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Abstract: The core vision of the Internet of Things (IoT) is to connect objects into a broad network and establish 

interactions between them to enhance society and human life through the society of objects. As this network expands 

and the number of connected objects increases continuously, more efficient, secure, and scalable architectures will be 

needed. Social IoT (SIoT) is a promising IoT architecture, which is based on establishing social relationships between 

objects. However, being centralized is one of its drawbacks, which leads to challenges like scalability, latency, and 

privacy issues. Distributed ledger technologies, especially blockchain, are distributed architectures that have received 

attention in recent years. This paper proposes a fully decentralized SIoT-based architecture for the IoT, exploiting a 

two-layer distributed ledger structure. This architecture is privacy-preserving and scalable; besides, it provides social 

relationships between objects. These social relationships are stored as transactions on the ledger. This study also 

calculates the required space to store ledger data locally. The number of established relationships between the objects 

is estimated by simulation. The results indicate that less than 10% of all possible relationships are based after 1000 

days. Hence, it is possible to store ledger data locally. This approach leads to ten times less latency comparing to 

previous SIoT-based architectures for 10000 devices. 

Keywords: Internet of things, Blockchain, Distributed ledger technology, Smart contract, Distributed architecture. 

 

 

1. Introduction 

Since Kevin Ashton introduced the Internet of 

Things concept in 1999, it has been developed 

dramatically. IoT is currently being used in various 

fields and is expected to play a more critical role in 

all aspects of human life [1]. It is predicted that more 

than 41 billion devices will be connected to and 

interact with each other through the IoT by 2025 [2]. 

Hence, an efficient IoT solution requires specific 

capabilities, including full interoperability among 

heterogeneous objects [3] and efficient service 

composition and discovery [4, 5]. An IoT architecture 

that has promised such capabilities is SIoT [6, 7]. In 

this architecture, a set of social relationships has been 

defined between objects. Each object interacts with 

other objects based on these relationships. Improving 

network navigability, enhancing scalability, 

establishing a level of trustworthiness, and the 

possibility of using social network analysis models in 

investigating IoT issues, are among the advantages of 

converging the concepts of social networks with IoT 

[8]. 

In contrast, however, the SIoT is a centralized 

architecture. Centralized architectures, which are 

based on the central server and cloud computing, 

utilizing effectively in some cases. Nevertheless, 

challenges such as flexibility, scalability, latency, 

privacy, presenting the central server as a single point 

of failure, and the possibility of information loss are 

some of the drawbacks of such architectures [9–11]. 

Distributed architectures have been introduced as the 

key to solving some fundamental challenges of IoT 

[12]. 

With the emergence of digital currencies, 

especially Bitcoin [13], the concepts of blockchain 
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and distributed ledger technology (DLT) have 

attracted much attention in recent years. DLT is a 

secure, distributed, and tamper-resistant structure that 

can also be privacy-preserving [14, 15]. DLT is 

widely used in various domains, such as energy 

management, supply chain management, and 

healthcare [16]. Moreover, thanks to its superior 

characteristics, DLT can be considered an 

appropriate solution to dealing with IoT challenges, 

particularly the challenges of centralized architecture 

[17]. The smart contract is a concept that can be 

implemented using DLT. Smart contracts are scripts 

that reside on the distributed ledger and can apply 

rules and policies in a distributed, automatic, and 

inevitable manner [18]. This paper has employed 

DLT and smart contracts to implement the 

relationships between objects in SIoT to introduce a 

decentralized architecture for IoT. 

The major contributions of this paper are as 

follows: 

 

• We proposed a fully decentralized architecture 

based on social relationships by removing the 

central server (i.e., single point of failure) from 

the SIoT architecture and exploiting a two-level 

distributed ledger structure. This strategy 

improves the scalability, performance, 

reliability, and security of SocioChain. User 

privacy has also been taken into account in the 

new architecture. 

• We implemented objects relationships and SIoT 

processes using DLT transactions and smart 

contracts. It allows heterogeneous objects to 

interact and interconnect autonomously based 

on user-defined regulations. Also, it makes 

transactions secure and tamper-proof. 

