
Received: February 23, 2021. Revised: May 11, 2021. 337

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.30

Inference Model for Self-Adaptive IoT Service Systems

Aradea Aradea1* Rianto Rianto1 Husni Mubarok1

1Department of Informatics, Faculty of Engineering, Siliwangi University, Indonesia

* Corresponding author’s Email: aradea@unsil.ac.id

Abstract: Internet of Things (hereafter, IoT) service is a complex system because it should meet miscellaneous domain

forms represented physically and virtually. The main challenge of IoT is to provide an inference model to resolve the

dynamic context on a run-time basis. The system should have the ability to catch instances or concrete IoT services.

On the other side, it should have the capability to adapt to the newest evidence of contexts. This paper introduces an

inference model consisting of an IoT structure service artifact, a subsystem of contextual knowledge, and a subsystem

of run-time adaptability reasoning. The results of model implementation on monitoring system of coronavirus disease

revealed that the ability to adapt continuously and provide various alternative solutions to handle uncertain contexts,

which is refered to sensor, network and server failure. The example of experiment result when a sensor failure occurs,

the data received by the main server from the node is the average of the three previous data.

Keywords: Autonomic computing, Inference model, Self-adaptive systems, IoT service, Service knowledge.

1. Introduction

Internet of Things (hereafter, IoT) and its network

architecture are complex systems since it was built

from various integrated IoT devices shaped to

distribute services to comply with the general

objective of IoT applications [1]. To illustrate, IoT

service systems exist in modern software

environments with the run-time characteristic. Most

of the systems driven by data indicate a dynamic

character, an uncertain function, high connectivity,

and scalability. It can produce significant risks and

difficulties to evaluate at the design-time [2].

Likewise, IoT service systems are implemented in

various lives, such as health, agriculture, traffic

management, retail, logistic, remote monitoring,

smart cities, process automation, etc. IoT can call be

called a new paradigm providing a set of new services

for every innovation of future generating technology.

This situation could turn up various kinds of

problems considering various utility factors, such as

domain application, middleware domain, networks

domain, object domain, etc. [3].

 P. O. Antonino, A. Morgenstern, B. Kallweit, M.

Becker, and T. Kuhn, [4] contend that adaptability is

a property adhering to IoT-enabled cyber-physical

systems. It should self-adjustment with a growing

situation of context in which the system is running.

Besides, the architecture should be well-designed. In

this case, the service systems can adjust to their

environment in a real-time manner with an

appropriate element distribution level [5]. The

statements have become a motivation for the writers

to foster an IoT service system possessing adaptive

capability based on related components of reasoning.

These steps have been initiated by defining generic

service artifacts and their inference model to

accommodate various IoT sources.

I. L. Yen, F. Bastani, S. Y. Hwang, W. Zhu, and

G. Zhou [6] had initiated to define IoT services

artifact requirements. They extent the services model

of software to support IoT specifications. As a result,

service artifacts have flexibility in the

implementation of various domains. Conversely, the

effort has not yet been examined, such as the need for

adapting the produced service artifacts. Generally

speaking, the system requirements for different IoT

application domains have not been well- defined [1].
This situation aligns with how the service model can

meet the specifications of a very dynamic variety of

Received: February 23, 2021. Revised: May 11, 2021. 338

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.30

IoT service domains. The main challenge is providing

self-adaptive systems to meet the scope and life cycle

of IoT systems [7]. It is relevant to the need for an

inference model that can automate the control of

service artifacts for the future needs of IoT services.

By doing so, the services are expected to be more

sensitive, automatically-adaptive, organized, smart,

autonomously-acting based on the environmental

events of a context.

This paper introduces an inference model for self-

adaptive IoT service systems cultivated based on

autonomic computing and confidence factors. The

remaining paper consist of section two that describe

related work, section three depict proposed method,

that consists of basic model, inference model

components and model of an inference rule, section

four illustrate implementation model to case study

that consist of case specification, experiment, and

evaluate of experiment result. Lastly, this paper

closed by conclusion and future work.

2. Related works

A plethora of experts had investigated

miscellaneous problems and complexities related to

the provision of IoT services. As an example, S. Y.

Shin, S. Nejati, and M. Sabetzadeh, [8] proposed

software-defined networks (SDN) of IoT service. The

approach was claimed to be able to solve network

stagnation in a real-time manner. Also, it could

reduce network utilization, data transmission delay,

and adaptation cost. For this reason, it remains crucial

to ensure the criteria for quality service. Another fact,

M. Moghaddam, E. Rutten, and G. Giraud, [9]

scrutinized the systematic literature review about

adaptive middleware supporting the Internet of

Things (IoT) and Cyber-Physical Systems (CPS).

They notably accentuated on identifying various

middleware designs of reactive/proactive in an IoT

service system. Moreover, M. Etemadi, M. Ghobaei-

Arani, and A. Shahidinejad, [10] proposed an

approach to provide IoT services system efficiently.

This approach was assumed to be able to increase and

decrease dynamic scaling from cloud resources. In

particular, it functions to accommodate works load

from IoT service on the cloud computing

environment. Overall, these previous studies only

focused on the ability of IoT service systems viewed

from the networks and middleware domains.

Other experts in other domains, such as A.

Urbieta, A. González-Beltrán, S.B. Mokhtar, M.A.

Hossain, and L.Capra, [11], introduced a model of

IoT service based on a context-aware specification to
undertake to reason toward user tasks and service

behaviors. The reasoning is related to various IoT

environment sources. Grounded in such a notion,

they proposed a solution to emphasize adaptive

service composition to support dynamic reason.

Additionally, D. Mocrii, Y. Chen, and P. Musilek,

[12] had explored various needs of IoT services

forming elements, including the needs that should be

filled from the system of architecture concept,

software, communication technology, privacy, and

security. Referring to the relevant investigations,

there have been a number of points that the IoT

service system should have. One of them is the ability

to adapt as a requirement from the system and its

environment.

