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Abstract: Artificial Bee Colony (ABC) simulates the behaviour of intelligent foraging for a honeybee swarm. This 

article deals with one of the best swarm-based algorithms that has been used to solve the Optimal Power Flow (OPF) 

problem. Minimization of the objecting function can be satisfied by choosing a suitable optimal control variable while 

maintaining an acceptable system performance of the state variables in terms of their limits. The control variables that 

used in this article are the magnitude voltage of the generator, the tap changer of the transformer, the injection reactive 

power of compensative devise and the active power of the generator except the slack generator. The state variables are 

the reactive power of the generator, the load bus voltage and slack generator active power. The proposed algorithm 

modifies the classical Artificial bee colony by replacing the worst solutions obtained from the employee bees’ phase 

and the onlooker bees’ phase by the best solutions in the swarm size. The percentage of swarm sources that have been 

selected for the worst solutions is 33%, 50%, and randomly selection from the total source of the swarm size. This 

update contributes to improve the quality of solutions and determine the optimal settings of OPF control variables. 

The propose algorithm deals with minimization four different objective functions, the total fuel cost of the thermal 

units, the total active power losses in the transmission lines, the total emission caused by fossil-fueled thermal units 

and the total voltage deviation at the load buses. The modified ABC reduced the fuel cost by 11.34%, active power 

losses by 49.26%, voltage deviation by 91.34% and the emission by 16.70% satisfying all the constraint of the state 

variables in their limits. The proposed algorithm has been applied on the IEEE 30 bus system and gives good result 

when compare with other optimization techniques. 

Keywords: Artificial bee colony, Optimal power flow, Fuel cost minimization, Active power losses minimization, 

Emission minimization, Voltage deviation minimization. 

 

 

1. Introduction 

One of the most common problems in operating 

and planning of power system is the Optimal Power 

Flow (OPF). It was presented by Dommel and Tinney 

[1]. In the recent years, the optimal power flow 

problem as usual abundant attention because of its 

ability to find the optimal solutions to consider the 

system security [2]. Finding the optimal power 

system control variables is the main goal of OPF 

problem to minimize a certain objective function 

that’s sufficient from several equality and inequality 

constraints. Real power generation levels, voltage 

magnitude of the generator, tap changer of the 

transformer and shunt capacitor outputs are the most 

important control variables of the power system that 

has been composed. There are two type of 

optimization techniques that used to solve the OPF 

problem, the first one is the classical algorithm and 

second is the modern or artificial intelligence 

algorithm. To solve the OPF problem and to 

overcome the limitations of classical optimization 

techniques, created an evolutionary optimization 

technique. Many of heuristic optimization techniques 

was applied such as Simulated Annealing (SA) [3], 

Genetic Algorithm (GA) [4, 5], Particle Swarm 

Optimization (PSO) [6], Tabu Search [7], Moth-

Flame Optimizer (MFO) [8], Ant Lion [9], and 

Differential Evolution algorithm(DE) [10]. The 

results reported in the literature were promising and 

encouraging for further research in this direction. 
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Artificial Bee Colony (ABC) algorithm is one of the 

recently heuristic optimization algorithms based on 

the intelligent behavior of honeybees. It was 

presented by Karaboga in 2005 [11]. Three phases are 

involve for each cycle: employed bees phase, 

onlooker bees phase, and scout bees phase [12–15]. 

In benchmark problems, ABC is faster and more 

efficient than heuristic algorithms as have shown 

Comparative studies. As a result of its features, ABC 

algorithm have been effectively used in many power 

system problems such as optimal reactive power 

dispatch [16], Enhancing system loadability with 

multiple FACTS devices [17], Optimal location of 

UPFC to improve power system voltage stability [18], 

Optimal power flow in UPFC [19], Economic 

Dispatch in n power generation [20] and so on. 

The formulation and objectives are varied in the 

OPF problem. So, no optimal algorithm produces for 

the best solutions for all OPF problems, and therefore 

there is a continuous need to create a new algorithm 

to solve the OPF problem with more efficiency. 

The goal of using the ABC algorithm is simplicity, 

robustness, fewer parameters such as crossover rate 

and mutation rate in case GA and DE, the 

convergency is faster, the combination is easier and 

both exploration and exploitation. 

