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Abstract: With an increase in defined carrier frequency for the 5G new radio system, the need for synchronization 

also increases. The transceiver loses synchronization due to the occurrence of timing and carrier frequency offsets. 

Carrier frequency offsets often occur due to mismatch between transmitter and receiver oscillator frequency as well as 

the occurrence of doppler shifts due to transmitter/receiver movements. When frequency offsets exceed subcarrier 

spacing, integer frequency offset occurs that results in performance loss due to subcarrier indices shifts. Conventional 

approach i.e. maximum likelihood and sequential method is already employed to estimate integer frequency offset and 

to detect sector id. In this paper, the deep learning-based method is demonstrated to estimate the integer frequency 

offset and sector id detection. The neural network containing multiple convolution layers with activation layers is used 

to find the optimum received signal. Then, by calculating the number of cyclic shifts in the optimum received signal, 

the integer frequency offset is estimated. Using the corrected optimum received signal, the primary synchronization 

signal is also detected that gives sector id. This proposed estimator is tested for different profiles of tapped delay line 

models with different desired delay spread and compared with conventional methods i.e. maximum likelihood 

estimation method and sequential estimation method. Simulation results show that the proposed Neural Network based 

estimator outperforms in all delay profiles. 

Keywords: 5G new radio, Integer frequency offset, Primary synchronization signal, OFDM, Neural network. 

 

 

1. Introduction 

The Fifth Generation New Radio (5G NR) system 

is a new interface technology developed by the 3rd 

Generation Partnership Project (3GPP), an extended 

version of the Long Term Evolution-Advance (LTE-

A) standard. It focuses mainly on three use cases, 

Ultra-Reliable Low Latency Communication 

(URLLC), Enhanced Mobile Broadband (eMBB), 

and Massive Machine Type Communications 

(mMTC) [1]. To support use cases, 3GPP modified 

the physical layer of 5G NR that supports large 

bandwidths, Multiple Inputs Multiple 

Outputs(MIMO), and Beamforming [1-3]. The 

operating bands of 5G NR are classified into two 

bands e.g.  FR1- sub-6 GHz (below 6GHz) and FR2- 

mmWave (above 24GHz) [4]. Orthogonal Frequency 

Division Multiplexing (OFDM) is a key technique 

used in 3G and 4G Long Term Evolution (LTE) 

because it provides high data rate and spectral 

efficiency in a multipath environment. To support 

services defined in 5G, OFDM numerology is 

suitable for 5G NR physical layer [1].  

However, OFDM faces major challenges i.e. 

Peak to Average Power Ratio (PAPR) and high 

sensitivity to timing and frequency offsets. In 5G, 

with an increase in defined carrier frequency, 

synchronization challenges also increase. Inter-

Carrier Interference (ICI) is increased due to the large 

value of timing and frequency offsets. To make 

system ICI free, stable, and precise oscillators are 

required at the transmitter and receiver side [5, 6]. In 

addition to that, Doppler shifts in received signal 

occur due to motion of transmitter or receiver results 

in performance degradation [7]. Hence, it becomes 
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crucial to address synchronization issues by 

estimating and compensating timing offsets and 

carrier frequency offsets. Normalized carrier 

frequency offsets to subcarrier spacing are divided 

into two parts i.e. Fractional Frequency Offsets 

(FFOs) and Integer Frequency Offsets (IFOs). Due to 

fractional frequency offsets, orthogonality between 

subcarriers is destroyed, which leads to performance 

degradation. Integer frequency offsets leads to 

performance degradation due to the occurrence of 

cyclic shift in the frequency domain samples equal to 

integer value [8].  Timing offsets and Fractional 

Carrier Frequency Offsets (FCFO) are estimated and 

corrected before the FFT stage at the receiver side [9].  

1.1 Deep learning in wireless communication 

Wireless communication technologies are 

extensively developed to satisfy the applications and 

services in the wireless network. The 5G cellular 

network is designed to provide millisecond latency, 

thousand-fold capacity, and massive connectivity.  

