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Abstract: One of the newest methods used in image classification is the Convolutional Neural Network. This method 

uses a large number of hidden layers to process data so that the resulting accuracy is excellent. However, this affects 

the time of the training process used. The selection of suitable architecture also determines the results of the 

classification. In this research, the author tries to reduce computational time by reducing the number of layers and 

using optimization. Transfer learning helps in the preparation of models using pre-trained data before, while data 

augmentation increases data variation. Bayesian optimization helps to find out momentum values and initial learning 

rate. The data source of this research is the primary image of Gram-negative bacteria from pneumonia patients. Data 

was collected at Dr. Soetomo's Microbiology Laboratory in Surabaya, Indonesia. Data distribution includes training, 

validation, and testing divided by percentage and proportional distribution of the number of files. This research used 

four classes of Gram-negative bacteria with a total of 1,000 images. An experimental comparison was made with a 

comparison of the Convolutional Neural Network architecture. The test results show an increase in accuracy by using 

aiming layers 26-34, having an accuracy range of 99.5% to 99.8%. The computational time required for the training 

process is around 2 minutes 30 seconds, with a momentum value of 0.92813 and an initial learning level of 0,00022397. 

The best accuracy errors were obtained at MSE 0.0025, RMSE 0.05, and MAE 0.0025. 

Keywords: Gram-negative bacteria, Convolutional neural network, Transfer Learning, Data augmentation, Bayes 

optimization. 

 

 

1. Introduction 

Today, the use of machine learning is to solve 

problems both in the field of information systems and 

public health. One application is pattern recognition. 

It is due to the ability of the image identification 

process. One of the most recent methods of machine 

learning is Convolutional Neural Network (CNN). 

This method is believed to be able to recognize 

patterns because it has deep learning abilities [1]. If, 

in the previous machine learning method, the 

parameter determination is done by the user, then in 

this method, the parameters are carried out by the 

learning process on CNN. It also results in the 

possibility of overfitting or too many parameters in 

the neural network used [2]. 

To overcome this has been done, there are several 

studies conducted by researchers. Among the studies 

conducted by Kenneth P. Smith, 2017 do research in 

the Convolutional Neural Network method is used to 

classify bacterial images collected from 189 glass 

objects. The observation process is carried out 

without human intervention. The research has a 

sensitivity of 98.4% and specificity 75.0% for Gram-

positive coccus bacteria in the form of paired chain 

colonies. The Gram-positive cocci in a single group 

had 93.2% and 97.2%. The rest were Gram-negative 
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rod groups with sensitivity and specificity 96.3% and 

98.1% [3]. CongBai pad 2018 tries to optimize the 

Alexnet architecture by looking at three criteria. 

Optimize the convolution layer, modify the fully 

connected and reconstruction of the hidden layer. The 

pooling layer replaces with the max-average Pooling 

layer. It is a non-linear activation function. A fully 

connected layer uses Maxout means desire output. 

The goal is to get better feature maps. A hidden 

segment is added to map the high-dimensional 

features into binary code [4].  

Ashraf Darwish's research in 2019, used CNN 

with orthogonal learning particle optimization 

(OLPSO) algorithm. The goal is to find the optimal 

value of hyperparameter classification [5]. Elnaz 

Jahani Harav in 2018 proposed a 23-layer 

architecture that has an accuracy of 99.14% and 

96.63%. This figure is slightly better compared to 

ResNet and GoogleNet. Food101 and UECFood-256 

are the datasets used for testing. The results are better 

than GoogleNet. Another comparison of accuracy 

results similar to ResNet. Its is shows that when the 

number of layers decreases, the amount number of 

parameters used also reduces dramatically [6]. 

The purpose of this research is to assist visual 

observations that are still needed in hospital 

microbiology laboratories. The choice of 

convolutional neural networks is based on data 

objects that are processed in the form of images and 

is the latest identification research method currently 

being developed. This method has deep learning 

about the object being observed and has high 

accuracy. The disadvantage is that in some 

architectures, the computational time for the training 

process is still quite high. GAP, with previous 

research, is saving computing time while maintaining 

accuracy. The novelty offered is the Custom 

convolutional layer that is equipped with auto 

contrast, transfer learning, data augmentation, and 

optimization. The study also added data 

augmentation methods to overcome the limited 

amount of data and the use of Bayes optimization 

techniques to obtain ideal parameters during the 

training process. 

2. Related work 

This section discusses similar work about Gram 

negative-bacteria classification, convolutional neural 

network, transfer learning, auto contrast image, data 

augmentation, Bayes optimization, accuracy, and 

objective function. 

2.1 Gram-negative bacteria classification 

This germ can cause diseases such as pneumonia, 

meningitis, gonorrhea, bacterial dysentery, cholera, 

gastritis. The unique shape of their cellular envelopes 

provides virulence and protection from various 

chemicals. It is still a big challenge for modern 

doctors and scientists in connection with these 

cellular mechanisms and mitigating the impact of 

these resistance properties [7]. Biology laboratories 

use visual observations to research this.  

Examples of Gram-negative bacteria are 

Acinetobacter, Pseudomonas aerugenusa, klebsiella 

pneumonia, and Escherichia Colli. Pseudomonas 

aerugenusa is a bacterium that has innovative and 

oxygenic properties. It can cause infection in patients 

with a decrease in endurance and become an essential 

nosocomial pathogen. The Gram-negative bacteria 

are shown in Fig. 1. 

There are several steps taken by laboratory staff 

to identify Gram-negative bacteria: 

1. Prepare samples taken from the sputum of the 

patient by taking into account the inclusion 

criteria, namely pneumonia patients 

2. Taking samples to be tested for pathogenicity 

using the Phoenix machine. Testing using 

biochemical methods. 

