
Received: June 26, 2021. Revised: July 20, 2021. 422

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.37

An H-CSO Algorithm for Workflow Scheduling in Heterogeneous Cloud

Environment

Jai Bhagwan1* Sanjeev Kumar1

1Department of Computer Science & Engineering,

Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
* Corresponding author’s Email: jaitweet@gmail.com

Abstract: Cloud computing technology is becoming popular in both academia and industries these days because of its

dynamic and flexible infrastructure which provides good computing facilities through web networks without a place

specification. In order to process the workflows, the cloud technology uses datacenters which consist of hosts having

various homogeneous and heterogeneous virtual machines. Virtual machines play the role of real machines with

multiple operating systems environments. Due to a wide acceptance of the cloud, the load on the cloud is increasing

regularly. So, scheduling plays a key role to manage a machine load by mapping several workflows with available

virtual machines. The scheduling can be divided into two types: dynamic and static scheduling. Dynamic scheduling

can be done effectively by meta-heuristic computing techniques. In the field of cloud computing, many scientists have

developed various algorithms for workflow scheduling in order to schedule the workflows. The Cat Swarm

Optimization works fine as compared to the Max-Min algorithm, Particle Swarm, and Ant Colony Optimization

algorithms. In this research, a new algorithm is designed named H-CSO by using the concept of Heterogeneous Earliest

Finish Time and Cat Swarm Optimization algorithms. After experiments, it is found that the proposed H-CSO

algorithm gives efficient makespan at realistic costs as matched to the Cat Swarm Optimization. The newly designed

H-CSO algorithm is 2.99%, 2.87%, 3.35%, and 5.77% efficient for CyberShake_1000, Montage_1000, Inspiral_1000,

and Sipht_1000 datasets respectively as compared to the standard Cat Swarm Optimization in terms of average

makespan reduction. In case of cost reduction, the proposed algorithm is 4.03%, 5.12%, 2.42%, and 3.93 effective as

compared to the Cat Swarm Optimization for CyberShake_1000, Montage_1000, Inspiral_1000, and Sipht_1000

datasets respectively.

Keywords: Ant colony optimization (ACO), Cloud computing, Cat swarm optimization (CSO), Datacenter,

heterogeneous earliest finish time (HEFT), H-CSO, Max-min, Particle swarm optimization (PSO), Self-motivated

inertia weight (SMIW), Virtual machines (VMs).

1. Introduction

Nowadays, cloud computing acceptability is

growing regularly among various organizations due

to its dynamic infrastructure and pay-per-usages

flexibility. Cloud computing allows its users to share

hardware resources, software applications, network

resources, workspace for application developments,

mailing services, etc. Cloud technology is an

abstraction and isolation of physical resources which

works basically on three prototypes namely Software

as a Service, Platform as a Service, and Infrastructure

as a Service [1, 2]. To fulfil the requirements of a

user, cloud technology follows a process of creating

a datacenter consisting of a single or various

computing machines called hosts connected by high-

speed networks. A host is consisting of various

homogeneous or heterogeneous virtual machines

which act just like physical computing machines

having guest operating systems for providing all

computing facilities [3, 4]. The heterogeneous

environment is a collection of various virtual

machines having different computing speeds,

memories, bandwidths, and other parameters

compared to each other whereas the homogeneous

environment is made of various virtual machines

Received: June 26, 2021. Revised: July 20, 2021. 423

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.37

having similar parameters. The resources of a host are

shared among various virtual machines and a virtual

machine can have multiple applications and

operating systems that are being used to ensure better

resource utilization and optimization for a large

group of tasks or workflows [5].

Some issues available in cloud computing are

scheduling mechanisms, data-centers network

expansion, security, energy consumption, and load

balancing [6, 7]. Among these issues, workflow

scheduling or resources mapping plays a significant

role in cloud resources performance. In workflows

scheduling, the workflows tasks sent by a user are

scheduled on virtual machines in a manner that the

submitted tasks could be executed in a minimum

execution time. Such a process has to follow a few

constraints which are given by the cloud system for

several user requests. These constraints can be

satisfied by many parameters such as Makespan,

Resources Cost, CPU Utilization, Response Time,

Throughput, Waiting Time, Turnaround Time, and

lots more [8]. Appropriate scheduling allows

processing a large volume of workflows with a

specific volume of resources in a minimum time.

Many scientists have proposed various algorithms for

scheduling workflow tasks in cloud computing

system. Each algorithm has its strengths and

weaknesses. The objective of the scheduling is to

process a large volume of workflow tasks in a

minimum makespan and better management of

virtual machines under the minimum utilization of

processing cost [9].

In this research, the HEFT algorithm has been

combined into the Cat Swarm Optimization

algorithm. A Self-Motivated Inertia Weight has also

been included in the velocity calculation formula of

the tracing mode of the CSO to control the outranged

velocity problem of the Cat Swarm Optimization.

The proposed algorithm achieves better results than

Max-Min, ACO, PSO, and CSO algorithms in terms

of makespan and computing cost.

1.1 Scheduling algorithms

Workflow tasks or independent task scheduling

acts as a key player in the cloud computing system

while allocating workflow tasks to virtual machines

for computations. As said earlier, the goals of a

scheduling algorithm are considered as minimization

of makespan, faster response time, increasing

resource utilization, managing the system load, and

reducing the processing cost, etc [10].

The algorithms used in this paper for designing a

new technique are summarized as below:

a) Max-Min – Max-Min algorithm works on the

policy of maximum expected completion time

(MET). This method is very similar to Min-Min,

except it discovers the MCT (maximum expected

completion time) of each task available in the

Meta-Task list and assigns it to the corresponding

resource. As the name suggested, it gives higher

importance to large tasks first for processing as

compared to smaller tasks. This algorithm gives a

good performance when several small tasks are

available along with large tasks [11].

b) ACO – Ant Colony Optimization works on the

pattern of the behavior of real ants that try to find

a straight route among their colonies and food. It

was introduced by Dorigo in the year 1992. Ants

release pheromone on the ways they move while

walking through their colonies and the source of

the food. As many ants walk through and drop the

evaporation of pheromone, the intensity of

pheromone is increased. As time passes on, the

more intensity of pheromone helps the ants to find

the shortest track between their food sources. The

ACO can be useful to resolve various difficulties

in many fields as well as task scheduling and load

balancing in the area of the cloud system [12]. For

scheduling tasks in cloud computing, the number

of ants is taken less or equivalent to the number of

tasks. To execute the task, every ant starts with an

random task Ti and resource Rj. The probability

function given in Eq. (1) is used to decide a

particular task to be executed on a specific

resource.

