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Abstract: Monitoring transient excursions of power system dynamic response is the most significant task for a 

reliable power supply. Hence, pursuing the best-laid features alongside a fit learning model for precise mining on the 

inherent characteristic of fast transient phenomena is considered a great concern on transient stability analysis (TSA). 

To this end, first, we discussed the root cause involved in selecting the cross-relevance (CR) features that influenced 

TSA. Furthermore, we regarded the geometric form of CR (GCR) features to measure the partial-whole manner of 

power system stability limits. Next, we triangulated Python technology, PSS/E, and MATLAB for generating the 

GCR multivariate trajectories. In the learning phase, to shroud the linear alignment weakness, the elastic kernel 

plugged into the support vector machine is considered for transient stability prediction (TSP). The results show an 

average accuracy near 97% with an acceptable average processing time of 691.7 milliseconds on test cases for TSP. 

Keywords: Transient stability assessment, Multivariate trajectory features, Support vector machine. 

 

 

1. Introduction 

The power cascading events like generation and 

transmission grid failures challenge the secure 

power supply for all parties situated in the 

centralized or vertically infrastructure of the power 

system. This issue is fitted in the realm of power 

system stability problems. One of the main 

categories of power system stability studies is 

transient stability analysis (TSA) which focused on 

fast transient phenomena that negatively influenced 

the synchronous components of the power system. 

Transient stability refers to the ability of the power 

system to restore a stable state when subjected to 

severe-sudden disturbance [1]. Hence, precise 

monitoring of the transient swing curve can 

empower grid operators (GOs) for conducting 

accurate-timely control actions in severe transient 

space [2]. In this regard, transforming experienced-

based monitoring to smart-structured ones for 

raising the alertness of the GOs is the most 

significant issue for TSA. To this end, utilizing 

information technology (IT) capabilities in the 

service of electric power systems is followed as the 

strategic policy for an IT-driven power system. 

Developing the wide-area monitoring system 

(WAMS) based on phasor measurement units 

(PMUs) is a fundamental solution to achieving real-

time TSA. However, data gathering via hardware-

based solutions cannot guarantee the optimum 

transient analysis. In fact, converting raw features 

(retrieved from PMUs) into the interrelatedness ones 

interlined with transient space should be regarded as 

a soft restructuring scheme. Furthermore, interlacing 

interdisciplinary fields including statistics, artificial 

intelligence, and machine learning as foundations of 

data mining (DM) technology to obtain the 

discriminative pattern for high-performance TSP is 

the next necessity in the soft restructuring scenario. 

In recent years, the above-mentioned soft-

oriented restructuring issues appeared on the agenda 

of scholars to solve the TSA concerns: 

(a) Selecting features tightly related to the 

transient space is a preliminary concern to detect 

instability accurately. In fact, reasoned-based feature 
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definition from power system component attributes 

has positively influenced the performance of TSA. 

Hence, several features have been considered by 

scholars in transient stability studies. In Reference 

[3], two types of features have been extracted for 

TSA by statistical properties of generator 

electromagnetic power and rotor angle trajectories. 

Reference [4] reports that post-fault observations on 

rotor angle and voltage magnitude caused the high 

prediction accuracy on transient analysis. The 

obtained results in [5, 6] show that relative angle 

measurement has a direct impact on TSP. Also, 

PMU-based monitoring focused on rotor angle 

excursions has been considered in Reference [7, 8]. 

In Reference [9, 10], the active power excursions are 

considered for TSA. Measuring voltage-frequency 

fluctuations against transient disturbance for TSA 

has been considered in Reference [11-13]. Also, 

reactive power variations in [14], and active power 

and voltage excursions in [15] are considered as 

selected features for TSA. 

(b) The data mining techniques play a vital role 

in extracting discriminative patterns from inherent 

characteristics of transient data. The hyperplane-

based algorithm mounted on the empirical risk 

minimization principle is the most widely used 

method in transient pattern recognition. In 

Reference [16], the support vector machine (SVM) 

has been considered as a predictor model in the 

presence of transient feature space including, 

voltages, frequencies, and rotor angles trajectories. 

Also, Reference [17] applied SVM for TSA in the 

2684-bus Brazilian large-scale power system. Also, 

generator combinatorial trajectories entered to 

binary SVM as inputs for TSP in Reference [18]. 

The performance of soft margin SVMs for TSA 

depends on the RBF kernel functions on transient 

features such as kinetic energy of the generator, the 

average value of initial acceleration, and so on. 

Furthermore, the performance of soft margin SVMs 

for TSA based on the RBF kernel function applied 

on transient features such as kinetic energy of the 

generator, the average value of initial acceleration, 

and so on are considered in Reference [19]. Also, 

experimental comparison between kernels plugged 

into SVM versus other classification techniques has 

been considered for TSA in [20].  

Regardless of proper solutions on dual aspects in 

previous researches (See Section 1; Paragraph (a) & 

(b)), responding to unsolved challenges for more 

precise inference over the transient space has 

remained a major concern on TSP. These challenges 

include 1) In previous studies [3-13], transient 

analysis is based on the dynamic measurement of 

solid quantities of rotor angle, voltage, and so on. In 

fact, such an approach for feature definition cannot 

reflect the real condition of the power system. For 

example, transient stability status labeling via rotor 

angle excursion sometimes brings a different output 

in the real environment (we observed severe 

increases or decreasing the rotor angle, but the 

system is stable). Hence, we must focus on the root 

causes involved in feature definition that influenced 

the power network synchrony. Furthermore, partial 

measuring should be considered in features 

definition due to exposing part (versus the whole) of 

the power grid to transient instability conditions. In 

other words, the generalizability of defined features 

to measure the partial-whole manner of power 

system stability limits should be considered in 

transient analysis. In fact, defining cross-relevance 

features to record the effective excursions of 

transient sequences should be considered. This did 

not occur in previous research regarding (a) aspect. 

