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Abstract: Internet of Things (hereafter, IoT) service is a complex system because it should meet miscellaneous domain 

forms represented physically and virtually. The main challenge of IoT is to provide an inference model to resolve the 

dynamic context on a run-time basis. The system should have the ability to catch instances or concrete IoT services. 

On the other side, it should have the capability to adapt to the newest evidence of contexts. This paper introduces an 

inference model consisting of an IoT structure service artifact, a subsystem of contextual knowledge, and a subsystem 

of run-time adaptability reasoning. The results of model implementation on monitoring system of coronavirus disease 

revealed that the ability to adapt continuously and provide various alternative solutions to handle uncertain contexts, 

which is refered to sensor, network and server failure. The example of experiment result when a sensor failure occurs, 

the data received by the main server from the node is the average of the three previous data. 
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1. Introduction 

Internet of Things (hereafter, IoT) and its network 

architecture are complex systems since it was built 

from various integrated IoT devices shaped to 

distribute services to comply with the general 

objective of IoT applications [1]. To illustrate, IoT 

service systems exist in modern software 

environments with the run-time characteristic. Most 

of the systems driven by data indicate a dynamic 

character, an uncertain function, high connectivity, 

and scalability. It can produce significant risks and 

difficulties to evaluate at the design-time [2]. 

Likewise, IoT service systems are implemented in 

various lives, such as health, agriculture, traffic 

management, retail, logistic, remote monitoring, 

smart cities, process automation, etc. IoT can call be 

called a new paradigm providing a set of new services 

for every innovation of future generating technology. 

This situation could turn up various kinds of 

problems considering various utility factors, such as 

domain application, middleware domain, networks 

domain, object domain, etc. [3]. 

 P. O. Antonino, A. Morgenstern, B. Kallweit, M. 

Becker, and T. Kuhn, [4] contend that adaptability is 

a property adhering to IoT-enabled cyber-physical 

systems. It should self-adjustment with a growing 

situation of context in which the system is running.  

Besides, the architecture should be well-designed. In 

this case, the service systems can adjust to their 

environment in a real-time manner with an 

appropriate element distribution level [5]. The 

statements have become a motivation for the writers 

to foster an IoT service system possessing adaptive 

capability based on related components of reasoning. 

These steps have been initiated by defining generic 

service artifacts and their inference model to 

accommodate various IoT sources.  

I. L. Yen, F. Bastani, S. Y. Hwang, W. Zhu, and 

G. Zhou [6] had initiated to define IoT services 

artifact requirements. They extent the services model 

of software to support IoT specifications. As a result, 

service artifacts have flexibility in the 

implementation of various domains. Conversely, the 

effort has not yet been examined, such as the need for 

adapting the produced service artifacts. Generally 

speaking, the system requirements for different IoT 

application domains have not been well- defined [1]. 
This situation aligns with how the service model can 

meet the specifications of a very dynamic variety of 
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IoT service domains. The main challenge is providing 

self-adaptive systems to meet the scope and life cycle 

of IoT systems [7]. It is relevant to the need for an 

inference model that can automate the control of 

service artifacts for the future needs of IoT services. 

By doing so, the services are expected to be more 

sensitive, automatically-adaptive, organized, smart, 

autonomously-acting based on the environmental 

events of a context. 

This paper introduces an inference model for self-

adaptive IoT service systems cultivated based on 

autonomic computing and confidence factors. The 

remaining paper consist of section two that describe 

related work, section three depict proposed method, 

that consists of basic model, inference model 

components and model of an inference rule, section 

four illustrate implementation model to case study 

that consist of case specification, experiment, and 

evaluate of experiment result. Lastly, this paper 

closed by conclusion and future work. 

2. Related works 

A plethora of experts had investigated 

miscellaneous problems and complexities related to 

the provision of IoT services. As an example, S. Y. 

Shin, S. Nejati, and M. Sabetzadeh, [8] proposed 

software-defined networks (SDN) of IoT service. The 

approach was claimed to be able to solve network 

stagnation in a real-time manner. Also, it could 

reduce network utilization, data transmission delay, 

and adaptation cost. For this reason, it remains crucial 

to ensure the criteria for quality service. Another fact, 

M. Moghaddam, E. Rutten, and G. Giraud, [9] 

scrutinized the systematic literature review about 

adaptive middleware supporting the Internet of 

Things (IoT) and Cyber-Physical Systems (CPS). 

They notably accentuated on identifying various 

middleware designs of reactive/proactive in an IoT 

service system. Moreover, M. Etemadi, M. Ghobaei-

Arani, and A. Shahidinejad, [10] proposed an 

approach to provide IoT services system efficiently. 

This approach was assumed to be able to increase and 

decrease dynamic scaling from cloud resources. In 

particular, it functions to accommodate works load 

from IoT service on the cloud computing 

environment. Overall, these previous studies only 

focused on the ability of IoT service systems viewed 

from the networks and middleware domains. 

