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Abstract: In this paper, we propose a novel method of generating synthetic datasets by means of singular spectrum 

analysis (SSA) with the optimal window length for substituting the actual datasets that are needed for remaining useful 

life (RUL) estimation of turbofan engines. The validity of proposed method is confirmed by testing with 200 actual 

datasets from turbofan engine datasets and 200 synthetic datasets generated by the proposed method in comparison to 

those generated by three algorithms: the Fourier Decomposition Method (FDM), the Fast Fourier Transform (FFT) 

and the Empirical Mode Decomposition (EMD). The performance of the SSA-based synthetic datasets for RUL 

estimation was compared with those of the FFT, EMD and FDM algorithms by means of the regression performed by 

the Long Short Term Memory (LSTM) neural networks. All the results were measured in terms of the mean absolute 

error (MAE) and the root mean squared error (RMSE) of their RUL estimates averaged over 200 datasets. The results 

were also compared with those of the actual feature dataset which provided the MAE of 23.828 and RMSE of 35.284. 

For the synthetic datasets, the results showed the MAE of 27.126 and RMSE of 38.472 for the FFT, the MAE of 28.362 

and RMSE of 39.402 for the EMD and the MAE of 30.410 and RMSE of 41.705 for the FDM. It was revealed that the 

synthetic datasets generated by the proposed SSA-based method performed the best with the MAE of 25.123 and 

RMSE of 36.825 confirming the applicability of the proposed SSA-based synthetic datasets in substitution of the actual 

datasets for RUL estimation.      

Keywords: Intelligent system, Synthetic system, Artificial system, Similarity-based, Singular spectrum analysis, Basis 

functions, RUL estimation, Long short term memory neural network. 

 

 

1. Introduction 

For the past decade, predictive maintenance 

(PdM) approach for the proactive maintenance 

scheme has tremendously gained interest as opposed 

to the traditional preventive or condition-based 

maintenance approaches [1]. In PdM, the condition 

of degradations can be tracked via consistently data 

monitoring and, as the degradation progresses, the 

end-of-life (EOL) of the machine can be predicted or 

estimated more effectively [2]. 

The remaining useful life (RUL), i.e., the length 

of time from the current time of operation until the 

EOL is met, needs to be accurately estimated so that 

planning for maintenance, logistics and safety 

management can be carried out efficiently [3-5]. 

However, it is a challenging task to achieve an 

accurate RUL prediction since RUL is considered as 

a random variable with possibly unknown 

distribution [6]. The quest for improvement of 

accuracy in RUL estimation has been conducted by a 

number of studies in the prognostics literature [7, 8]. 

In the data-driven approaches for PdM, datasets 

acquired from physical sensors are used to indirectly 

identify the patterns of degradation process needed 

for RUL estimation [1, 3, 9, 10]. These observed 

datasets are often called features and they can be 

temperature, pressure, magnetic field, flow and 

vibration, to name a few [1]. In order to make a 
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reliable RUL estimation, however, an adequate 

number of features associated with the run-to-failure 

data of the system is required [3]. Unfortunately, the 

run-to-failure data may not be readily available for 

most of practical systems. Indeed, in most cases, 

achieving run-to-failure datasets along with the 

associated features from a healthy system is an almost 

impossible task due to prohibitively expensive costs 

and a long period of time required in collecting the 

run-to-failure data. 

One possible solution to this problem is to use 

synthetic datasets which are more readily for 

analyses and simulations than the actual datasets. [11]. 

In the literature, synthetic datasets find applications 

in diversified areas. In [12], an integrated ensemble 

based imbalance learning model for industrial 

prognostics was introduced and tested in a real wind 

turbine failure forecast challenge. The method is 

based on Synthetic Minority Oversampling 

Technique (SMOTE) [13], a synthetic technique 

which can add new minority class examples. In [14], 

real-valued failure data is generated for prognostics 

of air purge valve under the conditions of limited 

failure data availability. In [15], an analysis of 

characteristic features observable in phasor 

measurement unit (PMU) measurements obtained 

from a publically-sourced, industry dataset is carried 

out for input considerations in the production of 

realistic, synthetic power systems PMU data. Last but 

not least, in [16], synthetic daily stream flow time 

series at multiple sites are generated using Cholesky 

decomposition. 

We may consider the well-known algorithms to 

be used as a synthetic dataset generation method, i.e., 

the Empirical Mode Decomposition (EMD) [17], the 

Fast Fourier Transform (FFT) [18] and the Fourier 

Decomposition Method (FDM) [19]. However, there 

are also considerations that need to be addressed 

before selecting an algorithm for generating synthetic 

datasets. One challenge when considering the EMD 

for synthesizing the datasets is the selection of 

intrinsic mode functions (IMFs); It is unclear in 

making physical sense of the individual components 

of the IMFs [20]. The FFT and the FDM are both 

based on the Fourier analysis. Therefore, their 

analysis-synthesis processes of a time series rely 

upon the series of the harmonic functions of the non-

adaptive sinusoidal and cosinusoidal functions even 

in the case of a non-stationary time series [20]. Also, 

the spectral leakage problem inherent to any Fourier 

analysis algorithm can result in harmonics estimation 

errors and some additional measures are needed to 

eliminate the problem [21]. 

In this paper, we present a novel singular 

spectrum analysis (SSA)-based approach for 

generating the synthetic feature datasets for RUL 

estimation for Turbo fan engines. The method of 

constructing the synthetic datasets by using basis 

functions from the prototypes, i.e., the select time 

series chosen from available actual features datasets, 

is described. The validation of the proposed method 

was performed with the Turbofan engines datasets 

publicly provided by the Prognostics Center of 

Excellence (PCoE) at Ames Research Center [22]. Of 

all the analysis schemes currently being investigated, 

SSA is one of the most studied techniques for 

analysis and synthesis of general time series [23].  As 

a non-parametric method, SSA does not assume any 

data specification of the datasets, e.g., the levels of 

noise, observation duration and stationarity 

properties; hence its applications for practical time 

series is enhanced [24]. Extended from the principle 

of the well-established Fourier analysis, the concept 

of the proposed approach is based on the hypothesis 

that any time series can be synthesized from the linear 

combination of weighted basis functions derived by 

means of the SSA analysis-synthesis operations. 

Unlike the basis functions derived from the Fourier 

analysis method, however, those of the proposed 

SSA-based approach are a collection of time series 

synthesized from the prototypes. RUL estimation 

from the synthetic datasets can be performed by a 

subsequent regression method. In this regard, the 

long short term memory (LSTM) neural network is 

chosen as a regression method due to its capability in 

working with a trendy time series [25]. 

The paper is organized as follows. The 

methodologies for generating synthetic datasets are 

presented in Section 2. The relationship between the 

concepts of the basis functions of the time series in 

the continuous-time Fourier series analysis and SSA 

is described and the rationale of using SSA in 

determining the basis functions of non-stationary 

time series is also explained. In Section 3, we first 

describe the mechanism of perfect reconstruction of 

a time series from the basis functions derived another 

time series using SSA decomposition-reconstruction 

processes. Then the core concept of the synthetic 

dataset generation with scaled basis functions is 

formulated along with those of the three existing and 

well-recognized algorithms, i.e., the Empirical Mode 

Decomposition (EMD) [17], the Fast Fourier 

Transform (FFT) [18] and the Fourier Decomposition 

Method (FDM) [19]. In Section 4, the numerical 

experiments on the RUL estimation using the 

synthetic datasets generated by the proposed method 

in comparison with EMD, FFT and FDM are also 

provided. Finally, conclusions are discussed in 

Section 5. 
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2. Methodologies for generating synthetic 

datasets 

In this section, we first formulate the concept of 

representing a time series by means of the basis 

functions. The similarities and differences between 

the concepts of basis functions of the Fourier analysis 

[19], the Empirical Mode Decomposition (EMD) 

[17], the Karhunen-Loève transform (KLT) (or the 

Hotelling transform) [26] and the singular spectrum 

analysis (SSA) [23, 24] are also discussed.  

