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Abstract: This study aimed to find an optimal feature-extraction method for real-time electroencephalography-based 

navigation. A comparative study of promising methods was done on two-class motor-imagery data. A novel combina-

tion of Hjorth parameters and Welch’s-power-spectral-density produced the highest two-class accuracy of 0.84 across 

five subjects. The method is computationally inexpensive and provides short training and execution times that best 

suit real-time applications. The method yielded an average accuracy of 0.66 on three-class data. The real-time feasi-

bility of the method was tested by implementing an object-retrieving robot and running a navigation experiment. The 

robot successfully navigated a three-circuit maze using three commands – right, left, and forward – and automatically 

retrieved the desired object. Along with being ideal for real-time applications, this method utilized only eight electrodes, 

making it compatible with cheap, portable BCI devices. The method and the application-framework can find commer-

cial utility in the field of healthcare for the elderly and physically-handicapped. 

Keywords: EEG, BCI, BCI Competition III, Three-class, Welch-PSD, Hjorth parameters, Select-k-Best, SVM, Lo-

gistic regression, Robot navigation, Object picking, Path-retracing. 

 

 

 

1. Introduction 

Accidents, strokes, and disabilities leave many 

individuals immobile or in pain. Their brain sig-

nals can be translated into commands to operate 

robots that can retrieve common household ob-

jects for them, thereby assisting their daily lives. 

This concept can be implemented using a brain-

computer interface (BCI), that translates changes 

in specific energy/ 

frequency patterns radiated by the user’s brain 

into appropriate commands for robotic systems. 

      Electroencephalography (EEG) is a common 

way to record electrical activity generated by the 

brain in non-invasive systems. Motor imagery 

(MI) signals are produced when the user imagi-

nes moving specific parts of their bodies like 

their hands or feet. They usually lie in the ampli-

tude range 0.5-100 µV, and frequency ranges Mu 

(8-12 Hz) and Beta (13-30 Hz). Mu and Beta 

rhythms of EEG signals can be used to distin-

guish between various MI tasks and are therefore 

analysed in MI based BCI systems.  

 

 

 
Figure. 1 Flow diagram 

 

In this study, a novel real-time MI processing 

methodology was found through a comparative 

study. The study shows that the novel method – 

which combines Hjorth parameters and Welch-PSD 

coefficients as features – provides high accuracy and 

generalisability across subjects, as well as low com-

putational complexity that allows it to be an optimal 

approach for real-time processing.  

The real-time feasibility of the method was tested 

by navigating an object-retrieving robot in a maze, 

using three MI class signals. Fig. 1 outlines the flow 
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for the real-time experiment conducted. The robot 

was able to successfully navigate the maze with high 

accuracy and low processing time. Object picking 

and retrieval were automated, thus reducing the num-

ber of modalities of control, alleviating user strain 

and reducing cost of resources. The intended applica-

tion of this study was to aid the elderly and physi-

cally-handicapped in daily tasks.  

The rest of the paper is organized as follows. Sec-

tion 2 discusses relevant previous work done in the 

field, while section 3 introduces the datasets used for 

analysis. In section 4, various EEG-processing meth-

odologies are compared on two-class data, and sec-

tion 5 presents the results of the comparative study of 

two-classes. Section 6 discusses how the best meth-

odology found was extended to three-class data and 

was used in a real-time robot navigation and object 

retrieval experiment. Section 7 presents the results of 

the experiment and section 8 provides a discussion of 

the findings. Concluding remarks are given in section 

9. 

2. Literature survey 

A variety of EEG-based robots in the field of 

healthcare have been introduced in the past. An im-

plementation of an obstacle-avoiding robot using ar-

tificial potential field (APF) and SSVEP (Steady state 

visually evoked potentials) has been proven to be 

successful [1]. However, the paper implemented con-

tinuous user control, causing strain to the user. 

Another study, [2] performed wheelchair naviga-

tion and object picking with a robotic arm using 

shared-control. SSVEP was used for task selection 

and cervical movements were used to indicate navi-

gational intent. This method alleviated user strain but 

could not be used for people with complete paralysis.  

Considering the drawbacks of both approaches, 

this study implements a non-continuous shared-con-

trol approach. Obstacle avoidance is made autono-

mous to reduce user-strain, and only MI signals (uni-

modal) are considered for navigation.  

