
Received: July 6, 2020. Revised: August 6, 2020. 524

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.46

Custom Convolutional Neural Network with Data Augmentation and Bayesian

Optimization for Gram-Negative Bacteria Classification

Budi Dwi Satoto1,2* Mohammad Imam Utoyo3* Riries Rulaningtyas4

Eko Budi Koendhori5

1Faculty of sains and Technology, University of Airlangga Surabaya, Indonesia

2Department of Informatics Engineering, University of Trunojoyo, Madura, Indonesia
3Department of Mathematics, University of Airlangga Surabaya, Indonesia

4Department of Physics, University of Airlangga Surabaya, Indonesia
5Department of Microbiology, Faculty of Medical, University of Airlangga Surabaya, Indonesia

* Corresponding author’s Email: m.i.utoyo@fst.unair.ac.id, budids@trunojoyo.ac.id

Abstract: One of the newest methods used in image classification is the Convolutional Neural Network. This method

uses a large number of hidden layers to process data so that the resulting accuracy is excellent. However, this affects

the time of the training process used. The selection of suitable architecture also determines the results of the

classification. In this research, the author tries to reduce computational time by reducing the number of layers and

using optimization. Transfer learning helps in the preparation of models using pre-trained data before, while data

augmentation increases data variation. Bayesian optimization helps to find out momentum values and initial learning

rate. The data source of this research is the primary image of Gram-negative bacteria from pneumonia patients. Data

was collected at Dr. Soetomo's Microbiology Laboratory in Surabaya, Indonesia. Data distribution includes training,

validation, and testing divided by percentage and proportional distribution of the number of files. This research used

four classes of Gram-negative bacteria with a total of 1,000 images. An experimental comparison was made with a

comparison of the Convolutional Neural Network architecture. The test results show an increase in accuracy by using

aiming layers 26-34, having an accuracy range of 99.5% to 99.8%. The computational time required for the training

process is around 2 minutes 30 seconds, with a momentum value of 0.92813 and an initial learning level of 0,00022397.

The best accuracy errors were obtained at MSE 0.0025, RMSE 0.05, and MAE 0.0025.

Keywords: Gram-negative bacteria, Convolutional neural network, Transfer Learning, Data augmentation, Bayes

optimization.

1. Introduction

Today, the use of machine learning is to solve

problems both in the field of information systems and

public health. One application is pattern recognition.

It is due to the ability of the image identification

process. One of the most recent methods of machine

learning is Convolutional Neural Network (CNN).

This method is believed to be able to recognize

patterns because it has deep learning abilities [1]. If,

in the previous machine learning method, the

parameter determination is done by the user, then in

this method, the parameters are carried out by the

learning process on CNN. It also results in the

possibility of overfitting or too many parameters in

the neural network used [2].

To overcome this has been done, there are several

studies conducted by researchers. Among the studies

conducted by Kenneth P. Smith, 2017 do research in

the Convolutional Neural Network method is used to

classify bacterial images collected from 189 glass

objects. The observation process is carried out

without human intervention. The research has a

sensitivity of 98.4% and specificity 75.0% for Gram-

positive coccus bacteria in the form of paired chain

colonies. The Gram-positive cocci in a single group

had 93.2% and 97.2%. The rest were Gram-negative

Received: July 6, 2020. Revised: August 6, 2020. 525

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.46

rod groups with sensitivity and specificity 96.3% and

98.1% [3]. CongBai pad 2018 tries to optimize the

Alexnet architecture by looking at three criteria.

Optimize the convolution layer, modify the fully

connected and reconstruction of the hidden layer. The

pooling layer replaces with the max-average Pooling

layer. It is a non-linear activation function. A fully

connected layer uses Maxout means desire output.

The goal is to get better feature maps. A hidden

segment is added to map the high-dimensional

features into binary code [4].

Ashraf Darwish's research in 2019, used CNN

with orthogonal learning particle optimization

(OLPSO) algorithm. The goal is to find the optimal

value of hyperparameter classification [5]. Elnaz

Jahani Harav in 2018 proposed a 23-layer

architecture that has an accuracy of 99.14% and

96.63%. This figure is slightly better compared to

ResNet and GoogleNet. Food101 and UECFood-256

are the datasets used for testing. The results are better

than GoogleNet. Another comparison of accuracy

results similar to ResNet. Its is shows that when the

number of layers decreases, the amount number of

parameters used also reduces dramatically [6].

The purpose of this research is to assist visual

observations that are still needed in hospital

microbiology laboratories. The choice of

convolutional neural networks is based on data

objects that are processed in the form of images and

is the latest identification research method currently

being developed. This method has deep learning

about the object being observed and has high

accuracy. The disadvantage is that in some

architectures, the computational time for the training

process is still quite high. GAP, with previous

research, is saving computing time while maintaining

accuracy. The novelty offered is the Custom

convolutional layer that is equipped with auto

contrast, transfer learning, data augmentation, and

optimization. The study also added data

augmentation methods to overcome the limited

amount of data and the use of Bayes optimization

techniques to obtain ideal parameters during the

training process.

2. Related work

This section discusses similar work about Gram

negative-bacteria classification, convolutional neural

network, transfer learning, auto contrast image, data

augmentation, Bayes optimization, accuracy, and

objective function.

2.1 Gram-negative bacteria classification

This germ can cause diseases such as pneumonia,

meningitis, gonorrhea, bacterial dysentery, cholera,

gastritis. The unique shape of their cellular envelopes

provides virulence and protection from various

chemicals. It is still a big challenge for modern

doctors and scientists in connection with these

cellular mechanisms and mitigating the impact of

these resistance properties [7]. Biology laboratories

use visual observations to research this.

Examples of Gram-negative bacteria are

Acinetobacter, Pseudomonas aerugenusa, klebsiella

pneumonia, and Escherichia Colli. Pseudomonas

aerugenusa is a bacterium that has innovative and

oxygenic properties. It can cause infection in patients

with a decrease in endurance and become an essential

nosocomial pathogen. The Gram-negative bacteria

are shown in Fig. 1.

There are several steps taken by laboratory staff

to identify Gram-negative bacteria:

1. Prepare samples taken from the sputum of the

patient by taking into account the inclusion

criteria, namely pneumonia patients

2. Taking samples to be tested for pathogenicity

using the Phoenix machine. Testing using

biochemical methods.

3. If the sample is purely pathogenic, then a sample

is taken to be cultured on McConkey media and

incubated with freezer temperature for 12-18

hours.