From the continuous-time Fourier series analysis 

viewpoint, any periodic continuous-time sequence 

𝑥(𝑡)  with period 𝑇  can be synthesized from the 

combination of the infinite number of harmonically-

related weighted sinusoidal functions [19] 

 

𝑥(𝑡) =
𝑎0
2
+∑𝑎𝑘

∞

𝑘=1

cos (
2𝜋𝑘𝑡

𝑇
)+𝑏𝑘 sin (

2𝜋𝑘𝑡

𝑇
) (1) 

 

Where 𝑎0 is the constant component of 𝑥(𝑡) and 

𝑎𝑘 , 𝑏𝑘  are the 𝑘𝑡ℎ  harmonic coefficients associated 

with the sinusoidal functions of 𝑥(𝑡)  and can be 

determined by   

 

𝑎𝑘 =
2

𝑇
∫ 𝑥(𝑡) cos (

2𝜋𝑘𝑡

𝑇
)𝑑𝑡,

𝑇

0

                 (2) 

  

𝑏𝑘 =
2

𝑇
∫ 𝑥(𝑡) sin (

2𝜋𝑘𝑡

𝑇
)𝑑𝑡.

𝑇

0

                (3) 

 

In particular, the second and the third terms in Eq. 

(1) suggest that any periodic sequence can be formed 

via the combination of weighted sinusoidal basis 

functions. The benefit of using the sinusoidal basis 

functions is due largely to their simple behavior under 

a change of time scale without affecting its 

amplitudes [27]. Collectively, we use the term 

Fourier Decomposition Method (FDM) for the 

method of representing a nonlinear and non-

stationary time series using the sinusoidal functions 

in Eq. (1) as the basis functions. Also, there are 

analysis schemes available to make FT more 

meaningful for time-frequency applications, e.g., the 

short-time Fourier transform, or spectrogram, [28] 

and the adaptive Fourier decomposition method 

(AFDM) [29]. 

The Fourier series analysis is extended to its non-

periodic counterpart known as the Fourier transform 

(FT) where the period 𝑇 is allowed to be infinity. For 

efficient analysis of the discrete-time version of FT, 

the Fast Fourier Transform (FFT) is one of the most 

commonly used methods and is considered as the 

most important numerical algorithm of our lifetime 

[30]. Unlike the Fourier Transform, the Empirical 

Mode Decomposition (EMD) does not use any fixed 

type of basis functions such as sine and cosine 

functions in both decomposition-reconstruction [23, 

24]. The decomposition operation in EMD is based 

on the direct extraction of the energy associated with 

various intrinsic time scales leading to the collection 

of the intrinsic mode functions (IMFs) [31]. EMD 

decomposes a time series 𝑥(𝑡)  into 𝑘  numbers of 

IMFs by the decomposed component 𝑐𝑘(𝑡)  and 

decomposed residue 𝑟𝑘(𝑡). Therefore for EMD, the 

original time series 𝑥(𝑡) is represented as: 

 

𝑥(𝑡) = ∑ 𝑐𝑘(𝑡) + 𝑟𝑁(𝑡)

𝑁

𝑘=1

,                      (4) 

 

where 𝑟𝑁(𝑡)  is the total residue from the 

decomposition.  

Similar to FDM and EMD, SSA is regarded as an 

alternative technique of time series analysis and 

forecasting [23]. Nevertheless, SSA differs in its 

principle of operation from the both methods. Unlike 

Fourier series analysis, the concept of SSA uses the 

data-driven trajectory matrix to create adaptive basis 

functions. Also, unlike EMD, the concept of 

oscillatory IMFs and instantaneous frequency are 

discarded in SSA and the adaptive basis functions are 

derived by the SVD-based method instead. 

It is important to note that the concept of SSA-

based basis functions is akin to that of the Karhunen-

Loève transform (KLT) which states that a centered 

(zero-mean) stochastic time series can be thought of 

as a collection of orthogonal basis functions 

associated by uncorrelated coefficients [32]. 
However, SSA and KLT differs in two main 

considerations. First, KLT needs to compute the 

theoretical covariance matrix of the centered (zero-

mean) input time series. Since there is no fast KLT 

transform and for a covariance matrix of size 𝑁, the 

calculations must be of the order of 𝑁2  [33]. In 

contrast, SSA does not need to estimate the 

covariance matrix of the time series. The multivariate 

statistical analysis in SSA can be performed with a 

single time series by means of the collection of 

lagged copies of a single series in the name of the 

trajectory matrix [34]. Second, the definition of basis 

functions of KLT are the eigenvectors derived from 

the decomposition of the covariance matrix of zero-

mean input vectors. But for the SSA-based approach, 

the basis functions can be the reconstructed elements 

of the time series itself where each of the basis 

functions has its own structurally interpretable 

meanings, i.e., trendy, oscillatory and noise [35]. 
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Such basis functions are beneficial in generating 

synthetic datasets that resemble to the actual datasets 

being synthesized.  

In the next subsection, we first introduce the 

system model and the basic SSA process. Then the 

concept of the SSA-based basis functions is 

formulated. 

2.1 Analysis and synthesis of basis functions in 

SSA 

   Consider a real-valued time series 𝑥(𝑡) of length  

𝑇,   the trajectory matrix of the time series is arranged 

as the 𝐿 × 𝐾 Hankel matrix 

 

𝐗 =

[
 
 
 
 
𝑥(1)  𝑥(2)         𝑥(3)         ⋯   𝑥(𝐾)        
𝑥(2)  𝑥(3)         𝑥(4)         ⋯   𝑥(𝐾 + 1)

𝑥(3)  𝑥(4)         𝑥(5)         ⋯   𝑥(𝐾 + 2)
⋮          ⋮                ⋮                 ⋱    ⋮               
𝑥(𝐿)  𝑥(𝐿 + 1) 𝑥(𝐿 + 2)  ⋯   𝑥(𝑇)        ]

 
 
 
 

,   (5) 

 

where 𝐿 is the window length typically set to 𝐿 <
𝑇/2 [34, 36] and 𝐾 = 𝑇 − 𝐿 + 1  is the embedding 

dimension. The optimally estimated window length 

(𝐿𝑒𝑠𝑡 ) used in this paper is explained in [25]. By 

performing the singular value decomposition (SVD) 

of  𝐗, we arrive at  

 

𝑿 = 𝑼𝑫𝑽𝑇 ,                                     (6) 
 

where 𝑼 = (𝒖1, 𝒖2, ⋯ , 𝒖𝐿)  and 𝑽 =
(𝒗1, 𝒗2, ⋯ , 𝒗𝐾)   are the eigenvector matrices. The 

diagonal matrix 𝑫 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, . . . , 𝜎𝐿)  is a 

collection of the singular values  𝜎𝑖 [24]. The value 

of 𝜎𝑖 is sorted in a decreasing order, i.e., 𝜎1 > 𝜎2 >
, . . . , > 𝜎𝐿  [23].  Collectively, the group of the 𝑖𝑡ℎ 

singular value and associated eigenvectors 

{𝜎𝑖, 𝒖𝑖 , 𝒗𝑖}  is called the 𝑖𝑡ℎ  eigentriple. From the 

decomposition process, the trajectory matrix 𝑿 can 

be represented by the summation of  

 

