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Abstract: Cloud computing technology is becoming popular in both academia and industries these days because of its 

dynamic and flexible infrastructure which provides good computing facilities through web networks without a place 

specification. In order to process the workflows, the cloud technology uses datacenters which consist of hosts having 

various homogeneous and heterogeneous virtual machines. Virtual machines play the role of real machines with 

multiple operating systems environments. Due to a wide acceptance of the cloud, the load on the cloud is increasing 

regularly. So, scheduling plays a key role to manage a machine load by mapping several workflows with available 

virtual machines. The scheduling can be divided into two types: dynamic and static scheduling. Dynamic scheduling 

can be done effectively by meta-heuristic computing techniques. In the field of cloud computing, many scientists have 

developed various algorithms for workflow scheduling in order to schedule the workflows. The Cat Swarm 

Optimization works fine as compared to the Max-Min algorithm, Particle Swarm, and Ant Colony Optimization 

algorithms. In this research, a new algorithm is designed named H-CSO by using the concept of Heterogeneous Earliest 

Finish Time and Cat Swarm Optimization algorithms. After experiments, it is found that the proposed H-CSO 

algorithm gives efficient makespan at realistic costs as matched to the Cat Swarm Optimization. The newly designed 

H-CSO algorithm is 2.99%, 2.87%, 3.35%, and 5.77% efficient for CyberShake_1000, Montage_1000, Inspiral_1000, 

and Sipht_1000 datasets respectively as compared to the standard Cat Swarm Optimization in terms of average 

makespan reduction. In case of cost reduction, the proposed algorithm is 4.03%, 5.12%, 2.42%, and 3.93 effective as 

compared to the Cat Swarm Optimization for CyberShake_1000, Montage_1000, Inspiral_1000, and Sipht_1000 

datasets respectively. 

Keywords: Ant colony optimization (ACO), Cloud computing, Cat swarm optimization (CSO), Datacenter, 

heterogeneous earliest finish time (HEFT), H-CSO, Max-min, Particle swarm optimization (PSO), Self-motivated 

inertia weight (SMIW), Virtual machines (VMs). 

 

 

1. Introduction 

Nowadays, cloud computing acceptability is 

growing regularly among various organizations due 

to its dynamic infrastructure and pay-per-usages 

flexibility. Cloud computing allows its users to share 

hardware resources, software applications, network 

resources, workspace for application developments, 

mailing services, etc. Cloud technology is an 

abstraction and isolation of physical resources which 

works basically on three prototypes namely Software 

as a Service, Platform as a Service, and Infrastructure 

as a Service [1, 2]. To fulfil the requirements of a 

user, cloud technology follows a process of creating 

a datacenter consisting of a single or various 

computing machines called hosts connected by high-

speed networks. A host is consisting of various 

homogeneous or heterogeneous virtual machines 

which act just like physical computing machines 

having guest operating systems for providing all 

computing facilities [3, 4]. The heterogeneous 

environment is a collection of various virtual 

machines having different computing speeds, 

memories, bandwidths, and other parameters 

compared to each other whereas the homogeneous 

environment is made of various virtual machines 
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having similar parameters. The resources of a host are 

shared among various virtual machines and a virtual 

machine can have multiple applications and 

operating systems that are being used to ensure better 

resource utilization and optimization for a large 

group of tasks or workflows [5]. 

Some issues available in cloud computing are 

scheduling mechanisms, data-centers network 

expansion, security, energy consumption, and load 

balancing [6, 7]. Among these issues, workflow 

scheduling or resources mapping plays a significant 

role in cloud resources performance. In workflows 

scheduling, the workflows tasks sent by a user are 

scheduled on virtual machines in a manner that the 

submitted tasks could be executed in a minimum 

execution time. Such a process has to follow a few 

constraints which are given by the cloud system for 

several user requests. These constraints can be 

satisfied by many parameters such as Makespan, 

Resources Cost, CPU Utilization, Response Time, 

Throughput, Waiting Time, Turnaround Time, and 

lots more [8]. Appropriate scheduling allows 

processing a large volume of workflows with a 

specific volume of resources in a minimum time. 

Many scientists have proposed various algorithms for 

scheduling workflow tasks in cloud computing 

system. Each algorithm has its strengths and 

weaknesses. The objective of the scheduling is to 

process a large volume of workflow tasks in a 

minimum makespan and better management of 

virtual machines under the minimum utilization of 

processing cost [9]. 

In this research, the HEFT algorithm has been 

combined into the Cat Swarm Optimization 

algorithm. A Self-Motivated Inertia Weight has also 

been included in the velocity calculation formula of 

the tracing mode of the CSO to control the outranged 

velocity problem of the Cat Swarm Optimization. 

The proposed algorithm achieves better results than 

Max-Min, ACO, PSO, and CSO algorithms in terms 

of makespan and computing cost. 

1.1 Scheduling algorithms 

Workflow tasks or independent task scheduling 

acts as a key player in the cloud computing system 

while allocating workflow tasks to virtual machines 

for computations. As said earlier, the goals of a 

scheduling algorithm are considered as minimization 

of makespan, faster response time, increasing 

resource utilization, managing the system load, and 

reducing the processing cost, etc [10].  