𝑃𝑖𝑗 =
(𝜏𝑖𝑗)𝛼 (𝜂𝑖𝑗)𝛽

∑(𝜏𝑖𝑗)𝛼 (𝜂𝑖𝑗)𝛽 (1)

Where, 𝜏𝑖𝑗 Symbolises the pheromone value

related to task Ti and resource Rj

𝜂𝑖𝑗 Represents the heuristic function

𝛼 Regulates the influence of pheromone value

𝛽 Governs the impact of heuristic function

Here, every ant shapes the entire solution of

mapping all tasks to available resources step by

step. Initially, the pheromone value is set as a

positive constant then, at the end of each iteration

number, this value is changed by the ant. Finally,

an optimum solution is provided.

c) PSO – Particle Swarm Optimization was

announced by Kennedy and Eberhart in 1995 by

the inspiration of particles’ social behaviours. It is

similar to the behaviours of the birds searching for

food. The PSO works in the following steps:

Initialization of the population, updating the

Received: June 26, 2021. Revised: July 20, 2021. 424

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.37

particles’ velocity and position, Fitness

calculation, and finding out the optimal solution.

In the case of search-space having multi-

dimensions, each particle is moved and associated

with a velocity and its position. The particle finds

out its best position based on its experiences as

well as its neighbour experiences [13].

d) Cat Swarm Optimization – In 2006 a novel

algorithm was developed named Cat Swarm

Optimization by the inspiration of PSO and ACO

behaviours. This technique copies the behaviour

of the actual cat. The authors developed two

processes of CSO algorithm: Seeking Process and

Tracing Process. The seeking method is said to be

a global search and the tracing method is a local

search. In seeking mode, the cat takes a rest and

moves slowly for seeking the prey. In tracing

mode, the cat moves fast with a velocity and few

other parameters. There are certain parameters in

CSO like Seeking Memory Pool (SMP), Seeking

Range of the Selected Dimension (SRD), Self

Position Consideration (SPC), Counts of

Dimension to Change (CDC), and MR (Mixing

Ratio). In SMP, one cat is randomly selected for

moving to the next position. CDC and SRD decide

the random mutations for new positions. The CDC

decides the number of dimensions to be mutated

and the amount of mutation is decided by SRD.

SPC Boolean value will decide how many replicas

can be generated in seeking mode [14].

e) HEFT Algorithm – The HEFT works in two

phases. The first phase is task prioritization and

the second one is virtual machine selection. In the

first phase, HEFT calculates the rank of each task

based on average computation time, and average

communication cost and assigns priority to each

task. The task queue is set by decreasing the order

of the task’s rank. In the second phase, the tasks

are scheduled on the virtual machine which is

having Earliest Finish Time [15].

The rest of the paper is drafted as: The related

work has been drawn in section 2. Problem

formulation is summarized in section 3. The

proposed methodology is well exposed in section 4.

Section 5 is having a simulation setup, describing

simulation parameters, cost plan, and performance

metrics. Simulation results and discussion is

explained in Section 6. Finally, section 7 comprises

the conclusion and future scopes of this research.

2. Related work

In cloud technology, extensive research has taken

place in the field of task scheduling and balancing of

the load. Several algorithms have been used for task

or workflow scheduling with different scheduling

policies and scenarios. A deep study is illustrating that

in [16] the authors proposed an algorithm named

EMM (Enhanced Max-Min). The proposed EMM

algorithm was implemented in the CloudSim tool.

After simulation, it is found that the proposed EMM

algorithm is effective than the standard Max-Min

method. The average waiting time and completion

time of the scheduling were reduced and resources

allocation was optimized. In [17] the scientists

proposed a modified Max-Min algorithm. The

modified approach is prepared using RASA and Max-

Min algorithm strategy. The proposed algorithm

works based on expected execution time rather than

the completion time. So, the authors are saying the

proposed Max-Min method is effective than the

original Max-Min in terms of makespan. The scientist

[18] improved Ant Colony Optimization using a

dynamic volatile coefficient and a virtual machine

load weight coefficient in order to improve the

searching capacity. The proposed method improved

load balancing, convergence speed, and completion

time. The proposed algorithm showed its

effectiveness as compared to other methods after

simulation. The author of [19] introduced a

scheduling scheme based on a Modified ACO

algorithm named MACO. The algorithm was

introduced to achieve multiple objectives. The

MACO improved the results by decreasing makespan

and degree of imbalance as compared to traditional

ACO. The experiments were carried out in the

CloudSim tool. The paper [20] showed that a multi-

objective hybrid algorithm was developed using

Genetic Algorithm and Ant Colony Optimization

algorithms named HGA-ACO. The proposed

algorithm worked for response time, completion time,

and throughput. The pheromone was generated by GA

and fed to ACO and the ACO was used to improve the

crossover solution of GA. The simulation

environment was created using the CloudSim tool.

After simulation, the authors found that the HGA-

ACO performed efficiently as compared to ACO and

GA algorithms. In the paper [21], the major aim of the

author was to reduce the makespan and cost of the task

scheduling. The author improved the initialization

problem of the ACO algorithm and proposed an MO-

ACO algorithm. The pheromone update function and

the heuristic function were also improved. The

CloudSim tool was used for simulation and found that

the proposed MO-ACO functioned efficiently as

matched to traditional ACO and Min-Min algorithms

in respect to the degree of imbalance, computing cost,

and makespan. In [22] for allocation of the tasks to

virtual machines efficiently, the scientists developed

Received: June 26, 2021. Revised: July 20, 2021. 425

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.37

a novel algorithm called SACO. The proposed policy

works based on slave ants to improve the global

searching power of the Ant Colony Optimization. For

improvement, diversification and reinforcement

policies were adopted and a long path was avoided for

ACO ants. The novel algorithm SACO worked

effectively as compared to the ACO and IACO in the

account of the makespan. The researcher in [23]

introduced an Improved PSO algorithm called IPSO

for resource scheduling. The improvement was made

based on the changes in the constant coefficients in

the velocity variation. The IPSO outperformed the

standard PSO in terms of processing time and fitness.