Various methods that used to improve the ABC 

algorithm have been approached. In [21, 22], the 

ABC algorithm was improved by replacing two types 

of search operations, mutation and crossover of the 

DE algorithm. M. Chen proposed an improved 

artificial bee colony algorithm  based on escaped 

foraging strategy [23]. 

In this article, the improvement of Artificial Bee 

Colony ABC is based on replacing the worst swarms 

by the best swarms in honeybee at each phase 

(employed bees and onlooker bees). This technique is 

used to solve the Optimal Power Flow OPF problem 

with various objective functions such as the total 

generation fuel costs, the total active power losses, 

the total amount of emission caused by the fossil-

fueled thermal units and the voltage profile 

improvement. Several runs are carried out on the 

standard IEEE 30-bus test system. 

The rest of the article is organized as follows: 

Section 2 present the notation list of the variables that 

used in this article. Section 3 describes the 

mathematical problem formulation with different 

objective functions. Section 4 present the Artificial 

Bee Colony (ABC) algorithm in details. Section 5 

explain the modified artificial bee colony. Simulation 

result and comparison with other optimization 

techniques are given in section 6.  In the last section, 

the conclusions are drawn from this article. 

2. Nomenclature and abbreviations 

The following notations will used in this paper. 

𝑥𝑇 vector of state variables. 

𝑢𝑇 vector of control variables. 

𝑁𝐿  number of load buses. 

𝑁𝐺  number of generating units. 

𝑁𝑡 number of regulating transformers. 

𝑁𝑐 number of shunt compensators. 

|𝑉𝐿| magnitude voltage of the load bus. 

𝑄𝐺 reactive power of the generators. 

𝑃𝐺𝑠 active power of the slack generator. 

𝑃𝐺  active power of the generator. 

𝑇 tap changer of the transformer. 

𝑄𝐶           reactive power of shunt injection 

               compensator. 

𝐶𝐺𝑖 total fuel cost of thermal generator i. 

𝑎𝑖 , 𝑏𝑖, 𝑐𝑖 fuel cost coefficients of the 𝑖𝑡ℎ generator. 

𝑃𝐺𝑖 active power of  𝑖𝑡ℎ generator. 

𝑁𝐺  number of generators with the slack bus. 

𝑃𝑙𝑜𝑠𝑠 active power losses. 

𝑔(𝑖,𝑗)       line mutual conductance between buses i,j. 

𝑉𝑖, 𝑉𝑗 magnitude voltages of the buses i,j . 

𝛿𝑖 , 𝛿𝑗 phase angles of the voltages 𝑉𝑖 and  𝑉𝑗 . 

𝑉𝑑 total voltage deviation at the load buses. 

𝑉𝑖 per unit voltage at load bus i .  

𝑁𝐿 number of load buses. 

𝐸𝐺𝑖 total emission cost (ton/h) of unit i. 

𝛼𝑖, 𝛽𝑖, 𝛾𝑖 emission coefficients of the 𝑖th unit. 

𝑁𝐵 total number of buses except slack bus. 

𝑁𝐿 total number of load buses. 

𝑃𝑖 active power injection into 𝑖𝑡ℎ bus. 

𝑄𝑖 reactive power injection into 𝑖𝑡ℎ bus. 

𝑃𝐺𝑖 active generated at bus i. 

𝑄𝐺𝑖 reactive power generated at bus i. 

𝑃𝑑𝑖 load active power at bus i . 

𝑄𝑑𝑖 load reactive power at bus i. 

𝐺𝑖𝑗 , 𝐵𝑖𝑗    line transfer conductance and susceptance  

               of buses i,j  respectively. 

𝑉𝐺𝑖
𝑚𝑖𝑛 min. voltage limit of generator i. 

𝑉𝐺𝑖
𝑚𝑎𝑥 max. voltage limit of generator i. 

𝑇𝑇𝑖
𝑚𝑖𝑛       min. tap changer limit of transformer i. 

𝑇𝑇𝑖
𝑚𝑎𝑥       max. tap changer limit of transformer i. 

𝑄𝐶𝑖
𝑚𝑖𝑛       min. reactive power compensative devise           

                at load bus i. 

