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Abstract: Large graphs are available in everywhere such as social networks, web link analysis, and computer networks. 

Traditional methods of clustering are not suitable to tackle the problem of clustering large graphs because the 

computation is very costly, which is solved by local graph clustering using a given vertex set as input to detect an 

accurate cluster. SimpleLocal (SL) algorithm detects a best conductance cuts close to seed vertices set. In this paper, 

a new Parallel SimpleLocal (PSL) system is proposed using multicore CPUs. OpenMP parallel library is utilized to 

parallelize the first and second stages of 3StageFlow algorithm whereas the SL algorithm is used for enhancing the 

runtime. The experiments are performed on various applications from different domains, which are image 

segmentation and community detection. From the experiments, the proposed method improves the runtimes with 

75.43% using 4-cores and 81.01% when using 8-cores over the sequential single core. 

Keywords: Graph mining, Graph clustering, Local graph clustering, Parallel algorithms. 

 

 

1. Introduction 

In recent years, graph mining is one of the most 

relevant research topics due to there are many 

applications of graphs such as community detection, 

image segmentation, web search, and social networks 

analysis. The structure G= (N, E) is used to represent 

a graph where the nodes are denoted by N and the 

edges (links that connect the nodes) are denoted by E. 

The process of collecting input datasets into groups 

called cluster is the clustering process. Graph 

clustering is the procedure of gathering the graph 

vertices into clusters taking into account that there are 

several edges within each cluster and there are little 

edges between the clusters.  

Many graph clustering algorithms have been 

described in [1, 2]. These algorithms present 

definitions of graph clustering and quality measures 

of the cluster. There are two types of algorithms 

which are global and local graph clustering. The 

process of using the entire graph for clustering is 

known as global graph clustering. However, the 

process of utilizing specific seed vertex for clustering 

is known as local graph clustering. 

Most conventional algorithms of graph clustering 

need to treat with the whole graph. Today, massive 

graphs are available, such as graphs from social 

media, scientific, and artificial intelligence 

applications. It is very expensive to perform 

computations using these algorithms, but local graph 

clustering algorithms are quicker than conventional 

algorithms that cover the whole graph. Currently, 

large-scale graph is available, in which local clusters 

can be bigger and this may increase running times of 

local clustering algorithms. Parallelization is utilized 

to promote the performance of these algorithms. 

Numerous local graph computations can be run 

independently in parallel and certain applications 

benefit from this. Since many input parameters of all 

local algorithms affect the cluster quality and 

computation time, it may be difficult to recognize 

before setting the input parameters for the different 

independent computations. 

The main problem is to find a cluster of the larger 

graph using local graph clustering techniques, which 

are time-consuming process. The large processing 

time problem required to be solved in order to 

accelerate the execution time of local graph 

clustering methods.  
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A parallel version of local clustering algorithm 

has been contributed in this paper, i.e., Local Flow-

based algorithm [3], for improving the performance 

of the clustering process. This local algorithm is 

simple and efficient for solving problems in 

community detection on graph, and image 

segmentation. Extracting maximum flow 

computations is achieved by developing a three-stage 

method. Moreover, the proposed algorithm modifies 

Dinic’s algorithm to reach the best runtime as well as 

realizing the flexibility and ease of implementation. 

This algorithm is called SimpleLocal, which based on 

constructing and updating the local subgraph of the 

modified augmented graph. Localization can be 

recognized using an implicit ℓ1-norm penalty term. 

In this paper, a parallel local clustering algorithm 

has been proposed for improving the quality of the 

cluster. The local flow-based algorithm is simple and 

strongly for solving problems in community 

detection, and image segmentation. The proposed 

method is implemented to important applications, 

such as image segmentation and community 

detection. Multicore CPUs are utilized for applying 

parallel local flow-based method on these 

applications. The proposed algorithm improves a 

local flow-based method to reach the best runtime. 

This paper is organized as follows: Section 2 

provides related work. Preliminaries of graph 

structure and multi-core CPUs are described in 

Section 3. While, Section 4 introduces the 

SimpleLocal (SL) algorithm, Section 5 introduces the 

proposed Parallel SimpleLocal (PSL) algorithm. 