3. If the sample is purely pathogenic, then a sample 

is taken to be cultured on McConkey media and 

incubated with freezer temperature for 12-18 

hours. 

4. Bacterial colonies are formed during the 

incubation process. Each was given a patient id, 

name, suspect, category of bacteria and 

resistance 

5. Taking samples of culture results in glass objects 

to be observed in a microscope with the help of 

immersion oil [8].   

2.2 Convolutional neural network to classify 

gram-negative bacteria 

In general, the process of identifying bacteria using 

image processing is carried out according to the 

stages shown in Fig. 2. Beginning with preparing the 

bacterial database from which the data acquisition 

process is needed.  

In the Convolutional neural network (CNN) 

block, there are several main layers, including the 

Conventional Vocational Layer, Pooling layer, 

Normalization layer, Softmax, and fully connected 

layer. Some existing architectures use the Directed 

Acyclic Graph (DAG) network to ease performance 

[9]. 
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Figure. 1 Gram-negative bacteria 
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Figure. 2 Bacteria classification 

2.2.1. Convolutional layer 

Convolution can be generalized to several 

dimensions, where the features matrix of 𝑓 (image) 

and 𝑔 (filter) defined in the 𝑡 set of integers. With 

two input dimensions 𝑓(𝑐, 𝑑), for example, models 

with width and height coordinates 𝑐  and 𝑑 . The 

output of convolution ℎ[𝑐, 𝑑] can be written in analog 

Eq. (1) and discrete Eq. (2). 

 

ℎ(𝑐, 𝑑) = ∫ ∫ 𝑓(𝑝, 𝑞)𝑔(𝑐 − 𝑝, 𝑑 − 𝑞)𝑑𝑝𝑑𝑞
∞

−∞

∞

−∞
   

(1) 

 

ℎ[𝑐, 𝑑] = ∑ ∑ 𝑓[𝑝, 𝑞]𝑔[𝑐 − 𝑝, 𝑑 − 𝑞]𝑞𝑝        (2) 

 

Parameters that adjusted in the convolutional layer 

include the size of the kernel. It is called the filter size. 

The zero paddings (P) magnitude generally fits so 

that the spatial The desired output dimension has the 

same spatial input size dimensions (𝑃 =  𝐹 − 1/2) 

with 𝐹 = 𝐹𝑖𝑙𝑡𝑒𝑟 [10]. 

2.2.2. Normalization and rectifier linear unit 

This layer normalizes input features through 

batch dimensions written in Eq. (3) and Eq. (4). 

 

𝜇𝑗 =
1

𝑚
∑ 𝑥𝑖𝑗

𝑚
𝑖=1  and 𝜎𝑗

2 =
1

𝑚
∑ (𝑥𝑖𝑗 − 𝜇𝑗)2𝑚

𝑖=1     

(3) 

 

𝑥𝑖𝑗 =
𝑥𝑖𝑗−𝜇𝑗

√𝜎𝑗
2+𝜖

                                 (4) 

 

With 𝑥𝑖𝑗 =elementh input. 𝜇𝑗 =mean of input. 𝜎𝑗 = 

Standart deviation. The output of the Rectifier Linear 

Unit is ƒ(ℎ) =  𝑚𝑎𝑥 (0, ℎ)  [11]. Network studies 

non-linear values. ReLu formula written in Eq. (5) 

 

 𝑅𝑒𝐿𝑢(ℎ) = {
0 𝑖𝑓 ℎ < 0
𝑥 𝑖𝑓 ℎ ≥ 0

                    (5) 

 

The Rectifier Unit (ReLu) will have an output value 

of 0 if the input is less than 0, but the output will be 

in the form of raw data if other than zero. That is, if 

the information is greater than 0, the production is the 

same as the input [12]. 

2.2.3. Pooling layer 

The tool used to ensure the invariance of output 

𝑦 is the Pooling Layer. It used in combination with a 

convolutional layer. Network output after the pooling 

layer written in Eq. (6) [13].  

 

𝑛𝑜𝑢𝑡 =
𝑛𝑖𝑛+2𝑃−𝐹

𝑆
+ 1                      (6) 

 

With 𝑛𝑖𝑛 =Length or High of Input, 𝐹 =Length or 

Height of Filter, 𝑃 =Zero Padding, 𝑆 =Stride. The 

Pooling operation calculates a statistical summary of 

the nearest information using an arithmetic function 

[14]. 

2.3 Transfer learning 

Technique or method that uses a model that 

previously trained in the dataset. If there are more 𝑇1 

assignment data, features, and weights, carry out 𝑇2 

assignments that have fewer data. [15]. Domain 𝐷 is 

a two-element matrix that has marginal probability 

𝑃 (𝛸) and a feature space (fs) [16]. The negligible 

probability was written in Eq. (7)  

 

𝑃 (𝛸) 𝑤𝑖𝑡ℎ 𝑋 = {𝑥1, … , 𝑥𝑛 }, 𝑥𝑛 ∈ fs           (7) 

 

Here 𝑥𝑖  represents a particular vector. Task 𝑇 

explained as two tuple elements of the label space 
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( 𝑙𝑠) , and the objective function, 𝜂 . The objective 

function described as 𝑃 (𝑙𝑠 | 𝛸) from a probabilistic 

point of view. [17]. 𝑌 = {𝑦1, … , 𝑦𝑛}, with 𝑦𝑖 ∈ 𝑙𝑠. 
The predictive function 𝜂 learned from the feature 

vector relationship (𝑥𝑖, 𝑦𝑖)  where 𝑥𝑖𝜖𝑓𝑠, 𝑦𝑖𝜖𝑙𝑠. For 

each feature in the domain, 𝜂 makes the appropriate 

label prediction 𝜂(𝑥𝑖) = 𝑦𝑖  [18]. Task wrote in Eq. 