The algorithms used in this paper for designing a 

new technique are summarized as below: 

 

a) Max-Min – Max-Min algorithm works on the 

policy of maximum expected completion time 

(MET). This method is very similar to Min-Min, 

except it discovers the MCT (maximum expected 

completion time) of each task available in the 

Meta-Task list and assigns it to the corresponding 

resource. As the name suggested, it gives higher 

importance to large tasks first for processing as 

compared to smaller tasks. This algorithm gives a 

good performance when several small tasks are 

available along with large tasks [11]. 

b) ACO – Ant Colony Optimization works on the 

pattern of the behavior of real ants that try to find 

a straight route among their colonies and food. It 

was introduced by Dorigo in the year 1992. Ants 

release pheromone on the ways they move while 

walking through their colonies and the source of 

the food. As many ants walk through and drop the 

evaporation of pheromone, the intensity of 

pheromone is increased. As time passes on, the 

more intensity of pheromone helps the ants to find 

the shortest track between their food sources. The 

ACO can be useful to resolve various difficulties 

in many fields as well as task scheduling and load 

balancing in the area of the cloud system [12]. For 

scheduling tasks in cloud computing, the number 

of ants is taken less or equivalent to the number of 

tasks. To execute the task, every ant starts with an 

random task Ti and resource Rj. The probability 

function given in Eq. (1) is used to decide a 

particular task to be executed on a specific 

resource. 

 

𝑃𝑖𝑗 =
(𝜏𝑖𝑗)𝛼 (𝜂𝑖𝑗)𝛽

∑(𝜏𝑖𝑗)𝛼 (𝜂𝑖𝑗)𝛽                          (1) 

 

Where, 𝜏𝑖𝑗 Symbolises the pheromone value 

related to task Ti and resource Rj 

𝜂𝑖𝑗 Represents the heuristic function 

𝛼   Regulates the influence of pheromone value 

𝛽   Governs the impact of heuristic function 

 

Here, every ant shapes the entire solution of 

mapping all tasks to available resources step by 

step. Initially, the pheromone value is set as a 

positive constant then, at the end of each iteration 

number, this value is changed by the ant. Finally, 

an optimum solution is provided. 

c) PSO – Particle Swarm Optimization was 

announced by Kennedy and Eberhart in 1995 by 

the inspiration of particles’ social behaviours. It is 

similar to the behaviours of the birds searching for 

food. The PSO works in the following steps: 

Initialization of the population, updating the 
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particles’ velocity and position, Fitness 

calculation, and finding out the optimal solution. 

In the case of search-space having multi-

dimensions, each particle is moved and associated 

with a velocity and its position. The particle finds 

out its best position based on its experiences as 

well as its neighbour experiences [13]. 

d) Cat Swarm Optimization – In 2006 a novel 

algorithm was developed named Cat Swarm 

Optimization by the inspiration of PSO and ACO 

behaviours. This technique copies the behaviour 

of the actual cat. The authors developed two 

processes of CSO algorithm: Seeking Process and 

Tracing Process. The seeking method is said to be 

a global search and the tracing method is a local 

search. In seeking mode, the cat takes a rest and 

moves slowly for seeking the prey. In tracing 

mode, the cat moves fast with a velocity and few 

other parameters. There are certain parameters in 

CSO like Seeking Memory Pool (SMP), Seeking 

Range of the Selected Dimension (SRD), Self 

Position Consideration (SPC), Counts of 

Dimension to Change (CDC), and MR (Mixing 

Ratio). In SMP, one cat is randomly selected for 

moving to the next position. CDC and SRD decide 

the random mutations for new positions. The CDC 

decides the number of dimensions to be mutated 

and the amount of mutation is decided by SRD. 

SPC Boolean value will decide how many replicas 

can be generated in seeking mode [14]. 

e) HEFT Algorithm – The HEFT works in two 

phases. The first phase is task prioritization and 

the second one is virtual machine selection. In the 

first phase, HEFT calculates the rank of each task 

based on average computation time, and average 

communication cost and assigns priority to each 

task. The task queue is set by decreasing the order 

of the task’s rank. In the second phase, the tasks 

are scheduled on the virtual machine which is 

having Earliest Finish Time [15]. 

 

The rest of the paper is drafted as: The related 

work has been drawn in section 2. Problem 

formulation is summarized in section 3. The 

proposed methodology is well exposed in section 4. 

Section 5 is having a simulation setup, describing 

simulation parameters, cost plan, and performance 

metrics. Simulation results and discussion is 

explained in Section 6. Finally, section 7 comprises 

the conclusion and future scopes of this research. 

2. Related work 

In cloud technology, extensive research has taken 

place in the field of task scheduling and balancing of 

the load. Several algorithms have been used for task 

or workflow scheduling with different scheduling 

policies and scenarios. A deep study is illustrating that 

in [16] the authors proposed an algorithm named 

EMM (Enhanced Max-Min). The proposed EMM 

algorithm was implemented in the CloudSim tool. 

After simulation, it is found that the proposed EMM 

algorithm is effective than the standard Max-Min 

method. The average waiting time and completion 

time of the scheduling were reduced and resources 

allocation was optimized. In [17] the scientists 

proposed a modified Max-Min algorithm. The 

modified approach is prepared using RASA and Max-

Min algorithm strategy. The proposed algorithm 

works based on expected execution time rather than 

the completion time. So, the authors are saying the 

proposed Max-Min method is effective than the 

original Max-Min in terms of makespan. The scientist 

[18] improved Ant Colony Optimization using a 

dynamic volatile coefficient and a virtual machine 

load weight coefficient in order to improve the 

searching capacity. The proposed method improved 

load balancing, convergence speed, and completion 

time. The proposed algorithm showed its 

effectiveness as compared to other methods after 

simulation. The author of [19] introduced a 

scheduling scheme based on a Modified ACO 

algorithm named MACO. The algorithm was 

introduced to achieve multiple objectives. The 

MACO improved the results by decreasing makespan 

and degree of imbalance as compared to traditional 

ACO. The experiments were carried out in the 

CloudSim tool. The paper [20] showed that a multi-

objective hybrid algorithm was developed using 

Genetic Algorithm and Ant Colony Optimization 

algorithms named HGA-ACO. The proposed 

algorithm worked for response time, completion time, 

and throughput. The pheromone was generated by GA 

and fed to ACO and the ACO was used to improve the 

crossover solution of GA. The simulation 

environment was created using the CloudSim tool. 