Introduction of new technologies i.e.  millimeter 

wave (mmWave), Ultra-Dense Network (UDN), and 

Multiple Inputs and Multiple Outputs (MIMO) make 

system design a more complex task. As stated in [11], 

5G focuses on Device to Device communications 

(D2D) which increases the data traffic largely, 

making conventional communication systems 

difficult to operate. In addition to that, conventional 

communication system faces limitations to achieve a 

high data rate and to handle large data due to reasons 

i.e. Difficult channel modelling in complex scenarios, 

demand for effective and fast signal processing, and 

limited block-structure communication systems. 

Machine learning approach is already successful in 

the upper layers of the communication system. Deep 

learning used at the physical layer will lead to 

improved performance as compared to the 

conventional communication system.  

In [12], the performance of deep learning based 

Non Orthogonal Multiple Access (NOMA), MIMO 

(Multiple Input Multiple Output), and millimeter-

wave (mmWave) is demonstrated. It is observed that 

deep learning methods perform superior to the 

conventional communication system. 

In this paper, we propose a Neural Network (NN) 

estimator for Integer Carrier Frequency Offsets 

estimation and Primary Synchronization Signal 

(PSS) detection. This proposed estimator is compared 

with conventional estimators i.e. Maximum 

Likelihood (ML) approach and sequential approach. 

The performance of proposed estimator is evaluated 

for different delay profiles of Tapped Delay Line 

(TDL) channel model with various delay profiles. 

The main features of proposed estimator are: 

 

1) The proposed NN estimator consisting 

Convolution Neural Network (CNN) layers 

and regression layer is trained and tested for 

various TDL channel models.  

2) The received signals perturbed from IFOs 

and channel impairments are given to an 

input layer of proposed NN estimator. This 

estimator will find optimum received signal 

and will calculate number of cyclic shifts in 

the signal in order to estimate IFO and to 

detect sector ID. 

3) This proposed NN estimator gives promising 

performance in all TDL delay models as 

compared to conventional estimation 

schemes and also provides wide IFO 

acquisition range of [-3,3]. To consider 

various 5G evaluation scenarios shown in 

[22], this TDL delay models are scaled to 

various delay spreads while training and 

testing.    

 

Considering promising future of deep learning based 

wireless communication, this proposed NN estimator 

could be an encouraging solution to synchronization 

problem. 

Deep learning approach in wireless 

communication is gaining popularity due to its ability 

to handle large amount of data and faster data 

processing. However, synchronization still remains 

critical issue in deep learning based wireless 

communication system also. In general, 

synchronization is achieved by estimating and 

compensating CFOs and timing offsets at appropriate 

stage at receiver side. Synchronization issue is 

addressed in conventional communication system 

through various methods i.e. autocorrelation, cross 

correlation and ML estimation. These methods are 

discussed in detail in section 2. Recently, the deep 

learning approach is employed to estimate CFOs 

which is discussed in section 2. Section 3 described 

5G system model in detail including structure of 

synchronization signal, cell search procedure and 

Cyclic Prefix (CP) OFDM signal model. The 

proposed NN estimator is illustrated in details in 

section 3.  In section 4, simulation results of proposed 

NN estimator are shown and compared with existing 

conventional estimation methods. Performance of 

proposed estimator is shown in terms of probability 

of failure in estimation of IFO and in detection of 

Sector ID. Also, probability of failure over estimation 

range is calculated and plotted, which measures 
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performance of proposed estimator over normalized 

IFO in different TDL delay profiles.          

2. Related work 

2.1 Conventional integer frequency offsets 

(IFOs) estimation methods 

In LTE, many methods are investigated for IFO 

estimation using PSS. In [13], the ML method is used 

to estimate IFO and sector ID jointly. This method is 

proved to be robust in multipath environments and to 

residual timing errors due to Approximated 

Minimum Mean Square Criterion (AMMSE) reduced 

rank presentation of Channel Frequency Response 

(CFR). In [14], IFO and sector ID are estimated 

sequentially. Proposed method achieves better 

accuracy at lower computational complexity as 

compared to conventional Maximum Likelihood 

(ML) methods. Low complexity joint estimation of 

IFO and Cell ID (CID) algorithm is proposed in [15]. 