𝑿 = 𝑿1 + 𝑿2 +⋯+𝑿𝑑 ,                       (7) 
 

where 𝑿𝑖 = 𝜎𝑖𝒖𝑖𝒗𝑖
𝑇  is the 𝑖𝑡ℎ elementary matrix 

and 𝑑 = 𝑟𝑎𝑛𝑘(𝑿)  is the number of nonzero 

eigenvalues 𝜎𝑖 . For practical time series, however, 

 𝑿  is usually full rank hence 𝑑 = min {𝐿, 𝐾} . To 

reconstruct the original components constituting the 

trajectory matrix  𝑿 , eigentriple grouping is first 

performed to arrange  multiple elementary matrices  
𝑿𝑖 from the set of indices 𝑖 = 1,… , 𝑑 into 𝑚  disjoint 

subsets, i.e., 𝐼1, … , 𝐼𝑚 . The 𝑗𝑡ℎ  subset has 𝑝 

components, i.e., 𝐼𝑗 = {𝑗1, … , 𝑗𝑝} . If 𝑚 = 𝑑 , the 

grouping is called the elementary grouping and each 

group has only one member, i.e.,  𝐼𝑗 = {𝑗}, 𝑗 =

1,… , 𝑑.  So the trajectory matrix can be decomposed 

as 𝑿 = 𝑿𝐼1 +⋯+ 𝑿𝐼𝑚  where 𝑿𝐼𝑗 = 𝑿𝑗1 +⋯+𝑿𝑗𝑝 . 

The element   𝑥𝑙,𝑜
(𝑘)

, 1 ≤ 𝑙 ≤ 𝐿  and 1 ≤ 𝑜 ≤ 𝐾 , of 

𝑿𝐼𝑘  for 𝐼𝑘 = 𝐼1, … , 𝐼𝑚  is arranged such that the 

diagonal averaging can be performed. The diagonal 

averaging operation is defined as 

 

𝜃𝑘(𝑡) =

{
 
 
 
 

 
 
 
  

1

𝑡
∑𝑥𝑞,𝑡−𝑞+1                     

(𝑘) ; 1 ≤ 𝑡 < 𝐿,

𝑡

𝑞=1

  
1

𝐿
∑𝑥𝑞,𝑡−𝑞+1                     

(𝑘) ; 𝐿 ≤ 𝑡 < 𝐾,

𝐿

𝑞=1

1

𝑇 − 𝑡 + 1
∑ 𝑥𝑞,𝑡−𝑞+1

(𝑘) ; 𝐿 ≤ 𝑡 < 𝐾,

𝐿

𝑞=𝑡−𝐾+1

        (8) 

 

where 𝜃𝑘(𝑡), 𝑘 = 1, . . . , 𝑚   and 𝑡 = 1, . . . , 𝑇 , is 

denoted as the 𝑘𝑡ℎ  basis function of the SSA 

decomposition. The reconstructed version 𝑥(𝑡) of the 

original time series 𝑥(𝑡) can then be derived by the 

summation of 𝜃𝑘(𝑡), 𝑘 = 1, . . . , 𝑚:  
 

𝑥(𝑡) = ∑𝜃𝑘(𝑡)

𝑚

𝑘=1

.                                      (9) 

3. The concept of generating synthetic 

datasets from prototypes 

3.1 System model for prototypes 

In this section, we describe the mechanism in 

reconstruction of any non-stationary time series by 

the concept of basis functions developed in the last 

section. The concept of how to synthesize new time 

series from another time series is derived from those 

presented in [25]. 

We choose to explain this concept via the 

reconstruction of a pair of uncorrelated time series 𝑎, 

𝑥(𝑎)(𝑡), and time series 𝑏, 𝑥(𝑏)(𝑡). We designate the 

time series  𝑥(𝑎)(𝑡) as prototype 𝑎 and the time series 

𝑥(𝑏)(𝑡) as prototype 𝑏. The estimate 𝑥(𝑎)(𝑡) can be 

directly reconstructed by summation of its basis 

functions 𝜃𝑘
(𝑎)(𝑡) as in (8). Interestingly, it is possible 

to also reconstruct 𝑥(𝑎)(𝑡)  by scaling the basis 

functions of the prototype  𝑏, 𝜃𝑘
(𝑏)(𝑡) , with the 

weights of the prototype 𝑎, 𝑤𝑘
(𝑎)(𝑡) [25]: 

 

𝑥(𝑎)(𝑡) = ∑𝑤𝑘
(𝑎)(𝑡)𝜃𝑘

(𝑏)(𝑡)

𝑚

𝑘=1

.             (10) 
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The weight, 𝑤𝑘
(𝑎)
(𝑡) in Eq. (10) is determined by 

the knowledge of both the basis functions  𝜃𝑘
(𝑎)
(𝑡) 

and 𝜃𝑘
(𝑏)
(𝑡)  where  𝜃𝑘

(𝑏)
(𝑡) ≠ 0, ∀𝑘,  

 

𝑤𝑘
(𝑎)
(𝑡) = 𝑑𝑖𝑎𝑔 (𝜃𝑘

(𝑏)
(𝑡))

−1
𝑑𝑖𝑎𝑔 (𝜃𝑘

(𝑎)
(𝑡)),   (11) 

 

In the same fashion, the estimate 𝑥(𝑏)(𝑡) can be 

indirectly represented by means of the basis functions 

of prototype 𝑎, 𝜃𝑘
(𝑎)(𝑡), scaled by the weights of the 

prototype 𝑏, 𝑤𝑘
(𝑏)
(𝑡): 

 

𝑥(𝑏)(𝑡) = ∑𝑤𝑘
(𝑏)
(𝑡)𝜃𝑘

(𝑎)(𝑡)

𝑚

𝑘=1

.              (12) 

 

Also, the weights 𝑤𝑘
(𝑏)(𝑡) in (11) is determined by 

the knowledge of both of the basis functions 𝜃𝑘
(𝑎)(𝑡) 

and 𝜃𝑘
(𝑏)(𝑡)  where 𝜃𝑘

(𝑎)(𝑡) ≠ 0, ∀𝑘,   

 

𝑤𝑘
(𝑏)
(𝑡) = 𝑑𝑖𝑎𝑔 (𝜃𝑘

(𝑎)
(𝑡))

−1
𝑑𝑖𝑎𝑔 (𝜃𝑘

(𝑏)
(𝑡)).   (13) 

 

where 𝑑𝑖𝑎𝑔(∙)  represents the matrix 

diagonalization operation and (∙)−1  the inverse 

matrix operation. Eqs. (10)-(13) constitute the core 

idea of synthesizing a time series using the basis 

functions and the coefficients obtained from another 

time series [25]. The model of the analysis and 

synthesis operations is illustrated in Fig. 1 and also 

described in Algorithm 1. 