Hence, this issue motivated us to consider this 

challenge. 

2) Focus on transient dataset characteristics in 

the formulations of the hyperplane-based predictive 

approach is a significant issue for high-performance 

TSP. In previous transient studies based on the SVM 

learning model [16-20] (See Section 1; Paragraph 

(b)), linear alignment has been considered by 

scholars as distance measuring between trajectory-

type objects. In fact, applying kernel into SVM 

based on the point-to-point similarity index cannot 

compatible with the type of the transient feature 

space. Hence, using a proper mapping function that 

more compatible with multivariate trajectory feature 

space is the main factor transforming transient 

sequences to the separable decision surface. 

According to raised proposed solutions to 

achieve optimum TSP, the definition of the 

geometric cross-relevance (GCR) multivariate 

trajectory features from the power system 

component attributes is considered as the primary 

contribution in this paper. Also, designing a reliable 

programming platform which is triangulated Python 

technology, SIEMENS power system simulator for 

engineering (PSS/E) application program interface 

(API), and matrix laboratory (MATLAB); we called 

PSPAM, to generate the GCR multivariate time 

series features through offline transient simulations 

which able to ensure compliance or mixing with the 

online application (online phasor measurement unit 

data) is an extreme necessity in data gathering phase. 

Finally, according to the proper performance of 

SVM classifier with point-to-point alignment on 

TSP in previous studies, applying SVM with non-

linear alignment on transient multivariate time series 
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features is regarded as a great incentive to achieve 

high performance.  

The paper is organized as follows: we elaborate 

on the definition of the GCR features for TSA in 

section 2. Next, a programming platform based on 

triangulated Python technology, SIEMENS PSS/E 

APIs, and MATLAB is offered for generating the 

GCR multivariate trajectory features. In the last part 

of this section, plugging elastic kernel into SVM 

classifier for optimal alignment among GCR 

trajectories is considered in training and testing 

procedures on TSP. Experimental design for 

evaluation of proposed framework based on cross 

validation-technique is presented in section 3. 

Finally, section 4 depicts the conclusion of the paper. 

2. Methodology 

The proposed scheme for offline application as a 

parallel companion during the online procedure of 

real-time TSA is shown in Fig. 1. In this paper, 

three-step is considered as follows: 1) Discussion to 

define GCR features based on power system 

component attributes, 2) Transient dataset 

construction of GCR multivariate time series 

features based on proposed programming platform, 

namely PSPAM, and 3) plugging elastic kernel into 

SVM for optimal matching between transient 

sequences leading to high-performance TSP. 

2.1 Definition of GCR features for TSP 

Discussion on attributes of the power system 

components for mining behavior of transient data 

plays the driven-oriented role in TSA studies. 

Furthermore, reflecting on the cross-effect of the 

power system components attribute leads to better 

monitoring of power system transient behavior. In 

the following, we will describe this issue. 

Loss of network synchrony begins with 

mechanical and electrical power imbalance of 

generators, variation in rotor angle based on 

imbalanced ratio, and mechanical characteristics of 

rotor related to the dynamic equation regulating its 

motion. In fact, the rotor angle instability derives 

from the rotor angle fluctuation (increasing or 

sometimes decreasing the rotor angle) in a way that 

is out of control. Such fluctuations are due to the 

imbalance between the input power and the output 

power of the generator. Now the question arises as 

to what proportion this imbalance increases or 

decreases the angle? The Inertia constant of a 

generator. The formulation of the torque of the 

generator T in Eq. (1) is calculated by multiplying 

the δa and H where H is the inertia constant of the 

generator, and δa  is the second derivative of the 

rotor angle (acceleration): 

 

𝑇 = 𝛿𝑎 × 𝐻                            (1) 

 

On the other hand, the lack of an active power 

supply exacerbates the imbalance mentioned above.  

In a power grid, each bus voltage is a sinusoidal 

function according to (2): 

 

𝜗(𝑡) = 𝑉𝑚𝑐𝑜𝑠(𝜔𝑡 + 𝜃𝜗)                 (2) 

 

 
Figure. 1 Proposed framework for offline application on real-time TSA
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Where, the peak amplitude 𝑉𝑚 , and the phase 

angle 𝜃𝜗  of the sinusoidal supply. Now we can 

represent such a voltage that changes sinusoidally 

on a complex plane with a vector. A vector whose 

length is 𝑉𝑚 and whose angle to the real axis is 𝜃𝜗, 

which we call voltage amplitude and voltage angle, 

respectively. If the mentioned vector starts to move 

on the complex plane and rotates at an angle of 𝜔, 

then its image will be 𝜗(𝑡) = 𝑉𝑚𝑐𝑜𝑠(𝜔𝑡 + 𝜃𝜗) on 

the real axis at all times.  
Now consider the following scenario: suppose 

we have two busbars in direct current (DC) voltage. 

If the voltages of the two busbars are equal, no 

current will flow in the DC voltage. Because the 

subtraction value of the voltages is equal to zero. 