Required adaptability in IoT service had been

initiated in the writers’ previous studies [13, 14]. As

a matter of fact, the development was inspired by I.

L. Yen, F. Bastani, S.Y. Hwang, W. Zhu, and G.

Zhou, [6] and I. Supriana, K. Surendro, Aradea, and

E. Ramadhan, [7] integrated with the ontological

approach [15]. The model provides terminology to

represent all IoT service artifacts, including metadata

to the entire attributes and the relation between IoT

services. Service artifacts consist of constructing

elements of the requirement model matching IoT

services concepts or classes. Unfortunately, this

model has not possessed particular features about

how the context class interrelates to the general

knowledge for fulfilling the needs of the artifact

service class. In addition, the model has not touched

the issue of how to control the process in artifact

service class running in run-time through a particular

mechanism. To fill this void, the present study aimed

at fostering an inference model for IoT services of

adaptation needs at run-time consisting of various

environmental resources.

3. Proposed method

3.1 Basic model

The self-adaptive systems (hereafter, SAS)

objective is to realize the self-adjustment behavior of

a particular software called adaptation requirements

[16, 17]. This situation requires a system to acquire a

number of aspects, namely (a) the ability to recognize

a change in the application domain, (b) the capacity

to determine transformation needed on a system

based on application domain shifting, and (c) the

capability to make changes in itself to produce

alternative behavior [18]. Adaptation requirements

on SAS are related to specification, refinement, and

priority of responses to the change at the run-time

[19]. SAS developers had proposed various

approaches to fill the needs based on the focus of their

Received: February 23, 2021. Revised: May 11, 2021. 339

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.30

Figure. 1 Self-adaptive IoT service systems

problems. Thus, there is no a widely-approved

definition or a required specification of adaptation

[21]. This causes a scarcity of approaches to develop

adaptation needs, including IoT service systems of

adaptation requirements.

IoT is a modern software comprising a run-time

property. This complex system could make a

significant risk and a difficult evaluation at the

design-time. Nevertheless, the run-time can

complement the design-time evaluation [2]. This

notion showcases the necessity of model

development bridging situations either at the design-

time or the run-time. With this in mind, changes and

evolution of IoT service systems can be handled in

real-time.

This study proposes an inference model

representing the knowledge service of the IoT

domain. The IoT knowledge service is prepared at the

design-time. However, it potentially indicates a new

fact about context at the run-time. To fill this

requirement, the current study adopts an autonomic

computing approach formulated as Event-Condition-

Action (ECA) rules based on the confidence factors

approach. More specifically, this study employed a

model representing a general service artifact to

accommodate various IoT resources based on self-

adaptive architecture. Inference to the adaptability of

service artifacts is determined by the service artifact

catching the instance or concrete IoT service based

on known context. Therefore, this system works

autonomously at the run-time. This proposed model

is an extent of the writer’s previous works [13, 14].

3.2 Inference model component

The main component of the proposed model in

this study is outlined in Fig. 1. It consists of (a) IoT

service artifact structure, (b) contextual knowledge

subsystem, and (c) adaptation reasoning subsystem.

IoT service artifact structure refers to a class

deploying to catch instances or a concrete IoT service.

It is fostered based on an ontological approach. This

structure is an extent of the work of I. L..Yen, F.

Bastani, S. Y. Hwang, W. Zhu, and G. Zhou [6]. They

utilized the design pattern approach of autonomic

computing and self-adaptation grounded in

contextual requirements. The proposed IoT service

artifact is displayed subsequently.

a. The process represents IoT service operation

encompassing required service composition and

reasoning mechanism at the run-time.

b. A profile represents both functional properties

(F) and non-functional (NF) of IoT services

from every composition of monitored services at

the run-time.

c. Grounding is a technical detail representation of

IoT services property comprising context

attribute (C) as a random variable related to both

functional (F) and non-functional (NF) of IoT

services.

Contextual knowledge subsystem is a detailed

representation of IoT services property both

functional (F) and non-functional (NF) are extended

from the contextual requirement approach [22-24].

The subsystem is constructed by accommodating

uncertainty factors. It implemented a contextual

attribute as a random variable representing two

factors as outlined below:

a. Context (C) is a feature of the IoT domain

relevant to a set of environmental assumptions.

b. Context variability (Cv) dimension is a factor

representing the occurred IoT domain changes at

the run-time.

The adaptation reasoning subsystem is a

mechanism of monitoring and determining

adaptation action at the run-time toward each IoT

service. Patterned reasoning is cultivated to adopt an

autonomic computing approach [25, 26, 27]. It is

labeled as MAPE-K (monitor, analyze, plan, execute-

knowledge) adaptation pattern, wherein:

a. Monitor (M) is a process to scan and collect

context information from IoT services based on

situational services and their environments.

b. Analysis & Plan (AP) is a reasoning process for

analyzing and planning an action suitable for

each IoT service.

c. Execution (E) is a process to determine

adaptation appropriate to each IoT service.

3.3 Model of an Inference Rule

Inference model to execute contextual knowledge
of reasoning toward each need of IoT services
adaptation is defined by the following couples of

rules:

Rule-1: Service Artifact & Contextual Requirements

Received: February 23, 2021. Revised: May 11, 2021. 340

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.30

- Each Fi ∈ {F1, F2, …, Fn} in IoT services artifact

has a random variable context Ci ∈ {C1, C2, …,

Cn} influencing to each NFj ∈ {NF1, NF2, …,

NFn}

Rule-2: Service Artifact & Monitoring Requirements

- Each Fi ∈ {F1, F2, …, Fn} containing random a

variable context Ci ∈ {C1, C2, …, Cn} is

monitored based on Cv dimension.

