
Received:  April 19, 2021.     Revised: May 11, 2021.                                                                                                      312 

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021           DOI: 10.22266/ijies2021.0831.28 

 

 
Fault Tolerant Control of Robot Manipulators Based on Adaptive Fuzzy Type-2 

Backstepping in Attendance of Payload Variation 

 

Hilal Rahali1*          Samir Zeghlache2          Loutfi Benyettou1 

 
1Laboratoire de genie élecrtique, Department of Electrical Engineering, 

University Mohamed Boudiaf of M’sila, Algeria 
2Laboratoire d’analyse des signaux et systèmes, Department of Electrical Engineering, 

University Mohamed Boudiaf of M’sila, Algeria 
* Corresponding author’s Email: hilal.rahali@univ-msila.dz 

 

 
Abstract: In this study, an adaptive fuzzy type-2 backstepping controller (AFT2BC) has been proposed for an 

industrial PUMA560 manipulator robot with a variable load and actuator faults. The method realizes an accurate 

tracking of the trajectory at the end effectors of the manipulator and improves its robustness toward model uncertainty 

(payload variation) and actuator faults when controlling the position of the robot. By using the advantages of the 

backstepping control, the convergence speed of the control algorithm has been improved, and its steady-state error has 

been reduced. Also, integration of the continuous approximation law has been used to eliminate the real-time chattering 

during the control process without affecting the robustness of the system. A type-2 fuzzy adaptive control law has been 

designed in order to guaranty faults and uncertainties compensation, small tracking error, and fast transient response, 

where the prior knowledge of uncertainties and external disturbances is not required, without disappearing the tracking 

precision and robustness property. Finally, the stability of the controller has been proved by the Lyapunov theory, and 

comparative simulations in faulty operation are conducted to show the superiority of the developed control strategy. 

Keywords: Fault tolerant control, Adaptive fuzzy type-2, Backstepping, PUMA560 robot, Payload variation. 

 

 

1. Introduction 

In recent years, robotic manipulator becomes 

very important in several sophisticated industrial 

applications such as painting, drilling, and welding, it 

has acquired wide concern in reason to the great 

performance in these tasks needing high precision for 

path following.  

The control of robot manipulators is a very hard 

mission because this type of system is characterized 

by highly nonlinearities; coupling effects, 

uncertainties, and external disturbances [1]. Efforts 

were made to deal with these problems, like PID 

control, fuzzy logic control [3], neural network 

control [4], feedback linearization control [5], 

predictive control [6], sliding mode control [8-10], 

and backstepping control [11] has been adapted to the 

pursuit missions of manipulators robot. Sliding mode 

control is an efficient nonlinear robust control 

method because it furnishes system dynamics with 

robustness behavior to external disturbances and 

uncertainties as soon as the system dynamics are 

driven in the sliding surface [12, 13]. In [14] a robust 

sliding mode control based on a linear PID sliding 

surface has been developed to the robot manipulator, 

this control strategy can handle bounded parameter 

uncertainties and external disturbances. A first-order 

sliding mode controller for a two-link robot 

manipulator has been designed in [15]. Terminal 

sliding mode control by using nonlinear sliding 

surfaces has been proposed in [16] so that to reach 

finite time convergence without providing a high 

control input. In [17, 18] proposed fast nonsingular 

terminal sliding mode control for manipulator robots 

to minimize the convergence speed. Nevertheless, the 

sliding mode control contains a switching expression 

that leads to the chattering phenomenon, which will 

probably produce high frequency in the control 
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signals, actuator destruction, and great energy 

consumption. 

Recently, several solutions have been proposed in 

the literature in order to reduce the chattering 

phenomena such as the authors in [19] have utilized 

the boundary layer method, where the discontinuous 

sign function is replaced by sigmoid function or 

saturation function. But this solution demeans the 

robustness and the performances. That is why other 

effective techniques have been suggested for instance 

in [20, 21], where the authors have adopted high-

order sliding mode control by introducing twisting 

and super-twisting algorithms. Another solution 

based on second-order sliding mode has been 

proposed in [22, 23]. The backstepping approach 

furnishes a methodical closed-loop construction 

instrument of Lyapunov function to a wide class of 

non-linear systems. Owing to its easy configuration, 

this control method is extensively used in robotic 

manipulator systems, such as in [24] a robust 

backstepping control has applied to the planar free-

floating space robot with dual-arms. The results 

prove the efficiency of the developed control strategy.  

A hybrid non-linear control using adaptive 

methods is an effective control technique for 

uncertain dynamic systems such as robotic 

manipulators… In [25], it introduces a robust fast non 

singular terminal sliding mode control with 

parameter adaptation in order to stabilize the position 

and velocity errors of 2-DOF manipulator robot 

towards zero in finite time. An adaptive second-order 

terminal sliding mode approach is developed in [26] 

to obtain a better tracking of the desired trajectory 

with the elimination of chattering phenomenon. 

Another adaptive control strategy proposed in [27] 

based on second-order fast nonsingular terminal 

sliding mode where all uncertainties existing in 2-

DOF manipulator robot are dominated by adopting 

the adaptive approach. In addition, a prior 

acquaintance of the upper bound of uncertainties is 

not needed. In [28] an adaptive backstepping control 

technique is introduced for path following of 

manipulator robot in the existence of external 

disturbances and uncertainties. An Adaptive fuzzy 

sliding mode control has been proposed in [29] for 3 

DOF planar robot manipulators, where the authors 

used a type-1 fuzzy logic system to produce the 

discontinuous control. In addition, the output gain is 

adapted on-line by a supervisory fuzzy inference 

system in order to avoid the chattering effects. The 

stability in the closed-loop is proved by using 

Lyapunov theorem. In [30] the authors suggest the 

backstepping adaptive fuzzy control method for 

three-link robot manipulators to obtain the tracking 

errors tends to zero in finite time.  

An adaptive fuzzy controller for robotic 

manipulator has been designed in [31], this control 

scheme can compensate the modeling errors and 

external disturbances, the simulation results illustrate 

powerful robustness and better precision. The 

majority of precedent research works assume that 

robotic manipulator systems are in healthy condition. 