But in a power network based on alternating 

 
Table 1. List of GCR 22-variate time series features 

𝐹1
𝑡𝑚 =

∑ 𝑃𝐸𝐿𝐸𝐶𝑖
𝑁𝑏𝑢𝑠 𝑔𝑒𝑛

𝑖=1

∑ 𝐻𝑖
𝑁𝑏𝑢𝑠 𝑔𝑒𝑛

𝑖=1

;  𝑚 = 1.2. … . 𝑙 

𝐹2
𝑡𝑚 = 𝑀𝑎𝑥([𝑉𝐴𝑁𝐺𝐿𝐸𝑖]𝑖=1:𝑁𝑏𝑢𝑠);  𝑚

= 1.2. … . 𝑙;      𝑠𝑙𝑎𝑐𝑘 𝑏𝑢𝑠 = 0 

𝐹3
𝑡𝑚 = 𝑀𝑖𝑛([𝑉𝐴𝑁𝐺𝐿𝐸𝑖]𝑖=1:𝑁𝑏𝑢𝑠);  𝑚

= 1.2. … . 𝑙;      𝑠𝑙𝑎𝑐𝑘 𝑏𝑢𝑠 = 0 

𝐹4
𝑡𝑚 = 𝑉𝑎𝑟([𝑉𝐴𝑁𝐺𝐿𝐸𝑖]𝑖=1:𝑁𝑏𝑢𝑠);  𝑚

= 1.2. … . 𝑙;      𝑠𝑙𝑎𝑐𝑘 𝑏𝑢𝑠 = 0 

𝐹5
𝑡𝑚 = 𝑀𝑎𝑥 (𝑎𝑏𝑠[𝑉𝐴𝑁𝐺𝐿𝐸𝑖

− 𝑉𝐴𝑁𝐺𝐿𝐸𝑗]
𝑖.𝑗=1:𝑁𝑏𝑢𝑠

) ;  𝑚

= 1.2. … . 𝑙 

𝐹6
𝑡𝑚 = 𝑀𝑒𝑎𝑛 (𝑎𝑏𝑠[𝑉𝐴𝑁𝐺𝐿𝐸𝑖

− 𝑉𝐴𝑁𝐺𝐿𝐸𝑗]
𝑖.𝑗=1:𝑁𝑏𝑢𝑠

) ;  𝑚

= 1.2. … . 𝑙 

𝐹7
𝑡𝑚 = 𝑉𝑎𝑟 (𝑎𝑏𝑠[𝑉𝐴𝑁𝐺𝐿𝐸𝑖

− 𝑉𝐴𝑁𝐺𝐿𝐸𝑗]
𝑖.𝑗=1:𝑁𝑏𝑢𝑠

) ;  𝑚

= 1.2. … . 𝑙 

𝐹8
𝑡𝑚 =

∑ 𝑄𝐸𝐿𝐸𝐶𝑖
𝑁𝑏𝑢𝑠 𝑔𝑒𝑛

𝑖=1

∑ 𝑄𝑚𝑎𝑥𝑖
𝑁𝑏𝑢𝑠 𝑔𝑒𝑛

𝑖=1

;  𝑚 = 1.2. … . 𝑙 

𝐹9
𝑡𝑚 = 𝑀𝑎𝑥([

𝑄𝐸𝐿𝐸𝐶𝑖

𝑄𝑚𝑎𝑥𝑖

]𝑖=1:𝑁𝑔𝑒𝑛 𝑏𝑢𝑠);  𝑚 = 1.2. … . 𝑙 

𝐹10
𝑡𝑚 = 𝑀𝑖𝑛([

𝑄𝐸𝐿𝐸𝐶𝑖

𝑄𝑚𝑎𝑥𝑖

]𝑖=1:𝑁𝑔𝑒𝑛 𝑏𝑢𝑠);  𝑚 = 1.2. … . 𝑙 

𝐹11
𝑡𝑚 = 𝑉𝑎𝑟([

𝑄𝐸𝐿𝐸𝐶𝑖

𝑄𝑚𝑎𝑥𝑖

]𝑖=1:𝑁𝑔𝑒𝑛 𝑏𝑢𝑠);  𝑚 = 1.2. … . 𝑙 

𝐹12:22
𝑡𝑚 = 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝐹1

 : 𝐹11
  

Symbol: 𝑁𝑏𝑢𝑠 𝑔𝑒𝑛= number of bus generator in test case, 

QELEC= machine reactive power (pu),  

𝑄𝑚𝑎𝑥 = maximum amount of machine reactive power, 

𝑁𝑏𝑢𝑠= number of buses, VANGLE= voltage phase angle, 

Var= variance, Max= maximum, Min= minimum. 

current (AC), we can have two voltages with the 

same amplitude but with different angles, in which 

case the difference between these two voltages is not 

equal to zero, and the variable that causes power to 

flow in different lines is the difference in angle 

between voltages. In fact, it is the angle difference 

that controls the current active power in different 

parts of the power grid. As a result, active power is 

related to the voltage angle of the busbars, and also 

instability is related to the active power, so based on 

transitive closure, instability will be related to the 

voltage angle of the busbars.  

As you know, not all elements in power systems 

are resistors. Resistors always consume power, 

which consumes real power called active power but 

capacitors and inductors do not consume power 

(average consumption). In an electrical periodic 

time, capacitors and inductors gain power twice and 

return the same power. It does not hold anything 

within itself to consume, nor does it produce 

anything. However, when we have capacitors and 

inductors in the network and apply voltage to it, at 

the moment it consumes power, we must give it 

power, and at the moment it produces, we must take 

power from it. Generally, these exchanges are 

redundant. Also, the amount of reactive power 

displacement in transmission lines affects the 

capacity of transmission lines. In addition to 

affecting transmission lines, it also causes losses in 

the power network.  

An important point to note is that situating part 

of the power grid at stability limits (versus the 

whole) may cause transient instability. Hence, 

partial measuring in such conditions by regarding 

geometric functions like maximum, minimum, or 

variance values can provide proper statistics in the 

form of partial-whole manner power system 

monitoring. Hence, statistical descriptions of CR 

features called geometric CR (GCR) features were 

considered in feature expressions.  

According to what was mentioned above, GCR 

22-variate time series features are shown in Table 1. 