The paper [24] described that the authors developed

an IPSO algorithm for task allocation problems. The

tasks were divided into batches dynamically. The

results of the small batches were obtained and merged

into a single solution. This process was found

effective as compared to the Honey Bee, Round-

Robin, and ACO algorithms for load balancing,

minimizing the makespan and degree of imbalance.

The CloudSim simulator was used for experiments.

The authors in [25] proposed an algorithm named

Dynamic Multi-Objective Orthogonal Taguchi-Cat.

The Taguchi approach was inserted to make a balance

between local and global search. The Pareto dominant

scheme was also used for selecting the appropriate

services by a customer. The proposed DMOOTC was

found efficient than Improved Min-Min, MOACO,

and MOPSO concerning the execution time and

computation cost for the overall environment. In the

paper [26], the scientists presented a Cat Swarm

Optimization Grounded policy for mapping the tasks

on suitable resources. The customized CSO algorithm

was tested using a workflow and found efficient as

compared to the PSO algorithm in terms of optimal

task scheduling, load distribution, Transmission Cost,

etc. The reason for the good performance is the

position update with intelligence instead of random

updating. In [27], the authors modify the traditional

Cat Swarm Optimization with Linear Descending

Inertia Weight equation in the tracing mode. The idea

was implemented using the CloudSim tool and it was

found that the designed algorithm CSO-LDIW

performed better as linked to PSO-LDIW and the

traditional CSO in terms of makespan.

It is identified from the related work that the Max-

Min is a heuristic algorithm and used for static

scheduling only. Meta-heuristic algorithms provide

optimal solutions as compared to the heuristic

approaches. Ant Colony Optimization has beaten by

the PSO, the Cat Swarm Optimization worked well as

compared to the PSO. It is found that the scheduling

algorithms have various limitations. For example, the

Max-Min algorithm is very old and is not able to deal

with dynamic scheduling effectively. The Ant Colony

Optimization is best suited for local search and has a

slow convergence speed, so it doesn’t give good

performance in cloud computing. The PSO and CSO

algorithms are famous for global searching. The Cat

Swarm Optimization algorithm gets reached outside

the search space due to the unbalanced velocity

calculation formula in the tracing mode. The Cat

Swarm Optimization algorithm also gets stuck in local

minima because all the time, the maximum number of

cats resides in the Seeking Mode.

3. Problem formulation

Task scheduling on virtual machines is a

stimulating task in cloud computing. To the current

day, various algorithms have been developed by

scientists to solve this problem. It is observed from the

literature survey that each meta-heuristic algorithm

has few limitations. The Max-Min algorithm is useful

for static scheduling, and where the tasks are

independent. The Max-Min algorithm is very old and

starts to map the tasks in decreasing order by their

length. So, the performance cannot be achieved well

enough. The Ant colony optimization works on the

principle of insects i.e. ants. It is a local searching

technique; so, its global searching part is weak.

Particle Swarm Optimization works on the principle

of a flock of birds. This algorithm has very good

strength in a case of global searching. So, it easily gets

trapped in local minima. The next famous algorithm

in the literature is Cat Swarm Optimization which

Table 1. Acronyms

Acronym Meaning

CatK Current Cat

DAG Directed Acyclic Graph

DC Datacenter

exp Exponential Expression

itr Current Iteration

itrmax Number of Iterations

MR Mixing Ratio

rankU Upward Rank

Rs. Indian Currency

SMIW Self-Motivated Inertia Weight

Sec Seconds

SMP Seeking Memory Pool

Ti Current Task

Tn N number of Tasks

VMs Virtual Machines

Vm M number of Virtual Machines

V Velocity Factor

VK Velocity of Current Cat

XK Current Position of Cat

XBEST Best Cat as per Fitness Value

γ SMIW Method

γmax Constant Value

Received: June 26, 2021. Revised: July 20, 2021. 426

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.37

works just like the behaviour of a real cat. Most of the

Cats are remaining in seeking modes all time. So, it

gets trapped in local mode i.e. tracing mode.

Sometimes, Cat Swarm Algorithm escapes itself from

the search space due to an unbalanced velocity

equation in tracing mode, which affects the

performance of the algorithm. Hence, a new algorithm

needs to be designed to reduce the makespan and

processing cost.

Table 1 is showing the meanings of the acronyms

used in this research paper.

4. Proposed methodology

It is found from the literature review that every

algorithm alone is not able to perform the optimal

solution for workflow scheduling. Many researchers

suggested that improved versions of algorithms are

required due to many weaknesses like local minima

trapping, pre-mature convergence, escaping of the

CSO from search space, etc. Although CSO (Cat

Swarm Optimization) works fine in terms of

computation time and convergence still, it has some

limitations which are identified by literature review

and described in detail as follows:

1) Initial populations of cats are given randomly,

which increases the computation time.

2) Sometimes Cats move outside the search space

due to an unexpected jump in the velocity of the

Cats. This disturbs the performance of CSO.

3) The global search process of CSO is quite fine but

without a better local search, it could be difficult

to find optimal results. The Cat Swarm

Optimization algorithm gets jammed in local

optima due to the number of cats in the seeking

procedure is always remaining more than the cats

residing in the tracing procedure. This may affect

the mutation process in the tracing mode due to

which desirable optimal results could not be

obtained.

4) There is a balance mismatch between Tracing and

Seeking Mode. Due to which the computation

time may increase while working with this

algorithm.

In this research paper, a new algorithm has been

introduced using a combination of HEFT, and CSO

to make efficient the performance of the cloud

system. The Self-Motivated Inertia Weight (SMIW)

factor has also been incorporated to overcome the

problem of outranging the Cats’ velocity. Hence,

there is no need to check and set the velocities to their

initial values again and again and the performance

may be increased. The SMIW factor is calculated by

Eq. (3) explained in step 4.

The description of the proposed H-CSO algorithm

is given in the following steps:

Step 1: Initialize various parameters like velocity

factor (V) for all cats. For position update, c, and

𝛾𝑚𝑎𝑥 are set greater than 1 let’s say 2.0 value for

each. The coefficient c1 is set to 1.5. Random

variable r1 varies between 0 and 1. The number of

iterations is 300. The numbers of initial solutions are

set to 100. These parameters are also shown in Table

2. MR (Mixing Ratio) factor is set to 0.2-0.3 which

means that 20%-30% of Cats will be distributed to the

Tracing mode and the remaining will be in the

Seeking mode of the CSO algorithm.