Rule-3: Service Artifact & Evidence Requirements

- Each Ci ∈ {C1, C2, …, Cn} in services artifact Fi

and NFj is influenced by evidence (Ev) related to

a set of environmental assumptions and IoT

domain changes/Cv dimension at run-time.

Rule-4: Service Artifact & Reasoning Requirements

- Each Fi ∈ {F1, F2, …, Fn} has a random variable

context Ci analyzed and planned by AP. The

adaptation action to execution service into a

particular circumstance based on Ev and Cv at an

M monitoring process.

Table 1 describes the algorithm for mechanism

requirement toward contextual knowledge of each

IoT service according to four rules. The inference

model is constructed through an autonomic

computing approach based on the MAPE-K pattern

represented as ECA rules. Event-related to the

context of IoT services monitored at the run-time, the

condition related to changes of context condition of

IoT services. Also, context at the run-time and action

is a behavior of adaptation of IoT services on

handling context variability at run-time.

Rules in knowledge base built as rules of the

model editor. The developer can perform some

operations like adding or specification changes by

renewing the knowledge base directly or put it back.

These rules function as a policy engine and system

administrator adjusting to the system of the policy

every time according to preference and its needs

through available interfaces.

The reasoning mechanism based on the

developed policy engine adopts the confidence

factors (CF) approach [28, 29]. In particular, it is

formulated in ECA rules. CF is utilized to determine

alternative behavior options for IoT services when

the system executes (action) based on the results of

the monitor (event) and Analysis & Plan (condition).

The basic formulation of CF refers to the ECA rules:

If Ci  Ev Then Cv  Ha (1)

Where:

• Ci  Ev is evidence of context (Ci) influencing

service functional (F)

• Cv  Ha is a hypothesis to determine alternative

action of variability context (Cv) based on

priority/suggestion evidence of quality/ non-

functional (NF) service.

• The scope of a particular value ranges between 0

to 1.

Table 1. Adaptation of IoT service pattern algorithm

Adaptation of IoT service pattern

Input

Fi  value in Ci

NFj  value in Ci

Do

Let

 (Fi, NFj)  inference model

// Monitor (M) Pattern

for all Fi and NFj in service artifact, do

 Fi  get values Ci in service artifact

 NFj  get values Ci in service artifact

 for each values Ci in IoT service artifact, do

 if S.system Cv in service artifact  evidence Ev

then

 send information (S.system(Cv)) to

analyzerManager

 end if

 end for

end for

// Analysis & Plan (AP) Pattern

for each S.system Cv in analyzerManager do

 Ci  joint value (S.system(Cv)) from Fi and NFj

 S  update actual Ci as S.System Cv

 for each S.system (actual Ci) do

 (Fi, NFj)  ECA reasoning

 if Cv = new evidence Ev (Ci) then

 create an adaptation request (new Ci

requirements) and

 update value (new S.system Ci) for service

artifact

 end if

 end for

end for

// Execute (E) Pattern

for all actual Ci (new S.system) in-service artifact do

 changeService  new changeService in service

artifact

 send changeService to one or more executors

 for each changeService in executor do

 S.system  set a new value for service artifact

 actuator  update behavior via one or more

actuators

 end for

end for

Output

Self-adaptation for IoT service artifact based on the

control loop

Received: February 23, 2021. Revised: May 11, 2021. 341

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.30

So the CF rule:

CF (Ha, Cv) = CF (Ci, Cv) CF (Ha, Ev) (2)

Where:

• CF (Ci, Cv) is a certainty factor of Ci fact making

antecedent from rules based on uncertainty Cv

fact.

• CF (Ha, Ev) is a certainty factor in the hypothesis

assuming that certain known fact if CF (Ci, Cv) =

1.

• CF (Ha, Cv) is the certainty factor hypothesis that

based on uncertainty fact Cv by priority/

suggestion fact of quality/ NF services.

If CF (Ci, Cv) consists of C1, C2, Cn, then applies

min [CF (C1, Cv), CF (C2, Cv), CF (Cn, Cv)] * CF

(Ha, Ev). Subsequently, the results will determine the

rule raised to determining adaptation action based on

the highest certainty value. The weight of each CF

value from Cn is to state a confidence level. It can be

obtained from the confidence of experts, data users,

or inferences from another rule on a rule basis,

previous data, uncertain data, and monitoring

infrastructure-based rules. The rule of the editor

model realized this model is recognized as an engine

policy.

4. Case study: continuous Covid-19

monitoring system

Currently, the coronavirus disease (henceforth,

Covid-19) outbreak has become the most striking

issue for people around the world. Even, World

Health Organization (WHO) has officially decided

such an outbreak as a pandemic. Against this

background, this study is dedicated to these

circumstances. More specifically, it is expected to be

one of the solutions to the development of application

in the field of intelligent software systems. Fig. 2

deciphers a continuous Covid-19 monitoring system

case. The problem domain of this case raises issues

discussed by previous researchers. As an example, M.

Kamal, A. Aljohani, and E. Alanazi, [30] attempted

to adjust and expand their empirical investigation

based on the proposed model of this research.

4.1 Case specification

The environmental system includes an actor as a

general user, a patient, a doctor, and other health

stakeholders. The monitored resources are the

medical track record of the patients, disease data, user

positions, and regions classified by the Covid-19

spread spectrum. In this case, all monitored sources

are related to wearable devices. Moreover, they have

rapid changes and face uncertainty influenced by an

Figure. 2 A continuous covid-19 monitoring system

Table 2. Case specification of IoT services

Component Specification

IoT service

artifact

SA: user, patient, doctor, health

stakeholder

F: management of user, management

of a patient, management of

symptoms, management of areas

NF: accurate, rate

SR: map of the area, medical record,

user data, diseases data

Contextual

knowledge

C1: patient status; C2: zone type; C3:

user position; C4: user type; C5:

sensor failures; C6: sever faults; C7:

networks inference

Adaptation

requirements

Cv1: event to classified patient status

Cv2: event defining zone type

Cv3: event determining user position

Cv4: event to determine user types

Cv5: event C1 ˄ (C5 ˅ C6 ˅ C7)

Note: SA: service actor; F: functional service; NF: non-

functional service; SR: service resources; C: contexts;

Cv: context variability

uncertain contextual variability. This situation is

caused by changes, data growths, invalid information,

failures of system or service infrastructures, and

unpredictable novel conditions.