2.2 Transient dataset generation based on GCR 

features  

The proposed programming platform (PSPAM) 

is shown in Fig. 2. Generally, the PSPAM suite 

including two parts: a) Dataset construction module 

based on basic attributes (e.g., active power, voltage 

phase angle, and so on) and b) GCR 22-variate time 

series feature extraction module. In the first part of 

PSPAM architecture, we construct a dataset based 

on basic attributes by Python-based commands  
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Table 2. List of PSS/E APIs-Python syntax based on ‘psspy’ module 

Disturbance Description Disturbance main arg. a 

dist_bus_fault 

 

 

dist_branch_fault 

 

 

 

dist_bus_trip 

 

dist_branch_trip 

 

 

dist_clear_fault 

apply a fault at a bus during dynamic 

sim. b 

 

apply a fault at the IBUS end of a 

non-transformer branch or a two-

winding transformer during dynamic 

sim. 

disconnect a bus during dynamic sim. 

set a non-transformer branch or a 

two-winding transformer to out-of-

service during dynamic sim. 

clear a fault during dynamic sim. 

ibus:  # bus which the fault is to be placed; 

basekv: base voltage in kV used to calculate 

the per unit fault admittance. 

ibus: # bus of the bus at which the fault is to 

be placed; jbus:  # bus of the other bus; 

basekv: base voltage in kV used to calculate 

the per unit fault admittance. 

ibus: # bus to be disconnected. 

 

ibus: # bus of one of the buses; jbus: # bus of 

the other bus. 

 

Output channel Description Output channel main arg. 

chsb specify the simulation variables to 

monitor during dynamic sim. run 

(activity chsb) 

status: an array of six elements (main index 

of status array; 

e.g. status[5]=2 for PELEC machine. 

Dynamics simulation Description Dynamics simulation function main arg. 

dynamic_solution_param_2 

 

 

 

 

 

 

 

 

 

 

dyre_new 

 

 

modify the dynamic sim. solution 

parameters in dynamics working 

memory. 

 

 

 

 

 

 

 

 

read a dynamics data file, and place 

the model references specified on its 

data records into dynamics working 

memory (activity DYRE). 

intgar: array of eight elements (main index of 

intgar array; e.g.; intgar [1] for network 

solution maximum number of iterations and 

intgar [2] for number of output channels 

being monitored). realer:  array of eight 

elements (main index of realer array; e.g.; 

realer [2] for convergence tolerance used in 

the network and realer [3] for simulation time 

step). 

the name of the dynamics model raw data 

file. 

Power flow operation Description Power flow operation main arg. 

conl 

 

 

 

 

 

 

 

 

 

 

 

 

cong 

 

 

 

ordr 

 

 

tysl 

convert the constant MVA load for a 

specified grouping of network loads 

to a specified mixture of the constant 

MVA, constant current, and constant 

admittance load characteristics 

 

 

 

 

 

 

 

convert generators from their power 

flow representation in preparation for 

switching studies and dynamic 

simulations. 

calculate a sparsity preserving 

ordering of buses in preparation for 

the processing of network matrices. 

run switching study network 

solutions. 

an array of four elements. the value of each 

element is percent of the load being 

converted (loadin [1] is the percent of active 

power load to be converted to the constant 

current characteristic; loadin [2] is the 

percent of active power load to be converted 

to the constant admittance characteristic.; 

loadin [3] is the percent of reactive power 

load to be converted to the constant current 

characteristic; loadin [4] is the percent of 

reactive power load to be converted to the 

constant admittance characteristic. 

 

Symbols: [a: arguments; b: simulation] 
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which support the various function of the SIEMENS 

PSS/E. As can be seen in Fig. 2, the first part 

including four steps which include characterizing 

sample operating conditions, run load flow, 

characterizing sample transient disturbance, and 

save the general output channel (GOC). Next, the 

PSSPLOT extension module as a link between these 

two steps restructuring the GOC in column-face 

format (cGOC). In the second step, the cGOC is 

used to extract the multivariate features by matrix 

laboratory (MATLAB). For more information on the 

proposed suite, refer to the following sections 

(Section 2.2.1- Section 2.2.3).  

2.2.1. Interaction python with PSS/E 

In this paper, the SIEMENS PSS/E software is 

used for transient simulation. The capabilities of 

PSS/E show that the PSS/E is ideally suited for 

solving challenges of power system analysis (PSA). 

Also, PSS/E acts as a code-oriented model based on 

its APIs on Python technologies for PSA. In this 

section, a brief explanation of SIEMENS PSS/E API 

routines, their functions, and some of their important 

arguments by open Python API calls are followed. 

The execution of the transient simulation in PSS/E is 

formed through the 1) Power flow operation, 2) 

GOC, 3) Dynamic simulation, and 4) Disturbance 

APIs. As a concise guide of the PSS/E 33.4 API 

manual [21], Table 2 contained these functions to 

run simulations in PSS/E using the Python 

programming language. 

2.2.2. PSSPLOT extension module 

In this paper, we used a plotting program based 

on the Python extension module called PSSPLOT 

(or PSSPLT) to report the GOC file in a structured 

manner. Using PSSPLT functional program modules 

is helpful to perform data manipulation in the 

machine learning process. The PSSPLT procedure is 

handled in two ways: 1) Graphical user interface 

(GUI) operation, and 2) Batch operation. We 

selected the Batch operation for restructuring the 

GOC file (cGOC). According to the PSSPLT 

program manual [22], the activities of PSSPLT 

descriptions are shown in Table 3.  

2.2.3. GCR 22-variate time series feature extraction 

module 

First, After the data-gathering phase based on 

transient simulation mounted on the PSS/E API 

routines and columned arrangement of GOC file 

through the PSSPLT activities, the obtained 

transient dataset becomes GCR multivariate time  
 

Table 3. PSS/E 33.4 PSSPLT activity descriptions 

Batch operation of PSSPLT activities 

Activity Description 

CHNF 

 

 

POPT 

PRNT 

 

 

STOP 

Select binary response file activity (*.out 

file: dynamic behaviour Activity obtained 

from CHSB activity)). 

Plotting option setting activity. 

The channel tabulation activity to construct 

a tabular listing of the values retrieved 

from channels at each time step. 

Termination activity is used for normal 

exit from PSSPLT. 