Consequently, the motivation of this paper is to 

provide a robust fault tolerant control based on the 

backstepping approach and adaptive fuzzy type-2 for 

the path following problem of 3-DOF robotic 

manipulator with variable payload.  

An adaptive fuzzy type-2 backstepping control 

method is studied in this paper, which is suitable for 

nonlinear systems with uncertainties (payload 

variation) and actuator faults [32-35].  

The advantage of the proposed control method is 

to compensate all the uncertainties at the same time 

and avoid the inherent “explosion of complexity” 

problem. By introducing special adjustable control 

parameters, not only the control precision of the 

system is greatly improved, and the initial control 

input is significantly reduced [32].  

The main contributions of the proposed control 

method are highlighted as follows: 

• Compared to the passive fault tolerant control 

designed in [36, 37] which requests to acquaint or 

to identify the faults. This control scheme 

becomes very hard in case of complex faults. In 

this paper, the proposed controller needs an 

adaptive fuzzy type-2 system in order to obtain a 

robust estimation of uncertainties and faults. 

• The proposed adaptive fault tolerant control 

contains a robust term with adaptive gain that 

allows to having more robustness against 

uncertainties and faults which give certain 

superiorities compared to [29, 31], which are 

based on traditional adaptive fuzzy control for the 

robotic manipulator. 

• In [38, 39] authors adopt a complicated fault 

tolerant control based on observer for estimate 

faults. Unfortunately, this method needs an 

additional observer, which will augment 

computational time, which is not desired for real-

time implementation. In this work, an adaptive 

fault tolerant control scheme does not require an 

observer or diagnostic block.  

• A novel PID-nonsingular fast terminal sliding 

mode control has been used in [40], in order to 

give a robust fault tolerant control of robot 

manipulators. In addition, the time delay 

estimation is introduced to approximate the 

unknown dynamics model, despite good obtained 

results, but this approach is very complicated 
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compared to the proposed work, where the 

unknown dynamics model is estimated directly by 

the adaptive fuzzy type-2 system without needing 

delay time estimation.  

• Contrary to [30], the adaptive control approach 

introduced in this work has been performed in all 

stages of the backstepping algorithm synthesis 

deals with a 3-DOF manipulator robot in defective 

operation. On the other hand in [30], a sane 3-

DOF manipulator robot condition is taken into 

account. On the other hand in [30], a sane 3-DOF 

manipulator robot condition is taken into account.  

• Fuzzy logic control has been used widely to 

control manipulator robots in diverse papers such 

as [41-44]. Nevertheless, the trial and error 

conduct to the considerable limitation of these 

techniques [45]. In [46] an optimized fuzzy type-

2 PID controller is designed to control robotic 

manipulator with variable payload, to reach path 

following, and to minimize the effects of the 

external disturbances; but it can't handle defects. 

On the other hand, in this work, an adaptive fuzzy 

type-2 control is developed in order to obtain a 

better path following with variable payload and 

actuator faults. 

• Adaptive control concerns the online adjustment 

of the control loop regulators in order to guarantee 

a certain level of performance. Several recent 

works have used this approach to control 

manipulators robot [19, 25, 28, 47, 48], this 

technique proved fast and unaffected to external 

disturbances, where no exact model is required. 

Although, the fault effects are not taken into 

consideration. In this paper, hybrid adaptive 

control based on backstepping, and the fuzzy 

type-2 system is developed like a fault tolerant 

control with the existence of external disturbances, 

actuator defects, and uncertainties. 

In order to prove the efficiency of the proposed 

approach (AFT2BC), simulations are effectuated in 

the MATLAB programming environment to the 3-

DOF robot manipulators dynamical model. The 

proposed control method allows us to avoid the 

modeling problems, to provide a low tracking errors 

and the best robustness versus payload variations and 

actuator faults effects. The contributions of this paper 

can be summarized as:  

- Non-linear adaptive control method is 

introduced in this paper to the 3-DOF robot 

manipulators in order to give robust tracking in the 

existence of uncertainties such as payload variations 

and actuator faults in the same time. In addition, the 

proposed control does not need the knowledge of the 

dynamical model.  

- The proposed control is introduced to the 3-DOF 

robot manipulators in its perfect non linear model 

with coupling effects in which the decoupling stage 

doesn't need in control design.  

The remainder of this paper is arranged as follows, 

In Section 2, the dynamical model of the robot in the 

healthy and faulty condition is presented. Section 3 

presents the robust fault tolerant control using 

adaptive fuzzy type-2 backstepping. Simulations 

results and discussion are given in Section 4. Section 

5 presents a quantitative comparison. Conclusions are 

summarized in Section 6. 

2. Dynamic model of robot manipulator 

2.1 Dynamic model of robot manipulator in 

healthy condition 

The PUMA 560 robots is a three DOF robot arm, 

this type of robot is widely used in industry. Figure.1 

shows the configuration of PUMA 560 robots. 

 

The dynamic model of the PUMA 560 is given by 

[45]:  

 

𝑀(𝑞)𝑞̈ + 𝑉𝑚(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) + 𝑢𝑚0 = 𝑢      (1) 

 

where 𝑢 = [𝑢1 𝑢2 𝑢3 ]
𝑇 is the joint input torque 

vector, 𝑞 = [𝑞1 𝑞2 𝑞3 ]
𝑇 is the joint position vector, 

𝑞̇ = [𝑞̇1 𝑞̇2 𝑞̇3 ]
𝑇 is the joint velocity vector,  𝑞̇ =

[𝑞̈1 𝑞̈2 𝑞̈3 ]
𝑇 , 𝑀(𝑞)  is symmetric positive definite 

matrix of inertial accelerations, 𝑉𝑚(𝑞, 𝑞̇) is the matrix 

of coriolis and centrifugal forces, 𝐺(𝑞)  is state 

varying vector of gravity terms. 𝑀(𝑞) , 𝑉𝑚(𝑞, 𝑞̇) and 

𝐺(𝑞) are given in Appendix A, and 𝑢𝑚0 is the vector 

of torque due to the payload  𝑚0determined by [49]: 

 

𝑢𝑚0 = 𝑚0𝐽
𝑇(𝑞)[𝐽(𝑞)𝑞̈ + 𝐽(̇𝑞, 𝑞̇)𝑞̇ + 𝑔]       (2) 

 

 
Figure. 1 PUMA 560 robot configuration [49] 
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With: 𝑔 = [0 0 9.81]𝑇  and 𝐽 is Jacobian matrix 

determined in Appendix A.  