3.2 System models for synthetic datasets 

In this section, we describe how a dataset whose 

characteristics descended from a prototype can be 

 

( ) ( )ax t
Analysis

and

Synthesis

( ) ( )a

k t
( )ˆ ( )ax t

( ) ( )b

kw t ( )ˆ ( )bx t

( ) ( )bx t
( ) ( )b

k t
( )ˆ ( )bx t

( ) ( )a

kw t
( )ˆ ( )ax t

Analysis

and

Synthesis

Figure.1 The illustration of the synthesizing process of 

�̂�(𝑎)(𝑡) and �̂�(𝑏)(𝑡) by means of the basis functions 

𝜃𝑘
(𝑎)(𝑡),  𝜃𝑘

(𝑏)(𝑡) and the weights 𝑤𝑘
(𝑎)(𝑡),  𝑤𝑘

(𝑏)(𝑡) from 

the prototypes 𝑥(𝑎)(𝑡),  𝑥(𝑏)(𝑡) which derived from the 

SSA analysis and synthesis. Notice that  �̂�(𝑎)(𝑡) can be 

reconstructed by means of  𝜃𝑘
(𝑏)(𝑡) and 𝑤𝑘

(𝑎)(𝑡) and 

�̂�(𝑏)(𝑡) can be reconstructed by means of  𝜃𝑘
(𝑎)(𝑡) and 

𝑤𝑘
(𝑏)(𝑡) 

Algorithm 1: Synthesizing of time series �̂�(𝑎)(𝑡) 
and �̂�(𝑏)(𝑡) by means of the basis functions 𝜃(𝑎)(𝑡) 

and 𝜃(𝑏)(𝑡). 

Input : Prototype time series 𝑥(𝑎)(𝑡) and 𝑥(𝑏)(𝑡). 
Output : Estimated time series �̂�(𝑎)(𝑡) and �̂�(𝑏)(𝑡). 

Let 𝐿 and calculate 𝐾 = 𝑇 − 𝐿 + 1. 

For 𝑙 = 1 to 𝐿 

   For 𝑘 = 1 to 𝐾 

      Create trajectory matrix 𝐗(𝑎) and 𝐗(𝑏) by (5). 

   End 

End 

Perform SVD as 𝑠𝑣𝑑(𝐗(𝑎)) and 𝑠𝑣𝑑(𝐗(𝑏)). 

While 𝑖 <= 𝑑 do 

   𝑿𝑖
(𝑎)
= 𝜎𝑖

(𝑎)
𝒖𝑖
(𝑎)
𝒗𝑖
𝑇(𝑎)

. 

   𝑿𝑖
(𝑏)
= 𝜎𝑖

(𝑏)
𝒖𝑖
(𝑏)
𝒗𝑖
𝑇(𝑏)

. 

End 

For 𝑘 = 1 to 𝑚 

   Derive the basis functions 𝜃𝑘
(𝑎)(𝑡) and 𝜃𝑘

(𝑏)(𝑡) by (8). 

End 

For 𝑘 = 1 to 𝑚 

   𝑤𝑘
(𝑎)(𝑡) = 𝑑𝑖𝑎𝑔 (𝜃𝑘

(𝑏)(𝑡))
−1

𝑑𝑖𝑎𝑔 (𝜃𝑘
(𝑎)(𝑡)). 

   𝑤𝑘
(𝑏)(𝑡) = 𝑑𝑖𝑎𝑔(𝜃𝑘

(𝑎)(𝑡))
−1
𝑑𝑖𝑎𝑔(𝜃𝑘

(𝑏)(𝑡)). 

End 

Estimate time series �̂�(𝑎)(𝑡) by (10) and �̂�(𝑏)(𝑡) by (12). 

 

synthesized via the collection of 𝑚 basis 

functions of the 𝑓𝑡ℎ feature 𝑥(𝑓)(𝑡), i.e., 𝜃𝑘
(𝑓)
(𝑡) 𝑘 =

1,… ,𝑚. In this regard, the 𝑠𝑡ℎ synthetic dataset for 

the 𝑓𝑡ℎ feature for at time 𝑡  generated by the SSA 

algorithm is generated from the basis functions 

𝜃𝑘
(𝑓)
(𝑡) as 

  

�̃�(SSA)
(𝑠,𝑓) (𝑡) = ∑𝑤𝑘

(𝑠,𝑓)(𝑡)𝜃𝑘
(𝑓)
(𝑡)

𝑚

𝑘=1

,             (14) 

 

where �̃�(SSA)
(𝑠,𝑓) (𝑡) is the synthetic dataset generated 

by the SSA algorithm and the weight function for the 

𝑠𝑡ℎ  synthetic dataset for the 𝑓𝑡ℎ feature 

𝑤𝑘
(𝑠,𝑓)(𝑡), 𝑘 = 1,… ,𝑚  is a normal distribution 

function with a mean of one and a variance of 𝛿2, 
 

𝑤𝑘
(𝑠,𝑓)(𝑡) ∼ 𝒩(1, 𝛿2).                 (15) 

 

Note that 𝑤𝑘
(𝑠,𝑓)(𝑡)  is a random variable 

introduced to provide diversity in the synthetic 

datasets being generated.  

For general representations, Eq. (14) can be 

written in the matrix-vector representation. First, the 

𝐿𝑒𝑠𝑡 × 𝑇 basis function matrix for the 𝑓𝑡ℎ feature is 

defined as    
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    𝜽(𝑓) = [
𝜃1
(𝑓)
(1) ⋯ 𝜃1

(𝑓)
(𝑇)

⋮ ⋱ ⋮

𝜃𝑚
(𝑓)
(1) ⋯ 𝜃𝑚

𝑓
(𝑇)

],          (16)  

 

where 𝑓 = 1,2, . . . , 𝐹  and 𝐹  is the number of 

recorded feature datasets. The 𝐿𝑒𝑠𝑡 × 𝑇 matrix of the 

weights is defined as 

 

𝐖(𝑠,𝑓) =  [
𝑤1
(𝑠,𝑓)

(1) ⋯ 𝑤1
(𝑠,𝑓)

(𝑇)

⋮ ⋱ ⋮

𝑤𝑚
(𝑠,𝑓)

(1) ⋯ 𝑤𝑚
(𝑠,𝑓)

(𝑇)

],         (17) 

 

where 𝑠 = 1,2,… , 𝑆  and 𝑆  is the number of 

synthetic datasets to be generated. As a result, the 𝑠𝑡ℎ 

synthetic dataset for the 𝑓𝑡ℎ feature generated by the 

SSA algorithm �̃�(SSA)
(𝑠,𝑓)

 is then determined by 

 

�̃�(SSA)
(𝑠,𝑓)

= (𝐖(𝑠,𝑓) ∘ 𝜽(𝑓))
𝑇
𝟏,               (18) 

 

where ∘ is the Hadamard (element-wise) product 

and  �̃�(SSA)
(𝑠,𝑓)

= [ �̃�(𝑆𝑆𝐴)
(𝑠,𝑓) (1) �̃�(𝑆𝑆𝐴)

(𝑠,𝑓) (2)    ⋯ �̃�(𝑆𝑆𝐴)
(𝑠,𝑓) (𝑇)]

𝑇
 is 

a synthetic datasets vector and 𝟏 = [ 1  1  ⋯1]𝑇  is 

an 𝑚 × 1 vector of ones.   