Step 2: The average execution times of all VMs

are calculated. After this, the workflows are fed into

the HEFT algorithm. In the case of a workflow, the

HEFT policy sets the ranks upwards i.e. from

children to parents. If the current task is the last task

in the DAG then the rank is calculated by the average

execution of all VMs otherwise the HEFT technique

sets the ranking to the workflow tasks by the

following Eq. (2).

𝑟𝑎𝑛𝑘𝑢(𝑡𝑖) = 𝑊𝐴𝑣𝑔𝑖 +

𝑀𝑎𝑥 𝑡𝑗ͼ 𝑆𝑢𝑐𝑐 (𝑡𝑖) (𝐶𝐴𝑣𝑔𝑖𝑗 + 𝑟𝑎𝑛𝑘𝑢(𝑡𝑗)) (2)

Where WAvgi is the average execution cost, Succ (ti)

is the set of the immediate successor of task ti , and

CAvgi,j is the average communication cost.

After assigning the workflows tasks, the tasks are

submitted to VMs for processing. Then, the solution

is checked by the fitness function given in Eq. (10).

If the solution is optimized then, the algorithm is

stopped otherwise it goes to the next step.

Step 3: In this step, the population obtained by the

HEFT policy is filled into the CSO algorithm. Here,

S numbers of Cats are created with the help of the

HEFT population. The initial velocity values are

given to each cat in dimension D. After this, by using

the MR value the cats are dispersed into seeking and

tracing steps.

Step 4: The current CatK is checked for seeking or

tracing process. If it is found in seeking place then,

the seeking method is processed otherwise the tracing

method is processed. The seeking and tracing modes

are explained as below:

a) Seeking Mode: In seeking mode the positions

of the current CatK is replaced by the

following way: The S numbers of copies are

generated of current CatK as per SMP. Now,

it is checked the fitness of generated copies

of CatK and many best cats are found. The

best cat is picked up randomly and the current

Received: June 26, 2021. Revised: July 20, 2021. 427

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.37

 Proposed Algorithm (H-CSO)

 Input (Tasks (T1, T2, T3 … Tn), Virtual Machines (VM1, VM2, VM3 … VMm)

 Output (Optimal Makespan and Cost of n Tasks on m VMs)

 BEGIN PROCEDURE

1. Initialize variables: velocity factor V, c, 𝛾𝑚𝑎𝑥, Coefficient c1, r1, MR flag, and no. of iterations

 /* Calculate Ranks of Workflows Tasks in DAG using HEFT Algorithm */

2. Send workflows to HEFT

3. For Each Task in DAG Do

4. Calculate average execution time of all VMs

 5. If Task ti is the last Task Then

 6. Rank value of ti = its average execution time

 7. Else

 8. 𝑟𝑎𝑛𝑘𝑢(𝑡𝑖) = 𝑊𝐴𝑣𝑔𝑖 + 𝑀𝑎𝑥 𝑡𝑗ͼ 𝑆𝑢𝑐𝑐 (𝑡𝑖) (𝐶𝐴𝑣𝑔𝑖𝑗 + 𝑟𝑎𝑛𝑘𝑢(𝑡𝑗))

 Where WAvgi is average execution cost

 Succ (ti) is set of immediate successor of task ti

 CAvgi,j is average communication cost

 9. End If

 10. End For

 11. Assign Tasks to VMs according to HEFT Rank

 12. If Solution is not Optimized Then

 13. Generate a set of Cats by the Population generated by HEFT of Size S

 14. Initialize the velocity V of each Cat

 15. While No. of Iterations not Exceeded Do

 16. For K=1 to S

 17. According to Mixing Ratio (MR) flag Distribute Cats to Seeking and Tracing Modes

 18. If current CatK is in Seeking Mode Then

 19. Generate S (SMP) Copies of CatK and Spread them in D Dimensions where each Cat

has a velocity (VK, D)

 20. Evaluate the Fitness value of all Copies and Discover Best Cats (XBEST, D)

 21. Replace Original CatK with the Copy of Best Cats (XBEST, D)

 22. Else If current CatK is in Tracing Mode Then

 23. Compute and Update CatK velocity by following equations:

 24. 𝛾 = 𝛾𝑚𝑎𝑥 × exp (−𝑐 × (
𝑖𝑡𝑟

𝑖𝑡𝑟𝑚𝑎𝑥
)

𝑐

)

 Where, 𝛾 is a weight factor calculated by Self-Motivated Inertia Weight method

 𝛾𝑚𝑎𝑥 and 𝑐 are constant factors greater than 1, both are set as 2.

 25. 𝑉𝐾,𝐷 = γ × 𝑉𝐾,𝐷 + (𝑐1 × 𝑟1 × (𝑋𝐵𝐸𝑆𝑇,𝐷 − 𝑋𝐾,𝐷))

 Where, D = 1, 2, 3, …, Dn.

 c1 is acceleration coefficient, r1 is random number in the range of [0, 1]

 26. Update the position of every dimension of CatK by using following equation:

 27. 𝑋𝐾,𝐷 = 𝑋𝐾,𝐷 + 𝑉𝐾,𝐷

 28. Evaluate Fitness of all Cats and Discover Best Cats (XBEST, D)

 29. End If

 30. Update Best Cats (XBEST, D) in Memory

 31. End For

 32. End While

 33. End If

 34. return (Optimal Solution)

 END PROCEDURE

Figure. 1 Pseudo-code of proposed algorithm H-CSO

CatK is replaced with that best cat in

dimension D and saved into memory.

b) Tracing Mode: In tracing mode, the position

and velocity of the current CatK is replaced

by the given Eq. (3), (4), and (5).

𝛾 = 𝛾𝑚𝑎𝑥 × exp (−𝑐 × (
𝑖𝑡𝑟

𝑖𝑡𝑟𝑚𝑎𝑥
)

𝑐
) (3)

Here, 𝛾 is the weight factor calculated by the

above Eq. (3), 𝛾𝑚𝑎𝑥 and 𝑐 are constant

values and set to 2.0. itr is the current

Received: June 26, 2021. Revised: July 20, 2021. 428

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.37

iteration number and itrmax is the maximum

number of iterations.
This 𝛾 (SMIW factor) is integrated into

the following Eq. (4) for balancing the

velocity of the tracing mode.

