 0.70 0.90 

 

TM5 

5 10.09 0.45 0.91 1.15 

10 10.06 0.32 0.88 0.90 

15 10.04 0.27 0.81 0.85 

 

TM7 

5 10.09 0.55 0.90 1.25 

10 10.06 0.32 0.87 0.92 

15 10.04 0.22 0.70 0.88 
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 Table 3. Results of the HS method on the Landsat ETM7 

dataset (α = 0.001, iter = 40) 

 

 
 

Figure. 5 TM2 distorted image  
       

 
 

Figure. 6 TM1 reference image 

 

      After various tests carried out on all the distorted 

images, we have chosen as an example to show the 

tests, which have been carried out on TM2 (Fig.5), 

the image which has undergone greater deformations 

compared to the reference image TM1 (Fig.6). 

To estimate a polynomial that models the low 

signal frequencies, we set the degree M to 3 and the 

size of the polynomial windows to 5, 10 and 15 time 

samples. 

In the first test, we set the size of the polynomial 

windows to 5 time samples (Fig. 7). The algorithm 

has converged in 10.09 seconds over 40 iterations.      

The standard error in the estimation of the roll, yaw 

and pitch attitude is greater than 1/50. In the second 

test, we have fixed the size of the polynomial 

windows 15 times (Fig. 8). The algorithm converges 

in 10.04 seconds over 40 iterations; the standard error 

observed on the attitude estimation is less than 1/50 

for roll, yaw and pitch. The results show the 

performance and the limits of our algorithm. It can be 

noted that the low frequencies are fairly well 

estimated with an acceptable improvement in 

performance, likelihood of precision and of 

computation time with a polynomial of degree 3 and 

a size of the polynomial windows at 15 (Table 2 in 

the channel TM2).   

In both cases, the residual error always contains 

high frequency components. This is mainly related to 

the choice of window size during the estimation. A 

small window makes it easier to restore high 

frequencies since the model will have more degrees 

of freedom. Conversely, a large window will restore 

well the low frequencies. 

 

 
Figure. 7 The pitch, yaw and roll estimation error of TM2  

image (M=3, window size =5) 

Canal 

 

Verisimilitude  

𝒖 

 

𝒗 roll  yaw pitch 

TM2 0.115

4 

0.119

1 

0.118

9 

9.6837  7.1435 

TM3 0.123

2 

0.127

5 

0.112

3 

9.6231 7.1126 

TM4 0.122

6 

0.117

3 

0.114

4 

9.6451 6.9952 

TM5 0.117

8 

0.128

9 

0.126

5 

9.1475 7.1235 

TM7 0.128

6 

0.125

7 

0.116

7 

9.5478 7.1478 
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Figure. 8 The pitch, yaw and roll estimation error of TM2 

image (M=3, window size =15) 
 

       The resulting calculated flow is presented in the 

form of a needle diagram for 20, 30 and 40 iteration 

with α which equal to 0.001. The images of the(Fig. 

9) show the displacement vectors estimated by the 

correlation method that we presented at different 

iteration values (Table 4). 

       The first test with 20 iterations. The 

verisimilitude of the TM2 image in roll, yaw and 

pitch attitude estimation error is greater than 1/20 of 

a pixel. The results show vectors in the direction of 

the brightness gradient and the speed estimates may 

not be very precise. Few changes occur after 30 

 

Table 4. Results of the HS method on the TM2 image 
 

 

 

 

 

 

  

        (α=0.001,Iter=20 )                   (α=0.001, Iter=30) 

(α=0.001, Iter=40): best result 

Figure. 9 Tracing motion vectors using the HS method 

 

Figure. 10 representation of the speed vectors of by the 

color map 

 

iterations when the verisimilitude of the TM2 image 

in roll, yaw and pitch attitude estimation error is less 

than 1/20 of a pixel and the velocity vectors have 

errors of about 10%. The last test with 40 iterations, 

the vectors are very close in all parts of the image. 

The verisimilitude of the roll, yaw and pitch attitude 

estimation error is less than 12/100. 

We can deduce that the more we increase the 

number of iterations, the verisimilitude in roll, yaw 

and pitch attitude estimation error is less important. 

The most interesting solution is the use of the 

colour map, which make better representation of the 

way and the direction of the flow as well as its 

intensity in a dense (Fig. 10).  We have applied this 

colour card on the image obtained with 40 iterations, 

 

Iteration Verisimilitude 

roll yaw pitch 

20 0.2256 0.268 0.2247 

30 0.1296 0.1208 0.1218 

40 0.1154 0.1191   0.1189  
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Table 5. Comparison of the proposed HS-P with LK-P,  HSO-SVSPF and HORCKF 

 

 

 
 

Figure. 11 Rectified image thanks to the motion vector 
 

representing the best results. It is noticed that, they 

are a good estimate of the movement as a whole, with 

a slight blur in the discontinuity zones and a dense 

optical flow. 

      The deformation is significant before the 

registration of the two images where all the contours 

are apparent. The offset error between the two images 

after the attitude correction is satisfactory because the 

registration error is reduced overall and a few 

contours are apparent in  the borders of the image (Fig. 

11). 