Time-domain equalization with Maximum 

Likelihood estimation method is used to mitigate ICI 

in OFDM. In this paper, the authors achieved superior 

performance of TDE method over the conventional 

method of frequency domain equalization at low 

complexity. [9] 

In [10], for 5G systems, autocorrelation and cross 

correlation based methods are demonstrated for FFOs 

estimation. When Carrier Frequency Offsets (CFOs) 

exceed subcarrier spacing then an autocorrelation 

based algorithm is used to estimate FFOs and IFOs, 

which can be estimated by calculating shifts of the 

received synchronization signal. Authors in [16] have 

proposed the detection of IFO and Sector ID 

sequentially without prior knowledge of PSS for 5G 

NR. This scheme provides low complexity at the cost 

of slight performance degradation. It uses fact that 

three PSS sequences generated for 3 Sector IDs are 

cyclically shifted versions of each other. 

This existing conventional approach i.e. ML and 

sequential estimation for 5G NR system model is 

designed for conventional limited block structure 

communications. These estimation methods work on 

predefined system models and solve estimation 

problem by mathematical process [20]. The 

estimation accuracy degrades with change in system 

model, that results into less compatibility. 

2.2 Deep learning based carrier frequency offsets 

(CFOs) estimation methods 

In [17], CFO of a complex sinusoid is estimated 

using Deep Learning (DL) architectures. The 

achieved estimation range of CFO is [0.2,0.25]. 

Deep Neural Network (DNN) based CFO estimation 

and packet detection schemes have been investigated 

and demonstrated for the emerging IEEE 802.11ah 

standard in [18]. In this paper, the Convolution 

Neural Network (CNN) and Recurrent Neural 

Network (RNN) architectures are used to train the 

model. And superior performance of DNN methods 

is demonstrated to conventional methods. This 

method estimates FFOs in the range [0.5,0.5]. In [19], 

authors have proposed a synchronization method 

based on Extreme Learning Machine (ELM) to 

estimate residual symbol timing offset and residual 

carrier frequency offset, which exhibits superior 

performance with existing traditional methods. The 

performance of the scheme is evaluated under 

Additive White Gaussian Noise (AWGN) channels 

and frequency selective fading channels.  

The NN based coarse CFO estimator is proposed 

for multiple inputs and multiple output (MIMO). In 

this paper, the estimation problem is transformed into 

a classification problem and a training dataset is 

generated for normalized CFO range (-0.5,0.5], 

which is fractional frequency offsets (FFOs). 

Furthermore, the model is trained for the AWGN 

channel, slow fading channel, and multipath channel 

for the different number of antennas [20]. These all 

estimation schemes are designed to estimate FFOs for 

different system models to be used in different 

applications. 

However, to the best of the author’s attention, in 

the 5G NR system, deep learning based IFO 

estimation is not explored extensively. In this paper, 

a Neural Network based estimator is proposed to 

estimate IFO and to detect sector ID (SID) for the 5G 

NR system. The proposed method is simulated for 

different delay profiles of the Tapped Delay Line 

(TDL) models scaled to desired delay spread. Here, 

the performance of the system is measured in terms 

of the probability of failure. The neural network is 

trained for IFO range [-3,3] and different delay 

profiles of TDL channel model. An infinite signal to 

noise ratio (SNR) is considered to avoid noise 

disturbance in the training process.  

3. System model 

3.1 Synchronization signal 

As in LTE, User equipments (UEs) of 5G NR 

system also uses Primary Synchronization Signal 

(PSS) and Secondary Synchronization Signal (SSS) 

to detect frame boundary, sector identity (SID), and 

cell identity (CID) [1]. The structure of the 

Synchronization Signal Block (SSB) is shown in  
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Figure. 1 Synchronization signal block (SSB) for resource 

allocation 

 

Fig. 1. PSS is transmitted on the 0th OFDM symbol 

followed by PBCH, SSS is transmitted on 2nd, 3rd, 4th 

OFDM symbols respectively. The SSB consists of 

240 contiguous subcarriers (20 resource blocks), 

from which PSS symbols are transmitted on 144 

subcarriers. 