Other experts in other domains, such as A. 

Urbieta, A. González-Beltrán, S.B. Mokhtar, M.A. 

Hossain, and L.Capra, [11], introduced a model of 

IoT service based on a context-aware specification to 
undertake to reason toward user tasks and service 

behaviors. The reasoning is related to various IoT 

environment sources. Grounded in such a notion, 

they proposed a solution to emphasize adaptive 

service composition to support dynamic reason. 

Additionally, D. Mocrii, Y. Chen, and P. Musilek, 

[12] had explored various needs of IoT services 

forming elements, including the needs that should be 

filled from the system of architecture concept, 

software, communication technology, privacy, and 

security. Referring to the relevant investigations, 

there have been a number of points that the IoT 

service system should have. One of them is the ability 

to adapt as a requirement from the system and its 

environment. 

Required adaptability in IoT service had been 

initiated in the writers’ previous studies [13, 14]. As 

a matter of fact, the development was inspired by I. 

L. Yen, F. Bastani, S.Y. Hwang, W. Zhu, and G. 

Zhou, [6] and I. Supriana, K. Surendro, Aradea, and 

E. Ramadhan, [7] integrated with the ontological 

approach [15]. The model provides terminology to 

represent all IoT service artifacts, including metadata 

to the entire attributes and the relation between IoT 

services. Service artifacts consist of constructing 

elements of the requirement model matching IoT 

services concepts or classes. Unfortunately, this 

model has not possessed particular features about 

how the context class interrelates to the general 

knowledge for fulfilling the needs of the artifact 

service class. In addition, the model has not touched 

the issue of how to control the process in artifact 

service class running in run-time through a particular 

mechanism. To fill this void, the present study aimed 

at fostering an inference model for IoT services of 

adaptation needs at run-time consisting of various 

environmental resources. 

3. Proposed method 

3.1 Basic model 

The self-adaptive systems (hereafter, SAS) 

objective is to realize the self-adjustment behavior of 

a particular software called adaptation requirements 

[16, 17]. This situation requires a system to acquire a 

number of aspects, namely (a) the ability to recognize 

a change in the application domain, (b) the capacity 

to determine transformation needed on a system 

based on application domain shifting, and (c) the 

capability to make changes in itself to produce 

alternative behavior [18]. Adaptation requirements 

on SAS are related to specification, refinement, and 

priority of responses to the change at the run-time 

[19]. SAS developers had proposed various 

approaches to fill the needs based on the focus of their 
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Figure. 1 Self-adaptive IoT service systems 

 

problems. Thus, there is no a widely-approved 

definition or a required specification of adaptation 

[21]. This causes a scarcity of approaches to develop 

adaptation needs, including IoT service systems of 

adaptation requirements. 

IoT is a modern software comprising a run-time 

property. This complex system could make a 

significant risk and a difficult evaluation at the 

design-time. Nevertheless, the run-time can 

complement the design-time evaluation [2]. This 

notion showcases the necessity of model 

development bridging situations either at the design-

time or the run-time. With this in mind, changes and 

evolution of IoT service systems can be handled in 

real-time. 

This study proposes an inference model 

representing the knowledge service of the IoT 

domain. The IoT knowledge service is prepared at the 

design-time. However, it potentially indicates a new 

fact about context at the run-time. To fill this 

requirement, the current study adopts an autonomic 

computing approach formulated as Event-Condition-

Action (ECA) rules based on the confidence factors 

approach. More specifically, this study employed a 

model representing a general service artifact to 

accommodate various IoT resources based on self-

adaptive architecture. Inference to the adaptability of 

service artifacts is determined by the service artifact 

catching the instance or concrete IoT service based 

on known context. Therefore, this system works 

autonomously at the run-time. This proposed model 

is an extent of the writer’s previous works [13, 14]. 

3.2 Inference model component 

The main component of the proposed model in 

this study is outlined in Fig. 1. It consists of (a) IoT 

service artifact structure, (b) contextual knowledge 

subsystem, and (c) adaptation reasoning subsystem. 

IoT service artifact structure refers to a class 

deploying to catch instances or a concrete IoT service. 

It is fostered based on an ontological approach. This 

structure is an extent of the work of I. L..Yen, F. 

Bastani, S. Y. Hwang, W. Zhu, and G. Zhou [6]. They 

utilized the design pattern approach of autonomic 

computing and self-adaptation grounded in 

contextual requirements. The proposed IoT service 

artifact is displayed subsequently. 

a. The process represents IoT service operation 

encompassing required service composition and 

reasoning mechanism at the run-time.  

b. A profile represents both functional properties 

(F) and non-functional (NF) of IoT services 

from every composition of monitored services at 

the run-time.  

c. Grounding is a technical detail representation of 

IoT services property comprising context 

attribute (C) as a random variable related to both 

functional (F) and non-functional (NF) of IoT 

services. 

Contextual knowledge subsystem is a detailed 

representation of IoT services property both 

functional (F) and non-functional (NF) are extended 

from the contextual requirement approach [22-24]. 