𝑉𝐾,𝐷 = γ × 𝑉𝐾,𝐷 + (𝑐1 × 𝑟1 × (𝑋𝐵𝐸𝑆𝑇,𝐷 −

 𝑋𝐾,𝐷)) (4)

Here, D = 1, 2, 3, …, Dn. c1 is the

acceleration coefficient i.e. 1.5, r1 is set as a

random number between [0, 1].

Now, with the help of Eq. (5) the position

of the current CatK is updated.

𝑋𝐾,𝐷 = 𝑋𝐾,𝐷 + 𝑉𝐾,𝐷 (5)

Here, XK,D is the position, and VK,D is the

velocity of cats in dimension D.

After this, the fitness of the Cats is

checked and updated in the memory.

Step 5: This process continues till the stopping

condition is not met as displayed in Fig. 1.

The pseudo-code of the newly designed

algorithm is represented in Fig. 1. The proposed

algorithm is able to overcome the initialization

problems of the original CSO algorithm due to the

HEFT policy. It speeds up the proposed algorithm for

better convergence due to pre-processing of the

workflows and the SMIW method overcomes the

problem of escaping the Cats from the search space,

which also improves the results.

5. Simulation setup

To measure the performance of introduced H-

CSO and other existing scheduling algorithms, an

open-source tool named CloudSim has been used

which is written in Java. CloudSim provides an

environment to simulate the scheduling, load

balancing, and other policies. The experiments have

been done over a machine with Intel (R) Core (TM)

i3-5005U CPU @ 2.00 GHz, a RAM of 4.00 GB, 1

TB HDD, and running a Windows 10 64-bit

operating system [28].

5.1 Parameters

 For experiments, one PowerDatacenter has been

created which has 25 GB RAM, 1000 MIPS speed

per virtual machine, storage 1 TB, and bandwidth

50000 bps. The DC’s OS is Linux. The system

architecture of this DC is x86, VMM is Xen. Table 2

depicts the parameters configured for a

Table 2. Simulation parameters

PowerDatacenter

Parameter Values

No. of Hosts 1

System Design x86

VMM Xen

Operating System Linux

Number of Cloudlets 1000 in Each Workflow

Numbers of VMs 10, 20 and 30

CPU (PEs Number) 1

RAM per VM 512-1024 MB

Bandwidth 1000-1500 bps

Processing Elements

Power per VM
500 – 1000 MIPS

Image Size 10000 MB

Policy Type Time Shared

ACO

No. of Initial Ants (m) 100

No. of Iterations 300

Q, Alpha, Beta, Gamma,

Rho

1, 2, 1, 4, 0.05

Respectively

PSO

No. of Particles 100

No. of Iterations 300

Local and Global

Weights (C1 and C2)
1.5

CSO and H-CSO

No. of Cats 100

Iterations 300

Weight Coefficient (C1) 1.5

r1 is Random Variable [0, 1]

Mixing Ratio (MR)

Percentage
Random [0-1] i.e. 0.2-0.3

simulation environment with heterogeneous VMs in

the simulator. VMs contain 1 PE, 512-1024 MB

RAM, 1000-1500 bps Bandwidth, 500-1000 MIPS of

Processing Element and, 10000 MB Image size. The

scheduling policy has been set as Time Shared. The

required parameters of ACO, PSO, and CSO are also

depicted in Table 2 [28].

5.2 Cost plan

The cost strategy of a system involves processing

cost, memory usage cost, bandwidth cost, and storage

cost as shown in Table 3.

5.3 Cloudlets

For experiments, scientific workflows datasets

having different types of tasks have been used like

CyberShake, Montage, Inspiral and, Sipht. Each

dataset has 1000 tasks.

5.4 Performance metrics

Received: June 26, 2021. Revised: July 20, 2021. 429

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.37

Table 3. Cost Plan (in Indian Rupees)

Resource Processor RAM Storage Bandwidth

Size
500-1000

MIPS

512

MB
Unlimited 1000 bps

Cost

Rs. 3.0

per

processor

Rs.

0.05

per

MB

Rs. 0.1
Rs. 0.1

per MB

5.4.1 Makespan

Makespan [24] is defined as the finishing time of

a group of tasks. It is calculated by the given Eq. (6).

Makespan = max (CTi) ti∈tasks (6)

Here, CTi is the completion time of Task Ti

5.4.2 Computing cost

Computing Cost is another vital metric because

the end-users want a good service at a minimum cost.

The cost can be calculated by Eq. (7).

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =
𝑀𝐹+𝐶𝐹

2
 (7)

Where, MF is a Movement Factor and CF is a Cost

Factor

𝑀𝐹 =
1

𝑁𝑜. 𝑜𝑓 𝐻𝑜𝑠𝑡𝑠/𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑠
[∑ (

𝑁𝑜. 𝑜𝑓 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑈𝑠𝑒𝑑 𝑉𝑀
)𝑉𝑀𝑥

𝑥=1]

(8)

𝐶𝐹 = ∑ (
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 × 𝑀𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝑇𝑎𝑠𝑘𝑠

𝑉𝑀 × 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟
)𝑉𝑀𝑥

𝑥=1 (9)

Eq. (8) and Eq. (9) help to calculate the total cost as

displayed in Eq. (7).

5.4.3 Fitness function

The fitness function has been used to check the

best suitable VMs on the ground of various

parameters like CPU utilization, Memory utilization,

Makespan and Bandwidth utilization as shown in Eq.

(10).

𝐹𝑋 =

1

𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟 × 𝑉𝑀𝑗
 [∑ ∑

1

𝑉𝑀

𝐶𝑃𝑈 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝐶𝑃𝑈𝑖𝑗

𝑉𝑀𝑗
𝑗=1

𝐷𝐶𝑖
𝑖=1 +

𝑀𝑒𝑚𝑜𝑟𝑦 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝑀𝑒𝑚𝑜𝑟𝑦𝑖𝑗
+

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑖𝑗
+

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖𝑗
] (10)

6. Simulation results discussion

For experimentations, four scenarios with a

group of 10, 20, and 30 VMs have been booked. For

checking the performance of the introduced

algorithm H-CSO, four other most widely used

algorithms such as CSO, PSO, ACO, and Max-Min

were used. The results which are obtained in terms of

makespan are demonstrated in Table 4 with respect

to all scenarios.