The proposed work in [3] deeply studied the inci-

dence of event-related desynchronization and syn-

chronization (ERD and ERS) with MI signals and 

used it to achieve fast multi-class classification. The 

distinctive changes in spectral power were captured 

in real-time and used to control a BCI in [4].  Con-

sidering that MI signals show promise in real-time 

applications (fast classification), and given that the 

control is more intuitive, MI-based navigation was 

implemented in this work. 

Extensive work has been done in the past in order 

to extract features that best represent MI signals. The 

work in [5] proposed the use of dual-tree complex 

wavelet transform (DTCWT) for signal decomposi-

tion as it overcame the problems of discrete wavelet 

transform (DWT) such as aliasing and power losses 

at the transaction bands, and the work in [6] com-

pared several methods like wavelet packet decompo-

sition (WPD), empirical mode decomposition 

(EMD), and DWT, and concluded that WPD was the 

superior method because it decomposed both the low 

and high frequency bands, creating a fine separation 

of relevant frequency bands. The study in [7] ex-

plored another implementation of WPD where fea-

tures were extracted using a filter based on the Fisher 

criterion. 

First-order and higher-order statistics such as 

skewness and kurtosis were studied in [6], and skew-

ness and kurtosis were shown to provide a more effi-

cient analysis of non-linear, non-stationary signals 

like EEG. Studies in [8, 9] presented the estimation 

of power spectral density (PSD) using the Welch 

method (Welch-PSD). The work in [10, 11, 12] stated 

that PSD is a good feature set for three class problems 

due to the high signal to noise ratio. Papers [13, 14] 

implemented Hjorth parameters on frequency-fil-

tered and subsequently time-windowed signals, 

while [15] employed them on wavelet decomposed 

signals. Hjorth features are derived from the variance 

parameter in the time-domain and are thus computa-

tionally inexpensive. 

The aforementioned feature extraction methods 

that have shown promise for MI signals have been 

compared in this study. The aim was to find the most 

computationally efficient and accurate real-time fea-

ture extraction technique for MI signals, with the 

end-goal of robot navigation.  

Classifiers like support vector machine (SVM) 

have been extensively used in BCI research [9] ow-

ing to their fast classification and good generalization 

capability. Paper [16] suggested the use of another 

commonly used classifier- logistic regression, since 

it does not require a Gaussian distribution of inde-

pendent variables, thereby aiding the classification of 

EEG signals. These two classification methods were 

implemented in this study. 

3. Datasets 

This study employed the publicly available BCI 

Competition III datasets – Dataset IVa, and Dataset 

V – elaborated on in [17]. They have been outlined in 

Table 1. 
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Table 1. Summary of the datasets employed in this study 

Dataset Sub No. of training cues No. of testing cues Total no. of cues Classes 

BCI Competition 

III, Dataset IVa 

aa 168 112 

280 

(3.5 s per cue) 

‘Right’ 

‘Foot’ 

al 224 56 

av 84 196 

aw 56 224 

ay 28 252 

BCI Competition 

III, Dataset V 

1 48 16 
63 

(15 s per cue) 

‘Left’ 

‘Right’ 

‘Word’ 

2 48 16 

3 48 16 

 

Table 2. Windowing of the three-class dataset 

Sub No. of Training 

Windows 

No. of Testing 

Windows 

1 716 236 

2 711 238 

3 714 239 

 

 

Dataset IVa comprised of five subjects where the 

number of training cues varied per subject. Each cue 

was 3.5s long and belonged to one of the two-classes 

‘right’ and ‘foot’. As provided in the competition, the 

signals associated with labelled cues were used as 

training data, and those associated with unlabelled 

cues were used as testing data. Data from 118 elec-

trodes was collected. The dataset provides a good 

baseline estimate of the performance of the proposed 

methodology because it contains less data, as would 

commercial EEG-based applications. The compara-

tive study detailed in this paper was done using this 

dataset. 

Dataset V comprised of data of three subjects that 

was recorded using 32 electrodes. Each subject’s data 

consisted of 48 training cues and 16 testing cues, be-

longing to the three classes ‘left’, ‘right’, and ‘word’. 

Each cue was 15s long and was broken down into 

non-overlapping windows of 1s with the correspond-

ing class label given to each window, keeping in 

mind real-time application (fast execution). Pro-

cessing was done on each 1s window rather than on 

the entire cue signal. Windows corresponding to the 

labelled cues were used as training data, while the 

rest were used as testing data. The break-up of win-

dows for each subject are given in Table 2.  