Section 6 discusses the experiments and their results. 

Finally, Section 7 highlights both the conclusions and 

future works. 

2. Related work 

This section addresses related work of the local 

graph clustering algorithms in the literature. Firstly, 

Spielman and Teng [4] deal with local graph 

clustering to solve sparse linear systems using nearly-

linear time algorithms. Their research presents 

Nibble algorithm to partition the graph. Then, 

Andersen et al. [5] produce an algorithm for local 

partitioning called PageRank-Nibble using 

personalized PageRank vectors which improves both 

Nibble approximation ratio and running time. This 

algorithm computes the approximate PageRank 

vectors. Furthermore, Spielman and Teng [6] design 

an algorithm for spectral method of sparsification 

graph using nearly linear time to detect an 

approximate sparsest cut. Finally, Fountoulakis et al. 

[7] present new trends for optimizing local graph 

clustering of PageRank-Nibble algorithm. 

Local clustering algorithms include several 

improvements such as new algorithm called 

“Improve” [8]. This algorithm presents improvement 

of the quality of graph partitioning without affect the 

running time by using a subset of vertices as input 

and produce a new subset of vertices that has a 

smaller quotient cut. 

In the past, sparse cuts can be found by algorithms 

of local clustering using personalized PageRank and 

random walks, but evolving sets are used to design 

the EvoCut algorithm [9]. Applications of local graph 

clustering algorithms as provided in [10] include 

identifying communities in networks by the 

algorithm of Spielman and Teng [4]. A small sparse 

cut is found using bicriteria approximation algorithm 

[11]. This algorithm is simple and uses truncated 

random walk to implement an algorithm locally. 

In the literature, the algorithms of local graph 

clustering are utilized to handle social and web 

graphs [12-14]. Many problems of graph-based 

learning, including image segmentation [15] and 

seeded community detection [5, 16] are addressed, 

whereas the target is to find the remaining of the 

pixels by using a set of sample pixels or nodes. 

Voevodski, et al. [17] as well as Liao et al. [18] 

provide algorithms to find communities in protein 

networks. Other researchers deal with community 

detection by applying local algorithms, e.g., [16, 19-

23]. Chung designs a modified version of PageRank 

known as heat kernel PageRank [24] that contains 

two input parameters, which are a heat or temperature 

and a seed. Clusters can be obtained with better 

guarantees by using several PageRank-Nibble 

algorithms. These algorithms are internally well-

connected in the cluster [25]. There are other local 

clustering algorithms developed with stronger 

guarantees [26, 27]. Orecchia and Zhu [28] introduce 

the first strong local flow-based method that has a 

quick runtime. For maximum flows, this method is 

based on a complex diversity of Dinic’s algorithm, so 

it is complicated to be used in practice [29]. Veldt et 

al. [3] present a new simple algorithm called SL for 

locally-biased graph based learning. Strongly local is 

the main feature of this algorithm to find a good 

conductance cuts without require entire graph. 

A lot of local graph clustering algorithms are 

paralleled by Shun et al. [30] such as Nibble [4,6], 

PageRank-Nibble [5], deterministic heat kernel 

PageRank [20], and randomized heat kernel 

PageRank [31] using the shared- memory multicore 

environment. The parallel complexities of such 

algorithms are analyzed. These parallel algorithms 

accomplish the best speedups on a shared memory 

multicore in the Ligra graph processing framework. 
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3. Background 

3.1 Graph structure 

A graph can be represented by G (V, E), where V 
indicates vertices and E indicates edges of an 
undirected and unweighted graph. The number of 
vertices is represented by n = |V | and the number of 
edges is represented by m = |E|. The degree of a vertex 
is represented by d(v) which can be defined by the 
edges number incident on v. The set of vertices is 
denoted by S whose volume is calculated by vol(S) 

= Σv∈S d(v). Moreover, the number of edges that 

leaves the set is represented by boundary ∂ whose 
value is calculated as ∂(S) = {(x, y) ∈ E | x ∈ S, y ∈/ 
S}.  The conductance of cluster S is represented by 
Φ(S) = |∂(S)|/min (vol(S), 2m − vol(S)). A clustering 
quality is measured by conductance. Low 
conductance stands for high quality clustering and 
high conductance stands for low quality clustering. 