4. Bacterial colonies are formed during the

incubation process. Each was given a patient id,

name, suspect, category of bacteria and

resistance

5. Taking samples of culture results in glass objects

to be observed in a microscope with the help of

immersion oil [8].

2.2 Convolutional neural network to classify

gram-negative bacteria

In general, the process of identifying bacteria using

image processing is carried out according to the

stages shown in Fig. 2. Beginning with preparing the

bacterial database from which the data acquisition

process is needed.

In the Convolutional neural network (CNN)

block, there are several main layers, including the

Conventional Vocational Layer, Pooling layer,

Normalization layer, Softmax, and fully connected

layer. Some existing architectures use the Directed

Acyclic Graph (DAG) network to ease performance

[9].

Received: July 6, 2020. Revised: August 6, 2020. 526

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.46

Figure. 1 Gram-negative bacteria

Image Acquisition

Image Pre-processing

Classifier

Result

Bacteria database

Convolutional layer

Batch Normalization

Clipped ReLu

Pooling layer

Fully Connected

Convolutional

neural network

Figure. 2 Bacteria classification

2.2.1. Convolutional layer

Convolution can be generalized to several

dimensions, where the features matrix of 𝑓 (image)

and 𝑔 (filter) defined in the 𝑡 set of integers. With

two input dimensions 𝑓(𝑐, 𝑑), for example, models

with width and height coordinates 𝑐 and 𝑑 . The

output of convolution ℎ[𝑐, 𝑑] can be written in analog

Eq. (1) and discrete Eq. (2).

ℎ(𝑐, 𝑑) = ∫ ∫ 𝑓(𝑝, 𝑞)𝑔(𝑐 − 𝑝, 𝑑 − 𝑞)𝑑𝑝𝑑𝑞
∞

−∞

∞

−∞

(1)

ℎ[𝑐, 𝑑] = ∑ ∑ 𝑓[𝑝, 𝑞]𝑔[𝑐 − 𝑝, 𝑑 − 𝑞]𝑞𝑝 (2)

Parameters that adjusted in the convolutional layer

include the size of the kernel. It is called the filter size.

The zero paddings (P) magnitude generally fits so

that the spatial The desired output dimension has the

same spatial input size dimensions (𝑃 = 𝐹 − 1/2)

with 𝐹 = 𝐹𝑖𝑙𝑡𝑒𝑟 [10].

2.2.2. Normalization and rectifier linear unit

This layer normalizes input features through

batch dimensions written in Eq. (3) and Eq. (4).

𝜇𝑗 =
1

𝑚
∑ 𝑥𝑖𝑗

𝑚
𝑖=1 and 𝜎𝑗

2 =
1

𝑚
∑ (𝑥𝑖𝑗 − 𝜇𝑗)2𝑚

𝑖=1

(3)

𝑥𝑖𝑗 =
𝑥𝑖𝑗−𝜇𝑗

√𝜎𝑗
2+𝜖

 (4)

With 𝑥𝑖𝑗 =elementh input. 𝜇𝑗 =mean of input. 𝜎𝑗 =

Standart deviation. The output of the Rectifier Linear

Unit is ƒ(ℎ) = 𝑚𝑎𝑥 (0, ℎ) [11]. Network studies

non-linear values. ReLu formula written in Eq. (5)

 𝑅𝑒𝐿𝑢(ℎ) = {
0 𝑖𝑓 ℎ < 0
𝑥 𝑖𝑓 ℎ ≥ 0

 (5)

The Rectifier Unit (ReLu) will have an output value

of 0 if the input is less than 0, but the output will be

in the form of raw data if other than zero. That is, if

the information is greater than 0, the production is the

same as the input [12].

2.2.3. Pooling layer

The tool used to ensure the invariance of output

𝑦 is the Pooling Layer. It used in combination with a

convolutional layer. Network output after the pooling

layer written in Eq. (6) [13].

𝑛𝑜𝑢𝑡 =
𝑛𝑖𝑛+2𝑃−𝐹

𝑆
+ 1 (6)

With 𝑛𝑖𝑛 =Length or High of Input, 𝐹 =Length or

Height of Filter, 𝑃 =Zero Padding, 𝑆 =Stride. The

Pooling operation calculates a statistical summary of

the nearest information using an arithmetic function

[14].

2.3 Transfer learning

Technique or method that uses a model that

previously trained in the dataset. If there are more 𝑇1

assignment data, features, and weights, carry out 𝑇2

assignments that have fewer data. [15]. Domain 𝐷 is

a two-element matrix that has marginal probability

𝑃 (𝛸) and a feature space (fs) [16]. The negligible

probability was written in Eq. (7)

𝑃 (𝛸) 𝑤𝑖𝑡ℎ 𝑋 = {𝑥1, … , 𝑥𝑛 }, 𝑥𝑛 ∈ fs (7)

Here 𝑥𝑖 represents a particular vector. Task 𝑇

explained as two tuple elements of the label space

Received: July 6, 2020. Revised: August 6, 2020. 527

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.46

(𝑙𝑠) , and the objective function, 𝜂 . The objective

function described as 𝑃 (𝑙𝑠 | 𝛸) from a probabilistic

point of view. [17]. 𝑌 = {𝑦1, … , 𝑦𝑛}, with 𝑦𝑖 ∈ 𝑙𝑠.
The predictive function 𝜂 learned from the feature

vector relationship (𝑥𝑖, 𝑦𝑖) where 𝑥𝑖𝜖𝑓𝑠, 𝑦𝑖𝜖𝑙𝑠. For

each feature in the domain, 𝜂 makes the appropriate

label prediction 𝜂(𝑥𝑖) = 𝑦𝑖 [18]. Task wrote in Eq.

(8)

𝑇 = {𝑙𝑠, 𝑃(𝑌|𝑋)} = {𝑙𝑠, 𝜂} (8)

Given the source domain 𝐷𝑠 which

accommodates the 𝑇𝑠 task source, as the 𝐷𝑇 domain

target and the 𝜏𝑇 task target. The gain information

gives from 𝐷𝑠 and 𝑇𝑠 where 𝐷𝑠 ≠ 𝑇𝑠 or 𝜏𝑠 ≠ 𝜏𝑇. [19].

2.4 Bayes optimization

All Bayesian Optimization is a step to build a

probability model using an objective function. Bayes

Probability wrote in Eq. (9)

 𝑝(𝑚|𝑛) =
𝑝(𝑚|𝑛)∗𝑝(𝑛)

𝑝(𝑚)
 (9)

With 𝑝(𝑚|𝑛) = probability hyperparameter that

assesses the objective function. The output value can

be written in Eq. (10).