After simulation, the authors found that the HGA-

ACO performed efficiently as compared to ACO and 

GA algorithms. In the paper [21], the major aim of the 

author was to reduce the makespan and cost of the task 

scheduling. The author improved the initialization 

problem of the ACO algorithm and proposed an MO-

ACO algorithm. The pheromone update function and 

the heuristic function were also improved. The 

CloudSim tool was used for simulation and found that 

the proposed MO-ACO functioned efficiently as 

matched to traditional ACO and Min-Min algorithms 

in respect to the degree of imbalance, computing cost, 

and makespan. In [22] for allocation of the tasks to 

virtual machines efficiently, the scientists developed 
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a novel algorithm called SACO. The proposed policy 

works based on slave ants to improve the global 

searching power of the Ant Colony Optimization. For 

improvement, diversification and reinforcement 

policies were adopted and a long path was avoided for 

ACO ants. The novel algorithm SACO worked 

effectively as compared to the ACO and IACO in the 

account of the makespan. The researcher in [23] 

introduced an Improved PSO algorithm called IPSO 

for resource scheduling. The improvement was made 

based on the changes in the constant coefficients in 

the velocity variation. The IPSO outperformed the 

standard PSO in terms of processing time and fitness. 

The paper [24] described that the authors developed 

an IPSO algorithm for task allocation problems. The 

tasks were divided into batches dynamically. The 

results of the small batches were obtained and merged 

into a single solution. This process was found 

effective as compared to the Honey Bee, Round-

Robin, and ACO algorithms for load balancing, 

minimizing the makespan and degree of imbalance. 

The CloudSim simulator was used for experiments. 

The authors in [25] proposed an algorithm named 

Dynamic Multi-Objective Orthogonal Taguchi-Cat. 

The Taguchi approach was inserted to make a balance 

between local and global search. The Pareto dominant 

scheme was also used for selecting the appropriate 

services by a customer. The proposed DMOOTC was 

found efficient than Improved Min-Min, MOACO, 

and MOPSO concerning the execution time and 

computation cost for the overall environment. In the 

paper [26], the scientists presented a Cat Swarm 

Optimization Grounded policy for mapping the tasks 

on suitable resources. The customized CSO algorithm 

was tested using a workflow and found efficient as 

compared to the PSO algorithm in terms of optimal 

task scheduling, load distribution, Transmission Cost, 

etc. The reason for the good performance is the 

position update with intelligence instead of random 

updating. In [27], the authors modify the traditional 

Cat Swarm Optimization with Linear Descending 

Inertia Weight equation in the tracing mode. The idea 

was implemented using the CloudSim tool and it was 

found that the designed algorithm CSO-LDIW 

performed better as linked to PSO-LDIW and the 

traditional CSO in terms of makespan. 

It is identified from the related work that the Max-

Min is a heuristic algorithm and used for static 

scheduling only. Meta-heuristic algorithms provide 

optimal solutions as compared to the heuristic 

approaches. Ant Colony Optimization has beaten by 

the PSO, the Cat Swarm Optimization worked well as 

compared to the PSO. It is found that the scheduling 

algorithms have various limitations. For example, the 

Max-Min algorithm is very old and is not able to deal 

with dynamic scheduling effectively. The Ant Colony 

Optimization is best suited for local search and has a 

slow convergence speed, so it doesn’t give good 

performance in cloud computing. The PSO and CSO 

algorithms are famous for global searching. The Cat 

Swarm Optimization algorithm gets reached outside 

the search space due to the unbalanced velocity 

calculation formula in the tracing mode. The Cat 

Swarm Optimization algorithm also gets stuck in local 

minima because all the time, the maximum number of 

cats resides in the Seeking Mode. 

3. Problem formulation 

Task scheduling on virtual machines is a 

stimulating task in cloud computing. To the current 

day, various algorithms have been developed by 

scientists to solve this problem. It is observed from the 

literature survey that each meta-heuristic algorithm 

has few limitations. The Max-Min algorithm is useful 

for static scheduling, and where the tasks are 

independent. The Max-Min algorithm is very old and 

starts to map the tasks in decreasing order by their 

length. So, the performance cannot be achieved well 

enough. The Ant colony optimization works on the 

principle of insects i.e. ants. It is a local searching 

technique; so, its global searching part is weak. 