Referring to Fig. 2, the Covid-19 monitoring

system should be able to conduct continuous

monitoring. This ability can be realized through the

adaptability system as a response to incidents both in

the system itself or its environment. In other words,

the continuous monitoring system is specified based

on the main component of the proposed inference

model consisting of IoT service artifacts, contextual

knowledge subsystem, and adaptation reasoning

subsystem. On each model of components,

specification of every variability accommodates all

needs of IoT service environment, such as contextual

variability of services system, IoT environment, and

Received: February 23, 2021. Revised: May 11, 2021. 342

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.30

adaptation requirements at the run-time, as illustrated

in Table 2.

4.2 Experiment

Experiments in this study were divided into two

main parts. The first part described the system

experiment in normal conditions, namely the system

monitors and services management. This first system

experiment was based on service functions and meets

the quality attributes (non-functional). In the second

experiment, several situations were carried out where

the service system was exposed to the variability of

the system itself and its environment. These cover

changes in context and disruption or failure of service

system infrastructure.

4.2.1. Experiment-I: IoT context monitoring

In relation to the case specification in Table 2,

adaptation requirements in normal situations of IoT

service systems define patient status, classify zone

type, determine user position, and define user type.

Monitored Context variability (Cv) related to Ci ∈ {C1,

C2, C3, C4} and values of the variable for each context

C1: patient status (Normal, ODP (Orang Dalam

Pemantauan): Person in Surveillance, PDP (Pasien

Dalam Pemantauan): Patient in Surveillance, PPC

(Pasien Positif Covid-19): Patient Positive Covid-19,

PSC (Pasien Sembuh Covid-19): Patient Recovering

from Covid-19); C2: zone types (green, yellow,

orange, red); C3: user position (spatial coordinate);

and C4: user types (general user, patient, doctor,

nurse). The first experiment considered scenarios to

determine a patient’s status or a person’s status. A

person/patient connected to smart medical devices to

monitor his/her health condition. The data of patient

condition apart from being used as a reference to

determine a patient status. Also, it is used as a report

to determine the Covid-19 zone classification. These

data became the primary sources of information for

each type of IoT service user in various coordinate

positions.

The adaptation pattern of IoT service systems in

managing patient data is the monitoring component

(M) to monitor. Besides, it functions to collect C1

contextual information from smart medical devices

connected to patients. Furthermore, the Analysis &

Plan (AP) component analyze and plans follow-up

actions to deliver the information. Finally, the

executing (E) component determines the action best

suited for C2, C3, and C4 context requirements. The

simulation carried out in this first experiment is a

dynamically changing context information Ci ∈ {C1,

C2, C3, C4}. Table 3 indicates the C1 context data.

Table 3. The fact of C1 context at run-time

Day BT TH GS SS Status

1 < 38 1 0 0 0

2 <38 1 0 0 0

3 >38 1 1 0 1

4 >38 1 1 2 1

5 >38 1 1 3 1

6 >38 1 1 3 1

7 >38 1 2 2 2

8 >38 1 3 2 2

9 >38 1 3 2 2

10 >38 1 3 1 3

11 >38 1 3 1 3

12 >38 1 2 1 3

13 >38 1 2 1 3

14

15

16

<38

<38

<38

1

1

1

2

2

0

0

0

0

3

3

4

Note:

BT (Body Temperature): Celsius

TH (Traveling History): 0. No; 1. Yes

GS (General Symptom): 0. No; 1 Cough; 2. Flu; 3.

Breathless

SS (Specific Symptom): 0. No; 1. Loss of Smell; 2.

Breathless

Status: 0. Normal; 1. ODP; 2. PDP; 3. PPC; 4. PSC

More specifically, Fig. 3 demonstrates the simulation

of changes in the IoT domain occurring at the run-

time in Ci for the C1 context.

The data in Table 3 illustrate changes in service

users monitoring C1 (Cv1) on the Covid-19 cases. The

monitoring process was carried out by the monitoring

component (M) applying wearable sensors, including

the heart rate and temperature sensors. The graph

revealed a change in the status of a user suspected of

being a Covid-19 case. The statuses were categorized

as ODP, PDP, PPC, PSC, and returning to the Normal

category. These changes were analyzed by

employing the Analysis & Plan (AP) component

based on a rule translating data from the monitoring

component (M) in the IoT device.

The filter applied in rules of analyzing & plan

(AP) component was data from body temperature

monitoring device combined with traveling and

disease histories or occurred symptoms. Traveling

histories were divided into several zones based on

government regulation, namely green, yellow, orange,

and red. The colors represented significant levels of

Covid-19 spread. Diseases and symptoms histories

were utilized to determine the level of surveillance or

observations toward user/patient. Eventually,

executing (E) components automatically sent the

newest data to the system periodically. Likewise, it

adjusted to some other context value changes.

Received: February 23, 2021. Revised: May 11, 2021. 343

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.30

Figure. 3 Changes of C1 (Cv1) at run-time

Figure. 4 Transformation of C4 context based on the

changes C1 at run-time

Adjustment of context value affected by value

changes of data at the run-time as illustrated in Fig. 3.

In particular, it made IoT services systems monitor

every context of Covid-19 continuously. Fig. 4

depicts context adjustment of adaptation initiated

when monitoring component (M) existed at every

context C2, C3, C4 to take the new data value from

context C1. Consequently, it was applied to Cv2, Cv3,

Cv4. Furthermore, the AP component updated data

values in the system to display the actual situation.