 

series features (See Table 1) by MATLAB. In 

this step, we combine basic attributes along with 

their statistical descriptions (discussed in Section 

2.1) to extract GCR trajectories. In fact, the task of 

this module is to construct the 22-variate time-series 

feature for feeding the machine learning procedure 

for transient stability status prediction. For example, 

the machine parameters were considered for finding 

the Inertia constant of a generator H as the 

denominator in the case of the first univariate 

feature (See Table 1). To this end, the dynamic data 

file ‘dyr’ of the test system was addressed based on 

machine models such as the round rotor generator 

model (GENROU) [23]. For the rest of the 

univariate features depending on required 

parameters, such an approach is conceivable. Finally, 

the generated transient database is depicted in the 

form of Fig. 3. 

2.3 Applying learning model on transient dataset  

In this paper, we used the support vector 

machine (SVM) classifier as a learning model in 

training and testing procedures for TSP. Also, 

regarding the gathered contingency samples in 

trajectory-face form, plugging nonlinear alignment 

into the SVM 

classifier formulation is considered in this 

section. After stating the principle of the support 

vector machine, the necessity of employing 

trajectory-specific kernel in SVM was considered in 

this section. More details on the learning model are 

described in Section 2.3.1 and Section 2.3.2. 

2.3.1. SVM classifier principle 

Support vector machine (SVM) was originally 

designed to be a binary classification, and it follows 

the principle of structural risk minimization without 
overfitting training data [24, 25]. Because of this 

policy, the application of SVM in real-time TSA has 

been considered by scholars which is acceptable 
performance on transient stability status prediction. 
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Figure. 2 The PSPAM programming platform for generating GCR multivariate trajectories 
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In fact, SVM employs a separating hyperplane 

with low structural risk in the classification of data 

and is not linearly separable in feature space. The 

optimization problem of SVM is defined according 

to Eq. (3): 

 

𝛼∗ = arg 𝑚𝑖𝑛𝛼  
1

2
∑ ∑ 𝛼𝑖

𝑙
𝑗=1 𝛼𝑗

𝑙
𝑖=1 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖. 𝑥𝑗) −

∑ 𝛼𝑘;𝑙
𝑘=1                              (3) 

 

Where 𝐾(𝑥𝑖. 𝑥𝑗) is kernel function performing 

non-linear mapping into feature space; the 

constraints are: 

 

0 ≤ 𝛼𝑖 ≤ 𝐶.    ∑ 𝛼𝑖𝑦𝑖 = 0.      𝑖. 𝑗 = 1. … . 𝑙𝑙
𝑗=1   (4) 

 

We can determine the optimal separating 

hyperplane in feature space solving Eq. (3) with 

constraints of Eq. (4): 

 

𝑓(𝑥) = 𝑠𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖. 𝑥)𝑖∈𝑆 + 𝑏);  
 

𝑏 =
1

𝑆
∑ [𝑦𝑖 − ∑ 𝛼𝑗𝑦𝑗𝐾(𝑥𝑗. 𝑥𝑖)𝑗 ]𝑖∈𝑆           (5) 

2.3.2. Kernel function selection in SVM 

One of the main factors in the SVM algorithm 

that is affected its performance is the kernel function 

selection problem. In fact, since we used SVM in 

the classification process for TSP, the choice of 

kernel function against k-variate feature space is a 

very important factor. In fact, selecting a proper 

distance metric for computing distances between 

trajectory-type objects positively influenced the 

classification performance. Historical distance 

metric like Euclidean and Manhattan which aligns 

the ith point on one trajectory with the ith point on 

another will produce a poor similarity in score 

distance and would affect the learning model in 

terms of TSA. The dynamic time warping (DTW) 

[26] is a method for finding an optimal match 

between two given sequences. The DTW has 

advantages over the Euclidean distance in the aspect 

of its elastic and robust matching; therefore, it is 

used in forming the distance matrix of SVM. In this 

paper, it is tempting to substitute DTW distance for 

Euclidean distance in the Gaussian RBF kernel and 

plug it into SVM for sequence classification. The 

DTW in Gaussian RBF (GRBF) kernel called the 

DTW-GRBF kernel as 𝐾(𝑥𝑖. 𝑥𝑗) in Eq. (3) is defined 

as Eq. (6):  

 

𝐾(𝑥 . 𝑥′) = 𝑒𝑥𝑝 (−
[𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(𝐴1

𝑝
 .𝐵1

𝑞
 )]

2

2𝜎2 ); 

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(𝐴1
𝑝

 . 𝐵1
𝑞

 ) = 𝑑(𝑎(𝑝). 𝑏(𝑞)) + 

𝑀𝑖𝑛 (

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(𝐴1
𝑝−1

 . 𝐵1
𝑞

)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(𝐴1
𝑝−1

 . 𝐵1
𝑞−1

)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(𝐴1
𝑝

 . 𝐵1
𝑞−1

)

) (6) 

 

Where d(.,.) is 𝐿𝑝  norm and 𝐴1
𝑝

 is a sequence 

with discrete index varying between 1 and p.  

3. Experimental design 

3.1 Preliminaries of the transient simulation 

In our transient studies, two test cases are 

considered to evaluate the performance of the 

proposed framework on TSP. The single-line 

diagram of SAVNW and IEEE-24 test systems are 

shown in Fig. 4(a) and Fig 4(b), respectively. For 

more details on the structure diagram of SAVNW 

and IEEE-24, refer to [27] and [28], respectively. 

Also, we consider three types of setting to generate 

severe transient data. In fact, the triple options make 

it possible for the real evaluation of predictive 

model performance on TSP. The concise description 

of triple options is shown in Table 4. For example, 

fluctuations of total QELEC to the total of max 

QELEC (F8 in Table 1) of SAVNW test case based 

on quantifying triple-options are shown in Fig. 5 

(e.g., yellow: stable univariate and blue: unstable 

univariate). 