𝑝(𝑎|𝑏) = {
𝑙(𝑎) 𝑖𝑓 𝑏 < 𝑏∗

𝑔(𝑎) 𝑖𝑓 𝑏 ≥ 𝑏∗ (10)

Value of 𝑏 < 𝑏∗ Shows the lower cost of the

objective function of the threshold, labeled 𝑙 (𝑎), and

if it is larger, then it is labeled 𝑔(𝑎).

2.5 . Accuracy

The output of accuracy is a percentage

comparison between the actual condition of the data

and the results of predictions. TrP = True-Positive,

TrN = True-Negative. It is written in Eq. (11).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑃

𝑇𝑟𝑃+𝐹𝑎𝑃
 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑟𝑃

𝑇𝑟𝑃+𝐹𝑎𝑁
(11)

Precision is a percentage ratio of correct positive

predictions compared to the overall positive

predicted results. Recall (Sensitivity) is a correct

positive prediction ratio compared to whole accurate

positive data. The F1 Score is written in Eq. (12) [20].

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑥(𝑅𝑒𝑐𝑎𝑙𝑙𝑥𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛
 (12)

2.6 An objective function on the CNN model

This function trains the model to be used using

the stochastic gradient descent to make the objective

loss function minimal. CrossLoss purpose (𝑠)

written in Eq. (13)

𝐿𝑜𝑠𝑠 =
1

𝑁
∑ (− log(𝑜𝑢𝑡𝑠[𝑚]))𝑠∈𝑆 (13)

Where 𝑆 is a collection of positions, 𝑁 is the number

of places of 𝑜𝑢𝑡𝑠[𝑚] . It is the output value

(Probability value) of node 𝑚 at position s [21].

3. Methodology

The steps proposed to make improvements are

shown in the Block diagram. This research uses

primary data because secondary data are not available

on the internet. This research used four types of Gram

harmful bacteria shown in Fig. 3.

This research was carried out on Intel Core i-7

Laptop hardware with 8GB of RAM equipped with a

Microscope Image

2560x2048, 96 dpi,

depth 24 bit

Image Preparation

(Autocontrast)

Epoch = 0

Network Training

Epoch = Epoch+1

Lost calculation and

weight adjusment

Epoch>=30

Iteration 100

No

Accuracy & Prediction

Bayes Optimization

Folder creation:

Train, validation,

testing

End

Model1 OR Model2

Data augmentation

Architecture

(Pre-Trained)

Devide Image into

224x224x3

Model1

Start

Train images

(1000, 4 Class)

Prediction

(4 Class)

Train with purposed layer

Figure. 3 Research methodology

Received: July 6, 2020. Revised: August 6, 2020. 528

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.46

single GPU 4GB Nvidia GTX1050 Graphic

Processing Unit. The software used is Matlab 2019a.

3.1 Data collection methods

Gram-negative bacteria image is taken from the

Dr. Soetomo Hospital, Surabaya. For the period

August 2018-August 2019 in the Microbiology

Laboratory. The data used are primary data taken

from 50 patients who were exposed to pneumonia

with invitro criteria caused by Gram-negative

bacteria. The size of the image produced by Optilab

View is 2560x2048, with 96 dpi and 24-bit depth.

The Lens magnification used 1000x magnification

includes 10x the eyepiece and 100x the objective lens.

The complete dataset used in the training folder

shown in Table 1.

There are three folder setups, including training,

validation, and test. The image divided function,

namely datastore in MatLab. It is separated using

several pictures and percentage portion.

3.2 Research steps

The research steps are explained as follows:

3.2.1. Preparation of data

Observation data is not used immediately because

the sharpness level of the image should be improved

at the beginning. In this research, auto contrast is used,

the goal being that foreground and background

appear more dominant. Auto Contrast formula

computes the locally normalized luminescence via

local mean subtraction and divides it by the local

deviation. It is written in Eq. (13)

𝐼(𝑚, 𝑛) =
𝐼(𝑚,𝑛)−𝜇(𝑚,𝑛)

𝜎(𝑚,𝑛)+𝐶
 (13)

𝐼(𝑚, 𝑛) Normalized luminance, 𝜇(𝑚, 𝑛) =contrast

normalization coefficient.

Suppose 𝐼(𝑚, 𝑛) domain is [0, 255], then C=1. If

the field is [0, 1], then C=1/255. Mean value written

in Eq. (14)

𝜇(𝑚, 𝑛) = ∑ ∑ 𝑤𝑘,𝑙𝐼𝑘,𝑙(𝑚, 𝑛)𝐿
𝑙=−𝐿

𝐾
𝑘=−𝐾 (14)

Table 1. Dataset detail in training folder

No Bacterial name Dimension No. of

images

1 Acinetobacter [224 224 3] 250

2 P. Aerugenusa [224 224 3] 250

3 Eschericia Colli [224 224 3] 250

4 Klebsiella [224 224 3] 250

 Total images 1000

To calculate the locally normalized luminescence,

also known as mean subtracted contrast normalized

(MSCN) coefficients. It is estimated the local mean.

Within 𝑤 is a Gaussian kernel of size (K, L) in Eq.

(15)

𝜎(𝑚, 𝑛) =

√∑ ∑ 𝑤𝑘,𝑙(𝐼𝑘,𝑙(𝑚, 𝑛) − 𝜇(𝑚, 𝑛))𝐿
𝑙=−𝐿

𝐾
𝑘=−𝐾 (15)

3.2.2. Transfer learning

Dataset creation to ensure the input layer accepts

224x224x3 image size. Split the sets of images into

training and testing data. There are three primary data,

including train, testing, and validation. Split can be

done with a datastore image by dividing the portion

of data using a randomized. Transfer Learning

conducts pre-trained initials, opens the final layer

fully connected, conducts training using new data,

and ends by predicting and assessing network

accuracy. The process is shown in Fig. 4.

Transfer learning cut the connection from google

layer loss3-classifier that described as a Fully

connected layer. After that proposed method connect

'pool5-drop_7x7_s1 transfer it into layer that usage in

the output layer to get a new model.

The use of the number of layers affects overfitting.

But keep in mind also that the more layers of learning

get deeper and computing time increases. It is taken

into consideration when preparing the proposed sheet,

as shown in Fig. 5.