As an example, Fig. 4 designates an updating

value of context C4 data based on changes of C1

context. Technically, it enabled to produce of an

appropriate transformation with changes in self-

monitoring status by all users/patients. In this

situation, the AP component performed aggregation

toward each change of all users/patients’ statuses. At

the same time, it allowed general users (C3

context/user types) to identify the changes. The

aggregation is performed daily. It was classified

based on the months. Furthermore, the zoning or

context (C2) of area/place can be determined because

zoning was affected by the user/patient status (NOR,

ODP, PDP, PPC, and PSC). Finally, each executing

component (E) for the context of C2, C3, and C4

presented the actual state of the COVID-19

monitoring system in real-time. Given these facts, the

monitoring activities carried out by this system have

a continuous nature.

4.2.2. Experiment-I: IoT context variability

In the second experiment, the IoT service was

faced with unexpected context variability. The

monitored context variability (Cv) was related to Cj

∈ {C5, C6, C7}. This condition would affect the non-

functional (NF) of the service, namely accuracy, and

speed. Employing the same scenario in the first

experiment, the IoT service system was affected by

uncertain factors, including C5 (e.g. sensor failure),

C6 (e.g. severe problems), and C7 (e.g. network

outage). The developed scenario was a combination

of several contexts, such as Ci and Cj. In this case, Ci

and Cj should be able to handle the following

situations, namely Cv5: event C1 ˄ (C5 ˅ C6 ˅ C7). The

developed adaptation pattern was the monitor

component (M) to context information of monitor Ci

and Cj from several installed IoT service

infrastructures. Furthermore, the Analysis & Plan

(AP) component analyzed and planned the handling

action against Cv5 variability based on the reasoning

process. Finally, the executing (E) component

determined the most suitable adaptation action for

each variability.

Another evidence focuses on the IoT service. The

IoT service in this experiment was related to the C1

context information. To illustrate, the patient status

accessed by the service user was faced with a state of

C5 or C6 or C7. Hence, the system should adapt to keep

the service runs. When the monitor component (M)

identified the symptoms of interference between the

three possible contexts, the Analysis & Plan (AP)

component analyzed and planned adaptive actions

through the generated rules. The target was to fulfill

functional (F) services in managing patient status

information based on service quality/non-functional

(NF) service factors, namely accuracy, and speed. On

the one hand, Context C5 highlights the sensor failure

corresponding to factor NF1 (accuracy). On the other

hand. The context C7 (network disturbance) and C6

(sever noise) corresponded to (NF2 factor) speed.

Briefly stated, three contexts (C5, C6, and C7) can

have adverse/negative (-) good/positive (+) effect on

both NF quality factors depending on the choice of

action taken by the system in determining the most

appropriate alternative solution.

Grounded in the above description, the

requirements to manage the variables of patient status

information services remain vital. This enabled to

showcase of the infrastructure failures, such as sensor,

server, or network failures. Those variables were

service event, infrastructure type, and error rate.

Received: February 23, 2021. Revised: May 11, 2021. 344

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.30

Dealing with this, the AP component would conduct

a trigger on the rules based on each property referring

to the recognition results of the monitor (M). These

rules provided alternative behavior in managing

context (C5 ˅ C6 ˅ C7). Possible IoT service situations

are as follows:

Rule-1: if (infrastructure_type = sensor) and

(error_state = null) then service_event =

recognition service

Rule-2: if (infrastructure_type = server) and

(error_state = null) then service_event =

storage service

Rule-3: if (infrastructure_type = network) and

(error_state = null) then service_event =

service delivery

Rule-4: if (infrastructure_type = not null) and

(error_state = not null) then service_event =

sensor exception handling service or

internal storage service or software-defined

networks service

Rule-5: if (infrastructure_type = new type) and

(error_state = null) then service_event =

create new infrastructure type

Rule-6: if (infrastructure_type = null) and

(error_state = null) then service_event =

change service delivery

Rule-7: if (error_state = not null) then service_event

= send notification to user and service desk

Rule-8: if not [criteria] then service_event = change

service delivery

Based on the abovementioned rules, the service

plan (SPn) was obtained. As shown in Table 4, SPn

provided alternative behavioral options for IoT

service systems selected through service needs. The

most appropriate behavior would be determined by

the executing (E) component based on the reasoning

results of the Analysis & Plan (AP) component

through the policy engine.

A form of adaptation in IoT service-I event is

selecting action of SP1.1, SP1.2, SP1.3 services. When

errors did not occur in service infrastructure, it

applied standard services. Service adaptation on IoT

service-III event and IoT service-1V event was

incorporated into service software evolution. It was

the system performing the process of adding,

changing, and deleting component instances required

by IoT services based on the actions of SP3 and SP4.

Service adaptation needed by IoT service-V event

was related to automatic feedback. In particular, the

system sent notification SP5 to users and the service

desk related to current service information for

considering the next actions.

Table 4. ECA IoT service event

Event

(E)

Condition (C) Action (A)

IoT

service

event-I

(infrastructure_type

= sensor);

(infrastructure_type

= server);

(infrastructure_type

= network);

(error_state = null).

SP1.1 = recognition

service

SP1.2 = storage

service

SP1.3 = service

delivery

IoT

service

event-

II

(infrastructure_type

= not null);

(error_state = not

null).

SP2.1 = sensor

exception handling

service

SP2.2 = internal

storage service

SP2.3 = software-

defined networks

service

IoT

service

event-

III

(infrastructure_type

= new type);

(error_state = null).

SP3 = create new

infrastructure type

IoT

service

event-

IV

(infrastructure_type

= null);

not [criteria].

SP4 = change service

delivery

IoT

service

event-

V

(error_state = not

null).

SP5 = send a

notification to the

user and service desk

Meanwhile, the IoT service-II event related to the

failures of IoT service infrastructure, such as sensor

failures, erroneous servers, and network disruption.