𝑄𝐶𝑖
𝑚𝑎𝑥       max. reactive power compensative devise 

                at load bus i. 

𝑃𝐺𝑖
𝑚𝑖𝑛       min. active power limit of generator  

                i except the slack generator. 

𝑃𝐺𝑖
𝑚𝑎𝑥       max. active power limit of generator  

                i except the slack generator. 

𝑉𝐿𝑖
𝑚𝑖𝑛 min. voltage of the load bus i. 

𝑉𝐿𝑖
𝑚𝑎𝑥   max. voltage of the load bus i. 
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𝑄𝐺𝑖
𝑚𝑖𝑛 min. reactive power of generator i. 

𝑄𝐺𝑖
𝑚𝑎𝑥 max. reactive power of generator i. 

𝑃𝐺𝑠
𝑚𝑖𝑛       min. avtive power of slack generator.    

𝑃𝐺𝑠
𝑚𝑎𝑥       max. active power of slack generator. 

𝑟𝑎𝑛𝑑 randomly number between [0, 1]. 
𝑥𝑖,𝑘          randomly chosen solution different 𝑥𝑖,𝑗. 

∅𝑖,𝑗 random number between [0, 1]. 

𝑣𝑖,𝑗 new solution (food source). 

𝑝𝑖 probability value. 

𝑓𝑖𝑡𝑖 fitness value. 

𝑓𝑖 normalized value. 

3. Problem formulation  

The Optimal Power Flow (OPF) can be 

mathematically formulated as a nonlinear 

optimization problem. Generally, the OPF problem 

can be mathematically expressed as follows: 

 

                        𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥, 𝑢)                                (1)  
 

                   𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑔(𝑥, 𝑢) =  0                     (2) 

 

                               ℎ(𝑥, 𝑢) ≤   0                                   (3) 

 

where f is the objective function; 

𝑔 is the equality constraints of the load flow analysis; 

ℎ is the constraints of system operating. 

The two vectors 𝑥 and 𝑢 are expressed in Eqs. (4) 

and (5) respectively. 

 

      𝑥𝑇 = [ |𝑉𝐿1 |, … , |𝑉𝐿𝑁𝐿
|, 𝑄𝐺1 … 𝑄𝐺𝑁𝐺

, 𝑃𝐺𝑠]      (4) 

 

      𝑢𝑇 = [𝑃𝐺2 , . . . , 𝑃𝐺𝑁𝑔
, |𝑉𝐺1

|, . . . , |𝑉𝐺𝑁𝐺
|, 𝑇1, … , 𝑇𝑁𝑡

,

      𝑄𝐶1, … , 𝑄𝐶𝑁𝐶
]                            (5) 

 

The generators active powers (except slack bus) 

and generators bus voltages are continuous variables, 

whereas the tap changing transformers settings and 

the reactive power injection MVAr of the shunt 

capacitors are discrete variables. 

3.1 Objective functions 

Four objective functions in this article are 

considered separately for each one to demonstrate the 

efficiency of the proposed algorithm.  

3.1.1. Fuel cost minimization 

The total fuel cost objective function of the 

thermal units can be expressed by: 

 

                𝐶𝐺𝑖 = ∑ 𝑎𝑖𝑃𝐺𝑖
2 + 𝑏𝑖𝑃𝐺𝑖 +  𝑐𝑖  

𝑁𝐺

𝑖=1

                 (6) 

 

where 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 are the fuel cost coefficients of the 

𝑖𝑡ℎ generator; 

3.1.2. The active power losses 

The active power losses of the transmission line 

can be expressed as: 

 

    𝑃𝑙𝑜𝑠𝑠 = ∑ 𝑔(𝑖,𝑗)( 𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 cos 𝛿𝑖𝑗)    

𝑁

𝑘=1

(7) 

 

where 𝛿𝑖𝑗 = 𝛿𝑖 − 𝛿𝑗; 

3.1.3. Minimization of emission  

Due to fossil-fueled thermal units, the 

atmospheric pollutants product two types of emission 

gasses, Sulphur oxides 𝑆𝑂𝑥 and Nitrogen oxides 𝑁𝑂𝑥. 