Eq. (1) can be rearranged by:  

 

𝑞̈ = [𝑀(𝑞) + 𝑚0𝐽
𝑇(𝑞)𝐽(𝑞)]−1[𝑢 − 𝑉𝑚(𝑞, 𝑞̇)𝑞̇ − 

              𝐺(𝑞) − 𝑚0𝐽
𝑇(𝑞)𝐽(̇𝑞, 𝑞̇)𝑞̇ − 𝑚0𝐽

𝑇(𝑞)𝑔]   (3) 

2.2 Dynamic model of robot manipulator in faulty 

condition 

In robotic manipulators, failure in the actuators 

can be engendered by several causes such as failure 

in power supply systems. The dynamic model of 

robot manipulator in faulty operation is obtained by:  

 

𝑞̈ = [𝑀(𝑞) + 𝑚0𝐽
𝑇(𝑞)𝐽(𝑞)]−1[𝑢𝑓 − 𝑉𝑚(𝑞, 𝑞̇)𝑞̇ − 

            𝐺(𝑞) − 𝑚0𝐽
𝑇(𝑞)𝐽(̇𝑞, 𝑞̇)𝑞̇ − 𝑚0𝐽

𝑇(𝑞)𝑔]      (4) 

 

Where:  

 

𝑢𝑓 = 𝑢 + 𝑈0                           (5) 

 

𝑈0 is unknown function related to the actuator faults. 

Introducing Eq. (5) into Eq. (4), the dynamic model 

in Eq. (3) becomes:  

 

𝑞̈ = [𝑀(𝑞) +𝑚0𝐽
𝑇(𝑞)𝐽(𝑞)]−1[𝑢 − 𝑉𝑚(𝑞, 𝑞̇)𝑞̇ −

𝐺(𝑞) −𝐺(𝑞) − 𝑚0𝐽
𝑇(𝑞)𝐽(̇𝑞, 𝑞̇)𝑞̇ − 𝑚0𝐽

𝑇(𝑞)𝑔] +

                                                                      𝜗(𝑞, 𝑞̇, 𝑢)   (6) 

 

With: 𝜗(𝑞, 𝑞̇, 𝑢) = [𝑀(𝑞) + 𝑚0𝐽
𝑇(𝑞)𝐽(𝑞)]−1𝑈0 

3. Robust fault tolerant control design 

The dynamic model Eq. (6) can be rewritten in 

the state space as: 

If 𝑀(𝑞), 𝑉𝑚(𝑞, 𝑞̇) and 𝐺(𝑞) are known and free 

of payload uncertainties and actuator faults, i.e., 𝑈0 

the state space presentation of the PUMA 560 robot 

is obtained as:  

 

{

𝑥̇1 = 𝑥2
𝑥̇2 = [𝑀(𝑞)]

−1[𝑢 − 𝑉𝑚(𝑞, 𝑞̇)𝑞̇ − 𝐺(𝑞)]
𝑦 = 𝑥1

      (7) 

 

Where  𝑥1 = [𝑞1 𝑞2 𝑞3 ]
𝑇 is the state vector, 𝑥2 =

[𝑞̇1 𝑞̇2 𝑞̇3 ]
𝑇 

The tracking error variable is defined by:  

 

𝑒1 = 𝑞𝑑 − 𝑥1                             (8) 

 

Where 𝑞𝑑 = [𝑞1𝑑 𝑞2𝑑 𝑞3𝑑 ]
𝑇 is desired signal.  

Step 1 

A Lyapunov function is defined as follows: 

 

𝑉1 =
1

2
𝑒1
2                                (9) 

 

The time derivative of Eq. (11) is computed by: 

 

 𝑉̇1 = 𝑒1 𝑒̇1 = 𝑒1 (𝑞̇𝑑 − 𝑥2)              (10) 

 

The virtual control law 𝛽2 is obtained by: 

 

𝛽2 = 𝑞̇𝑑 + 𝑐1𝑒1                          (11) 

 

Where 𝑐1 ∈ ℜ
3is positive constant vector. 

Step 2 

In this step the tracking error variable is given as:  

 

𝑒2 = 𝛽2 − 𝑥2 = 𝑞̇𝑑 + 𝑐1𝑒1 − 𝑥2           (12) 

 

The time derivative of 𝑒1, 𝑒2 are computed by:  

 

{

𝑒̇1 = 𝑒2 − 𝑐1𝑒1
𝑒̇2 = 𝑞̈𝑑 + 𝑐1(𝑒2 − 𝑐1𝑒1) − [𝑀(𝑞)]

−1[𝑢 −

𝑉𝑚(𝑞, 𝑞̇)𝑞̇ − 𝐺(𝑞)]
   (13) 

 

Let define the augmented Lyapunov function:  

 

𝑉2 =
1

2
𝑒1
2 +

1

2
[𝑀(𝑞)] 𝑒2

2                   (14) 

 

The time derivative of Eq. (14) is given as: 

 

𝑉̇2 = 𝑒1𝑒̇1 + [𝑀(𝑞)]𝑒2𝑒̇2 −
1

2
[𝑀̇(𝑞)]

−1
[𝑀(𝑞)]2𝑒2

2 

(15) 

 

Introducing Eq. (13) into Eq. (15) yields:  

 

𝑉̇2 = −𝑐1𝑒1
2 + 𝑒2

(
𝑞̈𝑑+𝑐1(𝑒2−𝑐1𝑒1)−[𝑀(𝑞)]