In 5G, each cell has a unique cell identity (CID) 

number from 1008 cell IDs. These cells are arranged 

into 336 different groups represented as Group 

identity (GID).  Each group is identified by three 

different sectors which are denoted by Sector identity 

(SID). The gNodeB transmits PSS and SSS 

periodically, which are used by the UEs to detect 

frame boundary and sector ID, synchronize, and 

identify the network. 

PSS contains the SID index i.e. uϵ{0,1,2} and SSS 

contains the GID index i.e. vϵ{0,1,2,…, 335}. 

The serving CID is given by 

 

NID= 3u+v                                                  (1) 

 

Where u is integer valued SID and u ϵ {0,1,2}, v is 

integer valued GID and v ϵ {0,1, 2….,335}. 

Similar to 4G networks, for 5G NR, PSS helps UEs 

to detect sector ID e.g. u, and to get radio frame 

boundary. NR PSS signal is assigned on the first 

symbol of each SSB and consists of one of three 127-

symbols m-sequences. The three possible m-

sequences are defined as below [1] 

 

𝑑𝑃𝑆𝑆(𝑛) = 1 − 2𝑥(𝑚),       (2) 

 

Where, 

𝑚 = [𝑛 + 43𝑢] 𝑚𝑜𝑑 127,       0 ≤ 𝑛 < 127  (3) 

 

𝑥(𝑖 + 7) = [𝑥(𝑖 + 4) + 𝑥(𝑖)]𝑚𝑜𝑑 2,   (4) 

 

and, 

 

[𝑥(6) 𝑥(5) 𝑥(4) 𝑥(3) 𝑥(2) 𝑥(1) 𝑥(0)] =
[1 1 1 0 1 1 0]     (5) 

 

These PSS symbols are transmitted on 56 to 182 

subcarriers out of 240 subcarriers. 

The 5G NR SSS is used to detect cell ID (CID) and 

has 336 combinations defined as below [1] 

 

𝑑𝑆𝑆𝑆(𝑛) = [1 − 2𝑥0([𝑛 + 𝑚0]𝑚𝑜𝑑 127)] × [1 −
                     2𝑥1([𝑛 + 𝑚1] 𝑚𝑜𝑑 127)]   (6) 

 

Where, 

 

𝑚0 = 15[𝑣 112⁄ ] + 5𝑢   (7) 

 

𝑚1 = 𝑣 𝑚𝑜𝑑 112,     0 ≤ 𝑛 ≤ 127  (8) 

 

𝑥0(𝑖 + 7) = [𝑥0(𝑖 + 4) + 𝑥0(𝑖)]𝑚𝑜𝑑 2 (9) 

 

𝑥1(𝑖 + 7) = [𝑥1(𝑖 + 4) + 𝑥1(𝑖)]𝑚𝑜𝑑 2        (10) 

 
[𝑥0(6)𝑥0(5)𝑥0(4)𝑥0(3)𝑥0(2)𝑥0(1)𝑥0(0)] =
                                          [0 0 0 0 0 0 1]            (11) 

 

and, 

 

[𝑥1(6)𝑥1(5)𝑥1(4)𝑥1(3)𝑥1(2)𝑥1(1)𝑥1(0)] =

[0 0 0 0 0 0 1]                (12) 

3.2 Cell search procedure 

The 5G NR synchronization and cell search 

procedure are summarized in Fig. 2. First, timing, 

fractional frequency offsets, and frame timings are 

estimated and corrected in the time domain using 

autocorrelation and cross-correlation methods. Then, 

received corrected time-domain samples are 

converted into the frequency domain using FFT. 

After this, IFO is estimated by evaluating the 

frequency domain shifts in the received signal. After 

IFO correction, Sector ID u is detected by cross-

correlating corrected received signal with 3 different 

m sequences, which represents sequence for sector ID 

0,1 and 2. After PSS detection, cell id group v (GID) 

is detected using SSS and SID. Hence, serving cell id  

 

 
Figure. 2 Synchronization and cell search procedure 
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can be calculated using Eq. (1). Here, the focus is on 

estimation of IFO and PSS detection using a neural 

network. 