The subsystem is constructed by accommodating 

uncertainty factors. It implemented a contextual 

attribute as a random variable representing two 

factors as outlined below: 

a. Context (C) is a feature of the IoT domain 

relevant to a set of environmental assumptions. 

b. Context variability (Cv) dimension is a factor 

representing the occurred IoT domain changes at 

the run-time. 

The adaptation reasoning subsystem is a 

mechanism of monitoring and determining 

adaptation action at the run-time toward each IoT 

service. Patterned reasoning is cultivated to adopt an 

autonomic computing approach [25, 26, 27]. It is 

labeled as MAPE-K (monitor, analyze, plan, execute-

knowledge) adaptation pattern, wherein: 

a. Monitor (M) is a process to scan and collect 

context information from IoT services based on 

situational services and their environments. 

b. Analysis & Plan (AP) is a reasoning process for 

analyzing and planning an action suitable for 

each IoT service. 

c. Execution (E) is a process to determine 

adaptation appropriate to each IoT service. 

3.3 Model of an Inference Rule 

Inference model to execute contextual knowledge 
of reasoning toward each need of IoT services 
adaptation is defined by the following couples of 

rules: 

Rule-1: Service Artifact & Contextual Requirements 
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- Each Fi ∈ {F1, F2, …, Fn} in IoT services artifact 

has a random variable context Ci ∈ {C1, C2, …, 

Cn} influencing to each NFj ∈ {NF1, NF2, …, 

NFn} 

Rule-2: Service Artifact & Monitoring Requirements 

- Each Fi ∈ {F1, F2, …, Fn} containing random a 

variable context Ci ∈  {C1, C2, …, Cn} is 

monitored based on Cv dimension. 

Rule-3: Service Artifact & Evidence Requirements 

- Each Ci ∈ {C1, C2, …, Cn} in services artifact Fi 

and NFj is influenced by evidence (Ev) related to 

a set of environmental assumptions and IoT 

domain changes/Cv dimension at run-time.  

Rule-4: Service Artifact & Reasoning Requirements 

- Each Fi ∈ {F1, F2, …, Fn} has a random variable 

context Ci analyzed and planned by AP. The 

adaptation action to execution service into a 

particular circumstance based on Ev and Cv at an 

M monitoring process.  

Table 1 describes the algorithm for mechanism 

requirement toward contextual knowledge of each 

IoT service according to four rules. The inference 

model is constructed through an autonomic 

computing approach based on the MAPE-K pattern 

represented as ECA rules. Event-related to the 

context of IoT services monitored at the run-time, the 

condition related to changes of context condition of 

IoT services. Also, context at the run-time and action 

is a behavior of adaptation of IoT services on 

handling context variability at run-time.  

Rules in knowledge base built as rules of the 

model editor. The developer can perform some 

operations like adding or specification changes by 

renewing the knowledge base directly or put it back. 

These rules function as a policy engine and system 

administrator adjusting to the system of the policy 

every time according to preference and its needs 

through available interfaces.  

The reasoning mechanism based on the 

developed policy engine adopts the confidence 

factors (CF) approach [28, 29]. In particular, it is 

formulated in ECA rules. CF is utilized to determine 

alternative behavior options for IoT services when 

the system executes (action) based on the results of 

the monitor (event) and Analysis & Plan (condition). 

The basic formulation of CF refers to the ECA rules: 

 

If Ci  Ev Then Cv  Ha                 (1) 

 

Where: 

• Ci  Ev is evidence of context (Ci) influencing 

service functional (F) 

• Cv  Ha is a hypothesis to determine alternative 

action of variability context (Cv) based on 

priority/suggestion evidence of quality/ non-

functional (NF) service. 

• The scope of a particular value ranges between 0 

to 1. 
 

 

Table 1. Adaptation of IoT service pattern algorithm 

Adaptation of IoT service pattern 

Input 

Fi  value in Ci 

NFj  value in Ci  

Do 

Let 

     (Fi, NFj)  inference model  

// Monitor (M) Pattern 

for all Fi and NFj in service artifact, do 

     Fi  get values Ci in service artifact 

     NFj  get values Ci in service artifact 

     for each values Ci in IoT service artifact, do 

           if S.system Cv in service artifact  evidence Ev 

then 

              send information (S.system(Cv)) to 

analyzerManager 

          end if 

     end for 

end for 

// Analysis & Plan (AP) Pattern 

for each S.system Cv in analyzerManager do 

     Ci  joint value (S.system(Cv)) from Fi and NFj   

     S  update actual Ci as S.System Cv 

     for each S.system (actual Ci) do 

           (Fi, NFj)  ECA reasoning 

           if Cv = new evidence Ev (Ci) then 

              create an adaptation request (new Ci 

requirements) and 

              update value (new S.system Ci) for service 

artifact 

           end if 

     end for 

end for 

// Execute (E) Pattern 

for all actual Ci (new S.system) in-service artifact do 

     changeService  new changeService in service 

artifact 

     send changeService to one or more executors 

     for each changeService in executor do  

           S.system  set a new value for service artifact 

           actuator   update behavior via one or more 

actuators      

     end for 

end for 

Output 

Self-adaptation for IoT service artifact based on the 

control loop 
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So the CF rule: 

CF (Ha, Cv) = CF (Ci, Cv) CF (Ha, Ev)       (2) 

Where: 

• CF (Ci, Cv) is a certainty factor of Ci fact making 

antecedent from rules based on uncertainty Cv 

fact. 