Fig. 2, 3, 4, and 5 are depicting the virtual

machines at the x-axis and makespan at the y-axis.

Fig. 2 is depicting the results of makespan those

have been found after simulation of the

CyberShake_1000 workflow. This dataset is

considered a data-intensive workflow created by

Southern California Earthquake Center. It is used to

analyze seismic hazards. It requires huge CPU power

and memory utilization. It can be seen that the

makespan is getting reduced with the increment of the

number of virtual machines. This is because a large

Table 4. Makespan evaluation (in Sec)

Scenarios VMs Max-Min ACO PSO CSO H-CSO

Scenario - 1

CyberShake_1000

10 5839.75 5219.27 4707.43 4611.87 4513.29

20 4590.90 4098.41 3778.52 3680.70 3494.52

30 3793.57 2621.64 2430.22 2393.03 2358.73

Scenario – 2

Montage_1000

10 2711.35 2542.62 2340.24 2309.29 2269.37

20 2459.23 2108.12 2080.54 2013.38 1977.27

30 1972.58 1647.57 1329.35 1302.74 1217.25

Scenario – 3

Inspiral_1000

10 66309.76 57308.39 53073.25 52313.87 50948.55

20 48301.02 43025.49 41217.13 40339.13 39239.24

30 28411.54 26208.27 24387.89 23982.28 22537.97

Scenario – 4

Sipht_1000

10 39121.29 36507.45 34213.08 32813.83 31117.42

20 30154.80 28309.74 25239.93 25209.13 23291.13

30 26321.82 22401.98 20467.78 19119.29 18285.98

Received: June 26, 2021. Revised: July 20, 2021. 430

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.37

Figure. 2 Makespan evaluations for cybershake_1000

tasks

Figure. 3 Makespan evaluations for montage_1000 tasks

Figure. 4 Makespan evaluations for inspiral_1000 tasks

number of VMs work together for a particular

problem without too much delay. With all sets of

VMs i.e. 10, 20, and 30, H-CSO outperforms all other

algorithms like Max-Min, ACO, PSO, and CSO. This

is because H-CSO gives good convergence due to

better initialization of VMs by the HEFT algorithm.

 Fig. 3 is representing the results of makespan

found after experiments with 1000 tasks in a

workflow named Montage. The Montage workflow

dataset is an astronomical application released and

used by NASA as images for inputs. Most of this

workflow has I/O-intensive data which requires less

CPU power and memory. The graph is showing that

the makespan is getting decremented while VMs get

increased; this is because the same work is executed

in less time with more than one virtual machine as

compared to a single one. With 10, 20, and 30 VMs,

H-CSO again performs better than all other

algorithms. On the above-said dataset, H-CSO gave

Figure. 5 Makespan evaluations for Sipht_1000 Tasks

Figure. 6 Cost evaluations for cybershake_1000 tasks

better performance due to good global searching and

improved tracing mode.

Fig. 4 is demonstrating the results of Makespan

associated with the Inspiral_1000 dataset. This

workflow comes from the field of physics and is used

to analyse gravitational wave-related data. This

dataset is CPU-intensive and requires a huge memory.

Here, H-CSO performs better on 10, 20, and 30 VMs

as compared to Max-Min, ACO, PSO, and CSO. Due

to better convergence and effective tracing mode as

compared to CSO, H-CSO performed well over CSO

and other algorithms. The reason of the better

convergence is the HEFT policy.

Fig. 5 is showing the makespan comparison for

1000 tasks belonging to Sipht workflow which are

dependent in nature. This workflow is derived from

the Harvard International Bioinformatics Center’s

project that represents an automated search for

sRNA-encoding genes of various bacteria. This

workflow requires high computational power,

memory and, I/O devices. In this scenario, H-CSO

again outperforms other algorithms for 10, 20, and 30

virtual machines due to the SMIW factor.

With these results, it is summarized that H-CSO

is having a healthier makespan for all scenarios in

contrast to other algorithms used in this simulation.

From Table 4, Fig. 2, 3, 4, and 5, it can be noticed

that the CSO and H-CSO work well. In overall

scenarios, H-CSO works better than other existing

algorithms because of better pre-processing of tasks

and better global searching, and good convergence

than others.

0

2000

4000

10 20 30

M
a

k
es

p
a

n

Virtual Machines

Max-Min

ACO

PSO

CSO

H-CSO

0

20000

40000

10 20 30

M
a

k
es

p
a

n

Virtual Machines

Max-Min

ACO

PSO

CSO

H-CSO

0

500

1000

10 20 30

C
o

st

Virtual Machines

Max-Min

ACO

PSO

CSO

H-CSO

Received: June 26, 2021. Revised: July 20, 2021. 431

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.37

Table 5. Cost consumption evaluation (in Indian Rupees)

Scenarios VMs Max-Min ACO PSO CSO H-CSO

Scenario - 1

CyberShake_1000

10 704.08 517.27 499.24 484.20 457.57

20 718.12 625.21 615.85 602.17 587.67

30 830.50 770.53 707.23 701.19 670.23

Scenario – 2

Montage_1000

10 238.48 201.43 189.53 181.29 165.38

20 241.19 219.07 202.63 190.52 183.58

30 249.04 230.71 208.15 197.58 191.29

Scenario – 3

Inspiral_1000

10 4281.40 3831.43 3755.38 3661.28 3629.47

20 4380.88 4024.85 3859.39 3753.38 3684.24

30 5994.97 5741.13 5649.67 5429.13 5219.65

Scenario – 4

Sipht_1000

10 3154.92 2915.03 2859.33 2810.53 2753.07

20 3620.48 3257.99 3198.45 2973.13 2915.29

30 3907.58 3519.39 3460.17 3351.29 3107.40

Figure. 7 Cost evaluations for montage_1000 tasks

Figure. 8 Cost evaluations for inspiral_1000 Tasks

Table 5 is presenting the comparison of the cost

of resources used in the simulation for all scenarios

as per the cost plan given in Table 3 and Eq. (7). Fig.

6, 7, 8, and 9 are showing the virtual machines and

cost at the x-axis and y-axis respectively.