3.3 Signal model 

The Cyclic Prefix Orthogonal Frequency 

Division Multiplexing (CP-OFDM) system is 

considered that consists of N subcarriers with 

separation Δf in the frequency domain. OFDM 

symbol at the transmitter is generated by performing 

N point inverse fast Fourier transforms (IFFT) on 

modulated complex data.   A cyclic prefix (CP) of 

length Ncp is added OFDM symbol as a prefix to 

avoid Inter Symbol Interference (ISI). Usually, the 

length of CP is preferred greater than the channel 

delay spread. In 5G, normal and extended CP 

configurations are supported [1]. This leads to an 

increased time duration of one OFDM symbol, which 

results in total time duration Nt=Ncp+N. The 

transmitted OFDM symbol sm(n) for the mth period is 

given by 

 

𝑠𝑚(𝑛) =  ∑ 𝑆𝑚(𝑘)𝑒
𝑗2𝜋𝑘𝑛

𝑁𝑁−1
𝑘=0                               (13) 

 

Where n= -Ncp, -Ncp+1,……, N-1 discrete-time index 

Sm(k) is a complex signal transmitted on kth     

subcarrier 

           k= subcarrier index 

The transmitted signal is distorted by a multipath 

channel which is represented by discrete-time 

impulse response hm(n). Then, complex Additive 

White Gaussian Noise (AWGN) is added to the 

distorted transmitted signal. The received signal is 

degraded due to CFO, which is generated due to a 

mismatch between transmitter and receiver local 

oscillator and doppler effect when transmitter/ 

receiver is moving. At the receiver side, first, timing 

offset and FFOs are estimated and corrected. After 

FFT, IFO and sector id are estimated jointly or 

sequentially. Here, it is assumed that timing offsets 

and FFOs are estimated and corrected [21].  The 

received signal in the time domain for the mth period 

is given by   

 

𝑦𝑚(𝑛) = 𝑒
𝑗2𝜋(𝑛−𝜗)

𝑁 𝑠𝑚(𝑛) ∗ ℎ𝑚(𝑛) + 𝑤𝑚(𝑛)  (14) 

           n= -NCP, -NCP+1,……, N-1. 

 

Where υ is normalized IFO to subcarrier spacing, 

hm(n) is channel impulse response, * is convolution 

operator and wm(n) is sampled zero mean white 

Gaussian noise with variance 𝜎𝑤
2 . 

Once CP is removed, the time-domain signal is 

converted into a frequency-domain signal by 

performing FFT on the received signal. The signal in 

the frequency domain is given by         

 

𝑌𝑚(𝑘) = 𝐻𝑚(𝑘 − 𝜗)𝑆𝑚(𝑘 − 𝜗)𝑒
𝑗2𝜋(𝑘−𝜗)

𝑁 + 𝑊𝑚(𝑘),

|𝜗| ≤ 𝐺,  

 

            k=1,2,3,…., N-1 subcarriers             (15) 

 

Where Hm(k) is channel frequency response over kth 

subcarrier with variance 𝜎𝐻
2 ,  𝑊𝑚(𝑘)  is complex 

zero-mean additive white Gaussian noise with 

variance 𝜎𝑊
2  and υ is the normalized IFO to 

subcarrier spacing and G is the maximum value of 

IFO. 

3.4 Conventional estimation methods 

Conventional method to estimate IFO and sector 

ID is presented in [13] and [16] for LTE and 5G 

system model. In [13], Maximum Likelihood 

estimation method is employed to estimate IFO and 

to detect PSS. These two parameters are estimated 

jointly. In this, the concentrated likelihood function 

is maximized for different values of IFO and sector 

ID. This concentrated likelihood function is defined 

by 

 

�̂�𝑀𝐿 = 𝑎𝑟𝑔𝜑𝑚𝑎𝑥{𝑓(�̂�)}                (14) 

 

This likelihood function 𝑓(�̂�) is defined by Eq. (15) 

 

𝑓(�̂�) =
1

63‖𝑌𝑚‖2 |∑ 𝑍𝑚(�̂�, 𝑣; 𝑘)31
𝑘=−31 |              (15) 

 

Where 𝑍𝑚(�̂�, 𝑣; 𝑘) = 𝑌𝑚(𝑘 + 𝑣)𝑑𝑃𝑆𝑆
∗(𝑘)  

 

Estimated values will be the ones for which 

likelihood function given in Eq. (15) will be 

maximized. 