Furthermore, in the proposed architecture, DLT 

has been utilized simply as a module to store 

relationships between objects; thus, SocioChain 

is independent of the type of utilized DLT. 

• We explored the possibility of storing ledger 

data locally by analyzing the SWIM mobility 

simulator’s results. Accordingly, we compare 

the performance of the proposed architecture 

with previous SIoT-based implementations. 

 

The rest of the paper is organized as follows. 

Section 2 reviews the related works. In section 3, the 

SocioChain architecture is introduced, and then 

objects’ social relationships, storing transactions on 

the ledger and the resulting ledger’s size are 

discussed. Section 4 is dedicated to the proposed 

architectural simulation and analysis of the number 

of relationships between objects. Finally, the 

concluding remarks are described in section 5. 

2. Related work 

The concept of the SIoT is thoroughly discussed 

in [7]. This architecture includes a network of smart 

objects with relationships similar to human societies. 

Objects in SIoT can exert automatic social 

relationships with each other based on the owner’s 

rules. The main thrust areas of the SIoT include 

service discovery, network navigability, relationship 

management, and trustworthiness management [8]. 

Besides, scalability and reliability are improved using 

this architecture [19]. In addition to SIoT, other 

studies have been conducted to embed social network 

concepts into the IoT [20]. 

Several studies have been conducted in recent 

years to address the SIoT limitations by reducing the 

latency and increasing the scalability and flexibility. 

Cicirelli et al. [21] introduced a Java-based platform 

called iSapiens using the SIoT and edge-computing 

concepts for smart environments. SIoT was used in 

this platform to improve scalability and 

interoperability. An intra-network interface layer was 

introduced in the iSapiens platform using the edge 

computing paradigm to provide a smart environment 

to access the processing resources and local storage 

with the least latency and bandwidth usage. Although 

edge computing has been well applied in this 

architecture, the central server of SIoT is still a main 

part of the proposed scenario. Additionally, security 

and privacy are not taken into account in architectural 

design. 

Lysis [22] is another SIoT-based architecture that 

proposed a four-layer model using a multi-layered 

structure from the iCore project [12]. In Lysis, objects 

in the real-world layer are converted to several social 

virtual objects in the virtual object layer using the 

virtualization layer. They can have social 

relationships with each other. This architecture uses 

the platform as a service (PaaS) model and deploys 

applications in the cloud environment. Even though 

the proposed framework is valuable, establishing new 

relationships based on existing ones is not supported 

in this system [23]. Also, the deployment of social 

virtual objects on the cloud can lead to centralized 

architecture challenges. 

A user-centered access control mechanism to 

manage access control policies of the IoT is 

introduced using social relationships between owners 

and objects [24]. The architecture, called FOCUS, is 

constructed on a blockchain that used an identity 

management system to ensure security and privacy. 

In this architecture, the blockchain is used to record  
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owner’s identities and store them on peers in a 

trustless peer-to-peer network. The authors in [25] 

proposed a dynamic privacy-preserving and 

lightweight key agreement protocol for Vehicle-to-

Grid in the SIoT to address security vulnerabilities. 

These studies focused on access control, security, and 

privacy in SIoT, yet they have not proposed a solution 

to the other challenges it faced. 

Although several distributed architectures have 

been proposed in the literature for IoT [26], new 

architectures are introduced in recent years with the 

advent of DLT, especially blockchain. In [27], 

blockchain is integrated with the Internet of Vehicles 

(IoV) to provide big and secure data storage. The 

authors designed a multi-blockchain architecture in 

which each blockchain stores part of the data. Novo 

[28] provided a distributed access control system 

based on blockchain. In this architecture, encrypted 

data are stored on the blockchain. Accessing IoT data 

is managed by a token-based method and established 

policies in a smart contract. BeeKeeper [15] is an IoT 

system based on blockchain. In this system, the server 

processes user data and generates responses by 

performing homomorphic calculations on the 

information, but the server cannot get any data related 

to user privacy from the handled information. While 

these architectures have proposed specific solutions 

to solve IoT challenges by utilizing DLT, to the best 

of our knowledge, neither of them has highlighted the 

establishment of social relationships between objects 

using DLT. 