In this study, Dataset V was used for the real-time 

robot navigational experiment. The three classes cor-

responded to the navigational commands ‘Turn Left’, 

‘Turn Right’ and ‘Go Forward’ respectively.  

 

 

4. Methodology 

A variety of methods have been introduced 

over the years to extract features from EEG signals. 

A few such methods, as seen in Section 2, were im-

plemented on two-class data (Dataset IVa) and 

compared in this study. 

4.1 Pre-processing 

Eight electrode channels namely, ‘CP1’, ‘CP2’, 

‘C3’, ‘Cz’, ‘C4’, ‘P3’, ‘Pz’, and ’P4’ of the interna-

tional 10/20 system, were selected based on the type 

of MI action being captured [18].  

The eight channels of data were band pass filtered 

over 8-35 Hz using a second order Butterworth band-

pass filter to remove high frequency noise, AC line 

noise, and DC content. This was performed prior to 

feature extraction, with the exception of Hjorth fea-

ture extraction where the bandpass frequency range 

was a parameter to be found for each subject individ-

ually. 

4.2 Feature extraction 

4.2.1. Method 1: DTCWT 

The first feature extraction method that was im-

plemented used the wavelet-based signal decomposi-

tion technique DTCWT. This technique is based on a 

common orthogonal-wavelet-based decomposition 

method known as DWT. It is further improved to 

overcome DWT’s aliasing and power-loss issues [5]. 

To implement DTCWT, two DWTs are operated in 

parallel to calculate the real and imaginary parts of 

the transform separately. The resulting detail and ap-

proximation coefficients at each level are computed 

by adding the corresponding real and imaginary co-

efficients together. In this study, the signals from the 

eight channels were decomposed to four levels using 

the near-symmetric wavelet for level 1, and the q-

shift wavelet for the remaining levels. The first-order 
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statistics mean, standard deviation, energy, root-

mean-square (RMS) value, and the higher-order sta-

tistics skewness and kurtosis were found only on the 

subbands D2, D3, and D4 which corresponded to the 

detail coefficient of frequencies 14.75-16.43, 11.38-

13.06, and 9.69-11.38 Hz respectively, thus extract-

ing features corresponding to the Mu and Beta 

rhythms of MI signals [6]. This resulted in a 144-

length feature vector per cue. 

4.2.2. Method 2:  WPD 

Another wavelet-based decomposition technique 

is WPD. An extension of DWT, WPD offers better 

frequency resolution as it produces more discriminat-

ing features than DWT. This is due to the fact that 

unlike DWT which only decomposes the approxima-

tion coefficients at each level, WPD decomposes 

both the approximation and detail coefficients, pro-

ducing a binary tree. The approximation signal at 

level j (𝑊𝑗0) Eq. (1) and the detail signal at the same 

level (𝑊𝑗1) Eq. (2) is given as follows: 

 

𝑊j0[𝑖] =  ∑ x[k] l[2i − k]𝑘   (1) 

 

𝑊j1[𝑖] =  ∑ x[k] l[2i − k]𝑘   (2) 

 

where x is the input signal and h and l are the high 

and low pass filters respectively.  

WPD was implemented up to four levels, giving 

sixteen subbands with equally divided frequency 

ranges between 8-35 Hz per channel. The 

Daubechies wavelet of the order four was used and 

mean, variance, RMS, skewness, and kurtosis fea-

tures were found for all the subband coefficients re-

sulting in a 640-length feature vector per cue.  

4.2.3. Method 3: Welch-PSD 

In this method, features were obtained by finding 

power spectral density using Welch’s method [10]. It 

is a form of non-parametric computation that finds 

the weighted sum of the periodograms of overlapping 

windows of the signal. Welch-PSD is calculated as 

follows:  

 

𝐼𝑥𝑥
𝑊 [𝜔] =  

1

𝑃
∑ 𝐼𝑥𝑥

(𝑝)
(𝜔)𝑃−1

𝑝=0   (3) 

 

where the number of segments is denoted by P and  

𝐼𝑥𝑥
(𝑝)

(𝜔) is the periodogram per windowed segment, 

the average of which is denoted by 𝐼𝑥𝑥
𝑊 (𝜔) [19]. 