• CF (Ha, Ev) is a certainty factor in the hypothesis 

assuming that certain known fact if CF (Ci, Cv) = 

1. 

• CF (Ha, Cv)  is the certainty factor hypothesis that 

based on uncertainty fact Cv by priority/ 

suggestion fact of quality/ NF services. 

If CF (Ci, Cv) consists of C1, C2, Cn, then applies 

min [CF (C1, Cv), CF (C2, Cv), CF (Cn, Cv)] * CF 

(Ha, Ev). Subsequently, the results will determine the 

rule raised to determining adaptation action based on 

the highest certainty value. The weight of each CF 

value from Cn is to state a confidence level. It can be 

obtained from the confidence of experts, data users, 

or inferences from another rule on a rule basis, 

previous data, uncertain data, and monitoring 

infrastructure-based rules. The rule of the editor 

model realized this model is recognized as an engine 

policy. 

4. Case study: continuous Covid-19 

monitoring system 

Currently, the coronavirus disease (henceforth, 

Covid-19) outbreak has become the most striking 

issue for people around the world. Even, World 

Health Organization (WHO) has officially decided 

such an outbreak as a pandemic. Against this 

background, this study is dedicated to these 

circumstances. More specifically, it is expected to be 

one of the solutions to the development of application 

in the field of intelligent software systems. Fig. 2 

deciphers a continuous Covid-19 monitoring system 

case. The problem domain of this case raises issues 

discussed by previous researchers. As an example, M. 

Kamal, A. Aljohani, and E. Alanazi, [30] attempted 

to adjust and expand their empirical investigation 

based on the proposed model of this research. 

4.1 Case specification 

The environmental system includes an actor as a 

general user, a patient, a doctor, and other health 

stakeholders. The monitored resources are the 

medical track record of the patients, disease data, user 

positions, and regions classified by the Covid-19 

spread spectrum. In this case, all monitored sources 

are related to wearable devices. Moreover, they have 

rapid changes and face uncertainty influenced by an 
 

 
Figure. 2 A continuous covid-19 monitoring system 

 

 
Table 2. Case specification of IoT services 

Component Specification 

IoT service 

artifact 

SA: user, patient, doctor, health 

stakeholder 

F: management of user, management 

of a patient, management of 

symptoms, management of areas  

NF: accurate, rate 

SR: map of the area, medical record, 

user data, diseases data 

Contextual 

knowledge 

C1: patient status; C2: zone type; C3: 

user position; C4: user type; C5: 

sensor failures; C6: sever faults; C7: 

networks inference 

Adaptation 

requirements 

Cv1: event to classified patient status 

Cv2: event defining zone type 

Cv3: event determining user position 

Cv4: event to determine user types 

Cv5: event C1 ˄ (C5 ˅ C6 ˅ C7) 

Note: SA: service actor; F: functional service; NF: non-

functional service; SR: service resources; C: contexts; 

Cv: context variability 

 

 

uncertain contextual variability. This situation is 

caused by changes, data growths, invalid information, 

failures of system or service infrastructures, and 

unpredictable novel conditions. 

Referring to Fig. 2, the Covid-19 monitoring 

system should be able to conduct continuous 

monitoring. This ability can be realized through the 

adaptability system as a response to incidents both in 

the system itself or its environment. In other words, 

the continuous monitoring system is specified based 

on the main component of the proposed inference 

model consisting of IoT service artifacts, contextual 

knowledge subsystem, and adaptation reasoning 

subsystem. On each model of components, 

specification of every variability accommodates all 

needs of IoT service environment, such as contextual 

variability of services system, IoT environment, and 
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adaptation requirements at the run-time, as illustrated 

in Table 2. 

4.2 Experiment 

Experiments in this study were divided into two 

main parts. The first part described the system 

experiment in normal conditions, namely the system 

monitors and services management. This first system 

experiment was based on service functions and meets 

the quality attributes (non-functional). In the second 

experiment, several situations were carried out where 

the service system was exposed to the variability of 

the system itself and its environment. These cover 

changes in context and disruption or failure of service 

system infrastructure. 

4.2.1. Experiment-I: IoT context monitoring 

In relation to the case specification in Table 2, 

adaptation requirements in normal situations of IoT 

service systems define patient status, classify zone 

type, determine user position, and define user type. 