(8) 

 

𝑇 = {𝑙𝑠, 𝑃(𝑌|𝑋)}  =  {𝑙𝑠, 𝜂}                  (8)  

 

Given the source domain 𝐷𝑠  which 

accommodates the 𝑇𝑠 task source, as the 𝐷𝑇 domain 

target and the 𝜏𝑇  task target. The gain information 

gives from 𝐷𝑠 and 𝑇𝑠 where 𝐷𝑠 ≠ 𝑇𝑠 or 𝜏𝑠 ≠ 𝜏𝑇. [19]. 

2.4 Bayes optimization 

All Bayesian Optimization is a step to build a 

probability model using an objective function. Bayes 

Probability wrote in Eq. (9) 

 

 𝑝(𝑚|𝑛) =
𝑝(𝑚|𝑛)∗𝑝(𝑛)

𝑝(𝑚)
                          (9) 

 

With 𝑝(𝑚|𝑛) = probability hyperparameter that 

assesses the objective function. The output value can 

be written in Eq. (10). 

 

𝑝(𝑎|𝑏) = {
𝑙(𝑎) 𝑖𝑓 𝑏 < 𝑏∗

𝑔(𝑎) 𝑖𝑓 𝑏 ≥ 𝑏∗                (10) 

 

Value of 𝑏 < 𝑏∗  Shows the lower cost of the 

objective function of the threshold, labeled 𝑙 (𝑎), and 

if it is larger, then it is labeled 𝑔(𝑎). 

2.5 . Accuracy 

The output of accuracy is a percentage 

comparison between the actual condition of the data 

and the results of predictions. TrP = True-Positive, 

TrN = True-Negative. It is written in Eq. (11). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑃

𝑇𝑟𝑃+𝐹𝑎𝑃
   𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑟𝑃

𝑇𝑟𝑃+𝐹𝑎𝑁
(11) 

 

Precision is a percentage ratio of correct positive 

predictions compared to the overall positive 

predicted results. Recall (Sensitivity) is a correct 

positive prediction ratio compared to whole accurate 

positive data. The F1 Score is written in Eq. (12) [20]. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑥(𝑅𝑒𝑐𝑎𝑙𝑙𝑥𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛
             (12) 

2.6 An objective function on the CNN model 

This function trains the model to be used using 

the stochastic gradient descent to make the objective 

loss function minimal. CrossLoss purpose (𝑠) 

written in Eq. (13) 

 

𝐿𝑜𝑠𝑠 =
1

𝑁
∑ (− log(𝑜𝑢𝑡𝑠[𝑚]))𝑠∈𝑆             (13) 

 

Where 𝑆 is a collection of positions, 𝑁 is the number 

of places of 𝑜𝑢𝑡𝑠[𝑚] . It is the output value 

(Probability value) of node 𝑚 at position s [21]. 

3. Methodology 

The steps proposed to make improvements are 

shown in the Block diagram. This research uses 

primary data because secondary data are not available 

on the internet. This research used four types of Gram 

harmful bacteria shown in Fig. 3. 

This research was carried out on Intel Core i-7 

Laptop hardware with 8GB of RAM equipped with a 
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Figure. 3 Research methodology 
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single GPU 4GB Nvidia GTX1050 Graphic 

Processing Unit. The software used is Matlab 2019a. 

3.1 Data collection methods 

Gram-negative bacteria image is taken from the 

Dr. Soetomo Hospital, Surabaya. For the period 

August 2018-August 2019 in the Microbiology 

Laboratory. The data used are primary data taken 

from 50 patients who were exposed to pneumonia 

with invitro criteria caused by Gram-negative 

bacteria. The size of the image produced by Optilab 

View is 2560x2048, with 96 dpi and 24-bit depth. 

The Lens magnification used 1000x magnification 

includes 10x the eyepiece and 100x the objective lens. 

The complete dataset used in the training folder 

shown in Table 1. 

There are three folder setups, including training, 

validation, and test. The image divided function, 

namely datastore in MatLab. It is separated using 

several pictures and percentage portion. 

3.2 Research steps 

The research steps are explained as follows: 

3.2.1. Preparation of data 

Observation data is not used immediately because 

the sharpness level of the image should be improved 

at the beginning. In this research, auto contrast is used, 

the goal being that foreground and background 

appear more dominant. Auto Contrast formula 

computes the locally normalized luminescence via 

local mean subtraction and divides it by the local 

deviation. It is written in Eq. (13) 

 

𝐼(𝑚, 𝑛) =
𝐼(𝑚,𝑛)−𝜇(𝑚,𝑛)

𝜎(𝑚,𝑛)+𝐶
                 (13) 

 

𝐼(𝑚, 𝑛) Normalized luminance, 𝜇(𝑚, 𝑛) =contrast 

normalization coefficient. 

Suppose 𝐼(𝑚, 𝑛) domain is [0, 255], then C=1. If 

the field is [0, 1], then C=1/255. Mean value written 

in Eq. (14) 

 

𝜇(𝑚, 𝑛) = ∑ ∑ 𝑤𝑘,𝑙𝐼𝑘,𝑙(𝑚, 𝑛)𝐿
𝑙=−𝐿

𝐾
𝑘=−𝐾        (14) 

 
Table 1. Dataset detail in training folder 

No Bacterial name Dimension No. of 

images 

1 Acinetobacter [224 224 3] 250 

2 P. Aerugenusa [224 224 3] 250 

3 Eschericia Colli [224 224 3] 250 

4 Klebsiella [224 224 3] 250 

  Total images 1000 

 

To calculate the locally normalized luminescence, 

also known as mean subtracted contrast normalized 

(MSCN) coefficients. It is estimated the local mean. 