Required adaptation in IoT service-II event

functions to handle the variability of Ci context

combination and Cj. IoT service encountered service

an infrastructure failure when changes occurred to

Table 5. The fact of Cj context of IoT service at run-time

 C5

Time S1 S2 S3 (Ci, Cv) (Ha, Cv)

4 0,8 0,9 0,8 0,8 0,6

5 0,8 0,7 0,9 0,7 0,9

10 0,8 0,9 0,9 0,8 0,2

 C6

Time S1 S2 S3 (Ci, Cv) (Ha, Cv)

2 0,9 0,8 0,8 0,8 0,1

5 0,8 0,6 0,7 0,6 0,4

9 0,9 0,7 0,7 0,7 0,7

10 0,7 0,9 0,8 0,7 0,8

 C7

Time S1 S2 S3 (Ci, Cv) (Ha, Cv)

4 0,7 0,6 0,5 0,5 0,3

5 0,8 0,9 0,8 0,8 0,4

10 0,9 0,9 0,9 0,9 0,8

11 0,8 0,7 0,8 0,7 0,9

Received: February 23, 2021. Revised: May 11, 2021. 345

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.30

the C1 context. As a result, the system was required to

determine recovery priority among C5 context

options (sensor failure related to NF1 accuracy factor),

C7 context (network disturbance), C6 (sever error

related to NF2 speed factor). Table 5 presents facts in

the context of IoT services. Time was the days when

service infrastructure disruption occurred during the

monitoring process. S1, S2, S3 were the symptoms

appearing from any context of Cj at that time, such as

(Ci, Cv) and (Ha, Cv) according to Eq. (2). The

outlined scenario is the value of the data captured

from two sources. First, sources from the monitoring

infrastructure monitoring the state of the sensors,

servers, and network at run-time as an uncertainty

factor in the captured data and rules. Second, sources

derive from the expert of confidence and previous

data as a policy engine, namely setting constraints

(Ha, Cv). This source functions to indicate the IoT

service quality priorities based on the quality

attributes of NF1 (accuracy related to the context of

C5: sensor failure) and NF2 (speed associated with C7:

network disruption) and C6 (problems of a server).

The quality attribute constraints of NF1 was

prioritized to the patient with ODP and PDP status.

Thus, high accuracy was needed to detect the

situation. The range value of weight was determined

at about 0.6 to 1. This NF1 quality attribute had a low

priority value or decreases when the patient's

condition was in PPC and PSC status with the

weighted values set in the range of 0 to 0.5.

Meanwhile, the quality attributes constraints of NF2

were inversely proportional to NF1, namely

displaying high priority when the patient's condition

was in PPC and PSC status. This became low when

the patient's condition was in ODP and PDP statuses.

Considering what was used during a patient was in

PPC or PSC status, the speed factor was prioritized

over the accuracy factor. This was required when the

patient was in the ODP or PDP status and vice versa.

The range of weighted scores was assigned to the NF2

quality attribute when high and low priority was

similar to the NF1 quality attribute. Specifically,

Table 6 designates the options of the SP2.1, SP2.2, SP2.3

service actions. Similarly, Table 4 demonstrates

selected options through the system based on Eq. (1)

and (2).

Fig. 5 illustrates the behavior simulation of the

event of the IoT service-II system. In this case, at a

particular time, slice-2 of the monitor (M) component

detected an occurrence of the C6 context. The

Analysis & Plan (AP) component performed

reasoning based on priority in the policy engine. The

executing (E) component determined the SP2.2

Table 6. IoT service event-II at run-time

Time SP2.1 SP2.2 SP2.3

1 0 0 0

2 0 0,08 0

3 0 0 0

4 0,48 0 0,15

5 0,63 0,24 0,32

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0,49 0

10 0,16 0,56 0,72

11 0 0 0,63

12 0 0 0

13 0 0 0

14 0 0 0

Figure. 5 The behavior of IoT service based on Cv5 at

run-time

action by generating component instances from the

internal storage service module.

In the time of slice-4, the system faced two

options for recovery action caused by the C5 ˅ C7

context. In the time of slice-5, it developed to become

three options of recovery actions based on C5 ˅ C6 ˅

C7 contexts. The system determined service recovery

priorities based on the highest value weight, namely

at the time of slice-4. The system generated

component instances from the SP2.1 module (sensor

exception handling service) first. Then, it was

followed by the SP2.3 module (software-defined

networks service). Meanwhile, in the time of slice-5,

service recovery was focused on SP2.1, module. Next,

it continued to SP2.3. Finally, it arrived at SP2.2.

Adaptation action in the time of slice-5 made the

IoT service system return to the normal state.

However, it started from the time of slice-9 until the

time of slice-11 in which the monitor (M) component

identified reappearance of service infrastructure

disruption. For this reason, the Analysis & Plan (AP)

component immediately performed reasoning to

determine recovery options. On the other hand, the

executing (E) component brought back the service to

Received: February 23, 2021. Revised: May 11, 2021. 346

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.30

a normal state at the time of slice-12. As a matter of

fact, the Adaptation behavior of IoT services

displayed in Fig. 5 revealed that Covid-19 monitoring

was a continuous system. In this sense, if

infrastructure or service failure occurs, the recovery

of services performs in run-time. With this in mind,

these system abilities call as self-adaptive IoT service

systems.

4.3 Experimentation

This experiment was carried out to broaden the

adaptability view of the research conducted by (P.

Michiel, W. Danny and S. Marlon, K. Yentl, W.

Danny) in terms of the continuity of data transmission

when failure occurs in the context of the uncertainty

of our proposed model, namely sensor, network, and

server failures.

The experiment for simulating the adaptation

model in this paper is carried out by following the

architecture in the figure 6.

Figure 7 describes the condition of the main

server that is running and processes data sent from the

node (RASPI) and processes data from the server

aggregator.