−1[𝑢−𝑉𝑚(𝑞,𝑞̇)𝑞̇−𝐺(𝑞)]

[𝑀(𝑞)]−1
− 

1

2
[𝑀̇(𝑞)]

−1
[𝑀(𝑞)]2𝑒2 − 𝑢)                                 (16) 

 

The control law 𝑢 is obtained by:  

 

𝑢 =
1

[𝑀(𝑞)]−1
(𝑞̈𝑑 + 𝑐1(𝑒2 − 𝑐1𝑒1) +

[𝑀(𝑞)]−1[𝑉𝑚(𝑞, 𝑞̇)𝑞̇ +𝐺(𝑞)] −
1

2
[𝑀̇(𝑞)]

−1
[𝑀(𝑞)]2𝑒2) + 𝑐2𝑒2                            (17) 

 

Where 𝑐2 ∈ ℜ
3is positive constant vector. 

Using Eq. (17), it can be cheeked that: 

 

 𝑉̇2 ≤ −𝑐1𝑒1
2 − 𝑐2𝑒2

2                       (18) 
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𝑉̇2 < 0                               (19) 

 

The functions 𝑀(𝑞), 𝑉𝑚(𝑞, 𝑞̇) and 𝐺(𝑞)are unknown 

and 𝜗(𝑞, 𝑞̇, 𝑢) term which include payload variations 

and actuator faults effects are different to zero (𝑈0 ≠
0and 𝑚0 ≠ 0), in this paper adaptive type fuzzy-2 

fuzzy system has been used to deal this problem. The 

proposed approach concern the online estimation of 

the ideal control law obtained by backstepping 

method using fuzzy type-2 inference system where 

the fuzzy parameters are adjusted by adaptive laws. 

The ideal control law presented in Eq. (17) can be 

rewritten in the following form [50]: 

 

𝑢 = 𝑢𝑏 + 𝑐2𝑒2                       (20) 

 

 With:  

 

𝑢𝑏 =
1

[𝑀(𝑞)]−1
(𝑞̈𝑑 + 𝑐1(𝑒2 − 𝑐1𝑒1) + [𝑀(𝑞)]

−1 

    [𝑉𝑚(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞)] −
1

2
[𝑀̇(𝑞)]

−1
[𝑀(𝑞)]𝑒2) (21) 

 

The fuzzy type-2 inference system is principally 

utilized to estimate the control laws 𝑢𝑏,𝑗 in Eq. (21) 

by:  

𝑢̂𝑏 = 𝑊
𝑇(𝑒1,, 𝑒̇1)𝛩                     (22) 

 

Where Θ denotes adapted vector parameters, and 

𝑊𝑇(𝑋)
 
represents average basis functions obtained 

by fuzzy type-2 system where each basis function is 

given by the average of corresponded left and right 

basis functions. 

The real 𝑢𝑏 can be expressed in the following 

forms: 

 

𝑢𝑏 = 𝑊
𝑇(𝑒1, 𝑒̇1)𝛩

∗ + 𝜀                  (23) 

  

Where Θ∗ are the optimal parameters, and 𝜀 are the 

estimation errors that satisfy the condition: |𝜀| ≤ 𝜀̅
 
 

Where 𝜀 ̅is unknown positive parameter. 

The adaptive control laws applied to the robot is 

given by [50]: 

 

𝑢 = 𝑢𝑎 + 𝑢𝑟 + 𝑢𝑝                      (24) 

 

With: 

1. 𝑢𝑎is the fuzzy type-2 adaptive control expression 

which is designed in order to estimate the ideal 

backstepping control law 𝑢𝑏 in Eq. (21) given as:  

 

𝑢𝑎 = 𝑢̂𝑏 = 𝑊
𝑇(𝑒1, 𝑒̇1)𝛩               (25) 

 

Where 𝑊𝑇(𝑋) denotes average basis functions 

obtained by fuzzy type-2 system where each basis 

function is given by the average of corresponded left 

and right basis functions and Θ is the adapted vector 

parameters given by: 

 

𝛩̇ = 𝛾𝑒2,𝑊(𝑒1, 𝑒̇1) − 𝜎1𝛩               (26) 

 

Where 𝛾 > 0 and 𝜎1 > 0 ,  𝑒2 = 𝑞̇𝑑 + 𝑐1𝑒1 −
𝑥2 and Θ(0) = 0. 

2. 𝑢𝑟is robust control expressions are introduced to 

reduce both the effects of fuzzy type-2 estimation 

error and uncertainties determined by [51]: 

 

𝑢𝑟 = 𝜀̂ 𝑡𝑎𝑛ℎ (
𝑒2

𝜒
)                      (27) 

 

𝜀̂̇ = 𝜂𝑒̂2 𝑡𝑎𝑛ℎ (
𝑒2

𝜒
) − 𝜎2𝜀̂                (28) 

With 𝜂 > 0 , 𝜎2 > 0, 𝜒 > 0 and ε̂(0) = 0. 

3. 𝑢𝑝 are given by: 

 

𝑢𝑝 = 𝑐2𝑒2                          (29) 

 

Where 𝑐2 > 0. 