Fig. 6 is depicting the cost comparison of

resources used for CyberShake workflows tasks. The

picture is showing that the proposed H-CSO is

consuming lesser costs than other algorithms with all

sets of VMs. The better results are achieved by H-

CSO due to efficient workflow task migration among

VMs as the SMIW method balances the tracing mode.

Fig. 7 is interpreting the cost comparison of

resources used for 1000 tasks belonging to the

Montage dataset.

While working on 10, 20 and, 30 VMs the cost of

the CSO is having lesser better as compared to the

PSO, ACO, and Max-Min algorithms. H-CSO

Figure. 9 Cost evaluations for sipht_1000 tasks

outperforms all algorithms over here just because of

finding the best VMs without wasting too much time

due to the SMIW integration in tracing mode.

Fig. 8 is demonstrating the cost comparison of

resources used for 1000 Inspiral workflow tasks.

When working on 10, 20, and 30 VMs; the cost is

found minimum by using H-CSO as compared to

other algorithms such as CSO, PSO, ACO, and Max-

Min due to searching for suitable VMs as early as

possible due to the HEFT and SMIW methods.

Fig. 9 is showing the cost comparison of resources

used for the fourth scenario that is having 1000

dependent tasks belonging to the Sipht dataset. The

graph tells that when working with 10, 20, and 30

virtual machines, the H-CSO is again working better

in terms of the processing cost as compared to other

algorithms shown in Fig. 9. H-CSO utilized lesser

cost as compared to others because it is intelligent

enough to identify and manage the best virtual

machines and put the tasks on them at a suitable time

due to the SMIW method.

With these results, it can be stated that the H-CSO

algorithm has beaten CSO, PSO, ACO, and Max-Min

algorithms with consuming lesser costs and having

better makespan with overall levels in all scenarios

due to better convergence and global optimization

rate. It is just because of the HEFT policy, velocity

management factor γ (SMIW). The CSO algorithm is

winning the race at the second position because of

0

100

200

300

10 20 30

C
o

st

Virtual Machines

Max-Min

ACO

PSO

CSO

H-CSO

0

2000

4000

6000

10 20 30

C
o

st

Virtual Machines

Max-Min

ACO

PSO

CSO

H-CSO

0

2000

4000

10 20 30
C

o
st

Virtual Machines

Max-Min

ACO

PSO

CSO

H-CSO

Received: June 26, 2021. Revised: July 20, 2021. 432

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.37

having the inspirational properties of ACO and PSO

and better convergence speed due to better global

searching property as compared to the Max-Min,

ACO and PSO.

7. Conclusion and future scope

IT industries and other organizations are moving

on the cloud regularly; this causes load increment on

the cloud servers. The workflow or task scheduling is

required to get managed this load. Scientists have

developed several algorithms in the field of workflow

task scheduling in order to schedule the tasks on

virtual machines. Many existing algorithms have

numerous drawbacks. In this research paper, a new

algorithm is introduced and simulated named H-CSO.

It removes a few drawbacks of the CSO algorithm

which is superior to other algorithms as found in the

related work. The proposed H-CSO algorithm has

been compared with the most widely used task

scheduling algorithms such as CSO, PSO, ACO, and

Max-Min with various datasets as described earlier.

A total of four scenarios had been designed with a set

of 10, 20, and 30 heterogeneous virtual machines in

the CloudSim tool which is open source and written

in Java.

For all scenarios, the proposed H-CSO algorithm

outperformed for makespan while consuming less

cost than other algorithms. This is because the HEFT

algorithm pre-processes the workflows and puts them

on the VMs in an efficient manner. The H-CSO is

initialized with a population generated by the HEFT

algorithm despite random initialization. The SMIW

method balances the velocity calculation method of

the tracing mode of the CSO. It protects the Cats to

go outside the search space. The proposed algorithm

is a generalized one and works better with all kinds

of scientific datasets i.e. workflows. The efficiency of

the proposed algorithm H-CSO found 2.99%, 2.87%,

3.35% and 5.77% better for CyberShake_1000,

Montage_1000, Inspiral_1000, and Sipht_1000

datasets respectively as compared to the CSO

algorithm in respect to makespan reduction. For cost

reduction, the proposed algorithm H-CSO is found

4.03%, 5.12%, 2.42% and 3.93% effective for the

CyberShake_1000, Montage_1000, Inspiral_1000,

and Sipht_1000 scientific datasets correspondingly as

compared to the standard CSO. This research showed

that cloud customers can execute their services in

faster mode by paying a little extra cost.

In the end, it is determined that the introduced H-

CSO algorithm is found effective than all other

algorithms in the account of makespan with the

minimum consuming cost. Still, there are chances of

the enhancement in H-CSO for restricting it from

getting stuck in local minima and premature

convergence. This problem may occur when the

number of iterations is immense in number.

In the future, it can be enhanced by integrating

any suitable local searching technique or any other

method for a better convergence of the proposed

algorithm.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

The paper drafting, editing, and simulation have

been carried out by the 1st author. The review,

directions for simulation, and supervision process

was carried out by the 2nd author.

References

[1] S. Elsherbiny, E. Eldaydamony, M. Alrahmawy,

and A. E. Reyad, “An Extended Intelligent

Water Drops Algorithm for Workflow

Scheduling in Cloud Computing Environment”,

Egyptian Informatics Journal, Vol. 9, No. 1, pp.

33-55, 2018.

[2] N. Zanoon and D. Rawshdeh, “STASR: A New

Task Scheduling Algorithm for Cloud

Environment”, Network Protocols and

Algorithms, Vol. 7, No. 2, pp. 81-95.

[3] J. K. Konjaang, J. Y. Maipan-uku, and K. K.

Kubuga, “An Efficient Max-Min Resource

Allocator and Task Scheduling Algorithm in

Cloud Computing Environment”, International

Journal of Computer Applications, Vol. 142, No.

8, pp. 25-30, 2016.

[4] A. A. maamari and F. A. Omara, “Task

Scheduling using PSO Algorithm in Cloud

Computing Environments”, International

Journal of Grid Distribution Computing, Vol. 8,

No. 5, pp. 245-256, 2015.

[5] I. R. K. Raju, P. S. Varma, M. V. R. Sundari, and

G. J. Moses, “Deadline Aware Two Stage

Scheduling Algorithm in Cloud Computing”,

Indian Journal of Science and Technology, Vol.