Figure 8 depict the simulation result, that

describes the system adaptation process when a run-

time failure occurs. The failure scenario refers to the

condition of the infrastructure which consists of

sensor, network and server failures.

The first simulation when a sensor failure occurs,

the node cannot receive data from the sensor.

Automatically the data sent to the main server, taking

from the average of the previous data stored in local

storage (node).

Figure. 6 Architecture of simulation adaptation model

Figure. 7 Running main server

Figure. 8 Adaptation simulation at run-time

The second simulation describes the failure of the

main network to the main server. Data will

automatically be sent via another route, namely the

aggregator server and the aggregator server to

continue sending data to the main server.

The third simulation describes a server failure, if

this happens, then the action taken by the node is to

store data locally which will then be synchronized

after the server is functioning again.

5. Conclusion

This study introduces the inference model for

self-adaptive IoT services systems developed based

Received: February 23, 2021. Revised: May 11, 2021. 347

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.30

on the autonomic computing approach and

formulated as Event-Condition-Action (hereafter,

ECA) rules supported by the confidence factors

approach. The main component consists of (a) IoT

service artifact representing knowledge service of the

entire IoT resources, (b) contextual knowledge as a

detailed representation of IoT service environment

feature containing uncertainty, and (c) adaptation

reasoning representing a mechanism of surveillance

(observation) and reasoning needs for the run-time

adaptation during every IoT service. This model is

prepared to fulfill the service system requirements at

the design-time to capture instances or concrete IoT

service. However, it can reveal new evidence about

service contexts in the run-time to continuously adapt

to new facts from IoT service contexts. The

simulation results in the application illustrate three

uncertain contexts, namely sensor, network and

server failures at run-time. The experimental results

show that the main server still receives data, even

though there is a sensor or network failure so that the

monitoring process is not interrupted.

As an evaluation, this model was implemented in

the case of the Covid-19 monitoring system. The

experiment was operationalized in two conditions,

namely in normal circumstances and during context

changes and disruptions. First, in normal

circumstances, the system monitors and regulates IoT

services according to service functions to meet their

quality attributes. Second, the IoT service system was

faced with the variability of the system itself and its

environment, namely context changes, disruptions, or

service infrastructure failures. The results of

implementing this case study provide the ability to

adapt to IoT service systems sustainably. In addition,

it offers a variety of alternative solutions in dealing

with the uncertainty of the IoT service context at the

run-time. Empirically speaking, future studies can

adapt the results of this study as a foundation to

construct the requirements of the cyber-physical

system domain, accommodate various computational

resources, develop learning approaches and optimize

reasoning for adaptation planning to determine the

configuration of the service system in the run-time.

Conflicts of Interest

The authors declare that there is no conflict of

interest in this paper.

Author Contributions

Conceptualization, methodology, formal analysis,

software, validation, reviewing & supervision,

writing—review and editing, Dr. Aradea Aradea;

Resources, investigation, formal analysis, validation,

writing—original draft preparation, Rianto Rianto;

Investigation, formal analysis, software, validation,

writing—original draft preparation, Husni Mubarok.

Acknowledgments

The present study is supported by the Institute for

Research, Community Services, and Education

Quality Assurance of Siliwangi University. Likewise,

this study is a manifestation of succeeding the

strategic program of the Ministry of Research,

Technology and Higher Education of the Republic of

Indonesia (No.266/UN58.21/PG/2020) related to the

research developments in Indonesia.

References

[1] L. F. Rahman, T. Ozcelebi, and J. Lukkien,

“Understanding IoT Systems: A Life Cycle

Approach”, Procedia Computer Science, Vol.

130, pp. 1057-1062, 2018.

[2] D. Sobhy, L. Minku, R. Bahsoon, T. Chen, and

R. Kazman, “Run-time Evaluation of

Architectures: A Case Study of Diversification

In IoT”, The Journal of Systems and Software,

Vol. 159, pp. 110428, 2020.

[3] A. Čolaković and M. Hadžialić, “Internet of

Things (IoT): A Review of Enabling

Technologies, Challenges, and Open Research

Issues”, Computer Networks, Vol. 144, pp. 17-

39, 2018.

[4] P. O. Antonino, A. Morgenstern, B. Kallweit, M.

Becker, and T. Kuhn, “Straightforward

Specification of Adaptation Architecture-

Significant Requirements of IoT-Enabled

Cyber-Physical Systems”, In: Proc of IEEE

International Conference on Software

Architecture Companion, pp. 19-26, 2018.

[5] H. Muccini, R. Spalazzese, M. T. Moghaddam,

and M. Sharaf, “Self-Adaptive IoT

Architectures: An Emergency Handling Case

Study”, In: Proc of 12th European Conference

on Software Architecture: Companion

Proceedings (ECSA '18), pp. 6, 2018.

[6] I. L. Yen, F. Bastani, S. Y. Hwang, W. Zhu, and

G. Zhou, “From Software Services To IoT

Services: The modeling perspective”, Vol.

10371, 2017.

[7] I. Supriana, K. Surendro, Aradea, and E.

Ramadhan, “Self-Adaptive Cyber City System”,

In: Proc of International Conference On

Advanced Informatics: Concepts, Theory And

Application (ICAICTA), pp. 1-6, 2016.

[8] S. Y. Shin, S. Nejati, M. Sabetzadeh, L. Briand,

C. Arora, and F. Zimmer, “Dynamic Adaptation

of Software-Defined Networks for IoT Systems:

Received: February 23, 2021. Revised: May 11, 2021. 348

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.30

A Search-Based Approach”, In: Proc of

IEEE/ACM 15th International Symposium on

Software Engineering for Adaptive and Self-

Managing Systems (SEAMS), pp. 137-148, 2020.