A Hanning window function was used and 0.5s win-

dows were extracted from the channels with a 50% 

overlap. This resulted in 26 central frequencies rang-

ing from 0 to 50 Hz. The Welch-PSD coefficients ob-

tained after computation were used as features. This 

resulted in a 208-length feature vector per cue.  

4.2.4. Method 4: Hjorth parameters 

Hjorth parameters extract statistical properties of 

EEG signals in the time-domain. They consist of 

three types – activity (Act), mobility (Mob), and 

complexity (Com). Activity describes the signal 

power, mobility determines average frequency, and 

complexity shows variation in frequency [20]. These 

are computed as shown in Eq. (4), Eq. (5) and Eq. (6) 

respectively.   

 

𝐴𝑐𝑡 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦(𝑡)) (4) 
 

𝑀𝑜𝑏 = √
𝐴𝑐𝑡(𝑦′(𝑡))

𝐴𝑐𝑡(𝑦(𝑡))
  (5) 

 

𝐶𝑜𝑚 =
𝑀𝑜𝑏(𝑦′(𝑡))

𝑀𝑜𝑏(𝑦(𝑡))
  (6) 

 

Here, 𝑦(𝑡) is the input signal, which in this case is 

the data from the electrode channels, and 𝑦′(𝑡) is its 

derivative. 

Twenty-one second order Butterworth bandpass 

filters consisting of all combinations of 5, 8, 13, 15, 

20, 25, and 30 Hz were applied to the signal prior to 

finding the Hjorth parameters. A window size of 1s 

was used with a 0.5s overlap for each cue. The best 

combination of frequency band, Hjorth parameter, 

and window per cue was found using the Fisher ratio 

[13]. The best combination for each subject resulted 

in an 8-length feature vector per cue which was then 

used for the final classification. 

4.2.5. Method 5: Hjorth parameters and WPD 

   This method combines WPD with Hjorth param-

eters. The signals were decomposed using WPD to 

four levels (16 subbands with equally divided fre-

quency ranges between 8-35 Hz per channel) and re-

constructed with the best four subbands which varied 

per subject and was found using five-fold cross-vali-

dation. Features were then extracted from the recon-

structed signals – skewness, kurtosis, and Hjorth pa-

rameters. Considering that the 
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Table 3. Two-class comparative study results 

Sl.  

No. Methods 
Subject 

Average 
aa al av aw ay 

1. DTCWT 0.70 0.91 0.58 0.77 0.69 0.73 

2. WPD 0.68 0.84 0.57 0.71 0.59 0.68 

3. Welch PSD 0.54 0.75 0.59 0.67 0.48 0.61 

4. Hjorth 0.69 0.91 0.62 0.84 0.85 0.78 

5. Hjorth-WPD 0.75 0.95 0.62 0.88 0.70 0.78 

6. Hjorth-Welch PSD 0.78 0.98 0.70 0.90 0.84 0.84 

 

 

dominant frequency band varies per subject, extract-

ing the best frequency bands with a fine separation of 

frequency allowed for specific subject dependent fea-

tures to be extracted.WPD resulted in a large feature 

vector of length 640. Performing subband selection 

reduced the feature vector length to 40. This step is 

crucial for small datasets as it reduces overfitting. 

4.2.6. Method 6: Hjorth parameters and Welch-PSD 

   Here, Hjorth parameters and Welch-PSD coeffi-

cients were used as features. Welch PSD was com-

puted on the cue signal and the hyperparameters – 

window size and overlap – were found using five-

fold cross-validation resulting in different feature 

vector lengths. This gave subject-dependent fre-

quency resolutions. Unlike in method 4, Hjorth pa-

rameters in this method were found on the entire cue. 

The feature vector length ranged from 48-112 across 

the five subjects. An 8-35 Hz second order Butter-

worth bandpass filter was used prior to feature ex-

traction. 

5. Results of the comparative study 

For all methods, with the exception of method 4, 

Select-k-Best, a correlation-based feature selector 

was chosen for feature selection. The number of fea-

tures chosen was found using a grid search with five-

fold cross-validation. The performance of the meth-

ods was evaluated on the two-class data using a bi-

nary SVM classifier with a linear kernel. 