Particle Swarm Optimization works on the principle 

of a flock of birds. This algorithm has very good 

strength in a case of global searching. So, it easily gets 

trapped in local minima. The next famous algorithm 

in the literature is Cat Swarm Optimization which  

 
Table 1. Acronyms 

Acronym Meaning 

CatK Current Cat 

DAG Directed Acyclic Graph 

DC Datacenter 

exp Exponential Expression 

itr Current Iteration 

itrmax Number of Iterations 

MR Mixing Ratio 

rankU Upward Rank 

Rs. Indian Currency 

SMIW Self-Motivated Inertia Weight 

Sec Seconds 

SMP Seeking Memory Pool 

Ti Current Task 

Tn N number of Tasks 

VMs Virtual Machines 

Vm M number of Virtual Machines 

V Velocity Factor 

VK Velocity of Current Cat 

XK Current Position of Cat 

XBEST Best Cat as per Fitness Value 

γ SMIW Method 

γmax Constant Value 
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works just like the behaviour of a real cat. Most of the 

Cats are remaining in seeking modes all time. So, it 

gets trapped in local mode i.e. tracing mode. 

Sometimes, Cat Swarm Algorithm escapes itself from 

the search space due to an unbalanced velocity 

equation in tracing mode, which affects the 

performance of the algorithm. Hence, a new algorithm 

needs to be designed to reduce the makespan and 

processing cost. 

Table 1 is showing the meanings of the acronyms 

used in this research paper. 

4. Proposed methodology 

It is found from the literature review that every 

algorithm alone is not able to perform the optimal 

solution for workflow scheduling. Many researchers 

suggested that improved versions of algorithms are 

required due to many weaknesses like local minima 

trapping, pre-mature convergence, escaping of the 

CSO from search space, etc. Although CSO (Cat 

Swarm Optimization) works fine in terms of 

computation time and convergence still, it has some 

limitations which are identified by literature review 

and described in detail as follows: 

1) Initial populations of cats are given randomly, 

which increases the computation time. 

2) Sometimes Cats move outside the search space 

due to an unexpected jump in the velocity of the 

Cats. This disturbs the performance of CSO. 

3) The global search process of CSO is quite fine but 

without a better local search, it could be difficult 

to find optimal results. The Cat Swarm 

Optimization algorithm gets jammed in local 

optima due to the number of cats in the seeking 

procedure is always remaining more than the cats 

residing in the tracing procedure. This may affect 

the mutation process in the tracing mode due to 

which desirable optimal results could not be 

obtained.  

4) There is a balance mismatch between Tracing and 

Seeking Mode. Due to which the computation 

time may increase while working with this 

algorithm. 

In this research paper, a new algorithm has been 

introduced using a combination of HEFT, and CSO 

to make efficient the performance of the cloud 

system. The Self-Motivated Inertia Weight (SMIW) 

factor has also been incorporated to overcome the 

problem of outranging the Cats’ velocity. Hence, 

there is no need to check and set the velocities to their 

initial values again and again and the performance 

may be increased. The SMIW factor is calculated by 

Eq. (3) explained in step 4. 

The description of the proposed H-CSO algorithm 

is given in the following steps: 

Step 1: Initialize various parameters like velocity 

factor (V) for all cats. For position update, c, and 

𝛾𝑚𝑎𝑥  are set greater than 1 let’s say 2.0 value for 

each. The coefficient c1 is set to 1.5. Random 

variable r1 varies between 0 and 1. The number of 

iterations is 300. The numbers of initial solutions are 

set to 100. These parameters are also shown in Table 

2. MR (Mixing Ratio) factor is set to 0.2-0.3 which 

means that 20%-30% of Cats will be distributed to the 

Tracing mode and the remaining will be in the 

Seeking mode of the CSO algorithm. 

Step 2: The average execution times of all VMs 

are calculated. After this, the workflows are fed into 

the HEFT algorithm. In the case of a workflow, the 

HEFT policy sets the ranks upwards i.e. from 

children to parents. If the current task is the last task 

in the DAG then the rank is calculated by the average 

execution of all VMs otherwise the HEFT technique 

sets the ranking to the workflow tasks by the 

following Eq. (2). 

 

𝑟𝑎𝑛𝑘𝑢(𝑡𝑖) = 𝑊𝐴𝑣𝑔𝑖 +

𝑀𝑎𝑥 𝑡𝑗ͼ 𝑆𝑢𝑐𝑐 (𝑡𝑖) (𝐶𝐴𝑣𝑔𝑖𝑗 + 𝑟𝑎𝑛𝑘𝑢(𝑡𝑗))            (2) 

 

Where WAvgi is the average execution cost, Succ (ti) 

is the set of the immediate successor of task ti , and 

CAvgi,j  is the average communication cost. 

After assigning the workflows tasks, the tasks are 

submitted to VMs for processing. Then, the solution 

is checked by the fitness function given in Eq. (10). 

If the solution is optimized then, the algorithm is 

stopped otherwise it goes to the next step. 

Step 3: In this step, the population obtained by the 

HEFT policy is filled into the CSO algorithm. Here, 

S numbers of Cats are created with the help of the 

HEFT population. The initial velocity values are 

given to each cat in dimension D. After this, by using 

the MR value the cats are dispersed into seeking and 

tracing steps. 