[9] M. Moghaddam, E. Rutten, and G. Giraud,

“Protocol for A Systematic Literature Review

On Adaptative Middleware Support for IoT and

CPS”, 2020.

[10] M. Etemadi, M. Ghobaei-Arani, and A.

Shahidinejad, “Resource Provisioning for IoT

Services In The Fog Computing Environment:

An Autonomic Approach”, Computer

Communications, Vol. 161, pp. 109-131, 2020.

[11] A. Urbieta, A. González-Beltrán, S. B. Mokhtar,

M. A. Hossain, and L.Capra, “Adaptive And

Context-Aware Service Composition for IoT-

Based Smart Cities”, Future Generation

Computer Systems, Vol. 76, pp. 262-274, 2017.

[12] D. Mocrii, Y. Chen, and P. Musilek, “IoT-Based

Smart Homes: A Review Of System

Architecture, Software, Communications,

Privacy and Security”, Internet of Things, Vol.

1-2, pp. 81-98, 2018.

[13] Aradea, I. Supriana, K. Surendro, and H.

Mubarok, “Self-Adaptation Modeling for

Service Evolution On The Internet of Things

(IoT)”, In: proc of IOP Conference Series:

Materials Science and Engineering, Vol. 550,

No. 1, pp. 012026, 2019.

[14] Aradea, Rianto and H. Mubarok, “Development

of Service Knowledge Model for IoT-Based

Systems Adaptability”, Technical Report,

Department of Informatics, 2019.

[15] K. Siegemund, “Contributions to Ontology-

Driven Requirements Engineering”, Doctoral

Dissertation, Technischen Universität Dresden,

Fakultät Informatik, Lehrstuhl

Softwaretechnologie, 2015.

[16] M. Salehie and L. Tahvildari, “Self-Adaptive

Software: Landscape and Research Challenges”,

ACM Transactions on Autonomous and

Adaptive Systems(TAAS), Vol. 4, No. 2, pp. 1-42,

2009.

[17] S. Li, “Evaluating Mission-Critical Self-

Adaptive Software Systems: A Testing-Based

Approach”, Thesis, Electrical, and Computer

Engineering, 2010.

[18] N. Subramanian and L. Chung, “Software

Architecture Adaptability: An NFR Approach”,

In: Proc of the 4th International Workshop on

Principles of Software Evolution, pp. 52-61.

2001.

[19] J. Pimentel, M. Lencastre, and J. Castro,

“Implicit Priorities In Adaptation

Requirements”, In: Proc of 10th International

Conference on the Quality of Information and

Communications Technology, pp.83-86, 2016.

[20] Aradea, I. Supriana, K. Surendro, and I.

Darmawan, “Variety of Approaches In Self-

Adaptation Requirements: A Case Study”, In:

Herawan T, Ghazali R, Nawi N, Deris M (eds)

Recent Advances On Soft Computing and Data

Mining. Advances in Intelligent Systems and

Computing, Vol. 549, pp. 253-262, 2017.

[21] J. Andersson, R. D. Lemos, S. Malek, and D.

Weyns, “Modeling Dimensions of Self-

Adaptive Software Systems”, In: Cheng B.H.C.,

de Lemos R., Giese H., Inverardi P., Magee J.

(eds) Software Engineering for Self-Adaptive

Systems. Lecture Notes in Computer Science,

Vol. 5525, 2009.

[22] Aradea, I. Supriana, and K. Surendro, “Self-

Adaptive Software Modeling Based On

Contextual Requirements”, Telecommunication,

Computing, Electronics, and Control

(Telkomnika), Vol. 16, No. 3, pp. 1276-1288,

2018.

[23] Aradea, I. Supriana, and K. Surendro, “Self-

Adaptive Model Based On Goal-Oriented

Requirements Engineering for Handling Service

Variability”, Journal of Information and

Communication Technology (JICT), Vol. 19, No.

2, pp. 225-250, 2020.

[24] A. Lapouchnian, and J. Mylopoulos, “Capturing

Contextual Variability In I* Models”, In: Proc

of the 5th International I* Workshop, pp. 96-101,

2011.

[25] Y. Abuseta and K. Swesi, “Design Patterns for

Self-Adaptive Systems Engineering”,

International Journal of Software Engineering

& Applications (IJSEA), Vol. 6, No. 4, pp. 11-

28, 2015.

[26] J. O. Kephart and D. M. Chess, “The Vision of

Autonomic Computing”, Computer, Vol. 36, No.

1, pp. 41-50, 2003.

[27] Aradea, I. Supriana, and K. Surendro, “ARAS:

Adaptation Requirements For Adaptive Systems

- Handling Run-Time Uncertainty of Contextual

Requirements”, Technical Report, School of

Electrical Engineering and Informatics, 2019.

[28] S. L. Kendal and M. Creen, An Introduction to

Knowledge Engineering, pp. 243-247, 2007.

[29] S. J. Russell and P. Norvig, “Artiicial

Intelligence: A Modern Approach (Third

Edition)”, Prentice Hall Series in Artificial

Intelligence, 2010.

[30] M. Kamal, A. Aljohani, and E. Alanazi, “IoT

Meets COVID-19: Status, Challenges, and

Opportunities”, arXiv preprint arXiv:2007, pp.

12268, 2020.

Received: February 23, 2021. Revised: May 11, 2021. 349

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021 DOI: 10.22266/ijies2021.0831.30

[31] M. Provoost and D. Weyns, “DingNet: A Self-

Adaptive Internet-of-Things Exemplar”, In:

Proc of the IEEE/ACM 14th International

Symposium on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS),

pp. 195-201, 2019.

[32] M. Saelens, Y. Kinoo, and D. Weyns, “HeyCitI:

Healthy Cycling in a City using Self-Adaptive

Internet-of-Things”, In: Proc of IEEE

International Conference on Autonomic

Computing and Self-Organizing Systems

Companion (ACSOS-C), pp. 226-227, 2020.