The results of the feature extraction comparative 

study are shown in Table 3. As seen in the table, the 

first five feature extraction methods that were at-

tempted resulted in average accuracies of less than 

0.80 across all five subjects. The novel combination 

of Hjorth parameters and Welch-PSD, proposed in 

this work, gave the highest average accuracy of 0.84 

over all the subjects, with the highest accuracy of 

0.98 for ‘al’. This can be due to the subject dependent 

frequency resolution that the proposed implementa-

tion of Welch-PSD provides, combined with the 

highly informative time-domain features offered by 

the Hjorth parameters. The subject-dependent win-

dow size and overlap used made the method more 

generalizable across subjects as compared to previ-

ously attempted methods as discussed in Section 8.  

Moreover, this combination yielded the lowest 

model training time of 5.35s for two-class data, as 

seen in Fig. 2. Training time showed a very gradual 

linear increase with the increase in the number of 

training cues, making the feature extraction tech-

nique suitable for real-time applications. This can be 

accounted for by the low computational complexity. 

Six N-point Fast Fourier Transforms (FFT) (com-

plexity of 𝑂(𝑁 𝑙𝑜𝑔2 𝑁) [21]) are needed for Welch-

PSD to be performed on each cue, and additionally, 

a variance-based Hjorth feature extraction must be 

performed on each cue. This is comparable with 

DTCWT (2 ∗ 𝑂(𝑁) ), but is far better than WPD 

(𝑂(𝐿 ∗ 𝑁 𝑙𝑜𝑔2 𝑁)). Where N is the length of the sig-

nal for all the methods mentioned, and L is the num-

ber of decomposition levels for WPD. 

6. Real-time robot navigation 

In order to provide three navigational commands 

to the robot, the novel methodology – method 6 – 

found in the comparative study was employed on the 

three-class dataset (Dataset V).  

The dataset was windowed as mentioned in Sec-

tion 3 and processed using the Hjorth parameters and 

Welch-PSD method described in Section 4. The same 

eight electrode channels used for two-class pro-

cessing were chosen for three-class processing. The 

added class, ‘word’, represented the task of mentally 

forming words that begin with the same given letter. 

This task comes under the domain of speech pro-

cessing and primarily uses the parietal lobe of the 

brain [22]. The ‘P3’, P4’, and ‘Pz’ 
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Table 4. Results of three-class processing 

Sub Accuracy  F1 score Precision Recall 

1 0.78 0.78 0.78 0.78 

2 0.63 0.63 0.63 0.63 

3 0.58 0.57 0.58 0.58 

Avg. 0.66 0.66 0.66 0.66 

 

channels used for two-class processing falls in the pa-

rietal region and therefore no extra channels were 

needed. Logistic regression (one-vs-rest) performed 

better than SVM for three-class classification and 

was therefore used as the classifier for this dataset. 

The performance of the three-class model is 

shown in Table 4. An average accuracy of 0.66 across 

all subjects was achieved with subject 1 performing 

the best. The class ‘word’ had the highest average F1 

score of 0.73 followed by the classes ‘right’ and ‘left’ 

with 0.65 and 0.57 respectively. The proposed 

method maintained a low training time of 12.34s for 

three-class data. 

Since subject 1’s data showed the highest accu-

racy of 0.78, it was used as the final input data for the 

robot navigational experiment.  

The experiment was performed to verify the fea-

sibility of the proposed method in a real-time appli-

cation. A simple object-retrieving robot prototype 

was built with the intention of aiding the elderly and 

individuals with motor disabilities with their daily 

tasks. The robot was built using the Raspberry Pi 

3B+, which processed the input MI signals using the 

novel method and sent all control signals to the robot 

peripherals. Three ultrasonic sensors placed on the 

front, right, and left sides of the robot helped in ob-

stacle avoidance. 

An arm with two degrees of freedom was con-

trolled using two servo motors (torque - 9.4  

 
Figure. 2 Training time (s) vs. number of cues 

 

kg/cm), and was used to pick objects. The gripping 

action was controlled with another servo motor 

(torque - 1.3 kg/cm). A monocular camera was used 

for object detection and the feed was transmitted 

wirelessly (via TCP) to a remote computer system. 

This would give the user a good view of the path that 

the robot was taking and would enable them to pro-

vide a navigational command when required. The 

Raspberry Pi was powered by a power bank, and two 

rechargeable batteries powered the two DC motors 

(300 RPM) that moved the robot. The total build was 

cost-effective. 

A maze was built as per the specifications shown 

in Fig. 3 (a). As discussed in previous sections, chan-

nel selection and 1s windowing were performed on 

subject 1’s data, and the training-data was processed 

using the novel methodology and used for model 

training. The robot – now operating on the trained 

model – was placed at one entrance of the maze. 