Convolutional 1

Convolutional 2

Fully Connected 1

Convolutional 3

Fully Connected 2

softmax

Data and Labels

(e.g. googlenet)

Loss

Convolutional 1

Convolutional 2

Fully Connected 1

Convolutional 3

Target Data and

Labels

Classifier

features

Transfer

Learning

Figure. 4 Transfer learning

Received: July 6, 2020. Revised: August 6, 2020. 529

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.46

Image Input Layer [224 224 3]

Convolution 2d Layer (filter size

3, num filter, and Stride 1)

Batch Normalization Layer

 Clipped Relu Layer with

ceiling 10

Max Pooling 2d Layer with pool

size 2 and Stride 2

Fully Connected Layer (FC)

with size 500, 250, 150, 50

dropoutLayer with probability

0.5 with given Name 'drop1'

softmaxLayer

classificationLayer

N=8

Num filter = 2N

Figure. 5 Purposed layer CNN

At the convolution stage, a repetitive process is

carried out with different dimensions of the image

size so that the learning process is carried out more

intensely. In the convolution layer, it takes several

iterations between four to five times with different

image dimensions so that the results of Feature maps

become smoother. It affects the resulting accuracy. It

refers to formula (3) that resume Neuron output will

depend on the length and with of the input dimension,

size of the filter, amount of padding, and several

strides. The variation of this hidden layer will give

feature maps and accuracy to become smooth.

3.2.3. Data augmentation

Data augmentation works by changing or

modifying images so that the computer will detect

that the modified model is a different image. But

humans can still know that the modified image is the

same picture. Rotation methods are written in Eq.

(16).

𝐴 = (
cos 𝜃 −𝑠𝑖𝑛𝜃
sin 𝜃 cos 𝜃

) (16)

Where 𝜃 is between 10 and 175 degrees,

augmentation can improve the availability of the data

that trained by CNN. The Scaling are 𝑥, 𝑦 with a

direction shown in Eq. (17)

𝐴 = (
𝑠𝑥 0
0 𝑠𝑦

) (17)

By enlargement, the model gets additional data that

can be useful for making models that can generalize

better. Shears methods can do using Affine

transformation shown in Eq. (18)

𝐴 = (
1 𝑠
0 1

) (18)

𝑠 defines the amount that 𝐼(𝑖𝑚𝑎𝑔𝑒) is sheared, and it

is in the range of [0.1, 0.35]. Development performed

in this research is to reverse the image horizontally,

zoom in randomly, with a maximum zoom of 50% of

the image size, and also rotate pictures randomly with

a maximum degree of 90𝑜

3.2.4. Bayesian optimization

The Bayesian optimization approach is to use a

Gaussian distribution. It makes this optimization

better manage hyperparameter because hyperspace

searching becomes more efficient, so the training

process steps are less. The critical elements in the

minimization using the Bayesian Optimization step.

Firstly, The Bayesian procedure modifies the

Gaussian process model for each new evaluation

𝑓 (𝑥). Furthermore, the acquisition function 𝑎𝑞 (𝑥)

will maximize to determine the next x point of

evaluation. 'expected-improvement (EI),' which is the

acquisition function, evaluates the number of

expected improvements in the objective function.

The form is shown in Eq. (19)

𝐸𝐼(𝑥, 𝑄) = 𝐸𝑄[max (0, 𝜇𝑄(𝑥𝑏𝑒𝑠𝑡) − 𝑓(𝑥))] (19)

With 𝑥𝑏𝑒𝑠𝑡 = the location of the lowest posterior.

𝜇𝑄(𝑥𝑏𝑒𝑠𝑡) The means of the lowest value of the

posterior. Bayes optimization first calculates 𝑥𝑏𝑒𝑠𝑡

and 𝜇𝑄(𝑥𝑏𝑒𝑠𝑡). Bayes optimization uses probability-

of-improvement (PI) by calculating the value of the

new point x probability, which leads to better

objective function values. Modified by the QA

parameter "margin." The Formula PI has written in

Eq. (20)

Received: July 6, 2020. Revised: August 6, 2020. 530

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.46

imdsTrain, imdsValidation,

net name, network type

Series/DAG

Network ?

Lgraph=layerGraph(net)

Layers (end-2) fully

connected, name ‘fc8’

DAG Network

Series Network

Layers (end) fully connected,

name ‘myNewClassifier’

New layers fully connected

with weight and bias learn

factor 20

Add new layers into lgraph

Connect layers

Training option

Best Point: Momentum,

Initial learning rate

Optimizable variable, max

obj 10, max time 60*60

Figure. 6 Bayesian optimization

𝑃𝐼(𝑥, 𝑄) = 𝑃𝑄(𝑓(𝑥) < 𝜇𝑄(𝑥𝑏𝑒𝑠𝑡) − 𝑚) (20)

Bayes optimization takes 𝑚 as the estimated noise

standard deviation. The process is shown in Fig. 6.

Bayesopt evaluates this probability, as written in Eq.

(21)

𝑃𝐼 = Φ(𝑣𝑄(𝑥)) (21)

With 𝑣𝑄(𝑥) written in Eq. (22)

𝑣𝑄(𝑥) =
𝜇𝑄(𝑥𝑏𝑒𝑠𝑡)−𝑚−𝜇𝑄(𝑥)

𝜎𝑄(𝑥)
 (22)

Φ(∙) = the unit normal cumulative distribution

function CDF. The notation 𝜎𝑄 = deviation of the

Gaussian process, which is at position x. The Low

Confidence Limit is obtained by looking at the

function on the G curve. It has two standard

deviations below the posterior average at each point

written in Eq. (23)

𝐺(𝑥) = 𝜇𝑄(𝑥) − 2𝜎𝑄(𝑥) (23)

𝐺(𝑥) is the 2𝜎𝑄(𝑥) of the confidence envelope of the

objective function model. The Bayes then maximizes

the negative of G using Lower Confidence Bound

(LCB) in Eq. (24)

𝐿𝐶𝐵 = 2𝜎𝑄(𝑥) − 𝜇𝑄(𝑥) (24)

The stochastic gradient can be used in the objective

function of the CNN model to make the objective loss

function to a minimum. In cross-entropy, hidden

layer neurons in movable and bound positions (𝑠, 𝑚)

of the CrossLoss purpose (s) written in Eq. (25)

𝐿𝑜𝑠𝑠 =
1

𝑁
∑ (− log(𝑜𝑢𝑡𝑠[𝑚]))𝑠∈𝑆 (25)

N = the number of places, S = a collection of positions.

𝑜𝑢𝑡𝑠[𝑚] = output value from the probability of node

m at position s [21]. Typically, the class with

maximum likelihood is chosen when deciding.