However, the total emission cost is defined as bellow 

[24]: 

 

          𝐸𝐺𝑖 = ∑ 10−2(𝛼𝑖 + 𝛽𝑖𝑃𝐺𝑖
+ 𝛾𝑖𝑃𝐺𝑖

2 )       

𝑁𝐺

𝑖=1

+ 𝜁𝑖 exp(𝜆𝑖𝑃𝐺𝑖)                              (8) 

 

where 𝐸𝐺𝑖 is the total emission cost (ton/h) and 𝛼𝑖, 𝛽𝑖, 

𝛾𝑖, are the emission coefficients of the 𝑖th unit. 

3.1.4. The voltage profile improvement 

The voltage profile improvement at load buses 

can be realized by minimizing the load bus voltage 

deviation from 1.0 per unit. The load bus voltage 

deviation can be expressed as: 

 

                            𝑉𝑑 =  ∑|𝑉𝑖| − 1                             (9)

𝑁𝐿

 𝑖=1

 

 

where 𝑉𝑑  is the total voltage deviation at the load 

buses; 𝑉𝑖 the per unit voltage at load bus i and 𝑁𝐿 is 

the number of load buses [25]. 

3.2 Objective constraints 

The objective functions optimization is 

determined to a number of equality and inequality 

constraints 
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3.2.1. Equality constraints 

The equality constraints represent the equations: 

 
- Active power balance constraints 

 

∑ 𝑃𝑖 = 𝑃𝐺𝑖 − 𝑃𝑑𝑖

𝑁𝐵

𝑖=1

= 

     𝑉𝑖 ∑ 𝑉𝑗[𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐺𝑖𝑗 cos 𝜃𝑖𝑗]     (10)

𝑁𝐵

𝑗=1

 

 

- Reactive power balance constraints 

 

∑ 𝑃𝑖 = 𝑃𝐺𝑖 − 𝑃𝑑𝑖

𝑁𝐿

𝑖=1

= 

     𝑉𝑖 ∑ 𝑉𝑗[𝐺𝑖𝑗 sin 𝜃𝑖𝑗 + 𝐺𝑖𝑗 sin 𝜃𝑖𝑗]     (11)

𝑁𝐿

𝑗=1

 

 

where 𝜃𝑖𝑗 = 𝜃𝑖 − 𝜃𝑗; 

3.2.2. Inequality constraints 

These constraints have two type 

 

        𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥   𝑖 = 1,2, … … , 𝑁𝐿           (12) 

 

         𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥    𝑖 = 1,2, … … , 𝑁𝑇           (13) 

 

        𝑄𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥   𝑖 = 1,2, … … , 𝑁𝐶         (14) 

 

     𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥   𝑖 = 1,2, … … , 𝑁𝐺 − 1   (15) 

 
- The inequality constraints on state variable 

 

        𝑉𝐿𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥  𝑖 = 1,2, … … , 𝑁𝐿          (16) 

 

       𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥  𝑖 = 1,2, … … , 𝑁𝐺         (17) 

 

                        𝑃𝐺𝑠
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑠 ≤ 𝑃𝐺𝑠

𝑚𝑎𝑥                         (18) 

4. Artificial bee colony (ABC) algorithm 

Artificial bee colony is presented by Karaboga for 

numerical optimization [11]. It simulates the 

behavior of intelligent foraging for honeybee swarms. 

It is a robust, simple and population based stochastic 

optimization algorithm. The food source refers to a 

probable solution and the nectar amount of a food 

source represents the quality (fitness) of the related 

solution of the problem to be optimized. The number 

of solutions is equal to the number of employed bees 

or the onlooker bees. 

In the first step, the ABC algorithm produces 

initial population with randomly distributed in the 

range of variables (employed bees or onlooker bees) 

𝑥𝑖 (𝑖 = 1,2, … . , 𝑆𝑁) is a D-dimensional vector, 

where SN denotes the size of employed bees or 

onlooker bees. Eq. (19) used to find a new source by 

using the following expression: 

 

𝑥𝑖,𝑗 = 𝑥𝑗,𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑[0,1] × (𝑥𝑗,𝑚𝑖𝑛 − 𝑥𝑗,𝑚𝑖𝑛)   (19) 

 

where 𝑥𝑗,𝑚𝑖𝑛 and 𝑥𝑗,𝑚𝑎𝑥  are the minimum and 

maximum limits of variables to be optimized, and 

𝑟𝑎𝑛𝑑 denotes a randomly number between [0, 1].  
 Secondly, the population of the positions 

(solutions) is subjected to repeated cycles, Y = 1, 

2, . . ., MCN, of the search processes of the employed, 

onlooker and the scout bees. Employed bees have 

many of modification on the position in her memory. 