In [16], sequential approach is used to estimate 

IFO and sector ID.  In this, cross correlation is 

performed between received signal and summed PSS 

sequences. This function is defined as 

 

∅(𝑚) = ∑ 𝑌𝑚(𝑘 + 𝑚)182
𝑘=57 �̅�∗(𝑘)         (16) 

Where �̅�(𝑘) = ∑ 𝐷𝑤(𝑘)2
𝑤=0  is summed NR PSS, 

m={-3,-2,….,2,3} trial values of IFO and 

Dw(k)(w=0,1,2) represents three m sequences. They 

proposed method based on the fact that three m 
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sequences are cyclically shifted versions of each 

other and therefore cross correlation between any pair 

of m sequences is nearly zero. This objective function 

is maximized for different hypothesized values of 

IFO. The estimated IFO is the one for which objective 

function is maximized. The estimated IFO is given by 

 

𝑣 = 𝑎𝑟𝑔𝑚𝑚𝑎𝑥ℜ{∅(𝑚)}        (17) 

Where ℜ indicates real part of the quantity. After IFO 

estimation, Sector ID is sequentially detected using 

 

�̂� = 𝑎𝑟𝑔𝑤 max ℜ{∑ 𝑌𝑚(𝑘 + 𝑣)182
𝑘=57 𝐷𝑤

∗ (𝑘)} (18) 

Where w ϵ {0,1,2} is trial values of Sector ID. 

 

As discussed here, these conventional estimation 

methods are based on predefined system model. Its 

performance degrades with change in system model 

that results into low compatibility. To provide high 

compatibility, deep learning approach is proposed 

here. 

3.5 Proposed neural network (NN) based IFO 

estimation 

Here, estimation problem is converted into 

regression problem. IFO and sector ID are estimated 

and detected using a neural network containing 

Convolution Neural Network (CNN) layers and 

regression layer as a final layer. The typical CNN is 

shown in Fig. 3. The CNN successfully captures 

temporal and spatial correlation in the input signal. 

Here, 2-D convolution layer is applied on received 

input signal. This proposed NN estimator consists of 

input layer, hidden layers and output layer. The 

regression layer as an output layer calculates half 

squared Mean Square Error (MSE). This proposed 

neural network is trained for several epochs to 

minimize MSE. Due to this, proposed NN estimator 

gives optimum performance when the impaired 

signal from channel nonlinearities and IFO is given 

to this trained network.  

This proposed NN estimator takes received signal, 

learns estimation rule, and gives the best IFO 

candidate near to true IFO. To train the model, 

training datasets are generated for different values of 

IFO and different TDL channel delay profiles with 

various desired delay spreads [22]. The training 

datasets are divided into training data and validation 

data to avoid overfitting. First, the model is trained 

using training data and then examines the 

performance using validation data. The loss function 

is minimizing during the next epochs. After the  

 

 
Figure. 3 Typical structure of convolution neural network 

 

model is trained, test data set is given to trained NN 

estimator to find optimal IFO nearest to true IFO and 

sector ID. 

CNN based IFO estimator accepts real and 

complex valued received signals separately. The 

architecture of NN based IFO estimator is shown in 

Fig. 4. The received signal is separated into real and 

imaginary dataset. In the next convolution layer, the 

column vector of 432 symbols is processed by 250 

9x9 filters of convolution layers with a Rectified 

Linear Unit (ReLU) activation function to generate 

250 outputs. Subsequently, six convolution layers of 

5x5 filters  

 

 
Figure. 4 NN based IFO estimator architecture 
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are used followed by ReLU activation. At the output 

layer, an estimated real and imaginary part of the 

received signal is obtained that is nearer to true values 

of the real and imaginary part of the perturbed signal 

with IFO. 