We can also generate the 𝑠𝑡ℎ synthetic time series 

for the prototype 𝑥(𝑓)(𝑡)  by means of the 

decomposed component and the residue of the EMD 

algorithm as 

�̃�(EMD)
(𝑠,𝑓) (𝑡) = ∑𝑤𝑘

(𝑠,𝑓)(𝑡)𝑐𝐸𝑀𝐷,𝑘
(𝑓) (𝑡) + 𝑟𝑚

(𝑓)(𝑡)

𝑚

𝑘=1

,    (19) 

 

where �̃�(EMD)
(𝑠,𝑓) (𝑡)  is the synthetic datasets generated 

by the EMD algorithm, 𝑐𝐸𝑀𝐷,𝑘
(𝑓) (𝑡)  is the 𝑘𝑡ℎ 

decomposed component from 𝑥(𝑓)(𝑡) and 𝑟𝑚
(𝑓)(𝑡)  is 

total of residue from decomposition of  𝑥(𝑓)(𝑡). 
The next algorithm that can be used to generate 

synthetic datasets is the FDM algorithm. Since the 

reconstruction of 𝑥(𝑓)(𝑡)  by FDM is essentially 
based on the concept of Fourier series, both the 

harmonic coefficients and the basis functions are 

required in the synthesis process. The 𝑠𝑡ℎ synthetic 

dataset for the 𝑓𝑡ℎ feature generated by FDM is 

therefore  

 

�̃�(FDM)
(𝑠,𝑓) (𝑡) =

𝑎0
2
+∑𝑤𝑘

(𝑠,𝑓)(𝑡)𝜶𝐹𝐷𝑀
𝑇 (𝑘)𝒄𝐹𝐷𝑀,𝑘

(𝑓) (𝑡)

𝑚

𝑘=1

,   (20) 

 

where �̃�(FDM)
(𝑠,𝑓) (𝑡) is the synthetic datasets generated 

by the FDM algorithm, 𝑎0 is the constant component and 

𝜶𝐹𝐷𝑀(𝑘) = [𝑎𝑘 𝑏𝑘]
𝑇 is the vector of the 

𝑘𝑡ℎ harmonic coefficients as mentioned in Eq. (2) 

and Eq. (3) and 𝒄𝐹𝐷𝑀,𝑘
(𝑓) (𝑡) = [cos (

2𝜋𝑘𝑡

𝑇
) sin(

2𝜋𝑘𝑡

𝑇
)]
𝑇

 is 

the vector of the 𝑘𝑡ℎ FDM basis functions. 

The last algorithm to be examined is the Fast 

Fourier Transform (FFT) algorithm [18]. Unlike all 

the above-mentioned algorithms, the FFT 

coefficients are generally complex valued therefore 

they cannot be directly operated with the real-valued 

weight 𝑤𝑘
(𝑠,𝑓)(𝑡) . One possible solution to this 

problem is to symmetrically rearrange the time series 

𝑥(𝑓)(𝑡)  into a (2𝑚 − 1) × 1 vector prior to the FFT 

operation as   

  

�́�(𝑡) = [�́�(0) �́�(1)      ⋯   �́�(2𝑚 − 2)]𝑇           
= [𝑥(𝑓)(0)⋯𝑥(𝑓)(𝑚 − 1) ⋮ 𝑥(𝑓)(𝑚 − 1)⋯  𝑥(𝑓)(1) ]𝑇 .    (21) 

 

The 𝑘𝑡ℎ FFT coefficient for �́�(𝑡) is then given by 

 

𝑋(𝑘) = �́�(𝑡)𝑇𝒄∗𝐹𝐹𝑇,𝑘
(𝑓) (𝑡),                    (22) 

 

where 𝒄𝐹𝐹𝑇,𝑘
(𝑓) (𝑡) is a (2𝑚 − 1) × 1 vector of the 

𝑘𝑡ℎ basis function for the FFT operation,   

 

𝒄𝐹𝐹𝑇,𝑘
(𝑓) (𝑡) = [1 𝑒

2𝜋𝑘

2𝑚−1     ⋯ 𝑒
2𝜋𝑘(2𝑚−2)

2𝑚−1 ]
𝑇
,   (23) 

 

and (∙)∗  is the conjugation operator. With this 

arrangement of   𝑥(𝑓)(𝑡), the FFT coefficients 𝑋(𝑘)  
for 𝑘 = 0,… ,2𝑚 − 2 are all now constrained to be 

real valued numbers. In order to generate synthetic 

datasets from 𝑋(𝑘), 𝑤𝑘
(𝑠,𝑓)(𝑡) must also be arranged 

into a (2𝑚 − 1) × 1 vector as 

     

�́�𝑘
(𝑠,𝑓)(𝑡) = [�́�𝑘

(𝑠,𝑓)
(0) �́�𝑘

(𝑠,𝑓)(1)⋯ �́�𝑘
(𝑠,𝑓)(2𝑚 − 2)]

𝑇

 

=[𝑤𝑘
(𝑠,𝑓)(0)⋯𝑤𝑘

(𝑠,𝑓)(𝑚 − 1) ⋮ 𝑤𝑘
(𝑠,𝑓)(𝑚 − 1)⋯𝑤𝑘

(𝑠,𝑓)(1)]
𝑇

.   (24) 

 

The synthetic time series generated by the FFT 

algorithm is therefore  

 

�́̃�(𝑡) = ∑ �́�𝑘
(𝑠,𝑓)(𝑡)𝑋(𝑘)

2𝑚−2

𝑘=0

𝑒
2𝜋𝑘𝑡

2𝑚−1 

= (�́�𝑘
(𝑠,𝑓)(𝑡) ∘ 𝑿(𝑘))

𝑇

𝒄𝐹𝐹𝑇,𝑘
(𝑓) (𝑡),    (25) 

 

where  𝑿(𝑘) = [𝑋(0), … , 𝑋(2𝑚 − 2)]𝑇   is a 
(2𝑚 − 1) × 1 vector of the FFT coefficients 

𝑋(𝑘), 𝑘 = 0,… ,2𝑚 − 2. 
 Finally, the 𝑠𝑡ℎ  synthetic dataset for the 

𝑓𝑡ℎ feature by FFT is then a truncated version of  

�́̃�(𝑡) for 𝑡 = 0,… ,𝑚 − 1,  
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Figure.2 The system of SSA-LSTM RUL estimation with synthetic datasets is illustrated. The prototype features 

datasets 𝑥(𝑓)(𝑡) are applied to from analysis and synthesis parts of SSA for generation of synthetic datasets �̃�(𝑠,𝑓)(𝑡). The 

feature �̃�(𝑠,𝑓)(𝑡) for synthetic datasets and RUL 𝑥(RUL)(𝑡) for prototype datasets are used by LSTM in order to generate 

the estimated RUL 𝑦(SSA)
(RUL)

(𝑡) 

 

  �̃�(FFT)
(𝑠,𝑓) (𝑡) = {�́̃�(𝑡), 𝑡 = 0,… ,𝑚 − 1}.   (26) 

 

where �̃�(FFT)
(𝑠,𝑓) (𝑡) is the synthetic datasets generated 

by the FFT algorithm. 

Algorithm 2 summarizes the methods for 

generating the 𝑠𝑡ℎ  synthetic dataset for the 

𝑓𝑡ℎ  feature for the four above-mentioned algorithms. 

3.3 The singular spectrum analysis and long short 

term memory (SSA-LSTM) neural network RUL 

estimation for synthetic time series 

In [25], the hybrid system of SSA-LSTM has 

been proposed and is shown to enhance performance 
of RUL estimation for the Turbofan datasets of [22] 

as compared to the systems utilizing either SSA or 

 

Algorithm 2: Generation of synthetic datasets from 

SSA, FFT, EMD and FDM algorithms  

Input: Time series 𝑥(𝑓)(𝑡). 
Output: Estimated features of synthetic time series  

�̃�(𝑠,𝑓)(𝑡)  for SSA, �̃�(EMD)
(𝑠,𝑓)

(𝑡)  for EMD, �̃�(FDM)
(𝑠,𝑓)

(𝑡)  for 

FDM and �̃�(FFT)
(𝑠,𝑓)

(𝑡) for FFT. 