Monitored Context variability (Cv) related to Ci ∈ {C1, 

C2, C3, C4} and values of the variable for each context 

C1: patient status  (Normal, ODP (Orang Dalam 

Pemantauan): Person in Surveillance, PDP (Pasien 

Dalam Pemantauan): Patient in Surveillance, PPC 

(Pasien Positif Covid-19): Patient Positive Covid-19, 

PSC (Pasien Sembuh Covid-19): Patient Recovering 

from Covid-19); C2: zone types (green, yellow, 

orange, red); C3: user position (spatial coordinate); 

and C4: user types (general user, patient, doctor, 

nurse). The first experiment considered scenarios to 

determine a patient’s status or a person’s status. A 

person/patient connected to smart medical devices to 

monitor his/her health condition. The data of patient 

condition apart from being used as a reference to 

determine a patient status. Also, it is used as a report 

to determine the Covid-19 zone classification. These 

data became the primary sources of information for 

each type of IoT service user in various coordinate 

positions. 

The adaptation pattern of IoT service systems in 

managing patient data is the monitoring component 

(M) to monitor. Besides, it functions to collect C1 

contextual information from smart medical devices 

connected to patients. Furthermore, the Analysis & 

Plan (AP) component analyze and plans follow-up 

actions to deliver the information. Finally, the 

executing (E) component determines the action best 

suited for C2, C3, and C4 context requirements. The 

simulation carried out in this first experiment is a 

dynamically changing context information Ci ∈ {C1, 

C2, C3, C4}. Table 3 indicates the C1 context data. 
 

Table 3. The fact of C1 context at run-time 

Day BT TH GS SS Status 

1 < 38 1 0 0 0 

2 <38 1 0 0 0 

3 >38 1 1 0 1 

4 >38 1 1 2 1 

5 >38 1 1 3 1 

6 >38 1 1 3 1 

7 >38 1 2 2 2 

8 >38 1 3 2 2 

9 >38 1 3 2 2 

10 >38 1 3 1 3 

11 >38 1 3 1 3 

12 >38 1 2 1 3 

13 >38 1 2 1 3 

14 

15 

16 

<38 

<38 

<38 

1 

1 

1 

2 

2 

0 

0 

0 

0 

3 

3 

4 

Note: 

BT (Body Temperature): Celsius 

TH (Traveling History): 0. No; 1. Yes 

GS (General Symptom): 0. No; 1 Cough; 2. Flu; 3. 

Breathless 

SS (Specific Symptom): 0. No; 1. Loss of Smell; 2. 

Breathless 

Status: 0. Normal; 1. ODP; 2. PDP; 3. PPC; 4. PSC 

 

 

More specifically, Fig. 3 demonstrates the simulation 

of changes in the IoT domain occurring at the run-

time in Ci for the C1 context. 

The data in Table 3 illustrate changes in service 

users monitoring C1 (Cv1) on the Covid-19 cases. The 

monitoring process was carried out by the monitoring 

component (M) applying wearable sensors, including 

the heart rate and temperature sensors. The graph 

revealed a change in the status of a user suspected of 

being a Covid-19 case. The statuses were categorized 

as ODP, PDP, PPC, PSC, and returning to the Normal 

category. These changes were analyzed by 

employing the Analysis & Plan (AP) component 

based on a rule translating data from the monitoring 

component (M) in the IoT device. 

The filter applied in rules of analyzing & plan 

(AP) component was data from body temperature 

monitoring device combined with traveling and 

disease histories or occurred symptoms. Traveling 

histories were divided into several zones based on 

government regulation, namely green, yellow, orange, 

and red. The colors represented significant levels of 

Covid-19 spread. Diseases and symptoms histories 

were utilized to determine the level of surveillance or 

observations toward user/patient. Eventually, 

executing (E) components automatically sent the 

newest data to the system periodically. Likewise, it 

adjusted to some other context value changes. 
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Figure. 3 Changes of C1 (Cv1) at run-time 

 

 
Figure. 4 Transformation of C4 context based on the 

changes C1 at run-time 

 

Adjustment of context value affected by value 

changes of data at the run-time as illustrated in Fig. 3. 

In particular, it made IoT services systems monitor 

every context of Covid-19 continuously. Fig. 4 

depicts context adjustment of adaptation initiated 

when monitoring component (M) existed at every 

context C2, C3, C4 to take the new data value from 

context C1. Consequently, it was applied to Cv2, Cv3, 

Cv4. Furthermore, the AP component updated data 

values in the system to display the actual situation. 

As an example, Fig. 4 designates an updating 

value of context C4 data based on changes of C1 

context. Technically, it enabled to produce of an 

appropriate transformation with changes in self-

monitoring status by all users/patients. In this 

situation, the AP component performed aggregation 

toward each change of all users/patients’ statuses. At 

the same time, it allowed general users (C3 

context/user types) to identify the changes. The 

aggregation is performed daily. It was classified 

based on the months. Furthermore, the zoning or 

context (C2) of area/place can be determined because 

zoning was affected by the user/patient status (NOR, 

ODP, PDP, PPC, and PSC). Finally, each executing 

component (E) for the context of C2, C3, and C4 

presented the actual state of the COVID-19 

monitoring system in real-time. Given these facts, the 

monitoring activities carried out by this system have 

a continuous nature. 