Step 4: The current CatK is checked for seeking or 

tracing process. If it is found in seeking place then, 

the seeking method is processed otherwise the tracing 

method is processed. The seeking and tracing modes 

are explained as below: 

a) Seeking Mode: In seeking mode the positions 

of the current CatK is replaced by the 

following way: The S numbers of copies are 

generated of current CatK as per SMP. Now, 

it is checked the fitness of generated copies 

of CatK and many best cats are found. The 

best cat is picked up randomly and the current  
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       Proposed Algorithm (H-CSO) 

       Input (Tasks (T1, T2, T3 … Tn), Virtual Machines (VM1, VM2, VM3 … VMm) 

       Output (Optimal Makespan and Cost of n Tasks on m VMs) 

       BEGIN PROCEDURE 

1.  Initialize variables: velocity factor V, c, 𝛾𝑚𝑎𝑥, Coefficient c1, r1, MR flag, and no. of iterations 

 /* Calculate Ranks of Workflows Tasks in DAG using HEFT Algorithm */ 

2.  Send workflows to HEFT 

3.  For Each Task in DAG Do 

4.      Calculate average execution time of all VMs 

        5.           If Task ti is the last Task Then 

        6.               Rank value of ti = its average execution time 

        7.           Else 

        8.               𝑟𝑎𝑛𝑘𝑢(𝑡𝑖) = 𝑊𝐴𝑣𝑔𝑖 + 𝑀𝑎𝑥 𝑡𝑗ͼ 𝑆𝑢𝑐𝑐 (𝑡𝑖) (𝐶𝐴𝑣𝑔𝑖𝑗 + 𝑟𝑎𝑛𝑘𝑢(𝑡𝑗)) 

                                Where WAvgi is average execution cost 

                                Succ (ti) is set of immediate successor of task ti  

                                CAvgi,j  is average communication cost 

        9.           End If      

       10.     End For 

       11.     Assign Tasks to VMs according to HEFT Rank 

       12.     If Solution is not Optimized Then 

       13.        Generate a set of Cats by the Population generated by HEFT of Size S 

       14.        Initialize the velocity V of each Cat 

       15.            While No. of Iterations not Exceeded Do 

       16.              For K=1 to S 

       17.                 According to Mixing Ratio (MR) flag Distribute Cats to Seeking and Tracing Modes 

       18.                 If current CatK is in Seeking Mode Then 

       19.                     Generate S (SMP) Copies of CatK and Spread them in D Dimensions where each Cat 

has a velocity (VK, D) 

       20.                     Evaluate the Fitness value of all Copies and Discover Best Cats (XBEST, D) 

       21.                     Replace Original CatK with the Copy of Best Cats (XBEST, D) 

       22.                  Else If current CatK is in Tracing Mode Then 

       23.                     Compute and Update CatK velocity by following equations: 

       24.                          𝛾 =  𝛾𝑚𝑎𝑥 × exp (−𝑐 × (
𝑖𝑡𝑟

𝑖𝑡𝑟𝑚𝑎𝑥 
)

𝑐

) 

                                         Where, 𝛾 is a weight factor calculated by Self-Motivated Inertia Weight method 

                                          𝛾𝑚𝑎𝑥 and 𝑐 are constant factors greater than 1, both are set as 2. 

       25.                          𝑉𝐾,𝐷 =   γ × 𝑉𝐾,𝐷 + (𝑐1 × 𝑟1 × ( 𝑋𝐵𝐸𝑆𝑇,𝐷 −  𝑋𝐾,𝐷)) 

                           Where, D = 1, 2, 3, …, Dn. 

                           c1 is acceleration coefficient, r1 is random number in the range of [0, 1] 

       26.                     Update the position of every dimension of CatK by using following equation: 

       27.                         𝑋𝐾,𝐷 =  𝑋𝐾,𝐷 +  𝑉𝐾,𝐷 

       28.                     Evaluate Fitness of all Cats and Discover Best Cats (XBEST, D) 

       29.                 End If 

       30.                 Update Best Cats (XBEST, D) in Memory 

       31.              End For 

       32.            End While 

       33.     End If 

       34.     return (Optimal Solution) 

      END PROCEDURE 

Figure. 1 Pseudo-code of proposed algorithm H-CSO 

 

CatK is replaced with that best cat in 

dimension D and saved into memory. 

b) Tracing Mode: In tracing mode, the position 

and velocity of the current CatK is replaced 

by the given Eq. (3), (4), and (5). 

 

𝛾 =  𝛾𝑚𝑎𝑥 × exp (−𝑐 × (
𝑖𝑡𝑟

𝑖𝑡𝑟𝑚𝑎𝑥 
)

𝑐
)       (3) 

 

Here, 𝛾 is the weight factor calculated by the 

above Eq. (3), 𝛾𝑚𝑎𝑥  and 𝑐  are constant 

values and set to 2.0. itr is the current 
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iteration number and itrmax is the maximum 

number of iterations. 
This 𝛾 (SMIW factor) is integrated into 

the following Eq. (4) for balancing the 

velocity of the tracing mode. 

 

𝑉𝐾,𝐷 =   γ × 𝑉𝐾,𝐷 + (𝑐1 × 𝑟1 × ( 𝑋𝐵𝐸𝑆𝑇,𝐷 −

  𝑋𝐾,𝐷))                                                                    (4) 

 

Here, D = 1, 2, 3, …, Dn. c1 is the 

acceleration coefficient i.e. 1.5, r1 is set as a 

random number between [0, 1]. 

Now, with the help of Eq. (5) the position 

of the current CatK is updated. 

 

𝑋𝐾,𝐷 =  𝑋𝐾,𝐷 +  𝑉𝐾,𝐷                                         (5) 
 

Here, XK,D is the position, and VK,D is the 

velocity of cats in dimension D. 

After this, the fitness of the Cats is 

checked and updated in the memory. 

Step 5: This process continues till the stopping 

condition is not met as displayed in Fig. 1. 