Analysis basis function of SSA by 𝜃𝑖
(𝑓)(𝑡) derived by (8). 

Analysis component of EMD derived by (4) and complex 

exponentials of CTFT derived by (1). 

Let 𝑆 and 𝑠 = 1,2, … , 𝑆. 

For 𝑘 = 1 to 𝑚 

   𝑤𝑘
(𝑠,𝑓)(𝑡) ∼ 𝒩(0, 𝛿2). 

End 

For 𝑠 = 1 to 𝑆 

   For 𝑓 = 1 to 𝐹 

      �̃�(SSA)
(𝑠,𝑓) (𝑡) = (𝐖(𝑠,𝑓) ∘ 𝜽(𝑓))

𝑇
𝟏. 

      �̃�(EMD)
(𝑠,𝑓) (𝑡) = ∑ [𝑤𝑘

(𝑠,𝑓)(𝑡)𝑐𝑘
(𝑓)(𝑡) + 𝑟𝑚

(𝑓)(𝑡)]𝑚
𝑘=1 . 

      �̃�(FDM)
(𝑠,𝑓) (𝑡) = ∑ [𝑤𝑘

(𝑠,𝑓)
(𝑡)𝑋(𝑘) ⋅ 𝑒𝑗𝜔0𝑘𝑡]𝑚

𝑘=1 . 

      �̃�(FFT)
(𝑠,𝑓) (𝑡) = �́̃�(𝑡),   𝑡 = 0,… ,𝑚 − 1, where 

            �́̃�(𝑡) = (�́�𝑘
(𝑠,𝑓)(𝑡) ∘ 𝑿(𝑘))𝒄𝐹𝐹𝑇,𝑘

(𝑓) (𝑡). 

   End 

End 

LSTM alone. In this paper, the SSA-LSTM RUL 

estimation architecture of [25] is revisited for 

performance comparison testing of the synthetic 

dataset generation algorithms developed in Section 

3.2. The complete system is shown in Fig.2. 

Since records from several sensors of both normal 

and fault modes features of each sensor in the datasets 

are usually acquired under different conditions, a 

method of normalization or feature scaling is often 

performed to alleviate the effects of disparity in 

magnitudes across the datasets. 

In [37], for example, the training predictors for 

Turbofan Engine Degradation Simulation Dataset are 

normalized with zero mean and unit variance. In this 

paper, the commonly used min-max normalization 

method is adopted to obtain a normalized version of 

a feature. The 𝑓𝑡ℎ feature prototype 𝑥(𝑓)(𝑡)  results 

from the min-max normalization of 𝑥′(𝑓)(𝑡) as 

   

𝑥(𝑓)(𝑡) =
𝑥′(𝑓)(𝑡) − 𝑥′min

(𝑓)

𝑥′max
(𝑓)

− 𝑥′min
(𝑓)

,               (27) 

 

where 𝑥′(𝑓)(𝑡) is the 𝑓𝑡ℎ  raw feature data with 

the maximum and the minimum values being 𝑥′max
(𝑓)

 

and 𝑥′min
(𝑓)

 respectively. The normalized prototype 

feature 𝑥(𝑓)(𝑡) is used as the system input of analysis 

and synthesis by SSA as in Fig. 2. 

The 𝑓𝑡ℎ  feature prototype 𝑥(𝑓)(𝑡)  is then analyzed 

and synthesized to create the basis function of the 𝑓𝑡ℎ 

feature 𝜃(𝑓)(𝑡). The 𝑓𝑡ℎ feature of the 𝑠𝑡ℎ synthetic 

dataset �̃�(𝑠,𝑓)(𝑡)  is generated from the 𝑗𝑡ℎ basis 

function 𝜃(𝑗)(𝑡)  with the 𝑓𝑡ℎ feature of the 𝑠𝑡ℎ 

synthetic dataset weight parameter 𝑤𝑖
(𝑠,𝑓)(𝑡)  as 

described in Eq. (15). The features for synthetic 

datasets �̃�(𝑠,𝑓)(𝑡) and true RUL datasets 𝑥(𝑟,RUL)(𝑡) 
for 𝑟 = 1,2,… ,200  are assigned in the training 

networks of LSTM, and the model of RUL estimation 

is then used in LSTM testing networks to achieve the 

estimated RUL datasets 𝑦(SSA)
(𝑟,RUL)(𝑡), 𝑟 = 1,2,… ,200. 
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 Figure. 3 The log squared cross-correlation errors across 40 lag orders and 25 actual dataset indexes of the synthetic 

datasets generated by (a) SSA (b) FFT (c) EMD and (d) FDM 

 

This also applies to 𝑦(EMD)
(𝑟,RUL)(𝑡), 𝑦(FDM)

(𝑟,RUL)(𝑡) and 

𝑦(FFT)
(𝑟,RUL)(𝑡) by the synthetic models for EMD, FDM 

and FFT from the synthetic datasets �̃�(EMD)
(𝑠,𝑓) (𝑡),

�̃�(FDM)
(𝑠,𝑓) (𝑡) and �̃�(FFT)

(𝑠,𝑓) (𝑡) respectively. 

4. Experimental results 

4.1 The cross-correlation error as a performance 

measure for a synthetic dataset 

Initially in this section, we need to establish a 

performance measure to determine how close the 

statistics of the synthetic datasets generated by SSA, 

FFT, EMD and FDM algorithms are to those of the 

actual datasets. In [38], the cross-site correlation of 

real-space hydrologic variables between the synthetic 

and historical datasets was used as a performance 

measure of the data generation of synthetic 

streamflows. In a similar yet different fashion, we 

tested the cross-correlation of the synthetic datasets 

generated by each of the four algorithms and the 

actual datasets with the cross correlation of the 

prototype dataset and the actual datasets.  

The difference between the two cross-

correlations across the lag orders and the dataset 

indexes or the cross-correlation error is therefore the 

deviation in the statistics of the synthetic dataset from 

the prototype, i.e., a select feature, referenced to the 

actual datasets. The 𝑚 -lagged cross-correlation of 

the prototype derived from the 𝑓𝑡ℎ feature, 𝑥(𝑓)(𝑡), 

and the 𝑗𝑡ℎ actual dataset, 𝑥(𝑗)(𝑡),  is given by 

 

𝑅(𝑜, 𝑗) = 𝐸{𝑥(𝑓)(𝑡 + 𝑜)𝑥(𝑗)(𝑡)},        (28) 

 

where 𝑜 denotes the lag of the two time series. In 

the same fashion, the 𝑜-lagged cross correlation of 

the prototype-based 𝑓𝑡ℎ feature of the 𝑠𝑡ℎ synthetic 

dataset of algorithm 𝐴, �̃�(𝐴)
(𝑠,𝑓)(𝑡), and the 𝑗𝑡ℎ actual 

dataset, 𝑥(𝑗)(𝑡), is given by 

 

�̃�(𝐴)(𝑜, 𝑗) = 𝐸 {�̃�(𝐴)
(𝑠,𝑓)(𝑡 + 𝑜)𝑥(𝑗)(𝑡)},      (29) 

where 𝐴 ∈ {𝑆𝑆𝐴, 𝐹𝐹𝑇, 𝐸𝑀𝐷, 𝐹𝐷𝑀}  represents 

the synthetic dataset generation algorithm. The 

difference between 𝑅(𝑜, 𝑗) and �̃�(𝐴)(𝑜, 𝑗) at the 𝑚𝑡ℎ 

lag and the 𝑗𝑡ℎ actual dataset is calculated by the 

squared error of both cross-correlations:  