4.2.2. Experiment-I: IoT context variability 

In the second experiment, the IoT service was 

faced with unexpected context variability. The 

monitored context variability (Cv) was related to Cj 

∈ {C5, C6, C7}.  This condition would affect the non-

functional (NF) of the service, namely accuracy, and 

speed. Employing the same scenario in the first 

experiment, the IoT service system was affected by 

uncertain factors, including C5 (e.g. sensor failure), 

C6 (e.g. severe problems), and C7 (e.g. network 

outage). The developed scenario was a combination 

of several contexts, such as Ci and Cj. In this case, Ci 

and Cj should be able to handle the following 

situations, namely Cv5: event C1 ˄  (C5 ˅  C6 ˅  C7). The 

developed adaptation pattern was the monitor 

component (M) to context information of monitor Ci 

and Cj from several installed IoT service 

infrastructures. Furthermore, the Analysis & Plan 

(AP) component analyzed and planned the handling 

action against Cv5 variability based on the reasoning 

process. Finally, the executing (E) component 

determined the most suitable adaptation action for 

each variability. 

Another evidence focuses on the IoT service. The 

IoT service in this experiment was related to the C1 

context information. To illustrate, the patient status 

accessed by the service user was faced with a state of 

C5 or C6 or C7. Hence, the system should adapt to keep 

the service runs. When the monitor component (M) 

identified the symptoms of interference between the 

three possible contexts, the Analysis & Plan (AP) 

component analyzed and planned adaptive actions 

through the generated rules. The target was to fulfill 

functional (F) services in managing patient status 

information based on service quality/non-functional 

(NF) service factors, namely accuracy, and speed. On 

the one hand, Context C5 highlights the sensor failure 

corresponding to factor NF1 (accuracy). On the other 

hand. The context C7 (network disturbance) and C6 

(sever noise) corresponded to (NF2 factor) speed. 

Briefly stated, three contexts (C5, C6, and C7) can 

have adverse/negative (-) good/positive (+) effect on 

both NF quality factors depending on the choice of 

action taken by the system in determining the most 

appropriate alternative solution. 

Grounded in the above description, the 

requirements to manage the variables of patient status 

information services remain vital. This enabled to 

showcase of the infrastructure failures, such as sensor, 

server, or network failures. Those variables were 

service event, infrastructure type, and error rate. 
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Dealing with this, the AP component would conduct 

a trigger on the rules based on each property referring 

to the recognition results of the monitor (M). These 

rules provided alternative behavior in managing 

context (C5 ˅  C6 ˅  C7). Possible IoT service situations 

are as follows: 

 

Rule-1: if (infrastructure_type = sensor) and 

(error_state = null) then service_event = 

recognition service 

Rule-2: if (infrastructure_type = server) and 

(error_state = null) then service_event = 

storage service 

Rule-3: if (infrastructure_type = network) and 

(error_state = null) then service_event = 

service delivery 

Rule-4: if (infrastructure_type = not null) and 

(error_state = not null) then service_event = 

sensor exception handling service or 

internal storage service or software-defined 

networks service 

Rule-5: if (infrastructure_type = new type) and 

(error_state = null) then service_event = 

create new infrastructure type 

Rule-6: if (infrastructure_type = null) and 

(error_state = null) then service_event = 

change service delivery 

Rule-7: if (error_state = not null) then service_event 

= send notification to user and service desk 

Rule-8: if not [criteria] then service_event = change 

service delivery 

 

Based on the abovementioned rules, the service 

plan (SPn) was obtained. As shown in Table 4, SPn 

provided alternative behavioral options for IoT 

service systems selected through service needs. The 

most appropriate behavior would be determined by 

the executing (E) component based on the reasoning 

results of the Analysis & Plan (AP) component 

through the policy engine. 

A form of adaptation in IoT service-I event is 

selecting action of SP1.1, SP1.2, SP1.3 services. When 

errors did not occur in service infrastructure, it 

applied standard services. Service adaptation on IoT 

service-III event and IoT service-1V event was 

incorporated into service software evolution. It was 

the system performing the process of adding, 

changing, and deleting component instances required 

by IoT services based on the actions of SP3 and SP4. 

Service adaptation needed by IoT service-V event 

was related to automatic feedback. In particular, the 

system sent notification SP5 to users and the service 

desk related to current service information for 

considering the next actions.  
 

 

 

Table 4. ECA IoT service event 

Event 

(E) 

Condition (C) Action (A) 

IoT 

service 

event-I 

(infrastructure_type 

= sensor); 

(infrastructure_type 

= server); 

(infrastructure_type 

= network); 

(error_state = null). 