 

Table 4. Descriptions of triple-option to simulate severe transient 
Option                                                                Descriptions 

fault type 

 

convert load: convert the constant MVA 

load to a specified mixture of the constant 

current and constant admittance load 

characteristics. 

simulation time 

including: N-1 and N-k criteria; failure of any one or 

k components. 

is an array of four elements: [1] IP; constant current 

active load, [2] YP; constant admittance active load, 

[3] IQ; constant current reactive load, and [4] YQ; 

constant admittance reactive load. 

fault duration time, fault clearing time, and 

simulation last for s seconds after the fault clearance. 
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Figure. 3 Transient dataset for TSA 

 

 
(a) 

 
(b) 

Figure. 4: (a) One-line diagram of SAVNW and (b) One-line diagram of IEEE-24 [28] 
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Figure. 5 The stable and unstable fluctuations of F8 on SAVNW test system 

 

3.2 Performance evaluation of the proposed 

framework   

In this section, we evaluate the performance of 

the DTW-GRBF SVM classifier for TSP based on 

extracted GCR multivariate trajectories. Also, to 

compare the performance of DTW-GRBF SVM 

with the other kernel-based SVM for TSP, the 

GRBF kernel plugged into SVM which is used in 

[16-20] is applied on GCR trajectories (Eq. (7)): 

 

𝐾(𝑥 . 𝑥′) = 𝑒𝑥𝑝 (−
||𝑥−𝑥′||

2

2𝜎2 )                (7) 

 

Where ||𝑥 − 𝑥′||2 is squared Euclidean distance 

between the two trajectory features.  

Furthermore, the following metrics (See Table 

5) are considered for measuring the performance of 

the predictive model. Also, to test the performance 

of elastic and non-elastic SVM classifier on TSP, 5-

fold cross validation which involves 5 iterations was 

considered. Average the 5 classifiers performance 

(Acc, TPR, and TNR) is obtained from 5 splits. 

Also, to select optimal pairs of parameters for 

classifiers (C and ), the parameters C and  are 

selected from {2i | i=0, 1, 2, ..., 7} and {2j | j=-4, -3, 

…, 3}, respectively. In this way, the maximum 

value of accuracy metrics for each fold is obtained.  

 
Table 5. The performance metrics 

Metrics                                                     Descriptions    

Accuracy 

Sensitivity 

Specificity 

Acc=(TP+TN)/(TP+TN+FP+FN)    

TPR=TP/(TP+FN)                             

TNR=TN/(TN+FP)                             

Symbols; P: stable sample, N: unstable sample,  

T: predicted correctly, F: predicted incorrectly 

 

3.2.1. Timesaving on TSP  

Timesaving on TSP to perform appropriate 

corrective action [2] is a basic principle on power 

system transient control strategy. In fact, a fast and 

accurate approach is a decisive requirement for TSA 

tasks. Hence, using the partial of transient 

fluctuations (PoT) after clearing the fault for 

evaluating the learning process was considered in 

this section. As can be seen in Table 6 and 7, 

training and testing procedures with the length of 

PoT in 15, 25, and 35 cycles after clearing the fault 

were conducted using GRBF SVM and DTW-GRBF 

SVM on test systems. The increasing size of PoT 

from 15 to 35 affects (positive manner) the 

classification performance of the predictive model in 

most cases. Furthermore, comparing the 

performance of two classifiers on the same test 

system regarding different PoT showed the fact that 

non-linear alignment in DTW outperforms point to 

point alignment in Euclidean distance on test 

systems in most cases. According to Table 6 and 7, 

DTW-GRBF SVM had high-performance based on 

triple metrics (row labelled as mean), while GRBF 

SVM had the low-performance for TSP. However, 

regarding obtained results of the mean (measure), 

GRBF SVM has high TNR (only PoT:15 cycles) on 

IEEE-24 and high TNR (only PoT:15 cycles) on 

SAVNW than DTW-GRBF SVM. Due to DTW 

depended on increasing the length of PoT for non-

linear alignment in feature space, reducing PoT 

from35 to 15 sometimes affects the performance of 

DTW-GRBF SVM in a negative manner. Overall, 

the choice of DTW distance plugged into kernel 
machine that induces DTW-GRBF SVM 

outperforms GRBF SVM for TSP. Table 8 offers the 

concise report of Tables 6 & 7 for readers at a 

glance regarding the performance of GRBF SVM  
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Table 6. Result of TSP based on GRBF SVM with different PoT  

 

Classifier 

 

Test case 

 

                                           

5-fold cross validation 

     fold 1      fold 2     fold 3 fold 4 fold 5 

 

 

 

 

 

 

 

 

 

 

 

 

GRBF 

SVM 

 

 

 

 

 

 

 

SAVNW 

Max(Acc.) per fold based on different parameter: Accuracy[TPR/TNR] 

PoT: 35 cycle 

88.46 

[83.33/92.86] 

     100 

[100/100] 

100 

[100/100] 

96.15 

[100/92.86] 

96.15 

[100/92.86] 

PoT: 25 cycle 

84.61 

[83.33/85.71] 

96.15 

[90.91/100] 

100 

[100/100] 

92.30 

[91.67/92.86] 

96.15 

[100/92.86] 

PoT: 15 cycle 

84.61 

[75/92.86] 

96.15 

[90.91/100] 

100 

[100/100] 

92.30 

[91.67/92.86] 

96.15 

[100/92.86] 

PoT (cycle): Mean(measure) of folds: Accuracy[TPR/TNR] 

               PoT (35):                      PoT (25)                      PoT (15): 

        96.15[96.66/95.71]  -   93.84[93.18/94.28]  -  93.84[91.51/95.71] 

 

 

 

 

 

  

IEEE-24  

    fold 1     fold 2 fold 3         fold 4 fold5 

Max (Acc.) per fold based on different parameter: Accuracy[TPR/TNR]  

                                                  PoT: 35 cycle 

96.42 

[93.33/100] 