 

𝜀(𝐴)
2 (𝑜, 𝑗) = (𝑅(𝑜, 𝑗) − �̃�(𝐴)(𝑜, 𝑗))

2
.       (30) 

 

In Fig. 3 (a)-(d), the surface plots of the logarithm 

of 𝜀(𝐴)
2 (𝑜, 𝑗) of the four algorithms, i.e., SSA, FFT, 

EMD and FDM, across 40 lag orders and 25 actual 

dataset indexes are shown respectively. Notice that 

all the plots were negatively-oriented meaning that 

lower values were preferable. Among the four 

algorithms, the average level of the log of errors 
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Figure. 4 The plots of the basis functions 𝜃𝑘

(𝑟,1)
(𝑡) for 𝑘 = 1,10 and 25 using 𝐿𝑒𝑠𝑡 = 24 derived from the SSA algorithm 

for the 1𝑠𝑡  normalized feature 𝑥(𝑟,1)(𝑡)  are shown in four columns for four prototypes, i.e., 𝑟 = 1,… ,4. Starting from the 

1𝑠𝑡 (leftmost) column to the 4𝑡ℎ (rightmost) column, 𝑥(𝑟,1)(𝑡) for 𝑟 = 1,… ,4  are plotted consecutively at the 

1𝑠𝑡  (topmost) row of each column. In each column, the basis functions 𝜃𝑘
(𝑟,1)

(𝑡) for 𝑘 = 1,10 and 25 are plotted 

consecutively in panels from the 2𝑛𝑑 to the 4𝑡ℎ (bottommost) rows 

 

log(𝜀(𝑆𝑆𝐴)
2 (𝑜, 𝑗)) for the synthetic datasets 

generated by SSA as shown in Fig. 3 (a) was the 

lowest at -13.60. This indicated that the SSA 

algorithm was able to generate synthetic datasets 

most similar to the prototype. For both the synthetic 

datasets generated by FFT and EMD, the similarities 

to the prototype were less pronounced as the average 

levels of the log of errors log (𝜀(𝐹𝐹𝑇)
2 (𝑜, 𝑗))  and 

log (𝜀(𝐸𝑀𝐷)
2 (𝑜, 𝑗)) shown in Fig. 3 (b)-(c) were at       -

9.61 and -8.38 respectively. Finally, for the synthetic 

datasets generated by FDM, the average level of the 

log of errors log (𝜀(𝐹𝐷𝑀)
2 (𝑜, 𝑗)) in Fig. 3 (d) was at -

6.34 suggesting that the synthetic datasets generated 

by FDM were the most dissimilar to the prototype. 

4.2 The remaining useful life (RUL) estimation 

performance testing of synthetic datasets 

We selected four datasets from the 200 turbofan 

datasets publicly provided by the Prognostics Center 

of Excellence (PCoE) at Ames Research Center [22] 

to be the prototypes for performance testing of the 

synthetic datasets. Each of the prototypes 

𝑥(𝑟,RUL)(𝑡) ,  𝑟 = 1, 2, 3, 4  was normalized before 

being processed. 

The 𝑓𝑡ℎ reconstructed features of prototype 

 𝑥(𝑟,𝑓)(𝑡) and RUL of prototype datasets 𝑥(𝑟,RUL)(𝑡) 
for  𝑟 = 1,2,3,4 were applied to the LSTM network 

for RUL estimation. The true RUL 𝑥(𝑟,RUL)(𝑡) of the 

four prototypes contained 𝑇 = 116  time cycles. 

 𝑥(𝑟,𝑓)(𝑡)  was then arranged to be the trajectory 

matrix as in Eq. (5) with the window length 𝐿 as the 

design parameter for generating trajectory matrix [23, 

24]. 

In [25], the value of 𝐿  that associates with the 

minimum root mean squared error (RMSE) for the 

particular datasets is 𝐿𝑒𝑠𝑡 ≈ 24 , and the range of 

minimum errors from four prototype datasets is 20 to 

30 or 20 ≤ 𝐿𝑒𝑠𝑡 ≤ 30. The value of 𝐿𝑒𝑠𝑡 ≈ 24 and 

the range of 20 ≤ 𝐿𝑒𝑠𝑡 ≤ 30 coincide nicely with the 

suggested values of 𝐿𝑒𝑠𝑡 < 𝑇/2 in [23], 𝐿𝑒𝑠𝑡 ≈ 𝑇/4 

in [34], 𝐿𝑒𝑠𝑡 > 2√𝑇 in [36,39] and 𝐿𝑒𝑠𝑡 = log(𝑇)
𝑐 in 

[38,40]. 

Three basis functions of the four prototype 

datasets functions 𝜃𝑘
(𝑟,1)

(𝑡)  for 𝑘 = 1,10  and 

25 using 𝐿𝑒𝑠𝑡 = 24  of the 1𝑠𝑡  normalized feature 

𝑥(𝑟,1)(𝑡) for four prototypes, i.e., 𝑟 = 1,… ,4 , with 

𝐿𝑒𝑠𝑡 = 24 are shown in Fig.4. Notice that at the same 

𝑘 the basis functions for each prototype behave in a 

similar fashion; for 𝑘 = 1,  all the basis functions 

represent the trends for the prototypes and as 𝑘  is 

 
Table 1. MAE and RMSE of the estimated RUL 

𝑦(SSA)
(𝑟,RUL)(𝑡) for four prototype datasets at 𝐿𝑒𝑠𝑡 = 24 

Algorithm 𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 

MAE 6.65 7.59 5.23 9.26 

RMSE 7.81 8.95 6.34 10.76 



Received:  March 25, 2021.     Revised: May 12, 2021.                                                                                                    368 

International Journal of Intelligent Engineering and Systems, Vol.14, No.4, 2021           DOI: 10.22266/ijies2021.0831.32 

 

 
Figure. 5 Four estimated RULs 𝑦(SSA)

(𝑟,RUL)
(𝑡) for 𝑟 = 1,… ,4 

are plotted respectively in comparison with their true 

RUL counterparts 𝑥(𝑟,RUL)(𝑡) using the estimated window 

length 𝐿𝑒𝑠𝑡 = 24. In all of the four plots, 𝑦(SSA)
(𝑟,RUL)(𝑡) are 

plotted as dashed-dotted lines and the true RULs 

𝑥(𝑟,RUL)(𝑡) as thin solid lines 

 

higher, i.e. 𝑘 = 10  and 25 , the basis functions 

become more oscillatory representing high frequency 

components buried in the prototypes.      The 

estimated RULs derived by the LSTM,  

𝑦(SSA)
(𝑟,RUL)(𝑡) for 𝐿𝑒𝑠𝑡 = 24  are plotted in comparison 

with the true RULs 𝑥(𝑟,RUL)(𝑡) for four prototypes in 

Fig. 5 where the dash-dotted line and the solid line 

represent 𝑦(SSA)
(𝑟,RUL)

(𝑡) and 𝑥(𝑟,RUL)(𝑡) respectively.  