3.1 Stability Analysis 

Define the following Lyapunov functions: 

 

𝑉 =
1

2
𝑒1
2 +

1

2
[𝑀(𝑞)] 𝑒2

2 +
1

2𝛾
𝛩̃𝑇𝛩̃ +

1

2𝜂
𝜀̃𝑇𝜀̃  (30) 

 

𝜀̃ and Θ̃ are the estimation errors defined by:   

 

𝜀̃ = 𝜀∗ − 𝜀̂                          (31) 

 

ε̂ is the estimate of ε∗ 
 

𝛩̃ = 𝛩∗ − 𝛩                         (32) 

 

The time derivative of Eq. (30) yields:  

 

𝑉̇ = − 𝑐1𝑒1,
2 + 𝑒2(𝑢𝑏−𝑢) +

1

𝛾
𝛩̃𝑇𝛩̇̃ +

1

𝜂
𝜀̃𝑇𝜀̃̇  (33) 

 

Substituting Eqs. (23-25), and (29) in Eq. (33) 

yields: 

 

𝑉̇ ≤ − 𝑐1𝑒1
2 + 𝑒2(𝑊

𝑇(𝑒1, 𝑒̇1,)𝛩
∗ +

𝜀−𝑊𝑇(𝑒1, 𝑒̇1)𝛩 − 𝑢𝑟 − 𝑐2𝑒2) +
1

𝛾
𝛩̃𝑇𝛩̇̃ +

1

𝜂
𝜀̃𝑇𝜀̃̇ (34) 

 

The optimal parameters vector Θ∗and ε𝑗
∗ are slowly 

time varying, therefore the time derivative of 

estimation error will be:  
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Faults 

- 

Error 
in 

(10) 

 

+ + 
+ 

ur in (27) 

ua in (25) 

up in  (29) 

u 

 

Adaptive 

law in 

(28) 

 

Adaptive 

law in 

(26) 

 

Fuzzy 

type-2 

system 

+ 

e2 e1 qd x1
 

 

𝑑

𝑑𝑡
 

𝜀̃̇ = −𝜀̂̇ and 𝛩̇̃ = −𝛩̇                   (35) 

 

Substituting Eq. (34) in Eq. (35) and taking account 

Eq. (32) we obtain:  

 

𝑉̇ ≤ − 𝑐1𝑒1
2 − 𝑐2𝑒2

2 + 𝑒2𝑊
𝑇(𝑒1, 𝑒̇1)𝛩̃ + 

𝑒2(𝜀 − 𝑢𝑟) −
1

𝛾
𝛩̃𝑇𝛩̇ −

1

𝜂𝑗
𝜀𝑗̃
𝑇𝜀̂𝑗̇                (36) 

By introducing Eqs. (26) and (28) into Eq. (36), 

yield:  

 

𝑉̇ ≤ − 𝑐1𝑒1
2 − 𝑐2𝑒2

2 + 𝑒2(𝜀 − 𝑢𝑟,) +
𝜎1

𝛾
𝛩̃𝑇𝛩 −             

1

𝜂
𝜀̃𝜂𝑒2 𝑡𝑎𝑛ℎ (

𝑒2

𝜒
) +

𝜎2

𝜂
𝜀̃𝜀̂                (37) 

 

Substituting Eq. (31) in Eq. (37) we obtain: 

 

  𝑉̇ ≤ − 𝑐1𝑒1,
2 − 𝑐2𝑒2

2 + 𝑒2(𝜀 − 𝑢𝑟)
𝜎1

𝛾
𝛩̃𝑇𝛩 − 

𝜀∗𝑒2 𝑡𝑎𝑛ℎ (
𝑒2

𝜒
) + 𝜀̂𝑒2 𝑡𝑎𝑛ℎ (

𝑒2

𝜒
) +

𝜎2

𝜂
𝜀̃𝜀̂     (38) 

 

Or equivalently:  

 

𝑉̇ ≤ − 𝑐1𝑒1
2 − 𝑐2𝑒2

2 +
𝜎1
𝛾
𝛩̃𝑇𝛩 − 𝜀∗𝑒2 𝑡𝑎𝑛ℎ (

𝑒2
𝜒
) + 

𝜀̂𝑒2 𝑡𝑎𝑛ℎ (
𝑒2

𝜒
) +

𝜎2

𝜂
𝜀̃𝜀̂ − 𝑒2,𝑢𝑟 + |𝑒2|𝜀

∗                (39) 

 

By introducing Eq. (27) into Eq. (39), yields: 

  

𝑉̇ ≤ − 𝑐1𝑒1
2 − 𝑐2𝑒2

2 +
𝜎1
𝛾
𝛩̃𝑇𝛩 + |𝑒2|𝜀

∗ − 

𝜀∗𝑒2 𝑡𝑎𝑛ℎ (
𝑒2

𝜒
) +

𝜎2

𝜂
𝜀̃𝜀̂                   (40) 

 

Consider the inequality written as follows for any 

value of  > 0 [51]:  

  

|𝑒2| − 𝑒2 𝑡𝑎𝑛ℎ (
𝑒2

𝜒
) ≤ 𝜁𝜒 = 𝜍             (41) 

 

With  is a constant equal  = 0.2785.  

Eq. (41) is changed as follows: 

 

𝑉̇ ≤ − 𝑐1𝑒̂1
2 − 𝑐2𝑒̂2

2 + 𝜀∗𝜍 +
𝜎1

𝛾
𝛩̃𝑇𝛩+ 

𝜎2

𝜂
𝜀̃𝜀̂ (42) 

 

By utilizing young’s inequality, one has: 

 
𝜎1

𝛾
𝛩̃𝑇𝛩 ≤ −

𝜎1

2𝛾
𝛩̃𝑇𝛩+

𝜎1

2𝛾
𝛩̃∗𝑇𝛩∗             (43) 

 
𝜎2

𝜂
𝜀̃𝑇𝜀̂ ≤ −

𝜎2

2𝜂
𝜀̃2 +

𝜎2

2𝜂
|𝜀∗|2               (44) 

 

By introducing Eqs. (43) and (44) into Eq. (42), 

yields:  

𝑉̇ ≤ − 𝑐1𝑒1
2 − 𝑐2𝑒2

2 + 𝜀∗𝜍 −
𝜎1
2𝛾
𝛩̃𝑇𝛩 + 

      
𝜎1

2𝛾
𝛩̃∗𝑇𝛩∗ −

𝜎2

2𝜂
𝜀̃2 +

𝜎2

2𝜂
|𝜀∗|2           (45) 

 

Let's specify:  

 

𝑐 = 𝑚𝑖𝑛{𝜎1, 𝜎2, 2𝑐1, 2𝑐2}              (46) 

 

Eq. (45) becomes:  

 

𝑉̇ ≤ −𝑐𝑉 + 𝜌                     (47) 

 

With:  

 

𝜌 = 𝜀∗𝜍 +
𝜎1

2𝛾
𝛩̃∗𝑇𝛩∗ +

𝜎2

2𝜂
|𝜀∗|2        (48) 

 

By Integrating Eq. (48), yields:  

 

𝑉(𝑡) ≤ 𝑉(0) 𝑒−𝑐𝑡 +
𝜌

𝑐
                (49) 

 

From Eq. (47) it can be proved that the proposed 

control law of PUMA 560 robot presented in Eq. (24) 

is asymptotically stable despite the presence payload 

uncertainties and actuator faults consequently the 

tracking errors converge to zero, which gives full 

demonstration. The proposed control scheme is given 

in Figure 2. 