3. Sociochain architecture 

In this section, we discuss SocioChain in detail. 

The proposed architecture structure is first introduced, 

then the relationships and interactions between the 

objects are brought. The transactions’ structure is 

then presented, and finally, the size of the ledger is 

analyzed. 

3.1 An overview of the proposed architecture 

Two distributed ledgers, including a private 

distributed ledger (𝑃𝑟𝐷𝐿) and a public distributed 

ledger ( 𝑃𝑢𝐷𝐿 ), were used in the SocioChain to 

decentralize the SIoT architecture. All objects are on 

the 𝑃𝑢𝐷𝐿 and have access to its data. 𝑃𝑢𝐷𝐿 is used 

to access public services and data. On the other hand, 

there is a 𝑃𝑟𝐷𝐿𝑢  for each user, 𝑢 , established and 

managed by the user. Only devices connected to 

𝑃𝑟𝐷𝐿𝑢 by the user have access to its data. In other 

words, each object 𝑂 owned by user 𝑢 is connected 

to two distributed ledgers; 𝑂 ∈ 𝑃𝑢𝐷𝐿  and 𝑂 ∈
𝑃𝑟𝐷𝐿𝑢 , and can receive and transmit data from/to 

both ledgers. It should be noted that DLT is only used 

to store transactions and execute smart contracts. 

Accordingly, the implementation of 𝑃𝑢𝐷𝐿  and 

𝑃𝑟𝐷𝐿𝑢  is independent of DLT. The only criterion 

that needs to be met is to support the execution of 

smart contracts. Furthermore, the address and 

description of each service’s smart contract are 

accessible in another distributed ledger called the 

smart contract chain (SCC). All objects have access 

to SCC to explore and discover services provided by 

other objects on the 𝑃𝑢𝐷𝐿. Fig. 1 shows an overview 

of the proposed architecture.  

In the IoT, it is assumed that heterogeneous 

objects with different processing and storage 

capabilities are connected to the network. In the 

 
Figure. 1 An overview of sociochain 
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SocioChain, three categories are defined for the 

objects.  

- Category 1 includes objects that are mobile and 

have proper processing and communication 

capabilities. Smartphones, tablets, and smart cars are 

some examples of this category.  

- Category 2 includes fixed objects that have proper 

capabilities for processing, storage, and 

communication. Examples include router modems, 

network hard drives, smart TVs, and RSUs. 

- Category 3 includes objects with poor capabilities 

of either storage or processing. Sensors, actuators, 

and RFID tags fall into this category. 

To deal with the challenge of object heterogeneity, 

we introduced administrators in the SocioChain 

architecture. Administrator objects have proper 

processing and communication capabilities, and 

therefore, categories 1 and 2 can be considered as 

administrator objects. The primary function of the 

administrator is to perform activities that require 

processing or remote communication. The following 

subsection will elaborate on the functionalities of the 

administrator’s objects. 

3.2 Relationships and interactions in sociochain 

Defined relationships in the SIoT [7] are used to 

describe the relationships in SocioChain. 

Parental object relationship (POR) is established 

between objects from the same manufacturer and 

with similar models. The manufacturer provides the 

initial setting and configuration of the objects so they 

can connect to the 𝑃𝑢𝐷𝐿. 

Co-location object relationship (CLOR) is 

established between objects with similar 

geographical locations. This relationship does not 

necessarily mean a cooperative relationship. 

Co-work object relationship (CWOR) is 

established between objects that work together to 

perform a task or provide a service. 

Ownership object relationship (OOR) is 

established between objects having the same owner. 

The owner of an object is determined in the 

configuration procedure by the user. 

Social object relationship (SOR) is defined 

between the objects that their owners have social 

relationships in the real world. 

In addition to these relationships, a new 

relationship called the administration object 

relationship (AOR) is considered in this study. This 

relationship is established between objects and their 

administrators. An object administrator can manage 

the object. It is not a one-to-one relationship, and one 

object might have several administrators. Besides, an 

object that is defined as an administrator might have 

an administrator, too. 