3.2.5. Error calculation

Errors in the classification process can also be

seen from Mean Square Error (MSE), Root Mean

Square Error (RMSE), and the Mean Absolute Error

(MAE). The three of them calculate misclassification

using the difference between an actual label condition

and a prediction label result written in Eq. (26)

𝑅𝑀𝑆𝐸 = √
1

𝑁𝑑
∑ (𝑦𝑘 − �̂�𝑘)2𝑁𝑑

𝑘=1 (26)

where 𝑁𝑑 = number of data, 𝑦𝑘 = actual label, �̂�𝑘 =

prediction label. While Mean Absolute Error (MAE)

written in Eq. (27)

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑗 − �̂�𝑗|𝑛

𝑗=1 (27)

With the absolute value of the difference, predicted

results could be used. [20].

4. Result and discussion

In this section, this research emphasizes the use

of CNN. The proposed method is to use a sufficient

number of layers. The dataset used is a negative gram

bacterial image obtained from primary data on

pneumonia patients. The data size of images used

224x224 pixels, 96 dpi, and 24-bit depth (three

channels). Data is processed with a single GPU

GTX1050 4GB.

4.1 Pre-processing

The initial process before entering the input layer

is to divide the image into three folders. These folders

are train, validation, and testing. Each folder is filled

with four bacterial image subfolders, namely, GNB

Acinetobacter, GNB Aerugenusa, GNB Escherichia

Colli, and GNB Klebsiella.

Received: July 6, 2020. Revised: August 6, 2020. 531

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.46

Figure. 7 bacteria Visualization in each folder

The bacterial database to be used is shown in the

input layer, as shown in Fig. 7. In the train subfolder,

250 images are used so that the entire train folder

contains 1000 images of bacteria.

4.2 Features map layer

A visualization feature layer can be taken on the

segment that has a filter and weight. It can be seen in

Fig. 8.

Convolutional layers and combined layers are

part of a Feature Extraction. The feature extraction

layer dimension is a 5x5x3 convolutional layer. This

layer has a length of five pixels with a height of five

pixels and a depth of three corresponding to the

image channel. An activation map or feature map

works with shift operation that works using "point"

operations between input and screen values to

produce output.

Figure. 8 Filter Visualization: (a) res2a_branch2b, (b)

res3b_branch2b, (c) bn5a_branch2b, and (d)

res5b_branch2b

4.3 Data augmentation

Methods to increase the amount of variation in

training data, augmentation techniques are used.

Additions made are scaling, rotation, shear, and

reflection. The Scale formula is shown in Eq. (28)

𝐴 = (
𝑠𝑥 0
0 𝑠𝑦

) (28)

𝐴 = Scaling matrix with the x or y-direction. The

augmentation result is shown in Fig. 9.

Another technique uses for data augmentation is

rotation. Each image 𝐼 is rotated, represented by the

following affine transformation. It is shown in Eq.

(29)

𝐴 = (
cos 𝜃 −𝑠𝑖𝑛𝜃
sin 𝜃 cos 𝜃

) (29)

While 𝜃 is the degree, the value is between 10 and

175 degrees. The result is shown in Fig. 10.

Shears: Each image 𝐼 is sheared, represented by

the following affine transformation written in Eq.

(30)

 𝐴 = (
1 𝑠
0 1

) (30)

Figure. 9 Augmentation: (a) scaling and (b) rotation

Figure. 10 Augmentation: (a) shears and (b) reflection

(a) (b)

(c) (d)

 (a) (b)

(a) (b)

Received: July 6, 2020. Revised: August 6, 2020. 532

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.46

Figure. 11 Training process

4.4 Training process

The training process is run on 100 iterations with

30 epochs. Training can run well if we also use

validation data. Several training optimizers can be

used, including adaptive moment estimation (adam),

Stochastic Gradient Descent with momentum (sgdm),

and root means Square propagation (rmsprop). The

training process setting is InitialLearnRate value of

0.001. MaxEpochs used is 30 with 100 iterations,

Shuffle on each epoch, Using Validation Data with

Validation Frequency 30. "verbose" to get the text

train is made pure to compare the response of the

signal. The Training progress results of accuracy

approaching 99.8% seen in Fig. 11.

This optimization is needed so that the optimal

process training results. The comparison between the

Table 2. Training with optimizer

Custom

Layer
Optimizer

Training

Accuracy

Time-

consuming

(minute)

18 layer

Adam 99,70% 1,50

SGDM 99,40% 1,32

rmsprop 98,35% 2,12

26 layer

Adam 97,90% 3,75

SGDM 97,45% 1,88

rmsprop 95,05% 1,87

34 layer

Adam 100,00% 1,80

SGDM 93,40% 1,18

rmsprop 100,00% 1,15

training optimizer shown in Table 2. This table

indicates that Adam became the most stable

optimizer with the best accuracy and lowest

computing time when custom using 18 layers and 34

layers.

4.5 Prediction after transfer learning

Transfer learning helps the new model training

process become faster to converge. It can be seen

from the prediction process produced after the merger

of the initial model with the results of the training

process model. The prediction is shown in Fig. 12. By

taking sample images in the test data to do the test.

The step is to get the value of YPred from the results

of the validation data training. The YValidation value

Figure. 12 Prediction result

Received: July 6, 2020. Revised: August 6, 2020. 533

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.46

is obtained from the label in the validation data. The

accuracy calculation in the prediction process is done

by getting the similarity value or similarity label to

the amount of validation data used.

CNN predicts Klebsiella with a score of 100%

and 76.5%. Escherichia Colli's prediction results are

99.9% and Acinetobacter 100%.

4.6 Confusion matrix

The classification results from training data

define into the matrix. The confusion matrix

calculates the difference of actual data with the

prediction of data where the aim is to calculate the

output class error. The evaluation is to compare the

output class, which is not appropriate. Confusion

matrix four types of bacteria shown in Fig. 13.

4.7 Bayes optimization

Bayesian optimization is done to get the optimum

value of momentum and Initial learning rate after the

fitting process. The training process will be repeated

until the desired amount is met. Fig. 14 shows the

results of the objective function.

In addition to establishing an objective function

model, Bayes Optimization will calculate the

Figure. 13 Confusion matrix

Figure. 14 Objective function model

Maximum Likelihood (MLE). It runs training on

Convolutional neural networks using a framework to

select loss functions. It is shown in Eq. (31)

𝜃𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝑙𝑜𝑔 ∏ 𝑝(𝑦𝑖|𝑥𝑖 , 𝜃)

𝑁

𝑖=1

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 ∑ log 𝑝(𝑦𝑖|𝑥𝑖, 𝜃)𝑁
𝑖=1 (31)

Where 𝑝 (𝑌 | 𝑋, 𝜃) represents the probability of an

actual label on the training data, if the value of

𝑝 (𝑌 | 𝑋, 𝜃) is 1, this shows that the model can

describe the correct label. If a data train (𝑋, 𝑌) is

provided consisting of connected N observations, the

likelihood of the data train can be written as the sum

of log probabilities. The two main types of loss

functions are the mean squared error (𝑀𝑆𝐸) and the

Cross-entropy model. The MSE has written in Eq.