3.2 Multi-core CPUs 

A multi-core processor is an Integrated Circuit 

(IC). It has multiple processers that are independent, 

which called cores to read and carry out the 

instructions of the program for improved 

performance and decreased energy consumption. 

Moreover, multiple tasks are processed in the same 

time but more efficiently using a multicore CPU [32]. 

The computational processes are enhanced by 

utilizing multiple cores or during multithreading on 

cores that based on the algorithms and their codes 

[33]. The parallelism level is based on the program 

data partitioning degree where these sections are 

handled independently. Even volumes of big data can 

be reduced using parallel clustering techniques [34]. 

Among advantages of multi-core processors is the 

diversity of applications they can solve such as 

wireless network, biomedical systems, digital signal 

processing, and image recognition units. 

Open Multi-Processing (OpenMP) starts with one 

thread, which titled with the master thread that works 

out for the program time. A variable set is ready 

to any thread, which called the context of the 

thread’s execution. Through execution, the master 

thread may face the areas of parallel, where novel 

threads are branched by the master thread. In the 

finish area of parallel, the branched threads will be 

closed, and the execution is continued by the master 

thread. Many advantages of OpenMP are including 

easier implementation, and lower communication 

time required in comparison to Message Passing 

Interface (MPI). Unlike MPI, OpenMP preserves the 

sequential code and making good use of present-day 

multicore processors. 

Multiple Instruction Multiple Data stream 

(MIMD) is a basic structure of multicore processor. 

The whole of threads can be carried out at various 

cores on the same stream with same shared memory. 

Therefore, such cores are executed on the same 

computer rather than utilizing one processor with one 

core shared with memory, as described in Fig. 1 [35]. 

4. Local flow-based method 

SL [3] is a simple algorithm that is used to 

calculate the LocalImprove objective function. It 

starts with a graph G = (V, E), and an initial seed set 

R ⊂ V satisfying vol(R) ≤ vol(R̄). This algorithm 

depends on building local augmented subgraph 𝐺𝑅
ʹ  (α, 

δ). To compute the accurate maximum flow 

calculations on 𝐺𝑅
ʹ  (α, δ), a new three-stage method 

is followed instead of computing approximate 

maximum flows using Dinic’s algorithm. 

The local graph is firstly constructed, then passed 

to the three-phase process and frequented until 

convergence to maximum flow. The local graph is 

developed in each iteration, calculating the maximum 

s − t flow, i.e., flow from the source (s) to sink (t), then 

the local graph is updated depend on this flow. 

4.1 3Stage local max-flow 

The 3Stage algorithm computes the maximum 

s−t flow of an altered augmented graph 𝐺𝑅
ʹ  (α, δ). The 

algorithm starts a three-phase process that is 

frequented until convergence to maximum flow. Fig. 

2 describes the 3Stage-Flow flowchart. 

To initialize the method, let Gr refers to an 

altered augmented graph 𝐺𝑅
ʹ  (α, δ). It starts by 

constructing the local graph L = (VL, EL). A Gʹ 

subgraph contains: union of nodes s, t, R, neigh(R), 

edges start from s to R, edges among distinct nodes 

in R, edges start from R to neigh(R), and edges start 

from t to neigh(R). The vector of flow is 

represented by F and the overall flow value that 

transmitted from s to t is indicated by flow (F).  
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Figure. 1 Multicore processor with shared memory 
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Start

Input: Graph G,

Parameters α, δ,

Seed Set R   

Initialize: NL , EL , 

F=0; X = ɸ 

While 

X   ɸ or 

F=0 do

Expand W   

MaxFlow   

Update L

End

No

Yes

 

4.1.1. Stage 1. Expansion 

For permitting large flow transmitted from s to t, 

local graph is expanded in the starting of each 

iteration. The set of nodes is represented by X to 

extend on at the starting of the repetition.  For each 

vertex x ∈ X, whole x neighbors are added which now 

are not a portion of L, and it contains whole edges 

begin from x to whole its neighbors. For any novel 

vertex included to L, the edge it shares with the sink 

t is contained. Initially, starting with set X = φ because 

there is no necessary to extend the local graph now. 