It will be produced according to the local information 

and the nectar amount (fitness value) of the new 

source. If the new nectar amount has equal or better 

than that of the previous one, it replaces the previous 

one in her memory. Otherwise, the old one is retained 

in her memory. Each employed bee identifies new 

sources whose amounts are equal to the half of the 

total sources. In order to produce a new food source 

from the old one saved in the memory; the following 

expression is used: 

 

               𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 + ∅𝑖,𝑗 × (𝑥𝑖,𝑗 − 𝑥𝑖,𝑘)              (20) 

 

In Eq. (20), 𝑘 ∈  {1, . . . , 𝑆𝑁} and  𝑗 ∈  {1, . . . , 𝐷} 

are randomly chosen indexes, where, D is the number 

of optimization parameters; SN denotes the size of 

employed bees or onlooker bees; 𝑥𝑖,𝑘 is a randomly 

chosen solution different from 𝑥𝑖,𝑗, ∅𝑖,𝑗  is a random 

number between [0, 1] and 𝑣𝑖,𝑗  denoted the new 

solution (food source).  

In the third step, all food source information will 

share between employed bees and onlooker bees and 

select a food source depending on the probability 

given in Eq. (21)  

 

                             𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑆𝑁
𝑛=1

                              (21) 

 

where 𝑝𝑖  and 𝑓𝑖𝑡𝑖  are the probability and the 

fitness value associated with of the solution 𝑖. If the 
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nectar amount is equal or better than that of the old 

one, it keeps the new one and abandoned the old one. 

For simplifying problem, the following expression 

are used to calculate 𝑓𝑖𝑡𝑖 : 

 

          𝑓𝑖𝑡𝑖 = {

1

1 + 𝑓𝑖
            if 𝑓𝑖 ≥ 0 

   1 + 𝑓𝑖             if 𝑓𝑖 < 0    

              (22) 

 

where 𝑓𝑖 represents the normalized value for the 

objective function. Finally, the scout bees are mainly 

responsible for a new food source randomly in each 

colony. They are chosen from the employed bees 

with taking into consideration the limit parameters. 

The employed bee will be a scout when the food 

source is not improved by the predetermined number 

of trials. The number of incomings and outgoings to 

a source is an important control parameter and which 

is called “limit “. The expression which identifies a 

scout bee is given in Eq. (19). 

5. Modified artificial bee colony  

To achieve optimal optimization performance, 

the ability of exploration and exploitation must be 

well balanced. In the ABC algorithm, the onlooker 

carries out the exploitation process and the 

exploration process are accomplished by employed 

and scout bees. This algorithm is modified by 

determining the best solutions (minimum objective 

function) and the worst solutions (maximum 

objective function) in descending order, then delete 

the worst solutions and replaced by the best solutions 

for each phase (the employed bee and onlooker bee) 

at each iteration  according to three  types of swarm 

source shown below as followed : 

1- Type 1: the percentage of the worst solutions of 

employed bees and onlooker bees is 33% and 

67% respectively. 

2- Type 2: the percentages of the worst solutions of 

employed bees and the onlooker bee are 50%. 

3- Type 3: randomly choosing to determine the 

worst solutions for both bees. 

 

To demonstrate the effectiveness and strength of 

this technique, the three types of swarm source are 

used to minimize different objective function 

depending on the percentage that have been selected 

from the worst solutions and replacing them with the 

best solutions in the employee bees phase and the 

onlooker bees phase in the swarm size. 

Fig. 1 illustrates the flow chart of proposed 

MABC algorithm. 

 

Cycle=MCN?