(32)

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̃�𝑖)2𝑛

𝑖=1 (32)

with 𝑀𝑆𝐸 = 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 , n=number of

data, 𝑦𝑖 =actual data and �̃�𝑖 =prediction data. CE or

Cross entropy can be written in Eq. (33)

𝐶𝐸(𝑝, 𝑞) = − ∑ 𝑝(𝑥) log 𝑞(𝑥)𝑥 (33)

Where p = ground truth and q = network output. The

candidate solution for optimization is done by

selecting a series of weights called the objective

function. Convolutional neural networks choose the

right Loss function to overcome predictive modeling

problems.

Fig. 15 shows that the third to seventh evaluation

functions show the same minimum objective value,

which means that at that point, the best momentum

and initial learning rate results are obtained to obtain

optimal results.

Figure. 15 Comparison of minimum objectives against

the number of evaluation functions

Received: July 6, 2020. Revised: August 6, 2020. 534

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.46

Figure. 16 Momentum and Initial learning rate

The maximum likelihood selection finds the

optimal value for the parameter. Momentum

parameters prevent the system from converging to the

local minimum and serve to stabilize the learning

process, as well as the learning rate parameter to

accelerate the pace of learning as written in Eq. (34)

𝑤 ≔ 𝑤 − 𝜂∇𝑄𝑖(𝑤) + 𝛼∆𝑤 (34)

𝑤 =parameter which minimize 𝑄𝑖(𝑤) , 𝜂 =learning

rate, 𝛼 =decay factor (0< 𝛼 < 1) , "Coefficient of

Momentum," which is the percentage of the gradient,

retained every iteration. The result of momentum for

this current research shown in Fig. 16.

4.8 Comparison between CNN methods

Table 3 compares the performance of each

architecture in CNN to classify Gram-negative

bacteria. There are four class data of bacteria, namely

Acinetobacter, pseudomonas aerugenusa,

Escherichia Colli, and Klebsiella pneumonia. Several

parameters to compare those become indicators are

the number of layers used by CNN, Number of output

Class, Training accuracy, time consumes in the

training process, Precision, Recall, and F-1 Score.

Another error parameter used to compare is MSE,

RMSE, and MAE. The results of the comparison

show that the purposed method has the specifications

of the number of layers, the accuracy of the training

results is above 99.88%, and the time spent on the

training process ranges around 2 minutes.

4.8.1. The layers vs. time-consuming

The use of layers is intended to increase accuracy

sensitivity. The more significant number of layers,

the higher the accuracy value. But the consequences

are the time used is getting longer.

Fig. 17 shows that Densenet 201 has the highest

number of layers, 709 layers. This large number of

layers affects the computational time needed, which

reaches 335 minutes 2 seconds, which means about

5.6 hours to conduct training data. Purposed layers

are using 34 and 18 segments. In the comparison

graph, the results of the time consumption required

for the process show that the more layers are used, the

more time consuming it is needed. During the

training process, learning is done deeper. It can be

observed from the beginning of the process that with

a multi-layer architecture, the initial training shows a

lot of ripple or fluctuation. Still, in line with the

training process, the ripple decreases because the

network will continue to learn. The process will take

a long time, but the resulting accuracy can always be

maximized.

Figure. 17 Number of layer vs. time-consuming

Table 3. CNN Comparison

Models
No.of

layer
Class

Training

Accuracy

Time

(minute)
Precision Recall

 F-1

Score
MSE RMSE MAE

Alexnet 25 4 99,75% 05:26 99,75% 99,75% 99,75% 0,00630

0,00630

0,07910

0,07910

0,00370

0,00370 Googlenet 144 4 99,75% 12:02 99,75% 99,75% 99,75% 0,00630

0,00630

0,07910

0,07910

0,00370

0,00370 VGG16 41 4 99,63% 42:27 99,62% 99,62% 99,61% 0,00740

0,00740

0,08410

0,08410

0,00510

0,00510 VGG19 47 4 100,00% 51:49 100,00% 100,00% 100,00% -

-

 -

-

 -

- Resnet18 72 4 99,75% 09:39 99,75% 99,75% 99,75% 0,00250

0,00250

0,05000

0,05000

 0,00250

0,00250 Resnet50 177 4 99,88% 31:34 99,88% 99,88% 99,88% 0,00500

0,00500

0,07070

0,07070

0,00250

0,00250 Resnet101 347 4 100,00% 71:34 100,00% 100,00% 100,00% -

-

 -

-

 -

- DenseNet201 709 4 100,00% 336:02 100,00% 100,00% 100,00% -

-

 -

-

 -

- SqueezeNet 68 4 99,50% 06:07 99,50% 99,51% 99,50% 0,00880

-

0,09350

-

0,00630

- Purposed Methods-

34 layer

34 4 100,00% 02:31 100,00% 100,00% 100,00% -

0,00880

 -

0,09350

-

0,00630 Purposed Methods-

18 layer

18 4 99,75% 01:54 99,75% 99,75% 99,75% 0,00250

-

0,05000

-

0,00250

-

Received: July 6, 2020. Revised: August 6, 2020. 535

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.46

4.8.2. Comparison of accuracy

In the accuracy stage, the comparison is made by

looking at the values of Precision, Recall, and F-1

measure, as shown in Fig. 18.

Comparisons are made to obtain differences in

the accuracy of the existing architecture with the

proposed layers. The accuracy comparison shows

that the classification results using 18-layers and 34-

layer structures can already meet the desired criteria.

It is related to the computational time needed in the

training process also does not take a long time. In the

18- purposed layer, it takes 9 minutes 6 seconds, and

in the 34-purposed layer, it takes only 2 minutes 30

seconds. It is supported by the results of the image

prediction and confusion matrix, which shows a

range between 99.5% to 98.8%. But keep in mind that

when the training process runs, the more convolution

layers, the tighter and the smaller the ripple factor

will be. When it gets closer, the prediction process is

more accurate but runs slowly. It means several

layers needed, but not less depending on the number

of convolution layer and dropout needed.