93.10 

[86.67/100] 

96.55 

[93.75/100] 

92.85 

[86.67/100] 

89.28 

[100/76.92] 

PoT: 25 cycle 

92.85 

[86.67/100] 

93.10 

[86.67/100] 

96.55 

[93.75/100] 

89.28 

[86.67/92.31] 

89.28 

[100/76.92] 

PoT: 15 cycle 

92.85 

[86.67/100] 

89.65 

[80.00/100] 

93.10 

[93.75/92.31] 

89.28 

[93.33/84.62] 

89.28 

[100/76.92] 

PoT (cycle): Mean (measure) of folds: Accuracy[TPR/TNR] 

         PoT (35):                   PoT (25):                    PoT (15): 

93.64[92.08/95.38]  -  92.21[90.75/93.84]  -  90.83[90.75/90.77]  

 

and DTW-GRBF SVM on TSP. As can be seen in 

Table 8, DTW-GRBF SVM is the winner algorithm 

in most of the existing scenarios in the presence of 

the triple metrics and the test grids. Fig. 6 shows the 

performance variation (Acc) of GRBF SVM with 

triple PoT (15, 25, and 35 cycles) and different 

learning parameters grouped by folds on the 

SAVNW test system. As can be seen in Fig. 6, the 

Acc surface of the 35 cycles PoT is dominant 

against other surface (15 and 25 cycle) in most 

points on folds. Also, Fig. 7 shows the performance 

variation (Acc) of DTW-GRBF SVM with length of 

PoT in 15 cycles regarding different learning 

parameters per fold on the IEEE-24 test system. 

3.2.2. Impact of PoT on the TSP processing time 

The processing time for TSP based on different 

PoT is shown in Table 9. The processing time for 

TSP is comprised of the different PoT after clearing 

the fault and the prediction time of the classifier. 

The result shows the GRBF SVM has a lower 

processing time for TSP. However, if PSO requests 

to achieve better performance (triple metric) than 

GRBF SVM for TSP, should be switched to DTW-

GRBF SVM regarding PoT 35 & 25 cycles on 

SAVNW and IEEE-24 that gained 927.6 

milliseconds (< 1 s). Also, using DTW-GRBF SVM 

regarding PoT 25 cycles on SAVNW and IEEE-24 

is an acceptable processing time (664.4 

milliseconds) along with high performance in all 

metrics. Furthermore, DTW-GRBF SVM regarding 

15 cycles PoT on IEEE-24 and SAVNW (ignoring 

only 1.43% less TNR than GRBF SVM in the same 

PoT) has affordable processing time (429.6 

milliseconds) along with high performance. 

3.2.3. Comparison of the proposed strategy (DTW-

GRBF SVM+GCR features) with other frameworks 

In addition to comparing the proposed DTW-

GRBF SVM with the GRBF-SVM used in [16-20] 

for TSP based on defined multivariate trajectory 

features in sub-section 3.2.1-3.2.2, for more analysis 

on the effectiveness of our framework (DTW-GRBF 

SVM accompanied with GCR 22-variate time 

series), we compared the proposed framework with 

other strategies (learning method + defined features) 

in [14, 15]. For more technical details on the offered 

packages (proposed learning algorithm +  
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Table 7. Result of TSP based on DTW-GRBF SVM with different PoT 

 

Classifier 

 

Test case 

 

 

5-fold cross validation 

fold 1 fold 2 fold 3 fold 4 fold 5 

 

 

 

 

 

 

 

 

 

 

 

 

DTW- 

GRBF 

SVM 

 

 

 

 

 

 

SAVNW 

Max(Acc.) per fold based on different parameter: Accuracy[TPR/TNR] 

PoT: 35 cycle 

100 

[100/100] 

100 

[100/100] 

100 

[100/100] 

88.46 

[91.67/85.71] 

96.15 

[100/92.86] 

PoT: 25 cycle 

100 

[100/100] 

96.15 

[90.91/100] 

100 

[100/100] 

88.46 

[83.33/92.86] 

96.15 

[100/92.86] 

PoT: 15 cycle 

92.30 

[91.67/92.86] 

96.15 

[90.91/100] 

100 

[100/100] 

84.61 

[83.33/85.71] 

96.15 

[100/92.86] 

PoT (cycle): Mean(measure) of folds: Accuracy[TPR/TNR] 

PoT (35):                      PoT (25):                        PoT (15): 

96.92[98.33/95.71]  -  96.15[94.84/97.14]  -  93.84[93.18/94.28] 

 

 

 

 

 

 

IEEE-24 

fold 1 fold 2 fold 3 fold 4 fold5 

Max (Acc.) per fold based on different parameter: Accuracy[TPR/TNR] 

PoT: 35 cycle 

96.42 

[93.33/100] 

96.55 

[93.33/100] 

96.55 

[93.75/100] 

92.85 

[93.33/92.31] 

89.28 

[93.33/84.62] 

PoT: 25 cycle 

92.85 

[86.67/100] 

96.55 

[93.33/100] 

96.55 

[93.75/100] 

92.85 

[93.33/92.31] 

89.28 

[100/76.92] 

PoT: 15 cycle 

92.85 

[93.33/92.31] 

89.65 

[86.67/92.86] 

93.10 

[93.75/92.31] 

92.85 

[93.33/92.31] 

89.28 

[100/76.92] 

PoT (cycle): Mean (measure) of folds: Accuracy[TPR/TNR] 

 PoT (35):                      PoT (25):                     PoT (15): 

94.33[93.41/95.38]  -  93.61[93.41/93.84]  -  91.54[93.41/89.34] 

 
Table 8. The concise report of methods performance based on results of Table 6 & 7 

Test case PoT Method Acc TPR TNR 

 

 

 