4.1.2. Stage 2. Max-flow computation 

After expanding the local graph L correctly, the 

maximum flow f is calculated by utilizing any 

existence max-flow subroutine. Then, the vector 

of the flow is redeveloped F = F + f . The residual 

graph of the flow is represented by Lf , which is 

constructed by changing the capacity cij of an 

edge in EL by cij − fij, where fij denotes the flow 

on (i, j) edge, and the edge (j, i) capacity is 

changed with fij . 

4.1.3. Stage 3. Updates 

The flow influences are resolved and defined if 

the local graph must be widened after calculating a 

maximum value. Then, the local graph is developed 

to become a residual graph of f and detects the 

nodes group that are linked to s by an unsaturated 

edges string. This stands for the source set S, which 

is returned when max flow is converged. 

4.2 SimpleLocal (SL) algorithm 

The SL algorithm uses 3StageFlow method. The 

SL algorithm takes a graph G and a reference set R 

as inputs. A best conductance cut of simple local is 

detected by rendering 3StageFlow frequently to 

discover α that has a smallest value where the 𝐺𝑅
ʹ  (α, 

δ) maximum s − t flow is smaller than α vol(R). Fig. 

3 illustrates the SL flowchart. 

5. The proposed parallel local flow-based 

methodology 

This section shows how to parallelize sequential 

local clustering algorithms, i.e., 3StageLocal Max-

Flow algorithm and SL algorithm. Clustering 

algorithms are dependent on processing repeatedly 

sets of vertices and their edges in parallel, where the 

seed set includes multiple vertices.  

5.1 Par3StageFlow 

In order to tackle the problem of computation 

time in SL methodology, it has been necessary to 

think in parallel solutions to accelerate the process of 

3StageFlow. Multi-core CPU is a powerful 

processing parallel architecture. A new parallel 

3StageFlow (Par3StageFlow) algorithm is proposed. 

As shown in Fig. 4, the Par3StageFlow algorithm can 

be broken into three steps: expansion, max-flow 

computation, and updates. 

 

Start

Input: Graph G, R, 

δ   0

While 

F < α vol(R) 

do

α = ɸ(S) 

S* = S    
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Return S*

End
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α = ɸ(R)   

3StageFlow
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Figure. 2 The 3StageFlow flowchart 

Figure. 3 The SL flowchart 
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5.1.1. Step 1. Parallel expansion 

In each iteration there is a need for expansion of 

local graph which starts with a seed set. Starting with 

a set of vertices of expanded set, each vertex x is 

added to the local graph and all neighbors that are not 

contained in L are added in addition to their edges 

with x. Moreover, each modern vertex added to the 

local graph L is linked with sink t. Because of 

consuming execution time, this step is parallelized. 

5.1.2. Step 2. Parallel Max-Flow Computation 

Maximum flow is calculated by using Ford-

Fulkerson algorithm [36]. The Ford-Fulkerson 

algorithm solves the maxflow min-cut problem. The 

Ford-Fulkerson method is iterative, which starts with 

f (u, v) for (u, v) 𝜖 V, and initial flow of value equal 0. 

The method is based on the augmenting path. 

Algorithm 1 describes the Ford-Fulkerson algorithm. 

The execution of this phase takes more time to solve 

this problem, so it needs to use a multi-core processor 

to obtain high processing speed. 

5.1.3. Step 3. Updates 

This phase is used to study the flow effects to take 

a decision if the local graph required to be expanded. 

Then, updating the local graph is utilized to get the 

residual graph for discovering a set of vertices 

(source set S) that stay linked to s by an unsaturated 

edges chain. Furthermore, the algorithm of 

Par3StageFlow is given in Algorithm 2. 