End

Start

Initialize:

Maximum number of cycles (MCN)

Colony size (SN)

The value of limit

Cycle=1

Employed bee phase

Calculating probabilities for on 

Employee phase

Onlooker bee phase

Scout Bee phase

Memorize The best solution

yes

C
ycle=

C
ycle+

1

No

Replacing the worst solution by the 

best solution in employee bee phase

Calculating probabilities for on 

Onlooker phase

Replacing the worst solution by the 

best solution in onlooker bee phase

 
Figure. 1 Flowchart of proposed MABC algorithm 

6. Simulation result 

Applying the artificial bees algorithm to solve the 

OPF problem was carried out on the IEEE-30 bus 

systems and compared its simulation results with 

those of GA, PSO, DE, ABC, TSA, SCA, SFLA and 

JA [5, 10, 16, 25-40]. The generation cost and 

emission coefficients of IEEE-30 bus system given in 

Table 1 and Table 2 respectively. The system 

contains 6 generation stations with 4 transformers 

and 41 transmission lines as shown in Fig. 2 [28].  
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Table 1. Generation cost coefficients for IEEE30 bus 
Bus 

No. 

Cost coefficients 

a B C 

1 0 2 3.7ee-3 

2 0 1.75 1.75e-2 

5 0 1 6.25E-2 

8 0 3.25 8.3E-3 

11 0 3 2.5E-2 

13 0 3 2.5E-2 

 

Table 2. Generation emission coefficients for IEEE30 bus 
Bus 

No. 

Emission coefficients 

α β 𝛾 𝜻 𝝀 

1 4.091 -5.554 6.490 2.0e-4 2.857 

2 2.543 -6.047 5.638 5.0e-4 3.33 

5 4.258 -5.094 4.586 1.0e-6 8.0 

8 5.326 -3.550 3.380 2.0e-3 2.0 

11 4.258 -5.094 4.586 1.0e-6 8.0 

13 6.131 -5.555 5.151 1.0e-5 6.67 
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Figure. 2 Single-line diagram of IEEE 30-bus test system 

 
 

Table 3. Comparison of proportional the swarm source 

Types Objective Function 

Fuel 

cost 

($/h) 

Active 

losses 

(MW) 

Emission 

(ton/h) 

Voltage 

deviation 

(pu) 

Type 1 799.58 2.8864 0.2048 0.1069 

Type 2 799.38 2.8969 0.2048 0.1017 

Type 3 799.40 2.8894 0.2048 0.1197 

 

 
Figure. 3 The convergence plot for fuel cost function 

 

6.1 Case 1: Fuel cost minimization  

The objective function is to minimize the fuel cost 

𝐶𝐺  that defined in Eq. (6). The minimum fuel cost 

obtained from the modified ABC approach based on 

the three types of swarm source type 1, type 2 and 

type 3 was 799.5893 $/h, 799.3862 $/h and 799.4071 

$/h respectively as shown in Table 3. Fig. 3 shows the 

fast convergence to the optimal solution based on 

type 2 (the best one). Table 4 illustrate control 

variables of OPF for the best solution. The fuel cost 

is reduced from the initial value 901.6391 $/h to 

optimal value 799.386 $/h with reduction equal to 

11.34%.  

6.2 Case 2: Active power losses minimization 

In this case, the objective function is to minimize 

the active power losses 𝑃𝑙𝑜𝑠𝑠 that defined in equation 

(7). According to the three types of the swarm source 

of the modified ABC type 1, 2 and 3, the minimum 

active power losses was 2.8864 MW, 2.8969 MW 

and 2.8894 MW respectively as shown in Table 3. 

The best solution is given in type 1. Fig. 4 shows the 

convergence of the minimum active power losses 

based on type 1 (the best one). The total active power 

losses are reduced by up to 49.26% compared to the 

initial active power losses 5.6891 MW as shown in 

Table 4 where the optimal active power losses for the 

best type of the swarm source was 2.8864 MW.  

6.3 Case 3: Emission cost minimization 

The total emission minimization of the generators 

𝐸𝐺  is defined in Eq. (8). All the three types of swarm 

source are equally for the best solution as shown in 

Table 3. The total emission reduced from the initial 

value 0.239 ton/h to the optimal value 0.2048 ton/h 

with reduction ratio of 16.7% as given in Table 4. Fig. 