4.8.3. Comparison of classification errors

This research has three indicators used to identify

the errors, namely MSE, RMSE, and MAE. Error

comparison results show that the proposed method

has a minimum error between zero to 0.05. It can be

compared with the 68-layer squeezed. The purpose

has only 18 and 34 layers. Other comparisons can be

made by looking at the number of layers and

Figure. 18 Comparison of accuracy

Figure. 19 Comparison of MSE, RMSE, and MAE

computational time. Densenet 201 also has excellent

accuracy results, but the computational time required

is very high at around 5 hours. The comparison of the

training process shown in Fig. 19.

Densenet error results are too shallow. It given

the accuracy of the resulting densenet is almost equal

to the purposed method. But the purposed methods

need a training time of only about 2 minutes. Then

this research can be used as a reference for further

analysis.

4.8.4. Comparison of the training optimization

The fitting process of this research uses Bayesian

optimization to get the ideal value of momentum and

average initial learning. Optimizable The desired

variable to be a target is in the range of 0.8 to 0.95,

and the initial learning rate is in the range 1𝑥10−4 to

1𝑥10−2. Furthermore, the Bayes option used has a

Maxobj value of 10, which means a maximum of 10

re-training and a maximum of time 60 x 60, which

means no more than 3600 seconds. From the

comparison graph, it can be concluded that the

number of layers influences the convergence of

accuracy, which can be seen from the number of re-

training processes carried out. During the re-training

process, the objective function and minimum fair

values will be updated until the maximum actual

agreement is reached, the 10th training. When the

maximum amount is reached, the process will stop to

display the desired value of momentum and initial

learning.

Received: July 6, 2020. Revised: August 6, 2020. 536

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.46

Table 4. Total time to find the best point of

optimization

Figure. 20 Several re-training vs. total time

To get the ideal value of momentum and initial

learning rate to achieve stability, shown in Table 4.

Vgg19 and resnet101 have the smallest re-training

value, which means they have reasonably good

confidence by only doing 5-6 training to get the

benefit of optimization. However, the total time to

look for this value is longer than the purposed

methods ranging from 8-10 minutes. Intended plans

34 layers show the number of Re-training is less than

google net and densenet with computational time to

find the ideal value of momentum and learning rate

better, ranging from 1-5 minutes.

This method gets 60 minutes in a total time

comparable to the squeezenet with seven re-training

processes.

4.8.5. Comparison with another dataset

This research also tries to use the secondary data

DIBAS (Digital Image of Bacterial Species) dataset

[22]. There are 20 images divide into 250 images per

class. Klebsiella pneumonia replaced with Neisseria

gonorrhoeae because it was not available in this

current dataset. The author also compares the

proposed method using the Bird, Fruit, Animal, and

Fruit dataset from the Kaggle.com image dataset.

Each Class folder contains 400 images [23]. The

comparison has shown in Table 5.

Conclusion

This research has a GAP with previous research

in terms of saving computing time while maintaining

accuracy results. The novelty offered is the CNN

Custom layer, which is equipped with auto contrast,

transfer learning, data augmentation, and

optimization. The training data used amounted to

1000 data for four classes of Gram-negative bacteria.

Efficiency can be said to be good, using 18-34 layers.

The results of the accuracy and validation of the

training process are in the range of 95% to 99.8%,

with training process time starting from 2 minutes 30

seconds. Optimization with Bayesian Optimization

Models
No.of

layer

No.of Re-

training

Momen

tum

learning

Rate

time

(minute)

Alexnet 25 9 0,80389 0,000740 66,51

Googlenet 144 8 0,94422 0,000123 66,13

VGG16 41 5 0,90843 0,000505 71,66

VGG19 47 5 0,93668 0,000197 70,34

Resnet18 72 8 0,90001 0,000220 62,93

Resnet50 177 8 0,89737 0,000887 62,96

Resnet101 347 6 0,82034 0,000113 68,088

DenseNet201 709 6 0,94086 0,000144 62,35

SqueezeNet 68 8 0,80725 0,000204 60,87
purposed

methods
34 7 0,92302 0,000829 61,04

purposed

methods2
18 8 0,91461 0,000888 64,58

Table 5. Comparison with other dataset

No
Data

base

No.of

layer

Size of

image
Class

Training

Accuracy

Time

(Minute)
Precision Recall

F-1

Score
MSE RMSE MAE

1
DIBAS

Bacteria

34 [224 224 3] 4 99,88% 01:49 0,9988 0,9988 0,9988 0,0013 0,0354 0,0013

26 [224 224 3] 4 99,63% 01:50 0,9963 0,9963 0,9963 0,0075 0,0866 0,0050

2
Bird 34 [224 224 3] 4 99,61% 00:32 0,9961 0,9962 0,9961 0,0352 0,1875 0,0117

26 [224 224 3] 4 92,31% 00:30 0,9531 0,9578 0,9548 0,3398 0,5830 0,1211

3 Fruit
34 [224 224 3] 4 100,00% 05:56 1,0000 1,0000 1,0000 - - -

26 [224 224 3] 4 100,00% 03:10 1,0000 1,0000 1,0000 - - -

4 Animal
34 [224 224 3] 4 99,70% 03:13 0,9977 0,9977 0,9977 0,0047 0,0685 0,0031

26 [224 224 3] 4 100,00% 03:13 1,0000 1,0000 1,0000 - - -

5 Flower
34 [224 224 3] 4 98,67% 03:22 0,9867 0,9869 0,9868 0,0469 0,2165 0,0234

26 [224 224 3] 4 99,92% 03:34 0,9992 0,9992 0,9992 0.0070 0.0836 0.0023

Received: July 6, 2020. Revised: August 6, 2020. 537

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.46

gets momentum value at 0.92813, and the initial

learning level is 0.00022397. The best accuracy

errors were obtained at MSE 0.0025, RMSE 0.05, and

MAE 0.0025. The scientific contribution to this

research is saving training time when compared to the

existing architecture. Purposed 18-34 layer is

comparable to a 25-layer of the alexnet. However, the

computational time needed for the training process is

40-50% more efficient. In the data training process

without auto contrast, the ideal number of layers to

maintain accuracy stable is at 26-34 layers. The work

feature that can be done is comparing the parameters

used by layers in each CNN architecture.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, Budids, and Imam;

methodology, Budids, and Riries; software, Budids;

validation, Riries, and Eko; formal analysis, Eko;

investigation, Riries, and Imam; resources, Budids

and Eko; data curation, Budids, and Eko; writing—

original draft preparation, Budids, and Imam;

writing—review and editing, Imam and Riries;

visualization, Budids and Riries; supervision, Imam

and Eko; project administration, Imam; funding

acquisition, Imam and Riries.