Within 𝑤 is a Gaussian kernel of size (K, L) in Eq. 

(15) 

 

𝜎(𝑚, 𝑛) =                                                                  

√∑ ∑ 𝑤𝑘,𝑙(𝐼𝑘,𝑙(𝑚, 𝑛) − 𝜇(𝑚, 𝑛))𝐿
𝑙=−𝐿

𝐾
𝑘=−𝐾  (15) 

3.2.2. Transfer learning 

Dataset creation to ensure the input layer accepts 

224x224x3 image size. Split the sets of images into 

training and testing data. There are three primary data, 

including train, testing, and validation. Split can be 

done with a datastore image by dividing the portion 

of data using a randomized. Transfer Learning 

conducts pre-trained initials, opens the final layer 

fully connected, conducts training using new data, 

and ends by predicting and assessing network 

accuracy. The process is shown in Fig. 4. 

Transfer learning cut the connection from google 

layer loss3-classifier that described as a Fully 

connected layer. After that proposed method connect 

'pool5-drop_7x7_s1 transfer it into layer that usage in 

the output layer to get a new model.  

The use of the number of layers affects overfitting. 

But keep in mind also that the more layers of learning 

get deeper and computing time increases. It is taken 

into consideration when preparing the proposed sheet, 

as shown in Fig. 5. 
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Figure. 4 Transfer learning 
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Figure. 5 Purposed layer CNN 

 

At the convolution stage, a repetitive process is 

carried out with different dimensions of the image 

size so that the learning process is carried out more 

intensely. In the convolution layer, it takes several 

iterations between four to five times with different 

image dimensions so that the results of Feature maps 

become smoother. It affects the resulting accuracy. It 

refers to formula (3) that resume Neuron output will 

depend on the length and with of the input dimension, 

size of the filter, amount of padding, and several 

strides. The variation of this hidden layer will give 

feature maps and accuracy to become smooth. 

3.2.3. Data augmentation 

Data augmentation works by changing or 

modifying images so that the computer will detect 

that the modified model is a different image. But 

humans can still know that the modified image is the 

same picture. Rotation methods are written in Eq. 

(16). 

 

𝐴 = (
cos 𝜃 −𝑠𝑖𝑛𝜃
sin 𝜃 cos 𝜃

)                       (16) 

 

Where 𝜃  is between 10 and 175 degrees, 

augmentation can improve the availability of the data 

that trained by CNN. The Scaling are 𝑥, 𝑦  with a 

direction shown in Eq. (17) 

 

𝐴 = (
𝑠𝑥 0
0 𝑠𝑦

)                           (17) 

 

By enlargement, the model gets additional data that 

can be useful for making models that can generalize 

better. Shears methods can do using Affine 

transformation shown in Eq. (18) 

 

𝐴 = (
1 𝑠
0 1

)                          (18) 

 

𝑠 defines the amount that 𝐼(𝑖𝑚𝑎𝑔𝑒) is sheared, and it 

is in the range of [0.1, 0.35]. Development performed 

in this research is to reverse the image horizontally, 

zoom in randomly, with a maximum zoom of 50% of 

the image size, and also rotate pictures randomly with 

a maximum degree of 90𝑜  

3.2.4. Bayesian optimization 

The Bayesian optimization approach is to use a 

Gaussian distribution. It makes this optimization 

better manage hyperparameter because hyperspace 

searching becomes more efficient, so the training 

process steps are less. The critical elements in the 

minimization using the Bayesian Optimization step. 

Firstly, The Bayesian procedure modifies the 

Gaussian process model for each new evaluation 

𝑓 (𝑥). Furthermore, the acquisition function 𝑎𝑞 (𝑥) 

will maximize to determine the next x point of 

evaluation. 'expected-improvement (EI),' which is the 

acquisition function, evaluates the number of 

expected improvements in the objective function. 

The form is shown in Eq. (19) 

 

𝐸𝐼(𝑥, 𝑄) = 𝐸𝑄[max (0, 𝜇𝑄(𝑥𝑏𝑒𝑠𝑡) − 𝑓(𝑥))]    (19) 

 

With 𝑥𝑏𝑒𝑠𝑡  = the location of the lowest posterior. 

𝜇𝑄(𝑥𝑏𝑒𝑠𝑡)  The means of the lowest value of the 

posterior. Bayes optimization first calculates 𝑥𝑏𝑒𝑠𝑡  

and 𝜇𝑄(𝑥𝑏𝑒𝑠𝑡). Bayes optimization uses probability-

of-improvement (PI) by calculating the value of the 

new point x probability, which leads to better 

objective function values. Modified by the QA 

parameter "margin." The Formula PI has written in 

Eq. (20) 
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Network ?

Lgraph=layerGraph(net)

Layers (end-2) fully 

connected, name ‘fc8’

DAG Network

Series Network

Layers (end) fully connected, 

name ‘myNewClassifier’

New layers fully connected 

with weight and bias learn 

factor 20

Add new layers into lgraph

Connect layers 

Training option

Best Point: Momentum, 

Initial learning rate

Optimizable variable, max 

obj 10, max time 60*60

 
Figure. 6 Bayesian optimization 

 

𝑃𝐼(𝑥, 𝑄) = 𝑃𝑄(𝑓(𝑥) < 𝜇𝑄(𝑥𝑏𝑒𝑠𝑡) − 𝑚)   (20) 

 

Bayes optimization takes 𝑚 as the estimated noise 

standard deviation. The process is shown in Fig. 6. 