5 illustrates the convergence characteristic of the 
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Table 4. Control variables and result simulation for the best objective functions 

Control variables Limit Initial Fuel cost Active 

power losses 

Voltage 

deviation 

Emission 

Ma

x 

Min 

G
en

er
a

to
r 

a
ct

iv
e 

p
o

w
er

 

(M
W

)
 

𝑷𝟐 20 80 80 48.7538 79.9959 33.7391 67.1785 

𝑷𝟓 15 50 50 21.1924 49.994 38.424 49.9998 

𝑷𝟖 10 35 20 21.4388 34.9975 33.6407 34.9997 

𝑷𝟏𝟏 10 30 20 11.6952 29.9994 29.1491 29.9991 

𝑷𝟏𝟑 12 40 20 12.0059 39.9997 13.0961 39.9997 

G
en

er
a

to
r 

V
o

lt
a

g
e 

(p
u

)
 

𝑽𝟏 0.95 1.1 1.05 1.1 1.0998 1.0188 1.1 

𝑽𝟐 0.95 1.1 1.04 1.0871 1.0969 1.0122 1.0973 

𝑽𝟓 0.95 1.1 1.01 1.0612 1.0773 1.0178 1.0817 

𝑽𝟖 0.95 1.1 1.01 1.0679 1.0855 1.0113 1.0872 

𝑽𝟏𝟏 0.95 1.1 1.05 1.0996 1.0999 1.0387 1.0989 

𝑽𝟏𝟑 0.95 1.1 1.05 1.0991 1.1 0.9972 1.0999 

T
a

p
 

P
o

si
ti

o
n

 𝑻𝟏𝟏 0.9 1.1 1.078 1.0467 0.9994 0.9532 1.0239 

𝑻𝟏𝟐 0.9 1.1 1.069 0.9507 1.0232 1.0219 1.0687 

𝑻𝟏𝟓 0.9 1.1 1.032 1.0988 0.9511 0.9509 0.952 

𝑻𝟑𝟔 0.9 1.1 1.068 0.9841 0.9822 0.9694 0.9953 

S
h

u
n

t 
E

le
m

en
t 

(M
V

A
r
) 

𝑸𝒄𝟏𝟎 0 5 0 4.9657 4.9375 4.7634 4.4083 

𝑸𝑪𝟏𝟐 0 5 0 4.8689 4.9835 2.997 0.0769 

𝑸𝒄𝟏𝟓 0 5 0 4.5424 4.6936 4.7707 4.8999 

𝑸𝟏𝟕 0 5 0 4.9925 4.9693 0.3197 4.6113 

𝑸𝒄𝟐𝟎 0 5 0 4.6231 4.8142 4.937 4.4519 

𝑸𝟐𝟏 0 5 0 4.5904 4.9863 4.9909 4.8163 

𝑸𝒄𝟐𝟑 0 5 0 4.6889 4.1282 4.9569 4.9561 

𝑸𝟐𝟒 0 5 0 4.9371 4.9918 4.9175 4.9868 

𝑸𝟐𝟗 0 5 0 2.8721 3.1465 2.9494 2.3209 

 

Fuel cost ($/h)   901.6391 799.386 967.1569 840.989 943.3064 

Power losses (MW)   5.6891 8.6928 2.8864 6.8492 3.0385 

Voltage deviation   1.1747 1.4212 0.1499 0.1017 1.6315 

Emission   0.239 0.3661 0.2072 0.2833 0.2048 

Reduction ratio   - 11.34% 49.26% 91.34% 16.70% 

Slack generator 

active power 𝐏𝐆𝐬  

20 200 99.23 177.0267 51.3197 142.2207 64.2819 

 

 
Figure. 4 The convergence plot for power losses function 

 

ABC algorithm to the global optimal solution for the 

system after 100 iterations.  