4. Simulation results  

The proposed control strategy has been 

effectuated by simulation using MATLAB/Simulink 

in order to verify the effectiveness and the capability 

attained for the tracking performances of the three 

joints. The physical parameters PUMA 560 robot is 

given in appendix A. 

Two simulation testes of the PUMA 560 robot are 

carried out, where payload uncertainties and actuator 

faults are taken in consideration. In Test 1, the three 

joints of PUMA 560 robot are commanded  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 2 Proposed adaptive control scheme 
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to follow sinusoidal reference trajectory. In Test 2, a 

cycloidal reference trajectories are considered to the 

three joints of PUMA 560 robot, in addition these two 

tests contains a comparative study with precedent 

control method proposed in literature. For each 

simulation test, the input variable (𝑒1,2𝑚+1, 𝑒̇1,2𝑚+1) 
of the fuzzy type-2 system in Eq. (25) are 

decomposed into five linguistic variables on the 

normalized intervals [-1, 1] with five type-2 Gaussian 

membership functions.  

4.1 Test 1:  

In this first simulation, the robot is supposed to 

track the following desired trajectory: 

 

{
 
 

 
 𝑞1𝑑 = 𝑐𝑜𝑠 (

8

5𝜋
𝑡) − 1         

𝑞2𝑑 = 𝑐𝑜𝑠 (
8

5𝜋
𝑡 +

𝜋

2
)       

𝑞3𝑑 = 𝑠𝑖𝑛 (
8

5𝜋
𝑡 +

𝜋

2
) − 1   

           (50) 

 

To verify the effectiveness of the proposed fault 

tolerant control, we provide a sudden defect 𝑈0 =
[350 360 320]𝑇𝑁.𝑚 at t=12 sec

 
in the three 

actuators in same time. In addition, the mass of 

payload 𝑚0applied at the end of the third joint is 

varied from 10 kg to 2 kg in the period of 25sec as 

depicted in Fig.3. The initial angle displacements 

are 𝑞((0) = [17.2 14.3 17.2]𝑇  𝑑𝑒𝑔. The simulation 

are effectuated for proving the capability of the 

proposed control approach in faulty condition and 

compared with other control strategies available in 

literature such as [19, 25 and 27]. Numerical 

simulation results are depicted in Figures 3-6. The 

positions of joints 1, 2 and 3 are presented in figure 4. 

Tracking error signals are illustrated in Figure 5. It is 

remarked that good trajectory tracking are given by 

utilizing the proposed control strategy. To better 

prove the higher performances in faulty condition of 

the proposed control strategy, three controllers 

proposed in [19, 25 and 27] are considered in our 

simulation for the aim of comparison. The real 

trajectories along joints 1, 2 and 3 positions, 

corresponding to the control method proposed in [19, 

25 and 27] are deviate from their desired values as 

shown in figure 4, which explicate the insufficiency 

of this control strategy in faulty condition. The 

proposed controller has less tracking errors in 

compared to the three other controllers as presented 

in Figures 5 and 6 presents the control inputs, which 

on can distinctly view that the control torques is 

smooth. 

 
Figure. 3 Payload variation (Test 1) 

 

 
Figure. 4 Joint angles tracking responses (Test 1) 

4.2 Test 2:  

In this test, cycloidal function signals are utilized 

as the reference performance. The three joints desired 

trajectories are chosen as: 

 

𝑞𝑑𝑖(𝑡) =

{
 

 𝑞𝑑𝑖(0) +
𝐷𝑖

2𝜋
[2𝜋

𝑡

𝑡𝑓
− 𝑠𝑖𝑛 (2𝜋

𝑡

𝑡𝑓
)] 

𝑓𝑜𝑟0 ≤ 𝑡 ≤ 𝑡𝑓

𝑞𝑑𝑖(𝑡𝑓)  𝑓𝑜𝑟 𝑡 > 𝑡𝑓 𝑤𝑖𝑡ℎ  𝑖 = {1,2,3}

(51) 

 

Where: 𝐷𝑖 = 𝑞𝑑𝑖(𝑡𝑓) − 𝑞𝑑𝑖(0)  
and 𝑡𝑓 is the final 

time of robot motion.  

Yi et all.[27]  
  Boukattaya [25] Proposed controller 

Desired angle 

Mobayen.[19] 
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In order to check the capability of the proposed 

 
Figure .5 Joint angles tracking errors (Test 1) 

 

 
Figure. 6 Control input signal of the proposed controller 

(Test 1) 

 
Figure. 7 Payload variations (Test 2) 

 

control to against actuator faults, we furnish the 

following abrupt defect:  

 

𝑈0 = {
150𝑁.𝑚  𝑡 = 2𝑠𝑒𝑐
120𝑁.𝑚  𝑡 = 2𝑠𝑒𝑐
230𝑁.𝑚  𝑡 = 3𝑠𝑒𝑐

                (52) 

 

Payload mass 𝑚0varies in the interval from 10 kg to 

2 kg and is depicted in figure 7. The initial conditions 

of the three joints are 𝑞((0) = [−54 −

130 125]𝑇 𝑑𝑒𝑔 . Three joints trajectory tracking 

performance are presented in figure 8 and figure 9 

indicate the joint tracking error for joints 1, 2, and 3, 

respectively. It is noted that the tracking error in 

faulty condition of the proposed control is the 

smallest in compared to the proposed control in [19, 

25, 27]. The position for joints 1, 2, and 3 obtained 

by the control strategy proposed in [19, 25, 27] are 

deflected from their reference trajectory as shown in 

Fig.8, which indicate the incapability of this control 

method in faulty operation. 