Aided by the three ultrasonic sensors, it moved 

through the maze until an intersection was reached. 

Upon reaching the intersection, the robot waited for 

a navigational command.  

Three random testing-data windows of the class 

 

       

(a)                                                                                               (b) 

Figure. 3: (a) Maze specifications and (b) Robot picking up the desired object 
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Table 5.  Results of robot navigation experiment 

Entrance  
Path Length and 

Number of Turns 

Average Maze Navi-

gation Time (s) 

Average Maze Retrac-

ing Time (s) 

Distance (cm) / Av-

erage Time (s) 

1 422 cm (4 turns) 61.71 60.48 6.94 

2 363 cm (2 turns) 40.11 45.92 8.47 

3 300 cm (2 turns) 38.41 38.09 7.87 

Avg. 362 cm (3 turns) 140.23 48.16 7.76 

 

corresponding to the intended command was inputted 

to the robot – ‘right’, ‘left’, and ‘word’ were used for 

the commands Turn Right, Turn Left, and Go For-

ward respectively. The signal windows were pro-

cessed and classified using the proposed method, 

with no knowledge of the class label. The final navi-

gational command sent to the robot corresponded to 

the majority of the three consecutive classifications. 

The process of finding the command by using three 

consecutive random windows is termed as making 

one ‘decision’. 

After receiving the command, the robot cross-

checked if the path corresponding to the given com-

mand was obstructed or not.  If the path was ob-

structed – as determined by the ultrasonic sensors – 

the robot assumed misclassification and repeated the 

process by taking three more inputs, thus improving 

the navigational performance. However, if the path 

was unobstructed but the navigational command did 

not match the intended direction of motion, the mes-

sage ‘failure’ was flashed on the computer system, 

indicating that the robot failed the navigation pro-

cess. 

Once the robot reached the end of the maze, it de-

tected and automatically picked-up the desired object 

– that was predefined based on its colour – out of a 

set of objects. (Fig. 3 (b)). The robot then retrieved 

the object using automatic path-retracing. This 

shared-control strategy allows high-level actions – 

navigational decisions – to be controlled by the user, 

leaving the low-level control to the robot. Further, 

since the input signal would be required only at a de-

cision-making point, the user would feel considera-

bly less mental strain than they would in the continu-

ous user-control approach. 

7. Results of robot navigation 

The real-time simulated navigation experiment 

was conducted as described in the previous section, 

and the robot was successful in its navigation nine out 

of ten times via all three circuits. It moved at an av-

erage speed of 7.76 cm per s and the average time 

taken to complete each circuit is given in Table 5. 

The average maze retracing time included the 

few seconds taken for the robot to re-enter the maze 

after picking up the object.  Navigation time and re-

tracing time were comparable, implying that the 

speed of EEG processing and classification was high. 

This verified the utility of the novel method for real-

time applications. 

The time taken to traverse the longest circuit, re-

trieve the object, and retrace back to the starting point 

was an average of 2 min 28s. The timing overheads 

included a one-time model training time of only 

17.34s and an object-picking time of 27.23s. Training 

is needed to be done only once per user.   

Overall, the robot navigated the maze with good 

accuracy, advantageously short training time, and 

low computational power. The strength of the novel 

method was further validated by considering hundred 

navigational ‘decisions’ per class of signals. While 

the average accuracy for subject 1 was only 0.78, the 

average accuracy of hundred decisions was 0.82, as 

seen in Table 6. Thus, the use of three short signal 

windows (1s each) to make each navigational deci-

sion resulted in a higher probability that the robot 

reached its destination. 

8. Discussion 

This section discusses the strength of the pro-

posed method (found through the comparative study) 

in the context of recent existing studies that have used 

Datasets IVa and V from BCI Competition III.  

The work in [23, 24] implemented common spa-

tial patterns (CSP) and spatially regularized CSP us-

ing eighteen electrode channels, yielding average ac-

curacies of 0.80 and 0.79 respectively on the two-

class Dataset IVa. The work in [25] once again used 

eighteen channels on the two-class data and an exten-

sive method combining CSP with attractor metagene 

(AM) and the Bat optimization algorithm of SVM to 

select the most discriminatory CSP features resulting 

in an accuracy of 0.85. The work in [26] employed a 

clustering-technique based least-square SVM and 

yielded an average accuracy of 0.84 using all 118 

channels. 