The pseudo-code of the newly designed 

algorithm is represented in Fig. 1. The proposed 

algorithm is able to overcome the initialization 

problems of the original CSO algorithm due to the 

HEFT policy. It speeds up the proposed algorithm for 

better convergence due to pre-processing of the 

workflows and the SMIW method overcomes the 

problem of escaping the Cats from the search space, 

which also improves the results. 

5. Simulation setup 

To measure the performance of introduced H-

CSO and other existing scheduling algorithms, an 

open-source tool named CloudSim has been used 

which is written in Java. CloudSim provides an 

environment to simulate the scheduling, load 

balancing, and other policies. The experiments have 

been done over a machine with Intel (R) Core (TM) 

i3-5005U CPU @ 2.00 GHz, a RAM of 4.00 GB, 1 

TB HDD, and running a Windows 10 64-bit 

operating system [28]. 

5.1 Parameters 

 For experiments, one PowerDatacenter has been 

created which has 25 GB RAM, 1000 MIPS speed 

per virtual machine, storage 1 TB, and bandwidth 

50000 bps. The DC’s OS is Linux. The system 

architecture of this DC is x86, VMM is Xen. Table 2 

depicts the parameters configured for a  

 

Table 2. Simulation parameters 

PowerDatacenter 

Parameter Values 

No. of Hosts 1 

System Design x86 

VMM Xen 

Operating System Linux 

Number of Cloudlets 1000 in Each Workflow 

Numbers of VMs 10, 20 and 30 

CPU (PEs Number) 1 

RAM per VM 512-1024 MB 

Bandwidth 1000-1500 bps 

Processing Elements 

Power per VM 
500 – 1000 MIPS 

Image Size 10000 MB 

Policy Type Time Shared 

ACO 

No. of Initial Ants (m) 100 

No. of Iterations 300 

Q, Alpha, Beta, Gamma, 

Rho 

1, 2, 1, 4, 0.05 

Respectively 

PSO 

No. of Particles 100 

No. of Iterations 300 

Local and Global 

Weights (C1 and C2) 
1.5 

CSO and H-CSO 

No. of Cats 100 

Iterations 300 

Weight Coefficient (C1) 1.5 

r1 is Random Variable [0, 1] 

Mixing Ratio (MR) 

Percentage 
Random [0-1] i.e. 0.2-0.3 

 

simulation environment with heterogeneous VMs in 

the simulator. VMs contain 1 PE, 512-1024 MB 

RAM, 1000-1500 bps Bandwidth, 500-1000 MIPS of 

Processing Element and, 10000 MB Image size. The 

scheduling policy has been set as Time Shared. The 

required parameters of ACO, PSO, and CSO are also 

depicted in Table 2 [28]. 

5.2 Cost plan 

The cost strategy of a system involves processing 

cost, memory usage cost, bandwidth cost, and storage 

cost as shown in Table 3.  

5.3 Cloudlets 

For experiments, scientific workflows datasets 

having different types of tasks have been used like 

CyberShake, Montage, Inspiral and, Sipht. Each 

dataset has 1000 tasks. 

5.4 Performance metrics 
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Table 3. Cost Plan (in Indian Rupees) 

Resource Processor RAM Storage Bandwidth 

Size 
500-1000 

MIPS 

512 

MB 
Unlimited 1000 bps 

Cost 

Rs. 3.0 

per 

processor 

Rs. 

0.05 

per 

MB 

Rs. 0.1 
Rs. 0.1 

per MB 

5.4.1 Makespan 

Makespan [24] is defined as the finishing time of 

a group of tasks. It is calculated by the given Eq. (6). 

 

Makespan = max (CTi) ti∈tasks                               (6) 

 

Here, CTi is the completion time of Task Ti 

5.4.2 Computing cost 

Computing Cost is another vital metric because 

the end-users want a good service at a minimum cost. 

The cost can be calculated by Eq. (7). 

 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =
𝑀𝐹+𝐶𝐹

2
                             (7) 

 

Where, MF is a Movement Factor and CF is a Cost 

Factor 

 

𝑀𝐹 =
1

𝑁𝑜.  𝑜𝑓 𝐻𝑜𝑠𝑡𝑠/𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑠 
[∑ (

𝑁𝑜.  𝑜𝑓 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑈𝑠𝑒𝑑 𝑉𝑀
)𝑉𝑀𝑥

𝑥=1 ]  

(8) 

 

𝐶𝐹 = ∑ (
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 × 𝑀𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝑇𝑎𝑠𝑘𝑠

𝑉𝑀 × 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟
)𝑉𝑀𝑥

𝑥=1       (9) 

 

Eq. (8) and Eq. (9) help to calculate the total cost as 

displayed in Eq. (7). 

5.4.3 Fitness function 

The fitness function has been used to check the 

best suitable VMs on the ground of various 

parameters like CPU utilization, Memory utilization, 

Makespan and Bandwidth utilization as shown in Eq. 

(10). 

 

𝐹𝑋 =

 
1

𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟 × 𝑉𝑀𝑗
 [∑ ∑

1

𝑉𝑀
 
𝐶𝑃𝑈 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝐶𝑃𝑈𝑖𝑗

𝑉𝑀𝑗
𝑗=1

𝐷𝐶𝑖
𝑖=1 +

𝑀𝑒𝑚𝑜𝑟𝑦 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝑀𝑒𝑚𝑜𝑟𝑦𝑖𝑗
+

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑖𝑗
+

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑖𝑗
]                                                 (10) 

6. Simulation results discussion 

For experimentations, four scenarios with a 

group of 10, 20, and 30 VMs have been booked. For 

checking the performance of the introduced 

algorithm H-CSO, four other most widely used 

algorithms such as CSO, PSO, ACO, and Max-Min 

were used. The results which are obtained in terms of 

makespan are demonstrated in Table 4 with respect 

to all scenarios. 