After this, estimated IFO can be calculated by 

finding the number of cyclic shifts in the estimated 

received signal by NN. The estimated received signal 

is corrected by estimated IFO in order to detect sector 

ID. The sector ID is detected by correlating corrected 

received sequence and three m-sequences. 

4. Results and discussion 

For simulation, a 40 MHz 5G NR system is 

considered with the number of subcarriers N=512, 

symbol duration Ts= 0.016μs, Δf=30KHz which is 

operating at 6 GHz [16]. As per normal mode, a 

cyclic prefix of 44 symbols length is added. PSS of 

127 symbols is transmitted on 56 to 182 subcarriers 

out of 240 subcarriers. For 5G channel model, the 

tapped delay line (TDL) model is considered with 

different delay profiles. These delay profiles are 

classified into Non-Line of Sight (NLOS) i.e. TDL-

A, TDL-B, TDL-C, and Line of sight (LOS) i.e. TDL-

D, TDL-E models. Power delay profiles of these 

channel models are described in [22]. Here, 

normalized IFO value is considered from -3 to 3, by 

considering the stability of commercial oscillator of 

±20 ppm for mobile applications [16].  Here, the 

performance of the estimation of IFO and sector id is 

separately shown. The performance metric is the 

probability of failure that is expressed as Pfv = 

Prob{(𝑣) ≠ (v)} for IFO and Pfu = Prob{(�̂�) ≠ (u)} for 

Sector ID. The simulation parameters are shown in 

Table 1. 

Here, the training dataset is generated across 

normalized IFO range [-3,3] with resolutions of 1 and 

for 5 channel models as discussed earlier. There are 

127 symbols in the PSS signal on 56 to 182 

subcarriers. In training process, to avoid disturbance 

from noise, SNR is set to an infinite value.  The 

proposed NN is trained for random value of IFO 

selected from the interval [-3,3], and for randomly 

selected delay profiles. These generated delay 

profiles can be scaled to desired delay spread. We 

considered here five cases of delay spread very short 

delay spread (10ns), short delay spread (30ns), 

nominal delay spread (100ns), long delay spread 

(300ns), and very long delay spread (1000ns) while 

training the neural network. 

In this way, 1,00,000 frames for training datasets 

are generated and these frames are perturbed from 

random IFO and random TDL profile with desired  

 

Table 1. Simulation parameters 

Parameter Value 

Carrier frequency 40 MHz 

Symbol duration Ts 0.016μs 

Subcarrier spacing 30KHz 

Guard Interval Ng 44 

FFT size, NFFT 512 

Channel Model Tapped Delay Line (TDL) 

TDL delay profiles TDL-A, TDL-B, TDL-

C,TDL-D, TDL-E 

 

scaled delay spread. Frequency selective fading 

environment is selected for training as well as testing 

purpose. 

The batch size is set to 1000 in the training of the 

proposed NN estimator. Test data is given to the 

proposed NN estimator and tested for SNR value 

from -6dB to 15dB and for different delay profiles. 

While testing, NLOS and LOS delay profiles are 

scaled with various delay spreads is selected to 

validate results in different scenarios. These 

simulation results are compared with the traditional 

ML estimator presented in [13] and sequential 

estimator presented in [16]. 

In Fig. 5, performance of the proposed NN 

estimator, ML method, and sequential method is 

shown for NLOS delay profiles TDL-A, TDL-B, and 

TDL-C. It is seen that the proposed NN estimator 

outperforms in all delay profiles as compared to ML 

and sequential methods. The proposed NN estimator 

achieves less probability of failure in less than 11 dB 

region for NLOS delay profiles. At failure probability 

of “10-2”, proposed NN estimator realizes 4 dB, 7dB 

and 9 dB SNR in TDL-B, TDL-A and TDL-C delay 

profiles respectively. However, ML and sequential 

methods fails to achieve same failure probability.  