6. Comparison study 

In order to demonstrate the efficiency and 

robustness of our proposed method, we have 

compared the performance of studied HS-P model 

with the LK-P differential method [18] and with 

methods based on  filtering techniques such as HSO-

SVSPF [13] and HORCKF [14]. In this comparative 

study, we have defined the degree M to 3, the size of 

the polynomial windows to 15 time samples, the 

value of "α" to 0.001 and the number of iterations to 

40. These comparisons were tested on the Landsat 

TM2 distorted image. 

       (Table 5) shows the roll, pitch and yaw 

measurements, which means the standard  error 

between the actual attitude and the attitude estimated 

in pixel units (the best result tends towards zero); The 

estimation time corresponds to the number of seconds 

 of execution the complete algorithm (the best is the 

smallest number). In each row of the table, the best 

score is in green and the worst in red. 

      In the first comparison with LK-P methods, the 

results obtained, have showed that the proposed 

algorithm HS-P gives better results of the standard 

error and the velocity of flow (u, v) and improves 

signal strength in an acceptable execution time. The 

polynomial model confirms its good results, but 

above all the scores displayed by the likelihood 

values are more impressive: the precision here is less 

than half a pixel for the HS-P, while that observed for 

the LK-P s close to a pixel.  

       In the second comparison with the HORCKF 

approach, we have noted that HS-P has the better 

ability to take into account the estimation of modeling 

errors than HORCKF (Fig. 12). The values obtained 

by the HORCKF method are not satisfactory 

compared to the values measured by the HS-P model.        

The attitude error estimates are almost equal to one, 

and the verisimilitude of the TM2 image in roll, yaw 

and pitch attitude estimation error measured are 

greater than 1/10. These values are not adequate for a 

good correction of the distorted image. 

       In the last comparison with the HSO-SVSPF 

method, we note that the two methods provide almost 

the same rate of estimation of the attitude error for 

roll and pitch; on the other hand, the best error rate 

attitude for the yaw is obtained with HSO-SVSPF 

within an acceptable execution time. The 

verisimilitude of the TM2 image in roll, yaw and 

pitch attitude estimation error measured by HS-P is 

better to that measure by the HSO-SVSPF ,so we can 

say that the precision, the estimation of attitude the 

computation time obtained by HS-P is better than that 

of HSO-SVSP (Fig. 13). 

      After this comparative study, we can deduce that 

the proposed technique is more robust and better in 

terms of accuracy and satellite attitude estimation 

 

 

Author (Year) 

 

 

Method 

 

Dataset   

used 

 

Verisimilitude 

The standard error 

 

𝒖 

 

𝒗 

 

Processing 

time (s) roll yaw pitch 

 

/ 

 

HS-P 

Landsat 

TM1/TM2 

0.1154 

0.25 

0.1191 

0.43 

0.1189 

0.23 

9.6837 7.1435  

38.156184 

Perrier, R and al      

[19]  (2010) 

 

LK-P 

Landsat 

TM1/TM2 

0.1232 

0.88 

0.1275 

0.85 

0.1357 

1.15 

10.587 8.2547  

40.254787 

Chen, X and al 

[15]  (2019) 

 

HORCKF 

Landsat 

TM1/TM2 

0.1425 

0.90 

0.1424 

0.92 

0.1454 

1.22 

 

/ 

 

/ 

 

30.124763 

Cao, L and al 

[14]  (2019) 

 

HSO-SVSPF 

Landsat 

TM1/TM2 

0.1149 

0.61 

0.1197 

0.39 

0.1201 

0.54 

 

/ 

 

/ 

 

39.234581 
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Figure. 12 The pitch, yaw and roll estimation error of  

TM2 image (HS-P / HORCKF) 

 

than existing techniques. This is due to the perfect 

adjustment of the smoothing parameters and the 

number of iterations of the HS registration method. 

particularly, the integration of the piecewise 

polynomial model with the HS registration method 

have allowed good modeling attitude changes with a 

very low error rate. 

7. Conclusion 

      The originality of this work is based on the use 

of the HS-P approach, in order to estimate the 

attitude of a satellite from images acquired by push 

broom cameras. By matching the distorted images, 

the proposed algorithm have acquired and corrected 

the images.  

      The objectives have been defined since the 

results obtained from digital test cases confirm the 

 

     
Figure. 13 The pitch, yaw and roll estimation error of  
                        TM2 image (HS-P / HSO-SVSPF) 

 

feasibility and effectiveness of the technique for 

correctly estimating the attitude error. In addition 

compared to other methods of estimating attitude 

variation cited in section 5. The image obtained after 

recording is interesting especially for low frequency 

components, since few contours are apparent, the 

residues observed on the estimation of the error of 

the attitude are good, especially for roll, which is less 

than a 1/10 of a pixel. Overall, the image to be 

corrected is almost just relative to the reference 

image with a correction rate of almost 100% and an 

attitude error estimation rate of less than 1/2 pixel.                            

In addition, the polynomial model used in our work 

has a lot of similarity with spline recording methods, 

so we consider it interesting and useful to extend it 

by applying these techniques without limiting it by 

introducing regularization functions. Therefore, the 

implementation of the proposed HS-P method can 
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overcome the problem of the distortion of satellite 

images and have them corrected after their 

acquisitions. 

      To confirm the robustness of this method and to 

eliminate its exact limits, we are currently looking 

for solutions allowing to automatically select the 

most suitable window size to have a good 

reproduction of the high frequency components.  
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