5.2 ParSimpleLocal (PSL) algorithm 

PSL algorithm uses Par3StageFlow method to 

speed up the runtime. PSL algorithm determines a 

best conductance cut by requesting a Par3StageFlow 

frequently to detect α with the smallest value. Fig. 5 

shows the flowchart of PSL algorithm. Moreover, an 

outline for PSL is presented in Algorithm 3. 

While 

flow(F) < α vol(R) 

do

Cut Set S*

Yes

Input: Graph G, 

Seed Set R

Par3StageFlow

No

Start

End  
Figure. 5 Flowchart of PSL algorithm 

Figure. 4 Speedup steps of the Par3StageFlow algorithm 

Algorithm 3: PSL 

Input: G, s, t, G = (V, E)  

For each edge (u, v) in E 

   f (u, v) = f (v, u) = 0 
While ∃ path p from s to t in residual network Gf Do 

cf (p) = min {cf (u, v): (u, v) is in p} 

For each edge (u, v) on p  

f (u, v) = f (u, v) + cf (p) 
f (v, u) = -f (u, v) 

End For  

End While 

End For 

 Algorithm 1: Ford-Fulkerson 

 Input: G, R, locality parameter δ ≥ 0  

   α := ϕ(R) 

   [F; S]:= Par3StageFlow G՜R (α, δ) 

 While flow (F) < α vol(R) Do 

       α ← ϕ(S); S*  ← S 

       [F, S]:= Par3StageFlow G՜R (α, δ) 

 End While  

 Return: S* 

 

Algorithm 2: Par3StageFlow 

Input: graph G, parameters α, δ, seed set R 

Initialize: local graph L = (VL, EL), F = 0; X = ϕ 

While X ≠ ϕ; or F = 0 Do 

/* Step 1. Parallel Expand W */ 

For x ∈ X do in parallel 

        VL ← VL ∪ neigh(x) 

        EL ← EL ∪ {(x, v): v ∈ VL}∪{(y, t) : y ∈ neigh(x)} 

      End For 

/* Step 2. Parallel MaxFlow */ 

f ← ParMaxSTflow(L); 

F ← F + f 

/* Step 3. Update */ 

Update L 

  End While 
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6. Experiments and discussion 

The experiments were performed on undirected 

graphs of the SL algorithm [3] and PSL algorithm, 

which are described in Section 5. The first and second 

stages of 3StageFlow are the most time-consuming 

steps, with almost 81.09% of the SL algorithm 

running time. Thus, the most productive steps of the 

SL algorithm to be parallelized are expansion and 

max-flow computation stages. OpenMP is a popular 

parallel programming interface (API) that provides 

with multicore and shared memory multiprocessing 

[37]. OpenMP library is utilized to parallelize the first 

and second stages of 3StageFlow algorithm. Loop 

parallelism method is used instead of “for loop” that 

is popular type of parallelism. OpenMP parallel loops 

are distributed throw threads group by the compiler 

that is leaded by OpenMP-For. 

OpenMP supports C, C++, and Fortran on 

multiple platforms that involve Microsoft Windows 

and Unix platforms. It contains compiler directives 

set, library routines, and the variables of environment 

that effect on the run-time behavior. OpenMP 

removes the load of making and managing threads 

from the shoulder of the programmer. The 

programmer on each core/thread, while managing 

various data partitions must place a partition of code. 

Shared memory communicates different threads. As 

well, OpenMP supplies techniques to coincide the 

working threads and organize the tasks. 

6.1 Image segmentation experiment  

6.1.1. Dataset 

MRI scan contains the 3D images. The 3D MRI 

scan region is identified to prove the scalability of the 

SL algorithm. Challenge of Medical Image 

Computing and Computer-Assisted Intervention 

(MICCAI 2012) is used to get a labeled MRI scan 

with 256 × 287 × 256(≈ 18 million) voxels [38]. A 

weighted graph based on adjacent voxel similarity is 

formed. This graph included about 18 million 

voxels and 467 million edges. PSL algorithm runs by 

taking a portion from this data. Fig. 6 shows an 

example of the brain MRI segmentation. 