Fig. 6 shows the performance of the proposed NN 

based IFO estimator and conventional methods for 

LOS delay profiles TDL-D and TDL-E. The 

proposed scheme again performs well and 

exceptionally well in all delay profiles concerning 

ML and sequential estimation respectively. The 

proposed scheme has an SNR improvement of 5dB to 

ML estimation. For the negative SNR region, the NN 

estimator also performs well. Proposed estimator 

achieves “10-2” failure probability at SNR 3dB and 

4dB in TDL-D and TDL-E delay profiles respectively. 

The same can be achieved at 6dB and 7dB SNR in 

ML method. However, sequential method fails to 

achieve same probability of failure. 

In Fig. 7 and Fig. 8, the performance of the 

proposed NN based IFO estimator to ML and 

sequential method for sector ID estimation in 

presence of Non LOS and LOS delay profiles 
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Figure.  5 Pfv vs. SNR of IFO estimation for NLOS delay profiles 

 

 
Figure. 6 Pfv vs. SNR of IFO estimation for LOS delay profiles 

 

respectively. In Fig. 7, for negative and very low SNR 

region, Proposed NN and ML estimator performs 

same but proposed NN estimator improves in high 

SNR region. To achieve Pfu of 10-2, proposed NN 

estimator requires 2 dB, 4 dB, and 6 dB SNR for 

TDL-B, TDL-C, and TDL-A respectively. However, 

ML and sequential methods do not achieve the same 

even for high SNR region.  In Fig. 8, it can be shown 

that the proposed NN estimator has SNR 

improvement in TDL-D profile as compared to ML 

and sequential estimation. The proposed NN 

estimator shows SNR improvement of 8 dB at 10-2 for 

TDL-E profile with respect to ML estimation. But, 

sequential method does not achieve the same target.  

It is observed in both figures that the NN based IFO 

estimator performs well in Non LOS and LOS delay 

profiles. 

The performance of the proposed estimator is also 

shown concerning the IFO range. This performance 

is shown in terms of the probability of failure. Fig. 9 

and Fig. 10 show the performance of the proposed 

NN based IFO estimator to sequential and ML 

estimator for NLOS and LOS delay profiles 

respectively. The NN estimator is trained for IFO 

range -3 to 3, so it exhibits a low probability of failure 

in the specified range. when IFO exceeds the 

specified range, failure probability is increased. 

In Fig. 9, NN based IFO estimator gives the 

almost same performance as the ML method but 

improved from the sequential estimator for delay 
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Figure. 7 Pfu vs. SNR of Sector ID estimation for Non-LOS delay profiles 

 

 
Figure. 8 Pfu vs. SNR of Sector ID estimation for LOS delay profiles 

 

profiles TDL-A, TDL-B and TDL-C. In Fig. 10, the 

proposed NN estimator performs well as compared to 

the conventional methods for the specified IFO range. 

In all simulation results, it can be observed that the 

proposed NN estimation method works efficiently 

and gives less failure probability in all channel delay 

profiles. This occurs due to a proposed neural 

network is trained with different channel delay 

profiles and for different IFO values from -3 to 3. 

And the trained neural network will find optimal 

received sequence when test data is given.  These all 

delay profiles are scaled to appropriate delay spread 

and the proposed estimation method tested for the 

same.  

5. Conclusion 

In this paper, we propose NN based IFO 

estimation and PSS detection for the 5G NR system. 

The deep learning approach is employed over 

conventional methods to estimate IFO and to detect 

PSS. This proposed estimator is tested for different 

delay profiles of TDL channel and compared with 

conventional method ML and sequential estimation. 

These delay profiles are scaled with various desired 
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Figure. 9 Pf vs. Normalized IFO for NLOS delay profiles 

 

 

Figure. 10 Pf vs. Normalized IFO for LOS delay profiles 

 

delay spreads. From simulation results, it is 

affirmatively proved that the proposed NN estimator 

outperforms in all channel models. With an increase 

in the deep learning approach for the physical layer 

of 5G NR, this proposed method for estimation of 

IFO and detection of PSS could be employed to 

reduce synchronization errors. 
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