Fig. 2, 3, 4, and 5 are depicting the virtual 

machines at the x-axis and makespan at the y-axis. 

Fig. 2 is depicting the results of makespan those 

have been found after simulation of the 

CyberShake_1000 workflow. This dataset is 

considered a data-intensive workflow created by 

Southern California Earthquake Center. It is used to 

analyze seismic hazards. It requires huge CPU power 

and memory utilization. It can be seen that the 

makespan is getting reduced with the increment of the 

number of virtual machines. This is because a large  

 

Table 4. Makespan evaluation (in Sec) 

Scenarios VMs Max-Min ACO PSO CSO H-CSO 

Scenario - 1 

CyberShake_1000 

10 5839.75 5219.27 4707.43 4611.87 4513.29 

20 4590.90 4098.41 3778.52 3680.70 3494.52 

30 3793.57 2621.64 2430.22 2393.03 2358.73 

Scenario – 2 

Montage_1000 

10 2711.35 2542.62 2340.24 2309.29 2269.37 

20 2459.23 2108.12 2080.54 2013.38 1977.27 

30 1972.58 1647.57 1329.35 1302.74 1217.25 

Scenario – 3 

Inspiral_1000 

10 66309.76 57308.39 53073.25 52313.87 50948.55 

20 48301.02 43025.49 41217.13 40339.13 39239.24 

30 28411.54 26208.27 24387.89 23982.28 22537.97 

Scenario – 4 

Sipht_1000 

10 39121.29 36507.45 34213.08 32813.83 31117.42 

20 30154.80 28309.74 25239.93 25209.13 23291.13 

30 26321.82 22401.98 20467.78 19119.29 18285.98 
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Figure. 2 Makespan evaluations for cybershake_1000 

tasks 

 

 
Figure. 3 Makespan evaluations for montage_1000 tasks 

 

 
Figure. 4 Makespan evaluations for inspiral_1000 tasks 

 

number of VMs work together for a particular 

problem without too much delay. With all sets of 

VMs i.e. 10, 20, and 30, H-CSO outperforms all other 

algorithms like Max-Min, ACO, PSO, and CSO. This 

is because H-CSO gives good convergence due to 

better initialization of VMs by the HEFT algorithm. 

 Fig. 3 is representing the results of makespan 

found after experiments with 1000 tasks in a 

workflow named Montage. The Montage workflow 

dataset is an astronomical application released and 

used by NASA as images for inputs. Most of this 

workflow has I/O-intensive data which requires less 

CPU power and memory. The graph is showing that 

the makespan is getting decremented while VMs get 

increased; this is because the same work is executed 

in less time with more than one virtual machine as 

compared to a single one. With 10, 20, and 30 VMs, 

H-CSO again performs better than all other 

algorithms. On the above-said dataset, H-CSO gave  

 

 
Figure. 5 Makespan evaluations for Sipht_1000 Tasks 

 

 
Figure. 6 Cost evaluations for cybershake_1000 tasks 

 

better performance due to good global searching and 

improved tracing mode. 

Fig. 4 is demonstrating the results of Makespan 

associated with the Inspiral_1000 dataset. This 

workflow comes from the field of physics and is used 

to analyse gravitational wave-related data. This 

dataset is CPU-intensive and requires a huge memory. 

Here, H-CSO performs better on 10, 20, and 30 VMs 

as compared to Max-Min, ACO, PSO, and CSO. Due 

to better convergence and effective tracing mode as 

compared to CSO, H-CSO performed well over CSO 

and other algorithms. The reason of the better 

convergence is the HEFT policy. 

Fig. 5 is showing the makespan comparison for 

1000 tasks belonging to Sipht workflow which are 

dependent in nature. This workflow is derived from 

the Harvard International Bioinformatics Center’s 

project that represents an automated search for 

sRNA-encoding genes of various bacteria. This 

workflow requires high computational power, 

memory and, I/O devices. In this scenario, H-CSO 

again outperforms other algorithms for 10, 20, and 30 

virtual machines due to the SMIW factor. 

With these results, it is summarized that H-CSO 

is having a healthier makespan for all scenarios in 

contrast to other algorithms used in this simulation. 

From Table 4, Fig. 2, 3, 4, and 5, it can be noticed 

that the CSO and H-CSO work well. In overall 

scenarios, H-CSO works better than other existing 

algorithms because of better pre-processing of tasks 

and better global searching, and good convergence 

than others. 
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Table 5. Cost consumption evaluation (in Indian Rupees) 

Scenarios VMs Max-Min ACO PSO CSO H-CSO 

Scenario - 1 

CyberShake_1000 

10 704.08 517.27 499.24 484.20 457.57 

20 718.12 625.21 615.85 602.17 587.67 

30 830.50 770.53 707.23 701.19 670.23 

Scenario – 2 

Montage_1000 

10 238.48 201.43 189.53 181.29 165.38 

20 241.19 219.07 202.63 190.52 183.58 

30 249.04 230.71 208.15 197.58 191.29 

Scenario – 3 

Inspiral_1000 

10 4281.40 3831.43 3755.38 3661.28 3629.47 

20 4380.88 4024.85 3859.39 3753.38 3684.24 

30 5994.97 5741.13 5649.67 5429.13 5219.65 

Scenario – 4 

Sipht_1000 

10 3154.92 2915.03 2859.33 2810.53 2753.07 

20 3620.48 3257.99 3198.45 2973.13 2915.29 

30 3907.58 3519.39 3460.17 3351.29 3107.40 

 
Figure. 7 Cost evaluations for montage_1000 tasks 

 

 
Figure. 8 Cost evaluations for inspiral_1000 Tasks 

 

Table 5 is presenting the comparison of the cost 

of resources used in the simulation for all scenarios 

as per the cost plan given in Table 3 and Eq. (7). Fig. 