The mean absolute errors (MAEs) and RMSEs 

from four prototype datasets for SSA 𝑦(SSA)
(𝑟,RUL)

(𝑡) are 

expressed in Table 1. It is shown that the estimated 

RUL 𝑦(SSA)
(3,RUL)

(𝑡) for 𝑥(3,RUL)(𝑡) in Fig.5 has lowest 

errors for this testing with MAE = 5.23 and RMSE = 

6.34. 

For performance testing in RUL estimation, synthetic 

datasets for SSA as in Eq. (14) or (18), FFT [18] in 

Eq. (26), EMD [17] in Eq. (19) and FDM [19] in Eq. 

(20) were generated in order to compare with 200 

features from the actual datasets. All synthetic 

datasets and the actual datasets were then regressed 

by the LSTM network for RUL estimation with the 

batch of 116 records of the actual RUL datasets. The 

testing of RUL estimation by using the features of the 

actual datasets has been conducted in [25] and the  

 

Table 2. Averaged MAE and averaged RMSE from 200 

synthetic datasets by SSA, FFT [18], EMD [17] and FDM 

[19] compared with the actual feature datasets [25] for 

RUL estimation with 116 time cycles 
Algorithm MAE RMSE 

Actual feature [25] 23.828 35.284 

SSA 25.123 36.825 

FFT [18] 27.126 38.472 

EMD [17] 28.362 39.402 

FDM [19] 30.41 41.705 

 

performed and the averaged MAEs and the averaged 

RMSEs of all the synthetic datasets are given in 

Table. 2. 

From Table 2, it is shown that averaged MAE and 

the averaged RMSE associated with the synthetic 

datasets generated by SSA are the lowest as 

compared to those associated by FFT [18], EMD [17] 

and FDM [19]. 

In Fig. 6 the synthetic datasets generated by the 

four algorithms are shown in comparison with the 

three select prototypes 𝑥(𝑓)(𝑡) which are plotted in 

order from left to right across the columns as black 

solid lines in all panels. It is shown in the 1𝑠𝑡 
(topmost) row of Fig. 6 that those generated by the 

SSA algorithm, the blue dashed-dotted lines, 

performed the best in replicating all the three 

prototypes. For the following three consecutive rows, 

the synthetic datasets generated by the EMD 

𝑦(𝐸𝑀𝐷)
(𝑓) (𝑡), by the FFT  𝑦(𝐹𝐹𝑇)

(𝑓) (𝑡) and by the FDM 

𝑦(𝐹𝐷𝑀)
(𝑓) (𝑡)  are shown respectively. Of all the four 

results, the synthetic datasets generated by the FDM  

𝑦(𝐹𝐷𝑀)
(𝑓) (𝑡) algorithm performed the worst in all of the 

comparison.  

Finally, for visualization of the performance 

comparison, two true RULs from the actual datasets 

are chosen and compared with the estimated RULs 

with the 116 batch records of the synthetic datasets as 

in Fig. 7 and Fig. 8. In Fig. 7 (a)-(d), the true RUL of 

the actual dataset number 1 is compared with the 

estimated RUL with the synthetic dataset generated 

by SSA, FFT, EMD and FDM respectively. In Fig. 8 

(a)-(d), the comparison between the four algorithms 

and the true RUL of the actual dataset number 2 is 

performed in the same manner as in Fig. 7 (a)-(d). In 

both Fig. 7 and Fig. 8, the estimated RULs derived by 

the synthetic datasets generated by SSA are the 

closest to the true RULs. These results as well as the 

averaged MAE and the averaged RMSE results in 

Table 2 suggest that the synthetic datasets generated 

by SSA as in Eq. (14) or (18) perform the best in RUL 

estimation as compared to those generated by FFT 
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Figure. 6 The synthetic datasets generated by the SSA, EMD, FFT and EMD algorithms are shown in comparison with 

the three select features 𝑥(𝑓)(𝑡) which are plotted in black solid lines in all panels. The three panels in the 1𝑠𝑡 (topmost) 

row represent the plots of the synthetic datasets generated by the SSA algorithm 𝑦(𝑆𝑆𝐴)
(𝑓) (𝑡) for 𝑓 = 1,2,3  respectively in 

blue dashed-dotted lines starting from the 1𝑠𝑡  (leftmost) column. For the following three consecutive rows, the three 

panels of the synthetic datasets generated by the EMD 𝑦(𝐸𝑀𝐷)
(𝑓) (𝑡) for 𝑓 = 1,2,3 are plotted in green dotted lines, by the 

FFT  𝑦(𝐹𝐹𝑇)
(𝑓) (𝑡) in purple dashed lines and by the FDM 𝑦(𝐹𝐷𝑀)

(𝑓) (𝑡) in red dotted lines respectively 

 

 

 [18] in Eq. (26), EMD [17] in Eq. (19) and FDM 

[19] in Eq. (20).  

5. Conclusions 

In this paper, we propose a novel synthetic dataset 

generation method for turbofan engines datasets [22] 

based on the singular spectrum analysis (SSA) 

algorithm. The proposed system generates synthetic 

datasets by means of the basis functions derived from 

the SSA analysis-synthesis operations of the select 

prototypes. Diversity in multiple synthetic datasets 

can be achieved by applying the random weight 

functions to the basis functions. The other three 

algorithms, i.e., EMD [17] as described in Eq. (19), 

FDM [19] in Eq. (20) and FFT [18] in Eq. (26), were 

also considered for the performance comparison of 

synthetic dataset generations.  

In order to test the similarity between the synthetic 

and the prototype datasets, the cross-correlation of all 

synthetic datasets from the four algorithms and the 

actual datasets were compared with the cross 

correlation of the prototype datasets and the actual 

datasets. It was shown that the SSA-based synthetic 

datasets provided the lowest average cross-

correlation errors across 40 lag orders and 25 actual 

dataset indexes. This implied that the SSA algorithm 

provided synthetic datasets whose characteristics 

were the closest to that of the prototype. The 

performance of the SSA-based synthetic datasets for 

remaining useful life (RUL) estimation and those of 

the existing algorithms, i.e., FFT, EMD and FDM, 

were compared by means of the regression performed  

by the Long Short Term Memory (LSTM) neural  

networks. The performance metrics of the synthetic 

datasets generated by the proposed SSA-based and 

the three existing algorithms were measured in terms 

of the mean absolute error (MAE) and the root mean 

squared error (RMSE) of their RUL estimates 

averaged over 200 datasets. The results were 

compared with those of the actual feature dataset [25] 

which provided the MAE of 23.828 and RMSE of 

35.284. For the synthetic datasets, the results showed 

the MAE of 27.126 and RMSE of 38.472 for the FFT 

[18], the MAE of 28.362 and RMSE of 39.402 for the 

EMD [17] and the MAE of 30.410 and RMSE of 

41.705 for the FDM [19]. It was revealed that the 

synthetic datasets generated by the proposed SSA-

based method performed the best with the MAE of  

25.123 and RMSE of 36.825 confirming the 

applicability of the proposed SSA-based synthetic 

datasets in substitution of the actual datasets for RUL 

estimation. 
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Figure. 7 The true RUL of the actual dataset number 1 

𝑥(1,RUL)(𝑡) plotted in thin black lines in each panel is 

compared with the estimated RULs derived from the 

synthetic datasets generated by SSA 𝑦(SSA)
(1,RUL)

(𝑡), by FFT  

𝑦(FFT)
(1,RUL)

(𝑡), by EMD 𝑦(EMD)
(1,RUL)

(𝑡) and by FDM  

𝑦(FDM)
(1,RUL)

(𝑡) which are plotted in four consecutive panels 
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