We begin with a small example from MRI scans 

to explain how the SL solves the large graph 

problems. MATLAB performs the execution of SL 

and 3StageFlow by utilizing Gurobi for solving the 

problems of max-flow. SL and 3StageFlow are 

implemented also with C language, using Ford–

Fulkerson algorithm for solving the max-flow 

problems to enhance the runtime of the SL algorithm 

[3]. These experiments are implemented on a system 

with 2.3GHz Intel i5-core CPUs processor, 8GB of 

memory, and Windows 10 64-bit operating system. 

These experiments are implemented on different 

sizes of graph as shown in Table 1. Table 2 shows the 

runtimes of the SL implementation using MATLAB 

and C language. 

Table 2 shows that the obtained results from C 

implementation of SL algorithm achieves an 

extremely improvement in the execution runtime 

compared with the MATLAB, because C is a lower 

level language and it provides low-level access to 

memory compared with MATLAB. 

6.1.2. Experimental setup of multi-core system 

The experiments were run on a different 

environment featured with 2.3GHz Intel 8-core CPU, 

100 GB of RAM, and 64-bit Linux operating system. 

The programming language C is used to write the 

algorithm coding. For parallel implementation, the 

OpenMP thread library [33] is used. The parallel code 

Datasets  Vertices |V| Edges |E| 

Ex(200)  200 1576 

Ex(300 300 2458 

Ex(400) 400 3334 

Ex(500) 500 4212 

Ex(600) 600 5090 

Ex(750) 750 6398 

  
(a) (b) 

Datasets MATLAB C 

Ex(200) 5.309589 0.312487 

Ex(300) 8.616222 0.312489 

Ex(400) 17.290749 0.406235 

Ex(500) 14.579523 0.39061 

Ex(600) 22.19735 0.499981 

Ex(750) 33.893649 0.593726 

Figure. 6 Brain MRI (a) original MR image, and (b) 

segmented image with three labels: WM, GM, and CSF 

Table 2. Runtime of MATLAB and C of SL algorithm (in 

seconds) 

Table 1. Dataset with different graph sizes 
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is run in 2-core, 4-core, 8-core and 16-core CPU. 

OpenMP library is utilized for enhancing the runtime 

of the SL algorithm. Fig. 7 shows the runtime of SL 

[3] and PSL that runs in 2-core, 4-core, and 8-core on 

dataset of 800 nodes. 

The optimal ratios of speedup for many cores are 

50% for 2 cores, 75% for 4 cores, and 87.5% for 8 

cores. The proposed algorithm has the speedup ratios 

of 41.49% for 2 cores, 63.75% for 4 cores, and 

81.01% for 8 cores. Fig. 8 clearly displays that the 

total attitude of the proposed PSL implementation of 

image segmentation calculations is coordinated with 

the best speedup. 

Implementation is expanded by running the 

parallel code in 2, 4, 8, and 16-core. Fig. 9 displays 

an obvious comparison between the execution times 

of SL [3] and PSL algorithm using multicore CPUs 

for six datasets given in Table 1. Fig. 10 displays the 

average of time improvement percentage of PSL 

algorithm using multicore CPUs of these datasets. 

The results confirm that the gained scores are near 

to the optimal ratios of parallelization. A quick 

overview of the scores displays highly refinement 

result in the running time when using 16-core over 

the sequential single core. Naturally, a delay is caused 

by increasing the number of the cores. This brings the 

enormous interconnect lateness (wire lateness) when 

datum has to be shifted through the multi-core chip 

from memories in specific [39]. 

6.2 Community detection experiment 

A set of individuals like the frequency of 

interactions through the group is larger than that of 

the interactions among the groups, this called a 

community. In a network, discovering group where 

individuals set memberships are not explicitly given, 

this process called community detection. Many real-

world graphs are available in biological networks, 

web graphs, and large social networks so that the 

community detection problem in these graphs has 

taken a great interest recently. This part shows the 

effects of applying our PSL algorithm on community 

detection application using multicore CPUs.  

 

Figure. 8 Time improvement average of PSL using 

multicore CPUs on a graph of size 800 nodes 
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Figure. 7 Runtime of SL and PSL algorithm on a graph 

of size 800 nodes 

 

Figure. 9 Runtime of SL and PSL algorithm. 