6, 7, 8, and 9 are showing the virtual machines and 

cost at the x-axis and y-axis respectively. 

Fig. 6 is depicting the cost comparison of 

resources used for CyberShake workflows tasks. The 

picture is showing that the proposed H-CSO is 

consuming lesser costs than other algorithms with all 

sets of VMs. The better results are achieved by H-

CSO due to efficient workflow task migration among 

VMs as the SMIW method balances the tracing mode. 

Fig. 7 is interpreting the cost comparison of 

resources used for 1000 tasks belonging to the 

Montage dataset. 

While working on 10, 20 and, 30 VMs the cost of 

the CSO is having lesser better as compared to the 

PSO, ACO, and Max-Min algorithms. H-CSO  

 

 
Figure. 9 Cost evaluations for sipht_1000 tasks 

 

outperforms all algorithms over here just because of 

finding the best VMs without wasting too much time 

due to the SMIW integration in tracing mode. 

Fig. 8 is demonstrating the cost comparison of 

resources used for 1000 Inspiral workflow tasks. 

When working on 10, 20, and 30 VMs; the cost is 

found minimum by using H-CSO as compared to 

other algorithms such as CSO, PSO, ACO, and Max-

Min due to searching for suitable VMs as early as 

possible due to the HEFT and SMIW methods. 

Fig. 9 is showing the cost comparison of resources 

used for the fourth scenario that is having 1000 

dependent tasks belonging to the Sipht dataset. The 

graph tells that when working with 10, 20, and 30 

virtual machines, the H-CSO is again working better 

in terms of the processing cost as compared to other 

algorithms shown in Fig. 9. H-CSO utilized lesser 

cost as compared to others because it is intelligent 

enough to identify and manage the best virtual 

machines and put the tasks on them at a suitable time 

due to the SMIW method. 

With these results, it can be stated that the H-CSO 

algorithm has beaten CSO, PSO, ACO, and Max-Min 

algorithms with consuming lesser costs and having 

better makespan with overall levels in all scenarios 

due to better convergence and global optimization 

rate. It is just because of the HEFT policy, velocity 

management factor γ (SMIW). The CSO algorithm is 

winning the race at the second position because of 
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having the inspirational properties of ACO and PSO 

and better convergence speed due to better global 

searching property as compared to the Max-Min, 

ACO and PSO. 

7. Conclusion and future scope 

IT industries and other organizations are moving 

on the cloud regularly; this causes load increment on 

the cloud servers. The workflow or task scheduling is 

required to get managed this load. Scientists have 

developed several algorithms in the field of workflow 

task scheduling in order to schedule the tasks on 

virtual machines. Many existing algorithms have 

numerous drawbacks. In this research paper, a new 

algorithm is introduced and simulated named H-CSO. 

It removes a few drawbacks of the CSO algorithm 

which is superior to other algorithms as found in the 

related work. The proposed H-CSO algorithm has 

been compared with the most widely used task 

scheduling algorithms such as CSO, PSO, ACO, and 

Max-Min with various datasets as described earlier. 

A total of four scenarios had been designed with a set 

of 10, 20, and 30 heterogeneous virtual machines in 

the CloudSim tool which is open source and written 

in Java.  

For all scenarios, the proposed H-CSO algorithm 

outperformed for makespan while consuming less 

cost than other algorithms. This is because the HEFT 

algorithm pre-processes the workflows and puts them 

on the VMs in an efficient manner. The H-CSO is 

initialized with a population generated by the HEFT 

algorithm despite random initialization. The SMIW 

method balances the velocity calculation method of 

the tracing mode of the CSO. It protects the Cats to 

go outside the search space. The proposed algorithm 

is a generalized one and works better with all kinds 

of scientific datasets i.e. workflows. The efficiency of 

the proposed algorithm H-CSO found 2.99%, 2.87%, 

3.35% and 5.77% better for CyberShake_1000, 

Montage_1000, Inspiral_1000, and Sipht_1000 

datasets respectively as compared to the CSO 

algorithm in respect to makespan reduction. For cost 

reduction, the proposed algorithm H-CSO is found 

4.03%, 5.12%, 2.42% and 3.93% effective for the 

CyberShake_1000, Montage_1000, Inspiral_1000, 

and Sipht_1000 scientific datasets correspondingly as 

compared to the standard CSO. This research showed 

that cloud customers can execute their services in 

faster mode by paying a little extra cost. 

In the end, it is determined that the introduced H-

CSO algorithm is found effective than all other 

algorithms in the account of makespan with the 

minimum consuming cost. Still, there are chances of 

the enhancement in H-CSO for restricting it from 

getting stuck in local minima and premature 

convergence. This problem may occur when the 

number of iterations is immense in number. 

In the future, it can be enhanced by integrating 

any suitable local searching technique or any other 

method for a better convergence of the proposed 

algorithm. 
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