5. Performance comparison with existing 

adaptive fuzzy type-2 backstepping 

control (AFT2BC)  

In this section a quantitative comparison will be 

addressed in order to well illustrate the comparison 

between four control strategies based on adaptive 

fuzzy type-2 backstepping, for this purpose an IAE 

(integral absolute error), ISE (integral square error), 

IATE (integral time absolute error) and ISV. The IAE, 

ISE and IATE are utilized as error tracking measured 

and ISV denotes energy consumption. The IAE, ISE, 

IATE and ISV criteria are defined as:  

 

𝐼𝐴𝐸 = ∫ |𝑒1(𝑡)|
𝑡𝑓
0

𝑑𝑡                    (53) 

 

𝐼𝑆𝐸 = ∫ 𝑒1
2(𝑡)

𝑡𝑓
0

𝑑𝑡                      (54) 

Yi et all.[27]  
  Boukattaya [25] Proposed controller 

Desired angle 

Mobayen [19] 
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Figure.8 Joint angles tracking responses (Test 2) 

 

 
Figure. 9 Joint angles tracking errors (Test 2) 

 

 

Figure.10 Control input signal of the proposed controller 

(Test 2) 

 

Table 1. Quantitative comparison under external 

disturbances, payload variation and actuator faults with 

existing adaptive fuzzy type-2 backstepping 

Control 

scheme 
AFT2BC 

proposed 

in [52] 

AFT2BC    

proposed 

in [53] 

AFT2BC    

proposed 

in [33] 

Proposed  

AFT2BC  

strategy   

IAE 

Joint 

1 
19.53 12.61 57.99 0.5323 

Joint 

2 
2.45 3.14 16.94 0.2155 

Joint 

3 
8.15 19.55 21.85 1.016 

ISE 

Joint 

1 
23.14 65.93 2.07 0.9763 

Joint 

2 
2.27 3.83 210.51 0.1484 

Joint 

3 
30.95 318.87 558.25 3.233 

IATE 

Joint 

1 
19.53 34.41 189.31 0.122 

Joint 

2 
5.61 7.76 56.78 0.08 

Joint 

3 
19.53 34.41 189.31 0.122 

ISV 

Joint 

1 
5.61 7.76 56.78 0.08 

Joint 

2 
19.53 34.41 189.31 0.122 

Joint 

3 
5.61 7.76 56.78 0.08 

 

Yi et [27]  
  Boukattaya [25] Proposed controller 

Desired angle 

Mobayen[19] 

 

Yi et all.[27]  
  Boukattaya [25] Proposed controller 

Desired angle 

Mobayen.[19] 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure. 11 Histogram of performance indices: (a) IAE, (b) 

ISE, (c) IATE and (d) ISV 

 

 

𝐼𝐴𝑇𝐸 = ∫ 𝑡|𝑒1(𝑡)|
𝑡𝑓
0

𝑑𝑡                  (55) 

 

𝐼𝑆𝑉 = ∫ 𝑢1
2(𝑡)

𝑡𝑓
0

𝑑𝑡                      (56) 

 

From the quantitative comparison results 

presented in Table.1, and figure 11. It is confirmed 

that performance indices (IAE, ISE, and IATE) 

values of the proposed AFT2BC strategy are lower 

compared with the existing control [33, 52, 53]. In 

addition, comparing the control inputs (energy 

consumption), it is remarked that the proposed 

control strategy also gives superior control input 

performance as shown in Table.1, and figure 11. 

6. Conclusion 

In this work, a robust type-2 adaptive control has 

been developed for trajectory tracking of an industrial 

3-DOF manipulator robot in faulty condition. The 

adaptation consists of online adjustments of fuzzy 

type-2 parameters by exploiting Lyapunov stability 

concepts.  

In addition, the proposed control strategies 

contain an additive control term with adaptive gain in 

order to compensate the estimations errors and of 

actuator faults. The simulation results of the proposed 

control strategy demonstrate the efficiency to give a 

small tracking error in existence payload variation 

and actuator faults. It can also be concluded the 

proposed control strategy guaranty a best 

performances in defectively operation compared to 

the precedent control strategy proposed in [19, 25 and 

27]. In addition the developed control algorithm does 

not require a priori knowledge about dynamic model. 

Therefore, the proposed controller can operate in 

faulty condition such as with model uncertainties and 

external disturbances.   

The numerical simulations results show that a 

satisfactory tracking precision are obtained by using 

the proposed adaptive fuzzy type-2 backstepping. 

Finally, as future work, will be focused on the 

practical implementation of the proposed control. 
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Appendix A 

First the following variables are defined by: 

 

{
𝑐𝑖 = 𝑐𝑜𝑠(𝑞𝑖) ,  𝑐𝑖𝑗 = 𝑐𝑜𝑠(𝑞𝑖 + 𝑞𝑗)

𝑠𝑖 = 𝑠𝑖𝑛(𝑞𝑖) ,  𝑠𝑖𝑗 = 𝑠𝑖𝑛(𝑞𝑖 + 𝑞𝑗)
  

 

The inertia matrix is given by: 

 

𝑀(𝑞) = 

[
𝐼1 + 𝐼2𝑐23

2 + 𝐼2𝑐2
2 + 𝐼4𝑐2𝑐23 𝐼5𝑠23 + 𝐼6𝑠23 𝐼5𝑠23

𝐼5𝑠23 + 𝐼6𝑠2 𝐼7 + 𝐼4𝑐3 𝐼8 + 0.5𝐼4𝑐3
𝐼5𝑠23 𝐼8 + 0.5𝐼4𝑐3 𝐼9

]

 
 

Where: 

 