 

Bayesopt evaluates this probability, as written in Eq. 

(21) 

 

𝑃𝐼 = Φ(𝑣𝑄(𝑥))                      (21) 

 

With 𝑣𝑄(𝑥) written in Eq. (22) 

 

𝑣𝑄(𝑥) =
𝜇𝑄(𝑥𝑏𝑒𝑠𝑡)−𝑚−𝜇𝑄(𝑥)

𝜎𝑄(𝑥)
             (22) 

 

Φ(∙)  = the unit normal cumulative distribution 

function CDF. The notation 𝜎𝑄  = deviation of the 

Gaussian process, which is at position x. The Low 

Confidence Limit is obtained by looking at the 

function on the G curve. It has two standard 

deviations below the posterior average at each point 

written in Eq. (23) 

 

𝐺(𝑥) = 𝜇𝑄(𝑥) − 2𝜎𝑄(𝑥)                    (23) 

 

𝐺(𝑥) is the 2𝜎𝑄(𝑥) of the confidence envelope of the 

objective function model. The Bayes then maximizes 

the negative of G  using Lower Confidence Bound 

(LCB) in Eq. (24) 

𝐿𝐶𝐵 = 2𝜎𝑄(𝑥) − 𝜇𝑄(𝑥)                    (24) 

 

The stochastic gradient can be used in the objective 

function of the CNN model to make the objective loss 

function to a minimum. In cross-entropy, hidden 

layer neurons in movable and bound positions (𝑠, 𝑚) 

of the CrossLoss purpose (s) written in Eq. (25) 

 

𝐿𝑜𝑠𝑠 =
1

𝑁
∑ (− log(𝑜𝑢𝑡𝑠[𝑚]))𝑠∈𝑆           (25) 

 

N = the number of places, S = a collection of positions. 

𝑜𝑢𝑡𝑠[𝑚] = output value from the probability of node 

m at position s [21]. Typically, the class with 

maximum likelihood is chosen when deciding. 

3.2.5. Error calculation 

Errors in the classification process can also be 

seen from Mean Square Error (MSE), Root Mean 

Square Error (RMSE), and the Mean Absolute Error 

(MAE). The three of them calculate misclassification 

using the difference between an actual label condition 

and a prediction label result written in Eq. (26) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁𝑑
∑ (𝑦𝑘 − �̂�𝑘)2𝑁𝑑

𝑘=1                  (26) 

 

where 𝑁𝑑  = number of data, 𝑦𝑘  = actual label, �̂�𝑘 = 

prediction label. While Mean Absolute Error (MAE) 

written in Eq. (27) 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑗 − �̂�𝑗|𝑛

𝑗=1                      (27) 

 

With the absolute value of the difference, predicted 

results could be used. [20]. 

4. Result and discussion 

In this section, this research emphasizes the use 

of CNN. The proposed method is to use a sufficient 

number of layers. The dataset used is a negative gram 

bacterial image obtained from primary data on 

pneumonia patients. The data size of images used 

224x224 pixels, 96 dpi, and 24-bit depth (three 

channels). Data is processed with a single GPU 

GTX1050 4GB.  

4.1 Pre-processing 

The initial process before entering the input layer 

is to divide the image into three folders. These folders 

are train, validation, and testing. Each folder is filled 

with four bacterial image subfolders, namely, GNB 

Acinetobacter, GNB Aerugenusa, GNB Escherichia 

Colli, and GNB Klebsiella.  
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Figure. 7 bacteria Visualization in each folder 

 

The bacterial database to be used is shown in the 

input layer, as shown in Fig. 7. In the train subfolder, 

250 images are used so that the entire train folder 

contains 1000 images of bacteria. 

4.2 Features map layer 

A visualization feature layer can be taken on the 

segment that has a filter and weight. It can be seen in 

Fig. 8.  

Convolutional layers and combined layers are 

part of a Feature Extraction. The feature extraction 

layer dimension is a 5x5x3 convolutional layer. This 

layer has a length of five pixels with a height of five 

pixels and a depth of three corresponding to the 

image channel. An activation map or feature map 

works with shift operation that works using "point" 

operations between input and screen values to 

produce output. 

 

Figure. 8 Filter Visualization: (a) res2a_branch2b, (b) 

res3b_branch2b, (c) bn5a_branch2b, and (d) 

res5b_branch2b 

 

4.3 Data augmentation 

Methods to increase the amount of variation in 

training data, augmentation techniques are used. 

Additions made are scaling, rotation, shear, and 

reflection. The Scale formula is shown in Eq. (28) 

 

𝐴 = (
𝑠𝑥 0
0 𝑠𝑦

)                             (28) 

 

𝐴  = Scaling matrix with the x or y-direction. The 

augmentation result is shown in Fig. 9. 

Another technique uses for data augmentation is 

rotation. Each image 𝐼 is rotated, represented by the 

following affine transformation. It is shown in Eq. 

(29) 

 

𝐴 = (
cos 𝜃 −𝑠𝑖𝑛𝜃
sin 𝜃 cos 𝜃

)                       (29) 

 

While 𝜃 is the degree, the value is between 10 and 

175 degrees. The result is shown in Fig. 10. 

Shears: Each image 𝐼 is sheared, represented by 

the following affine transformation written in Eq. 