SP1.1 = recognition 

service 

SP1.2 = storage 

service 

SP1.3 = service 

delivery 

IoT 

service 

event-

II 

(infrastructure_type 

= not null); 

(error_state = not 

null). 

SP2.1 = sensor 

exception handling 

service 

SP2.2 = internal 

storage service 

SP2.3 = software-

defined networks 

service 

IoT 

service 

event-

III 

(infrastructure_type 

= new type);  

(error_state = null). 

SP3 = create new 

infrastructure type 

IoT 

service 

event-

IV 

(infrastructure_type 

= null); 

not [criteria]. 

SP4 = change service 

delivery 

IoT 

service 

event-

V 

(error_state = not 

null). 

SP5 = send a 

notification to the 

user and service desk 

 

Meanwhile, the IoT service-II event related to the 

failures of IoT service infrastructure, such as sensor 

failures, erroneous servers, and network disruption. 

Required adaptation in IoT service-II event 

functions to handle the variability of Ci context 

combination and Cj. IoT service encountered service 

an infrastructure failure when changes occurred to  

 
Table 5. The fact of Cj context of IoT service at run-time 

  C5   

Time S1 S2 S3 (Ci, Cv) (Ha, Cv) 

4 0,8 0,9 0,8 0,8 0,6 

5 0,8 0,7 0,9 0,7 0,9 

10 0,8 0,9 0,9 0,8 0,2 

  C6   

Time S1 S2 S3 (Ci, Cv) (Ha, Cv) 

2 0,9 0,8 0,8 0,8 0,1 

5 0,8 0,6 0,7 0,6 0,4 

9 0,9 0,7 0,7 0,7 0,7 

10 0,7 0,9 0,8 0,7 0,8 

  C7   

Time S1 S2 S3 (Ci, Cv) (Ha, Cv) 

4 0,7 0,6 0,5 0,5 0,3 

5 0,8 0,9 0,8 0,8 0,4 

10 0,9 0,9 0,9 0,9 0,8 

11 0,8 0,7 0,8 0,7 0,9 
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the C1 context. As a result, the system was required to 

determine recovery priority among C5 context 

options (sensor failure related to NF1 accuracy factor), 

C7 context (network disturbance), C6 (sever error 

related to NF2 speed factor). Table 5 presents facts in 

the context of IoT services. Time was the days when 

service infrastructure disruption occurred during the 

monitoring process. S1, S2, S3 were the symptoms 

appearing from any context of Cj at that time, such as 

(Ci, Cv) and (Ha, Cv) according to Eq. (2). The 

outlined scenario is the value of the data captured 

from two sources. First, sources from the monitoring 

infrastructure monitoring the state of the sensors, 

servers, and network at run-time as an uncertainty 

factor in the captured data and rules. Second, sources 

derive from the expert of confidence and previous 

data as a policy engine, namely setting constraints 

(Ha, Cv). This source functions to indicate the IoT 

service quality priorities based on the quality 

attributes of NF1 (accuracy related to the context of 

C5: sensor failure) and NF2 (speed associated with C7: 

network disruption) and C6 (problems of a server). 

The quality attribute constraints of NF1 was 

prioritized to the patient with ODP and PDP status. 

Thus, high accuracy was needed to detect the 

situation. The range value of weight was determined 

at about 0.6 to 1. This NF1 quality attribute had a low 

priority value or decreases when the patient's 

condition was in PPC and PSC status with the 

weighted values set in the range of 0 to 0.5. 

Meanwhile, the quality attributes constraints of NF2 

were inversely proportional to NF1, namely 

displaying high priority when the patient's condition 

was in PPC and PSC status. This became low when 

the patient's condition was in ODP and PDP statuses. 

Considering what was used during a patient was in 

PPC or PSC status, the speed factor was prioritized 

over the accuracy factor. This was required when the 

patient was in the ODP or PDP status and vice versa. 

The range of weighted scores was assigned to the NF2 

quality attribute when high and low priority was 

similar to the NF1 quality attribute. Specifically, 

Table 6 designates the options of the SP2.1, SP2.2, SP2.3 

service actions. Similarly, Table 4 demonstrates 

selected options through the system based on Eq. (1) 

and (2). 

Fig. 5 illustrates the behavior simulation of the 

event of the IoT service-II system. In this case, at a 

particular time, slice-2 of the monitor (M) component 

detected an occurrence of the C6 context. The 

Analysis & Plan (AP) component performed 

reasoning based on priority in the policy engine. The 

executing (E) component determined the SP2.2  
 

 

 

 

Table 6. IoT service event-II at run-time 

Time SP2.1 SP2.2 SP2.3 

1 0 0 0 

2 0 0,08 0 

3 0 0 0 

4 0,48 0 0,15 

5 0,63 0,24 0,32 

6 0 0 0 

7 0 0 0 

8 0 0 0 

9 0 0,49 0 

10 0,16 0,56 0,72 

11 0 0 0,63 

12 0 0 0 

13 0 0 0 

14 0 0 0 

 

 
Figure. 5 The behavior of IoT service based on Cv5 at 

run-time 

 

action by generating component instances from the 

internal storage service module. 