The proposed novel method in this study pro-

vides an average accuracy of 0.84 across all subjects. 

This proved to be better than the accuracies 
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Table 6. Navigational decision accuracy 

Sub 

No. of Correct Navigational 

Decisions (Hundred Trials) 
Average 

Decision 

Accuracy 
Turn 

Right 

Turn 

Left 

Go For-

ward 

1 77 85 84 0.82 

2 51 59 80 0.63 

3 43 70 62 0.58 

 

achieved in papers [23, 24], and only less than that of 

paper [25] by 0.01. These three studies employed 

eighteen electrode channels, while the proposed 

method used only eight channels. The work in [26] 

utilized all 118 channels available in Dataset IVa, but 

only achieved similar accuracies as the proposed 

method which used a considerably less number of 

channels. 

Moreover, the proposed method showed more 

consistent accuracies across subjects as compared to 

the other studies, thereby further proving generaliza-

bility. Additionally, the proposed method was advan-

tageous in its lower computational complexity and 

processing time (5.35s for two-class data), proving to 

be more useful for real-time applications.  

The winners of the competition for the three-class 

Dataset V [17] achieved an average accuracy of 0.69 

by working with the pre-computed PSD feature set 

that was optionally provided by the competition. The 

team that came first using the raw-data employed 

multi-class CSP on fifteen channels and achieved an 

accuracy of 0.63 [17]. The paper [27] implemented 

separable common spatio-spectral pattern on the raw-

data and achieved an accuracy of 0.65. The work in 

[28] employed discrete Fourier transform (DFT) and 

hidden Markov models (HMM) on 2s windows of 

raw-data from all 32 electrode channels and achieved 

a higher accuracy of 0.70.  

The proposed method in this study, however, 

used the raw-data and achieved an average accuracy 

of 0.66 – a higher accuracy than that of the raw-data 

methods studied in [17, 27]. Although the work in 

[28] yielded a higher accuracy, the proposed method 

in this study used only eight channels and shorter 1s 

windows. 

Overall, it can be seen that the novel method in-

troduced in this study works well on both two-class 

and three-class MI data and is computationally less 

complex, making it highly suitable for real-time ap-

plications. 

9. Conclusion 

In this study, conventional feature extraction 

techniques were examined and compared on the BCI 

Competition III Dataset IVa (two-classes).  A novel 

combination of Welch PSD and Hjorth parameters 

was found to provide the best accuracy of 0.84 across 

five subjects, with two subjects crossing 0.90.  

The approach uniquely combined time-domain 

analysis using Hjorth parameters, with frequency-do-

main analysis using Welch PSD, allowing for low 

computational complexity, good generalizability 

across subjects and short training time (12.34s for 

three-class data). Accuracies were comparable with 

other studies that utilized the same datasets.  

The method, when applied on Dataset V (three-

classes), gave an average accuracy of 0.66 across 

three subjects. Using subject 1’s data from this da-

taset, a robot navigation experiment using three mo-

tor commands – ‘Turn Right’, ‘Turn Left’, and ‘Go 

Forward’ – was performed. The robot successfully 

navigated all three circuits of the maze with good 

speed, thus verifying the feasibility of the novel 

method for real-time applications. 

 The use of three consecutive, 1s long signal win-

dows to make each navigational decision improved 

the navigational performance, as did the misclassifi-

cation detection using the ultrasonic sensors. User-fa-

tigue caused by prolonged mental visualization is al-

leviated by the shared-control framework employed. 

Signals are read only in short bursts only when a nav-

igational decision is to be made, and object-retrieval 

and path-retracing is made autonomous.   

In conclusion, the novel method and shared-con-

trol framework proposed in this study can prove to be 

beneficial in real time applications. Particularly, daily 

needs of the elderly and the physically handicapped 

in home and hospital environments can be met. The 

cost-effective build of the robot allows for commer-

cialization of the device, and the small number of 

electrode channels required makes it compatible with 

cheap and portable EEG signal acquisition equip-

ment. 

Future work will primarily focus on acquiring MI 

signals in real-time. The proposed methodology must 

be implemented on more subjects Additionally, mo-

nocular simultaneous localization and mapping 

(SLAM) will be implemented on a multi-terrain 

quadruped to enable navigation in a real home envi-

ronment. Finally, the quadruped will be 3D printed to 

further reduce cost. 
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