(30) 

 

 𝐴 = (
1 𝑠
0 1

)                       (30) 

 

Figure. 9 Augmentation: (a) scaling and (b) rotation 

 

Figure. 10 Augmentation: (a) shears and (b) reflection 

      
(a)                                    (b) 

 

      
(c)                                     (d) 

             
    (a)                                      (b) 

                   
(a)                                                 (b) 
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Figure. 11 Training process 

 

4.4 Training process 

The training process is run on 100 iterations with 

30 epochs. Training can run well if we also use 

validation data. Several training optimizers can be 

used, including adaptive moment estimation (adam), 

Stochastic Gradient Descent with momentum (sgdm), 

and root means Square propagation (rmsprop). The 

training process setting is InitialLearnRate value of 

0.001. MaxEpochs used is 30 with 100 iterations, 

Shuffle on each epoch, Using Validation Data with 

Validation Frequency 30. "verbose" to get the text 

train is made pure to compare the response of the 

signal. The Training progress results of accuracy 

approaching 99.8% seen in Fig. 11.  

This optimization is needed so that the optimal 

process training results. The comparison between the  

 
Table 2. Training with optimizer 

Custom 

Layer 
Optimizer 

Training 

Accuracy 

Time-

consuming 

(minute) 

18 layer 

Adam 99,70% 1,50  

SGDM 99,40% 1,32  

rmsprop 98,35% 2,12  

26 layer 

Adam 97,90% 3,75  

SGDM 97,45% 1,88  

rmsprop 95,05% 1,87  

34 layer 

Adam 100,00% 1,80  

SGDM 93,40% 1,18  

rmsprop 100,00% 1,15  

training optimizer shown in Table 2. This table 

indicates that Adam became the most stable 

optimizer with the best accuracy and lowest 

computing time when custom using 18 layers and 34 

layers.  

4.5 Prediction after transfer learning 

Transfer learning helps the new model training 

process become faster to converge. It can be seen 

from the prediction process produced after the merger 

of the initial model with the results of the training 

process model. The prediction is shown in Fig. 12. By 

taking sample images in the test data to do the test. 

The step is to get the value of YPred from the results 

of the validation data training. The YValidation value  

 

 
Figure. 12 Prediction result 
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is obtained from the label in the validation data. The 

accuracy calculation in the prediction process is done 

by getting the similarity value or similarity label to 

the amount of validation data used. 

CNN predicts Klebsiella with a score of 100% 

and 76.5%. Escherichia Colli's prediction results are 

99.9% and Acinetobacter 100%.  

4.6 Confusion matrix 

The classification results from training data 

define into the matrix. The confusion matrix 

calculates the difference of actual data with the 

prediction of data where the aim is to calculate the 

output class error. The evaluation is to compare the 

output class, which is not appropriate. Confusion 

matrix four types of bacteria shown in Fig. 13.  

4.7 Bayes optimization 

Bayesian optimization is done to get the optimum 

value of momentum and Initial learning rate after the 

fitting process. The training process will be repeated 

until the desired amount is met. Fig. 14 shows the 

results of the objective function. 

In addition to establishing an objective function 

model, Bayes Optimization will calculate the 

 

 
Figure. 13 Confusion matrix 

 

 
Figure. 14 Objective function model 

Maximum Likelihood (MLE). It runs training on 

Convolutional neural networks using a framework to 

select loss functions. It is shown in Eq. (31) 

 

𝜃𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝑙𝑜𝑔 ∏ 𝑝(𝑦𝑖|𝑥𝑖 , 𝜃)

𝑁

𝑖=1

 

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 ∑ log 𝑝(𝑦𝑖|𝑥𝑖, 𝜃)𝑁
𝑖=1          (31) 

 

Where 𝑝 (𝑌 | 𝑋, 𝜃) represents the probability of an 

actual label on the training data, if the value of 

𝑝 (𝑌 | 𝑋, 𝜃)  is 1, this shows that the model can 

describe the correct label. If a data train (𝑋, 𝑌)  is 

provided consisting of connected N observations, the 

likelihood of the data train can be written as the sum 

of log probabilities. The two main types of loss 

functions are the mean squared error (𝑀𝑆𝐸) and the 

Cross-entropy model. The MSE has written in Eq. 

(32) 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̃�𝑖)2𝑛

𝑖=1                 (32) 

 

with 𝑀𝑆𝐸 =  𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 , n=number of 

data, 𝑦𝑖 =actual data and �̃�𝑖 =prediction data. CE or 

Cross entropy can be written in Eq. (33) 

 

𝐶𝐸(𝑝, 𝑞) = − ∑ 𝑝(𝑥) log 𝑞(𝑥)𝑥            (33) 

 

Where p = ground truth and q = network output. The 

candidate solution for optimization is done by 

selecting a series of weights called the objective 

function. Convolutional neural networks choose the 

right Loss function to overcome predictive modeling 

problems.  

Fig. 15 shows that the third to seventh evaluation 

functions show the same minimum objective value, 

which means that at that point, the best momentum 

and initial learning rate results are obtained to obtain 

optimal results. 

 

 
Figure. 15 Comparison of minimum objectives against 

the number of evaluation functions 
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Figure. 16 Momentum and Initial learning rate 

 

The maximum likelihood selection finds the 

optimal value for the parameter.  Momentum 

parameters prevent the system from converging to the 

local minimum and serve to stabilize the learning 

process, as well as the learning rate parameter to 

accelerate the pace of learning as written in Eq. (34) 

 

𝑤 ≔ 𝑤 − 𝜂∇𝑄𝑖(𝑤) + 𝛼∆𝑤                (34) 

 

𝑤 =parameter which minimize 𝑄𝑖(𝑤) , 𝜂  =learning 

rate, 𝛼 =decay factor (0<  𝛼 < 1) , "Coefficient of 

Momentum," which is the percentage of the gradient, 

retained every iteration. The result of momentum for 

this current research shown in Fig. 16. 