 

Figure. 10 Time improvement average of PSL algorithm 

using multicore CPUs. 
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6.2.1. Dataset 

Social network datasets are downloaded from the 

large network dataset collection SNAP (Stanford 

Network Analysis Platform) [40]. These datasets are 

undirected graph collected from the communities. 

YouTube is a website for video sharing which 

includes a social network. Table 3 presents the 

YouTube datasets with different sizes. 

6.2.2. Experimental setup of multi-core system 

The experiments were run on a different 

environment featured with Intel(R) Core(TM) i7-

4790CPU (3.60 GHz), 4- core CPU, 8 GB of RAM, 

and 32-bit Linux operating system. The C language 

is used for coding the algorithm. OpenMP thread 

library is used for parallel implementation. The 

parallel code is run on 2-core and 4-core CPUs. 

Table 4 displays the experimental results of 

applying SL [3] on community detection datasets 

using different languages. These experiments are 

implemented on different sizes of YouTube datasets. 

From the results, the C language improves the 

running time than MATLAB. 

Fig. 11 displays an obvious comparison between 

the execution times of SL and PSL using multicore 

CPUs for eight datasets of community detection. Fig. 

12 displays the time improvement percentage of PSL 

algorithm using multicore CPUs of these datasets. 

 

 
Figure. 11 Runtime of the SL and PSL using multicore 

CPUs on community detection datasets 

 
Figure. 12 Time improvement of PSL algorithm using 

multicore CPUs on community detection datasets 

The proposed algorithm has the speedup ratios 

of 50.34% for 2 cores, and 72.75% for 4 cores. Fig. 

13 displays the average of time improvement 

percentage of PSL algorithm using multicore CPUs 

of these datasets. The results of the community 

detection datasets are relative to the ratios of the 

optimal parallelization, where the trend of the 

proposed parallel implementation of community 

detection is coordinated with the best speedup. A 

quick review of the results presents a highly 

advanced difference in the execution time when 

using 4-core over the sequential single core. 

 

Figure. 13 Time improvement average of PSL algorithm 

using multicore CPUs of community detection datasets 
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Datasets  Vertices |V| Edges |E| 

G(200) 200 872 

G(300) 300 1626 

G(400) 400 3050 

G(500) 500 4600 

G(600) 600 5692 

G(700) 700 6556 

G(800) 800 8476 

G(900) 900 12232 

Datasets MATLAB C language 

G(200) 6.727062 0.265614 

G(300) 21.257542 0.609352 

G(400) 280.316656 1.884063 

G(500) 148.340843 1.755795 

G(600) 219.561633 4.842398 

G(700) 155.596251 3.088185 

G(800) 455.229502 5.810315 

G(900) 493.980067 7.015495 

Table 3. Youtube datasets with different sizes 

Table 4. Runtime of SL on community detection datasets 

using MATLAB and C (in seconds) 
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7. Conclusions 

SL algorithm has time-consuming in computation. 

A novel parallel algorithm is proposed and 

successfully implemented for computing image 

segmentation, and community detection. The 

proposed algorithm is evaluated on parallel 

architecture multicore CPUs. OMP parallel library is 

utilized to parallelize the first and second stages of 

the 3StageFlow algorithm where the PSL is used for 

enhancing the runtime.  

A new parallel algorithm is suggested and 

executed successfully for graph clustering problem. 

The proposed algorithm of local flow-based method 

is implemented on parallel architecture multicore 

CPUs. The proposed method is implemented on 

different applications, which represent different 

domains including image segmentation and 

community detection. From the experiments, the 

proposed method improves the runtimes by 75.43% 

using 4-cores and 81.01% when using 8-cores over 

the sequential single core. The scores of the executed 

experiments are very near to the optimal ratios of 

parallelization for the multi-core CPUs. When 

comparing the results with sequential, the proposed 

parallel technique is very speed. 

This area of graph clustering study is open where 

numerous opinions for future work could be 

presented to assist researchers. We organize to 

expand our contribution to approximate maximum-

flow solutions by using the modern invention, e.g., 

approximate maximum-flows in nearly-linear time. 
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