𝐼1 = 𝐼𝑦𝑦1 + 𝐼𝑥𝑥2 +𝑚2𝑑2(𝑑2 + 𝑒) +𝑚3𝑑2
2 + 𝐼𝑥𝑥3

+ 𝐼𝑥𝑥𝑡 +⋯𝑚𝑡𝑑2
2 + 𝐼𝑀1 

 

𝐼2 = 𝐼𝑦𝑦3 − 𝐼𝑥𝑥3 + 𝐼𝑦𝑦𝑡 − 𝐼𝑥𝑥𝑡 +𝑚𝑡𝑙3
2 

 

𝐼3 = 𝐼𝑦𝑦2 − 𝐼𝑥𝑥2 +𝑚3𝑙2
2 +𝑚𝑡𝑙2

2 

 

𝐼4 = 𝑚3𝑙2𝑙3 + 2𝑚𝑡𝑙2𝑙3 

 

𝐼5 = 0.5𝑚3𝑙3𝑑2 +𝑚𝑡𝑙3𝑑2 

 

𝐼6 = 0.5𝑚2𝑙2(𝑑2 + 𝑒) +𝑚3𝑙2𝑑2 

 

𝐼7 = 𝐼𝑧𝑧2 + 𝐼𝑧𝑧3 +𝑚3𝑙2
2 + 𝐼𝑧𝑧𝑡 +𝑚𝑡(𝑙2

2 + 𝑙3
2) + 𝐼𝑀2 

 

𝐼8 = 𝐼𝑧𝑧3 + 𝐼𝑧𝑧𝑡 +𝑚𝑡𝑙3
2 

 

𝐼9 = 𝐼8 + 𝐼𝑀3 

 

𝐼𝑀𝑖(𝑖 = 1,…3) are the inertias moments of the 

different motors. 

𝐼𝑥𝑥𝑡, 𝐼𝑦𝑦𝑡 , 𝐼𝑧𝑧𝑡   Represents the total inertias moments 

relative to the main axes of the effector. 

The state varying vector of gravity terms is obtained 

by: 

 

𝐺(𝑞) = [

0
−(𝑚3𝑙2 + 0.5𝑚2𝑙2)𝑔𝑐2 − 0.5𝑚3𝑙3𝑔𝑐23

−0.5𝑚3𝑙3𝑔𝑐23

]

 
 

The Jacobian matrix is defined as: 

 

𝐽(𝑞) = 

[

−𝑠1(𝑙2𝑐2 + 𝑙3𝑐23) − 𝑑2𝑐1 −𝑐1(𝑙2𝑠2 + 𝑙3𝑠23) −𝑐1(𝑙3𝑠23)

𝑐1(𝑙2𝑐2 + 𝑙3𝑐23) − 𝑑2𝑠1 −𝑠1(𝑙2𝑠2 + 𝑙3𝑠23) −𝑠1(𝑙3𝑠23)

0 −(𝑙2𝑐2 + 𝑙3𝑐23) −(𝑙3𝑐23)
]

  

The matrix of coriolis and centrifugal forces is 

defined as follows: 

 

𝑉𝑚(𝑞, 𝑞̇). 𝑞̇ = [

𝑉𝑚1
𝑉𝑚2
𝑉𝑚3

]

 

 

Such as: 

𝑉𝑚1 = −(2(𝐼3𝑠2𝑐2 + 𝐼2𝑠23𝑐23)

+ 𝐼4(𝑐2𝑠23 + 𝑠2𝑐23))𝑞̇1𝑞̇2
− (2𝐼2𝑠23𝑐23 + 𝐼4𝑐2𝑠23)𝑞̇1𝑞̇3
+ (𝐼6𝑐2 + 𝐼5𝑐23)𝑞̇2

2 + (2𝐼5𝑐23)𝑞̇2𝑞̇3
+ (𝐼5𝑐23)𝑞̇3

2 

 

𝑉𝑚2 = (𝐼3𝑐2𝑠2 + 𝐼2𝑐23𝑠23

+ 0.5𝐼4(𝑠2𝑐23 + 𝑐2𝑠23))𝑞̇1
2

− (𝐼4𝑠3)𝑞̇2𝑞̇3 − (0.5𝐼4𝑠3)𝑞̇3
2 

 

𝑉𝑚3 = (𝐼2𝑠23𝑐23 + 0.5𝐼4𝑐2𝑠23)𝑞̇1
2 + (0.5𝐼4𝑠3)𝑞̇2

2 

 

• Masses of the different liaisons 

Table 2. Masses of the different liaisons 

𝑚2

= 17.40 𝐾𝑔 

𝑚3

= 5.04 𝐾𝑔 

𝑚4 = 0.82 𝐾𝑔 

𝑚5 = 0.35 𝐾𝑔 𝑚6

= 0.09 𝐾𝑔 

𝑚𝑡

= 𝑚4 +𝑚5 +𝑚6 
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• Geometric parameters 

Table 3. Geometric parameters 

d2=149.0

9 mm
 

l2=431.

8 mm 
l3=433.07 

mm
 

e=1 

mm
 

 

• Inertias parameters 

Table 4. Inertias parameters 

  
 T

h
e 

li
a

is
o

n
  

𝐼𝑥𝑥𝑖  

[𝐾𝑔𝑚2] 

 

𝐼𝑦𝑦𝑖 

[𝐾𝑔𝑚2] 

 

𝐼𝑧𝑧𝑖 

[𝐾𝑔𝑚2] 

 

𝐼𝑀𝑖  

[𝐾𝑔𝑚2]
 

1 - 350×10-3 - 1.14 

2 130×10-3 524×10-3 539×10-3 4.71 

3 192×10-3 15.4×10-

3 

212×10-3 0.83 

4 1.30×10-

3 

1.80×10-

3 

1.80×10-3 - 

5 0.30×10-

3 

0.30×10-

3 

0.40×10-3 - 

6 0.04×10-

3 

0.15×10-

3 

0.15×10-3 - 

4+5+6 1.64×10-

3 

2.25×10-

3 

2.35×10-3 - 

 