4.8 Comparison between CNN methods 

Table 3 compares the performance of each 

architecture in CNN to classify Gram-negative 

bacteria. There are four class data of bacteria, namely 

Acinetobacter, pseudomonas aerugenusa, 

Escherichia Colli, and Klebsiella pneumonia. Several 

parameters to compare those become indicators are 

the number of layers used by CNN, Number of output 

Class, Training accuracy, time consumes in the 

training process, Precision, Recall, and F-1 Score. 

Another error parameter used to compare is MSE, 

RMSE, and MAE. The results of the comparison 

show that the purposed method has the specifications 

of the number of layers, the accuracy of the training 

results is above 99.88%, and the time spent on the 

training process ranges around 2 minutes. 

4.8.1. The layers vs. time-consuming 

The use of layers is intended to increase accuracy 

sensitivity. The more significant number of layers, 

the higher the accuracy value. But the consequences 

are the time used is getting longer. 

Fig. 17 shows that Densenet 201 has the highest 

number of layers, 709 layers. This large number of 

layers affects the computational time needed, which 

reaches 335 minutes 2 seconds, which means about 

5.6 hours to conduct training data. Purposed layers 

are using 34 and 18 segments. In the comparison 

graph, the results of the time consumption required 

for the process show that the more layers are used, the 

more time consuming it is needed. During the 

training process, learning is done deeper. It can be 

observed from the beginning of the process that with 

a multi-layer architecture, the initial training shows a 

lot of ripple or fluctuation. Still, in line with the 

training process, the ripple decreases because the 

network will continue to learn. The process will take 

a long time, but the resulting accuracy can always be 

maximized. 

 

 
Figure. 17 Number of layer vs. time-consuming 

 

Table 3. CNN Comparison 

Models 
No.of 

layer 
Class 

Training 

Accuracy 

Time 

(minute) 
Precision   Recall  

 F-1 

Score  
MSE RMSE MAE 

Alexnet 25 4 99,75% 05:26 99,75% 99,75% 99,75% 0,00630          

0,00630  

0,07910          

0,07910  

0,00370          

0,00370  Googlenet 144 4 99,75% 12:02 99,75% 99,75% 99,75% 0,00630        

0,00630  

0,07910          

0,07910  

0,00370          

0,00370  VGG16 41 4 99,63% 42:27 99,62% 99,62% 99,61% 0,00740        

0,00740  

0,08410       

0,08410  

0,00510          

0,00510  VGG19 47 4 100,00% 51:49 100,00% 100,00% 100,00% -                     

-  

 -                    

-  

    -                 

-  Resnet18 72 4 99,75% 09:39 99,75% 99,75% 99,75% 0,00250          

0,00250  

0,05000        

0,05000  

 0,00250         

0,00250  Resnet50 177 4 99,88% 31:34 99,88% 99,88% 99,88% 0,00500          

0,00500  

0,07070          

0,07070  

0,00250          

0,00250  Resnet101 347 4 100,00% 71:34 100,00% 100,00% 100,00%     -                 

-  

  -             

-  

 -                    

-  DenseNet201 709 4 100,00% 336:02 100,00% 100,00% 100,00%     -                 

-  

  -             

-  

 -                    

-  SqueezeNet 68 4 99,50% 06:07 99,50% 99,51% 99,50% 0,00880                     

-  

0,09350                     

-  

0,00630                     

-  Purposed Methods-

34 layer 

34 4 100,00% 02:31 100,00% 100,00% 100,00% -          

0,00880  

 -         

0,09350  

-          

0,00630  Purposed Methods-

18 layer 

18 4 99,75% 01:54 99,75% 99,75% 99,75% 0,00250                     

-  

0,05000                     

-  

0,00250                     

-   
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4.8.2. Comparison of accuracy 

In the accuracy stage, the comparison is made by 

looking at the values of Precision, Recall, and F-1 

measure, as shown in Fig. 18. 

Comparisons are made to obtain differences in 

the accuracy of the existing architecture with the 

proposed layers. The accuracy comparison shows 

that the classification results using 18-layers and 34-

layer structures can already meet the desired criteria. 

It is related to the computational time needed in the 

training process also does not take a long time. In the 

18- purposed layer, it takes 9 minutes 6 seconds, and 

in the 34-purposed layer, it takes only 2 minutes 30 

seconds. It is supported by the results of the image 

prediction and confusion matrix, which shows a 

range between 99.5% to 98.8%. But keep in mind that 

when the training process runs, the more convolution 

layers, the tighter and the smaller the ripple factor 

will be. When it gets closer, the prediction process is 

more accurate but runs slowly. It means several 

layers needed, but not less depending on the number 

of convolution layer and dropout needed. 

4.8.3. Comparison of classification errors 

This research has three indicators used to identify 

the errors, namely MSE, RMSE, and MAE. Error 

comparison results show that the proposed method 

has a minimum error between zero to 0.05. It can be 

compared with the 68-layer squeezed. The purpose 

has only 18 and 34 layers. Other comparisons can be 

made by looking at the number of layers and 

 

 
Figure. 18 Comparison of accuracy 

 

 
Figure. 19 Comparison of MSE, RMSE, and MAE 

 

computational time. Densenet 201 also has excellent 

accuracy results, but the computational time required 

is very high at around 5 hours. The comparison of the 

training process shown in Fig. 19. 

Densenet error results are too shallow. It given 

the accuracy of the resulting densenet is almost equal 

to the purposed method. But the purposed methods 

need a training time of only about 2 minutes. Then 

this research can be used as a reference for further 

analysis. 