In the time of slice-4, the system faced two 

options for recovery action caused by the C5 ˅ C7 

context. In the time of slice-5, it developed to become 

three options of recovery actions based on C5 ˅ C6 ˅ 

C7 contexts. The system determined service recovery 

priorities based on the highest value weight, namely 

at the time of slice-4. The system generated 

component instances from the SP2.1 module (sensor 

exception handling service) first. Then, it was 

followed by the SP2.3 module (software-defined 

networks service). Meanwhile, in the time of slice-5, 

service recovery was focused on SP2.1, module. Next, 

it continued to SP2.3. Finally, it arrived at SP2.2. 

Adaptation action in the time of slice-5 made the 

IoT service system return to the normal state. 

However, it started from the time of slice-9 until the 

time of slice-11 in which the monitor (M) component 

identified reappearance of service infrastructure 

disruption. For this reason, the Analysis & Plan (AP) 

component immediately performed reasoning to 

determine recovery options. On the other hand, the 

executing (E) component brought back the service to 
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a normal state at the time of slice-12. As a matter of 

fact, the Adaptation behavior of IoT services 

displayed in Fig. 5 revealed that Covid-19 monitoring 

was a continuous system. In this sense, if 

infrastructure or service failure occurs, the recovery 

of services performs in run-time. With this in mind, 

these system abilities call as self-adaptive IoT service 

systems. 

4.3 Experimentation 

This experiment was carried out to broaden the 

adaptability view of the research conducted by (P. 

Michiel, W. Danny and S. Marlon, K. Yentl, W. 

Danny) in terms of the continuity of data transmission 

when failure occurs in the context of the uncertainty 

of our proposed model, namely sensor, network, and 

server failures. 

The experiment for simulating the adaptation 

model in this paper is carried out by following the 

architecture in the figure 6.  

Figure 7 describes the condition of the main 

server that is running and processes data sent from the 

node (RASPI) and processes data from the server 

aggregator. 

Figure 8 depict the simulation result, that 

describes the system adaptation process when a run-

time failure occurs. The failure scenario refers to the 

condition of the infrastructure which consists of 

sensor, network and server failures. 

The first simulation when a sensor failure occurs, 

the node cannot receive data from the sensor. 

Automatically the data sent to the main server, taking 

from the average of the previous data stored in local 

storage (node).  

 

 
Figure. 6 Architecture of simulation adaptation model 

 

 
Figure. 7 Running main server 

 

 
Figure. 8 Adaptation simulation at run-time 

 

The second simulation describes the failure of the 

main network to the main server. Data will 

automatically be sent via another route, namely the 

aggregator server and the aggregator server to 

continue sending data to the main server. 

The third simulation describes a server failure, if 

this happens, then the action taken by the node is to 

store data locally which will then be synchronized 

after the server is functioning again. 

5. Conclusion 

This study introduces the inference model for 

self-adaptive IoT services systems developed based 
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on the autonomic computing approach and 

formulated as Event-Condition-Action (hereafter, 

ECA) rules supported by the confidence factors 

approach. The main component consists of (a) IoT 

service artifact representing knowledge service of the 

entire IoT resources, (b) contextual knowledge as a 

detailed representation of IoT service environment 

feature containing uncertainty, and (c) adaptation 

reasoning representing a mechanism of surveillance 

(observation) and reasoning needs for the run-time 

adaptation during every IoT service. This model is 

prepared to fulfill the service system requirements at 

the design-time to capture instances or concrete IoT 

service. However, it can reveal new evidence about 

service contexts in the run-time to continuously adapt 

to new facts from IoT service contexts. The 

simulation results in the application illustrate three 

uncertain contexts, namely sensor, network and 

server failures at run-time. The experimental results 

show that the main server still receives data, even 

though there is a sensor or network failure so that the 

monitoring process is not interrupted.  

As an evaluation, this model was implemented in 

the case of the Covid-19 monitoring system. The 

experiment was operationalized in two conditions, 

namely in normal circumstances and during context 

changes and disruptions. First, in normal 

circumstances, the system monitors and regulates IoT 

services according to service functions to meet their 

quality attributes. Second, the IoT service system was 

faced with the variability of the system itself and its 

environment, namely context changes, disruptions, or 

service infrastructure failures. The results of 

implementing this case study provide the ability to 

adapt to IoT service systems sustainably. In addition, 

it offers a variety of alternative solutions in dealing 

with the uncertainty of the IoT service context at the 

run-time. Empirically speaking, future studies can 

adapt the results of this study as a foundation to 

construct the requirements of the cyber-physical 

system domain, accommodate various computational 

resources, develop learning approaches and optimize 

reasoning for adaptation planning to determine the 

configuration of the service system in the run-time. 
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