9, No. 4, pp. 1-10, 2016.

[6] R. J. Priyadarsini and L. Arockiam,

“Performance Evaluation of Task Scheduling in

Cloud Environment using Soft Computing

Algorithms”, International Journal of Computer

Science and Network, Vol. 4, No. 2, 387-391,

2015.

[7] B. Santosh and D. H. Manjaiah, “A Hybrid

AvgTask-Min and Max-Min Algorithm for

Scheduling Tasks in Cloud Computing”, In:

Received: June 26, 2021. Revised: July 20, 2021. 433

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.37

Proc. of IEEE International Conference on

Control, Instrumentation, Communication and

Computational Technologies, Kumaracoil, India,

pp. 325-328, 2015.

[8] R. Kapur, “A Workload Balanced Approach for

Resource Scheduling in Cloud Computing”, In:

Proc. of IEEE 8th Internation Conference on

Contemporary Computing (IC3), Noida, India,

2015.

[9] S. T. Dehkordi and V. K. Bardsiri, “TASA: A

New Task Scheduling Algorithm in Cloud

Computing”, Journal of Advances in Computer

Engineering and Technology, Vol. 1, No. 4, pp.

25-32, 2015.

[10] J. Bhagwan and S. Kumar, “An Intense Review

of Task Scheduling Algorithms in Cloud

Computing”, International Journal of Advanced

Research in Computer and Communication

Engineering, Vol. 5, No. 11, pp. 605-611, 2016.

[11] K. Etminani, M. Naghibzadeh, and N. R.

Yanehsari, “A Hybrid Min-Min Max-Min

Algorithm with Improved Performance”,

Department of Computer Engineering,

Ferdowsi University of Mashad, Iran.

[12] M. Kalra and S. Singh, “A Review of

Metaheuristic Scheduling Techniques in Cloud

Computing”, Egyptian Informatics Journal, Vol.

16, No. 3, pp. 275-295, 2015.

[13] R. K. Jena, “Multi Objective Task Scheduling in

Cloud Environment using Nested PSO

Framework”, In: Proc. of Procedia Computer

Science, Elsevier, Vo. 57, pp. 1219-1227, 2015.

[14] A. M. Ahmed, T. A. Rashid, and A. M. Saeed,

“Cat Swarm Optimization Algorithm: A Survey

and Performance Evaluation”, Computational

Intelligence and Neuroscience, Vol. 2020, pp. 1-

20, 2020.

[15] S. Yassir, Z. Mostapha, and T. Cluade, “E-

HEFT: Enhancement Hetrogeneous Earliest

Finish Time algorithm for Task Scheduling

based on Load Balancing in Cloud Computing”,

In: Prof. of International Conference on High

Performance Computing& Simulation, Orleans,

France, pp. 601-609, 2018.

[16] P. Pradhan, P. K. Behera, and B. N. B. Ray,

“Enhanced Max-Min Algorithm for Resource

Allocation in Cloud Computing”, International

Journal of Advanced Science and Technology,

Vol. 29, No. 8, pp. 1619-1628, 2020.

[17] S. Devipriya and C. Ramesh, “Improved Max-

Min Heuristic Model for Task Scheduling in

Cloud”, In: Proc. of International Conference on

Green Computing, Communication and

Conservation of Energy (ICGCE), Chennai,

India, pp. 883-888, 2013.

[18] X. Wei, “Task Scheduling Optimization

Strategy Using Improved Ant Colony

Optimization Algorithm in Cloud Computing”,

Journal of Ambient Intelligence and Humanized

Computing, 2020.

[19] G. R. N. Reddy and S. Phanikumar, “Multi

Objective Task Scheduling Using Modified Ant

Colony Optimization in Cloud Computing”,

International Journal of Intelligent Engineering

& Systems, Vol. 11, No. 3, pp. 242-250, 2018.

[20] A. M. S. Kumar and M. Venkatesan, “Multi-

Objective Task Scheduling Using Hybrid

Genetic-Ant Colony Optimization Algorithm in

Cloud Environment”, Wireless Personal

Communications, Vol. 107, pp. 1835-1848,

2019.

[21] Q. Guo, “Task Scheduling Based on Ant Colony

Optimization in Cloud Environment”, In: Proc.

of AIP Conference Proceedings, Vol. 1834,

2017.

[22] Y. Moon, H. Yu, J. Gil, and J. Lim, “A Slave

Ants Based Ant Colony Optimization Algorithm

for Task Scheduling in Cloud Computing

Environments”, Human-centric Computing and

Information Sciences, Vol. 7, No. 28, 2017.

[23] H. Yu, “Evaluation of Cloud Computing

Resource Scheduling Based on Improved

Optimization Algorithm”, Complex &

Intelligent Systems, 2020.

[24] H. Saleh, H. Nashaat, W. Saber, and H. M. Harb,

“IPSO Task Scheduling Algorithm for Large

Scale Data in Cloud Computing Environment”,

IEEE Access, Vol. 7, 2019.

[25] D. Gabi, A. S. Ismail, A. Zainal, Z. Zakaria, A.

Abraham, and N. M. Dankolo, “Cloud

Customers Service Selection Scheme Based on

Improved Conventional Cat Swarm

Optimization”, Neural Computing and

Applications, Vol. 32, pp. 14817-14838, 2020.

[26] S. Bilgaiyan, S. Sagnika, and M. Das,

“Workflow Scheduling in Cloud Computing

Environment Using Cat Swarm Optimization”,

In: Proc. of IEEE International Advance

Computing Conference (IACC), pp. 680-685,

2014.

[27] D. Gabi, A. S. Ismail, and N. M. Dankolo,

“Minimized Makespan Based Improved Cat

Swarm Optimization for Efficient Task

Scheduling in Cloud Datacenter”, In: Proc. of 3rd

High Performance Computing and Cluster

Technologies Conference, Guangzhou, China,

pp. 16-20, 2019.

[28] J. Bhagwan and S. Kumar, “Performance

Evaluation of Meta-Heuristic Algorithms for

Task Scheduling in Cloud Environment”,

Received: June 26, 2021. Revised: July 20, 2021. 434

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.37

International Journal of Advanced Research in

Science, Communication and Technology, Vol.

5, No. 2, pp. 87-93, 2021.