4.8.4. Comparison of the training optimization 

The fitting process of this research uses Bayesian 

optimization to get the ideal value of momentum and 

average initial learning. Optimizable The desired 

variable to be a target is in the range of 0.8 to 0.95, 

and the initial learning rate is in the range 1𝑥10−4 to 

1𝑥10−2. Furthermore, the Bayes option used has a 

Maxobj value of 10, which means a maximum of 10 

re-training and a maximum of time 60 x 60, which 

means no more than 3600 seconds. From the 

comparison graph, it can be concluded that the 

number of layers influences the convergence of 

accuracy, which can be seen from the number of re-

training processes carried out. During the re-training 

process, the objective function and minimum fair 

values will be updated until the maximum actual 

agreement is reached, the 10th training. When the 

maximum amount is reached, the process will stop to 

display the desired value of momentum and initial 

learning. 
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Table 4. Total time to find the best point of 

optimization 

 

Figure. 20 Several re-training vs. total time 

 

To get the ideal value of momentum and initial 

learning rate to achieve stability, shown in Table 4. 

Vgg19 and resnet101 have the smallest re-training 

value, which means they have reasonably good 

confidence by only doing 5-6 training to get the 

benefit of optimization. However, the total time to 

look for this value is longer than the purposed 

methods ranging from 8-10 minutes. Intended plans 

34 layers show the number of Re-training is less than 

google net and densenet with computational time to 

find the ideal value of momentum and learning rate 

better, ranging from 1-5 minutes. 

This method gets 60 minutes in a total time 

comparable to the squeezenet with seven re-training 

processes. 

4.8.5. Comparison with another dataset 

This research also tries to use the secondary data 

DIBAS (Digital Image of Bacterial Species) dataset 

[22]. There are 20 images divide into 250 images per 

class. Klebsiella pneumonia replaced with Neisseria 

gonorrhoeae because it was not available in this 

current dataset. The author also compares the 

proposed method using the Bird, Fruit, Animal, and 

Fruit dataset from the Kaggle.com image dataset. 

Each Class folder contains 400 images [23]. The 

comparison has shown in Table 5. 

Conclusion 

This research has a GAP with previous research 

in terms of saving computing time while maintaining 

accuracy results. The novelty offered is the CNN 

Custom layer, which is equipped with auto contrast, 

transfer learning, data augmentation, and 

optimization. The training data used amounted to 

1000 data for four classes of Gram-negative bacteria. 

Efficiency can be said to be good, using 18-34 layers. 

The results of the accuracy and validation of the 

training process are in the range of 95% to 99.8%, 

with training process time starting from 2 minutes 30 

seconds. Optimization with Bayesian Optimization  

Models 
No.of 

layer 

No.of Re-

training 

Momen 

tum 

learning 

Rate 

time 

(minute) 

Alexnet 25 9 0,80389 0,000740  66,51  

Googlenet 144 8 0,94422 0,000123   66,13  

VGG16 41 5 0,90843 0,000505   71,66  

VGG19 47 5 0,93668 0,000197   70,34  

Resnet18 72 8 0,90001 0,000220   62,93  

Resnet50 177 8 0,89737 0,000887   62,96  

Resnet101 347 6 0,82034 0,000113   68,088  

DenseNet201 709 6 0,94086 0,000144   62,35  

SqueezeNet 68 8 0,80725 0,000204   60,87  
purposed 

methods 
34 7 0,92302 0,000829   61,04  

purposed 

methods2 
18 8 0,91461 0,000888  64,58  

 

Table 5. Comparison with other dataset 

No 
Data 

base 

No.of 

layer 

Size of 

image 
Class 

Training 

Accuracy 

Time 

(Minute) 
Precision Recall 

F-1 

Score 
MSE RMSE MAE 

1 
DIBAS 

Bacteria 

34 [224 224 3] 4 99,88% 01:49 0,9988 0,9988 0,9988 0,0013 0,0354 0,0013 

26 [224 224 3] 4 99,63% 01:50 0,9963 0,9963 0,9963 0,0075 0,0866 0,0050 

2 
Bird 34 [224 224 3] 4 99,61% 00:32 0,9961 0,9962 0,9961 0,0352 0,1875 0,0117 

26 [224 224 3] 4 92,31% 00:30 0,9531 0,9578 0,9548 0,3398 0,5830 0,1211 

3 Fruit 
34 [224 224 3] 4 100,00% 05:56 1,0000 1,0000 1,0000 - - - 

26 [224 224 3] 4 100,00% 03:10 1,0000 1,0000 1,0000 - - - 

4 Animal 
34 [224 224 3] 4 99,70% 03:13 0,9977 0,9977 0,9977 0,0047 0,0685 0,0031 

26 [224 224 3] 4 100,00% 03:13 1,0000 1,0000 1,0000 - - - 

5 Flower 
34 [224 224 3] 4 98,67% 03:22 0,9867 0,9869 0,9868 0,0469 0,2165 0,0234 

26 [224 224 3] 4 99,92% 03:34 0,9992 0,9992 0,9992 0.0070 0.0836 0.0023 
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gets momentum value at 0.92813, and the initial 

learning level is 0.00022397. The best accuracy 

errors were obtained at MSE 0.0025, RMSE 0.05, and 

MAE 0.0025. The scientific contribution to this 

research is saving training time when compared to the 

existing architecture. Purposed 18-34 layer is 

comparable to a 25-layer of the alexnet. However, the 

computational time needed for the training process is 

40-50% more efficient. In the data training process 

without auto contrast, the ideal number of layers to 

maintain accuracy stable is at 26-34 layers. The work 

feature that can be done is comparing the parameters 

used by layers in each CNN architecture. 
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