Acknowledgments

The author would like to thank Dr. Soetomo

Surabaya hospital's microbiology laboratory for

providing the primary data of pneumonia patients.

This work supported by the Ministry of Research,

Technology and Higher Education, Grant 2020, with

contract number: 812 / UN3.14 / PT / 2020.

References

[1] S. Vieira, W. H. L. Pinaya, and A. Mechelli,

“Using deep learning to investigate the

neuroimaging correlates of psychiatric and

neurological disorders: Methods and

applications”, Neuroscience and Biobehavioral

Reviews, Vol. 74, pp. 58-75, 2017.

[2] A. P. Piotrowski, J. J. Napiorkowski, and A. E.

Piotrowska, “Impact of deep learning-based

dropout on shallow neural networks applied to

stream temperature modelling”, Earth-Science

Reviews, Vol. 201, pp. 103076, 2020.

[3] Smith, Kenneth, P. Kang, and Anthony,

“Automated Interpretation of Blood Culture

Gram Stains by Use of a Deep Convolutional

Neural Network”, Journal of Clinical

Microbiology, Vol. 56, No. 3, 2018.

[4] C. Bai, L. Huang, X. Pan, and J. Zheng,

“Optimization of deep convolutional neural

network for large scale image retrieval”,

Neurocomputing, Vol. 303, pp. 60-67, 2018.

 (a) (b) (c) (d)

Figure. 21 : (a) DIBAS data augmentation 1, (b) DIBAS data augmentation 2, (c) prediction 1, and (d) prediction 2

 (a) (b) (c) (d)

Figure. 22 : (a) animal data augmentation 1, (b) animal data augmentation 2, (c) prediction 1, and (d) prediction 2

Received: July 6, 2020. Revised: August 6, 2020. 538

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.46

[5] A. Darwish, D. Ezzat, and A. E. Hassanien, “An

optimized model based on convolutional neural

networks and orthogonal learning particle

swarm optimization algorithm for plant diseases

diagnosis”, Swarm and Evolutionary

Computation, Vol. 52, p. 100616, 2020.

[6] E. Jahani Heravi, H. Habibi Aghdam, and D.

Puig, “An optimized convolutional neural

network with bottleneck and spatial pyramid

pooling layers for classification of foods”,

Pattern Recognition Letters, Vol. 105, No, pp.

50-58, 2018.

[7] J. E. Sykes, “Chapter 36 - Gram-negative

Bacterial Infections”, In: Canine and Feline

Infectious Diseases, Saint Louis. W. B.

Saunders, pp. 355-363, 2014.

[8] T. M. Pham, M. Kretzschmar, X. Bertrand, and

M. Bootsma, “Tracking Pseudomonas

aeruginosa transmissions due to environmental

contamination after discharge in ICUs using

mathematical models”, PLOS Computational

Biology, Vol. 15, No. 8, p. e1006697, 2019.

[9] X. S. Yang, “8 - Neural networks and deep

learning”, In: Introduction to Algorithms for

Data Mining and Machine Learning, Academic

Press, pp. 139-161, 2019.

[10] A. J. E. Kell, D. L. K. Yamins, E. N. Shook, and

S. V. Norman-Haignere, “A Task-Optimized

Neural Network Replicates Human Auditory

Behavior, Predicts Brain Responses, and

Reveals a Cortical Processing Hierarchy”,

Neuron, Vol. 98, No. 3, pp. 630-644. e16, 2018.

[11] A. B. Risum and R. Bro, “Using deep learning

to evaluate peaks in chromatographic data”,

Talanta, Vol. 204, No, pp. 255-260, 2019.

[12] M. Svanera, M. Savardi, S. Benini, and A.

Signoroni, “Transfer learning of deep neural

network representations for fMRI decoding”,

Journal of Neuroscience Methods, Vol. 328, No,

p. 108319, 2019.

[13] S. Ma, T. Huang, S. Li, and J. Huang, “MCSM-

Wri: A Small-Scale Motion RecognitionMethod

Using WiFi Based on Multi-Scale

Convolutional Neural Network”, Sensors (Basel,

Switzerland), Vol. 19, No. 19, p. 4162, 2019.

[14] V. Suárez-Paniagua and I. Segura-Bedmar,

“Evaluation of pooling operations in

convolutional architectures for drug-drug

interaction extraction”, BMC bioinformatics, 19,

209 DOI: 10.1186/s12859-018-2195-1, 2018.

[15] L. Ying and L. Boqin, “Application of Transfer

Learning in Task Recommendation System”,

Procedia Engineering, Vol. 174, pp. 518-523,

2017.

[16] H. Tercan, A. Guajardo, J. Heinisch, T. Thiele,

“Transfer-Learning: Bridging the Gap between

Real and Simulation Data for Machine Learning

in Injection Molding”, Procedia CIRP, Vol. 72,

pp. 185-190, 2018.

[17] H. H. Zhuo and Q. Yang, “Action-model

acquisition for planning via transfer learning”,

Artificial Intelligence, Vol. 212, pp. 80-103,

2014.

[18] S. M. Salaken, A. Khosravi, T. Nguyen, and S.

Nahavandi, “Extreme learning machine based

transfer learning algorithms: A survey”,

Neurocomputing, Vol. 267, pp. 516-524, 2017.

[19] D. Han, Q. Liu, and W. Fan, “A new image

classification method using CNN transfer

learning and web data augmentation”, Expert

Systems with Applications, Vol. 95, pp. 43-56,

2018.

[20] V. Kotu and B. Deshpande. “Chapter 8 - Model

Evaluation”, In: Data Science (Second Edition),

Morgan Kaufmann, pp. 263-279, 2019.

[21] H. Chen, Q. Dou, L. Yu, and J. Qin. “Chapter 6

- Deep Cascaded Networks for Sparsely

Distributed Object Detection from Medical

Images”, In: Deep Learning for Medical Image

Analysis, Academic Press, pp. 133-154, 2017.

[22] B. Zieliński, A. Plichta, K. Misztal, and P.

Spurek, “Deep learning approach to bacterial

colony classification”, PLOS ONE, Vol. 12, No.

9, pp. 1-14, 2017.

[23] D. Thi Phuong Chung and D. Van Tai, “A fruits

recognition system based on a modern deep

learning technique”, In: Proc. of Journal of

Physics: Conf. Series, Vol. 1327, p. 012050,

2019.