6.4 Case 4: Voltage profile improvement 

In this case, the objective function that taken into 

consideration is the voltage profile improvement 

𝑉𝑑  which can be achieved by minimization the load 

bus voltage deviations from 1.0 per unit. This 

objective function can be expressed as in Eq. (9). The 

best solution of the system voltage profile was 0.1017 

p.u  based on type 2 of the swarm source as shown in 

Table 3.  Fig. 6 shows the convergence characteristic 

curve of the system voltage profile based on type 2 of 

the proposed ABC algorithm. The voltage profile is 

greatly improved compared with the other pervious 

objective function, where the total voltage deviations 

is reduced from the initial value 1.1747 pu to the 

optimal value 0.1017 pu with a reduction of 91.34% 

as given in Table 4.  
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Figure. 5 The Convergence plot for emission function 

 

 
Figure. 6 The Convergence plot for voltage deviation 

function 

 

 
Figure. 7 System voltage profile 

 

The optimal control variables for the best 

objective function based on the modified ABC are 

given in Table 4. 

Table 5 illustrate the results of comparison among 

the proposed modified ABC algorithm with the other 

optimization techniques.  

The propose algorithm satisfied the constraint 

OPF by finding the optimal control variables for best 

objective functions keeping the state variables of the 

active power of the slack generator, load voltages and 

the reactive power of the generators in their 

maximum and minimum limits as shown in Table 4, 

Table 6 and Fig. 7 respectively.  
 

 
Table 5. Comparisons of the results obtained using different optimization techniques 

Methods Fuel cost 

($/h) 
Active power 

losses (MW) 
Emission 

(ton/h) 
Voltage 

profile (pu) 
Initial 901.6391 5.830 0.3661 1.1747 
IGA [32] 800.805 NA NA NA 
Gradient [30] 804.853 NA NA NA 
EGA  [34] NA 3.2008 NA NA 
DE [27] 800.56 3.240 NA NA 
DE [35] 799.365 2.9748 NA NA 
MSLFA [33] NA NA 0.2056 NA 
PSO  [26] 801.66 3.032 NA NA 
SLFA [33] NA NA 0.2063 NA 
ABC [31] 800.6600 3.1078 0.204826 NA 
MSCA  [36] NA 2.9334 NA 0.1031 
IABC  [37] NA 3.084 NA NA 
GA [33] NA NA 0.21170 NA 
Hybrid PSO and GSA [38] NA NA NA 0.12674 
Jaya [39] NA NA NA 0.1273 
(EGA-DQLF) [40] NA NA NA 0.111 
Proposed algorithm ABC 799.3862 2.8864 0.2048 0.1017 
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Table 6. The state variable of reactive power of the generators of OPF based on modified ABC technique 

Unit 

number 

𝑸𝑮𝒊 (𝒎𝒊𝒏) 

(MVAr) 

𝑸𝑮𝒊 (𝐦𝐚𝐱) 

(MVAr) 

𝑸𝑮𝒊
 (MVAr) 

for fuel cost 

𝑸𝑮𝒊
 (MVAr) for 

active power losses 

𝑸𝑮𝒊
 (MVAr) for 

voltage deviation 

𝑸𝑮𝒊
 (MVAr) 

for Emission 

1 -20 200 -9.939 -3.3563 -17.0454 -7.83 
2 -20 100 30.8858 18.5594 20.5652 19.1057 
5 -15 80 32.6568 25.5385 54.557 28.1862 
8 -15 60 39.8395 35.3486 55.2374 32.932 

11 -10 50 7.0163 15.0023 16.641 19.9798 
13 -15 60 23.7225 9.6671 -8.3773 16.2358 

 

5. Conclusions 

This article presented a modifying for the classical 

Artificial Bee Colony (ABC) to solving Optimal 

Power Flow problem (OPF). The proposed algorithm 

demonstrates the robustness, flexibility, effectiveness 

and successfully applied to solve OPF. To show the 

effectiveness of this approach, the objective function 

of fuel cost, active power losses, emission, and 

voltage deviation have been applied and tested using 

the IEEE 30-bus system. The modified ABC based 

on determining the worst solutions for each phase 

(employed bee phase and onlooker bee phase) then 

replace its by the best solutions at each iteration to 

improve the quality of solutions and select the 

optimal control variables for the best different 

objective function. The worst solutions that chosen in 

this algorithm is 33%, 50%, and random selection 

from the total swarm source. The proposed approach 

has fast convergence and quality solution when 

compare with other methods in the literature. The 

performance of ABC algorithm indicating its 

effectiveness for solving OPF problems, especially 

for large systems. 
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