IEEE-24 

35 cycles GRBF SVM L L D 

DTW-GRBF SVM W W D 

25 cycles GRBF SVM L L D 

DTW-GRBF SVM W W D 

15 cycles GRBF SVM L L W 

DTW-GRBF SVM W W L 

 

 

 

SAVNW 

35 cycles GRBF SVM L L D 

DTW-GRBF SVM W W D 

25 cycles GRBF SVM L L L 

DTW-GRBF SVM W W W 

15 cycles GRBF SVM D L W 

DTW-GRBF SVM D W L 

Total Results (# wins) Acc (6 match) TPR (6 match) TNR (6 match) 

GRBF SVM 0 0 2 

DTW-GRBF SVM 5 6 1 

DTW-GRBF SVM (12) : (2) GRBF SVM 
W: won, D: draw, L: Loss 
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(a)                                                                                           (b) 

 

 
(c)                                                                                            (d) 

 

 
(e) 

Figure. 6 Illustration of GRBF SVM performance with different PoT and learning parameters; grouped by folds on 

SAVNW: (a) Fold 1, (b) Fold 2, (c) Fold 3, (d) Fold 4, and (e) Fold 5 
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(a)                                                                                            (b) 

 
(c)                                                                                            (d) 

 
(e) 

Figure. 7 Illustration of DTW-GRBF SVM performance with different parameters on IEEE-24 bus (PoT: 15 cycle): (a) 

Fold 1, (b) Fold 2, (c) Fold 3, (d) Fold 4, and (e) Fold 5 
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Figure. 8 One-line diagram of NETS-NYPS [30] 

 

Table 9. Processing time with different PoT 

Classifier PoT in 

cycle  

PoT in 

second  

Processing Time a 

 

 

GRBF 

SVM 

15 0.2505 250.5msb+16.06ms= 

266.56ms 

25 0.4175 417.5ms+16.23ms= 

433.73ms 

35 0.5845 584.5ms+17.56ms= 

602.06ms 
 

DTW-

GRBF 

SVM 

15 0.2505 250.5ms+ 179.1ms= 

429.6ms 

25 0.4175 417.5ms+246.9ms= 

664.4ms 

35 0.5845 584.5ms+343.1ms= 

927.6ms 
a Processing Time=PoT+prediction time; b millisecond 

 

Table 10. Comparing the performance of triple packages 

for TSA 

Package 

(learning algorithm  

+ defined features) 

 

Acc 

 

TPR 

 

TNR 

(I) DTW-GRBF SVM  

+ GCR 22-variate 

trajectory features  

(our package) 

 

98.66 

 

97 

 

100 

(II) GRBF-SVM + 

reactive power-based 

two variate time 

series (RP2vTS) [14] 

 

95.84 

 

94.44 

 

97.30 

(III) twin convolutional 

SVM + 8-variate 

trajectory  features  

[15] 

 

85.71 

 

100 

 

71.43 

Processing Time 

(I) 455.94 ms (II) 714.8 ms (III) 755 ms 

 
defined transient features), refer to [14] and [15].  

Also, we addressing the performance evaluation of 

triple packages (our framework and [14,15]) against 

the New England-New York interconnection system 

(NETS-NYPS) [29], which has the size of topology 

larger than SAVNW and IEEE-24 (Fig. 8). As can 

be seen in Table 10, our proposed framework 

including DTW-GRBF SVM and 22-variate 

geometric time-series features outperforms the 

presented framework in [14] based on triple metrics 

on the NETS-NYPS grid case. Also, our proposed 

package has high performance on Acc and TNR 

than the proposed package in [15]. Our strategy only 

3% less TPR than the proposed package in [15]. 

Also, our strategy has a lower processing time than 

the presented frameworks in [14, 15] for TSA.  

4. Conclusion 

In this paper, our proposed framework is offered 

for transient stability status prediction as a 

companion during the online procedure of real-time 

TSA. According to the proposed programming 

platform, first, basic reasons involved in the 

definition of GCR 22-variate time series features are 

discussed. After defining GCR features, transient 

data generation is comprised of two phases: the 

obtained transient data based on GOC file and GCR 

trajectories extraction. To this end, we triangulated 

Python script, SIEMENS PSS/E API, and Matlab 

for generating required data for transient analysis. 

Next, the elastic SVM classifier as a learning 

method is conducted for transient stability status 

prediction. Finally, the model trained using GCR 

trajectories is tested for evaluating the performance 

of the proposed framework. The classification 

accuracy based on DTW-GRBF SVM near 97% for 

SAVNW and 95% for IEEE-24 test systems. 

According to obtained results, DTW-GRBF SVM 

has a high performance based on triple metrics in 35 

& 25 cycles PoT on test cases, while GRBF SVM 

has high TNR (only 15 cycles PoT) on IEEE-24 and 

TNR (only 15 cycles PoT) on SAVNW. Also, 

GRBF SVM has a short processing time (266.56 

milliseconds in 15 cycles) for TSP, while DTW-

GRBF SVM regarding 35 cycles PoT has an 

acceptable processing time (927.6 milliseconds) 

along with high performance (all metrics) in both 

test case. Also, for more analysis on the 

effectiveness of the proposed framework (DTW-

GRBF SVM + GCR features), we compare the 

proposed strategy with other frameworks on the 

NETS-NYPS grid case. The obtained results show 

that the proposed method accompanied with 22-

variate GCR features outperforms other frameworks 

(method+features) for TSP. Overall, the results 

show that our proposed methodology will be 

applicable as a synergetic suite on severe transient 

scenarios when confronted by non-identically 

obtained GCR trajectories in offline and online parts 
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for real-time TSA. For future work, the 

environmental factors as an integral part of transient 

studies should be considered for TSA. In fact, 

communication channel failure and noisy data are 

the most significant issue negatively influenced the 

quality of transient data and its caused to low-

performance TSP. Hence, applying a hyperplane-

based approach with a proper kernel specified for 

incomplete trajectories should be considered as a 

vital task in future transient studies. 
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