To decentralizing the proposed architecture, all 

the relationships and interactions of the SIoT should 

be implemented using the distributed ledgers. 

Parental relationship: Manufacturers provide the 

capability of connecting the objects to the 𝑃𝑢𝐷𝐿. To 

this end, each manufacturer issues a pair of public and 

private keys and a digital certificate for each 

manufactured object. Manufacturers can create a 

certificate authority (CA) hierarchy to make all the 

issued keys compatible. The objects use the issued 

certificate to interact with the 𝑃𝑢𝐷𝐿. 

Ownership relationship: In addition to the 

certificate issued by the manufacturer, another 

certificate is issued by the owner (or the 

administrator) for the object during the initial 

configuration. Objects can interact with the 𝑃𝑟𝐷𝐿𝑢 

of the owner (i.e., user 𝑢 ) using this certificate. 

Private information of the owner’s objects is located 

on this ledger. The objects can use this private 

information in various ways, including calculating 

trust factors, establishing new relationships, 

collaborating with other objects, and discovering new 

services. 

Co-location and co-work relationships: Smart 

contracts are used to implement these relationships. 

The administrator prepares the contract terms (e.g., 

the relationship type, trust measurement criterion, 

and the relationship duration) and deploys the smart 

contract on the ledger. After that, no more 

interactions are required between the object and its 

administrator. After calling the smart contract by any 

other objects, the CLOR and CWOR automatically 

established between the objects that meet the contract 

terms. 

Social relationship: Social relationships can be 

established using smart contracts. The terms of these 

contracts can be adjusted based on the number of 

visiting of another object, the interval between 

consecutive visits, the visit duration, or other 

conditions determined by the administrator. Like 

CLOR and CWOR contracts, these contracts are 

adjusted by the administrator and then are deployed 

on the 𝑃𝑢𝐷𝐿. If the conditions are met, the SOR is 

established after executing a smart contract without 

the administrator’s intervention. 

Besides the processes that establish relationships 

between objects, three types of processes, namely, 

new object entrance, service composition, and 

service discovery, are conducted in SocioChain 

architecture. 

Any new object should be added to 𝑃𝑢𝐷𝐿 and its 

owner’s 𝑃𝑟𝐷𝐿𝑢 . During device manufacturing, the 

manufacturer issues a digital certificate and a pair of  
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public and private keys for the object. So, the object 

can interact with the 𝑃𝑢𝐷𝐿. To adding the object to 

𝑃𝑟𝐷𝐿𝑢  at the first step, the profiling will be 

conducted, where the type of the object, its 

capabilities (processing, storage, sensory, and 

functional), and the services offered by it are 

determined, and an ID along with a digital certificate 

is created for interacting by 𝑃𝑟𝐷𝐿𝑢. The user does 

this process via an administrator. This process can be 

done automatically by the administrator based on the 

user’s preferences without any intervention. The 

administrator can then inference and set the object’s 

initial relationships using the data available on two 

ledgers and submit them on 𝑃𝑟𝐷𝐿𝑢 . Moreover, to 

reduce delay and speed up the service searching and 

ranking process, each object’s relationships and 

friends are stored in a local database. The sequence 

diagram of adding a new object is depicted in Fig. 2. 

To composite services, the administrator can 

deploy smart contracts on the 𝑃𝑢𝐷𝐿 . These smart 

contracts include services offered by the objects. The 

terms of these smart contracts are based on owner 

preferences. Also, the administrator submits smart 

contracts to SCC to make the services discoverable to 

other objects. The administrator may aggregate 

multiple services, extract a new service, and then 

publish it as a smart contract. 

Services can be discovered in two distributed 

methods. The first method is searching on the SCC. 

After deploying each smart contract on the 𝑃𝑢𝐷𝐿, the 

object’s administrator publishes the description of the 

deployed smart contract on SCC. In this way, smart 

contracts will be accessible and explorable via SCC. 

Users or objects can search in SCC to find the service 

providers that can offer their desired service. The 

second method is searching in a P2P manner among 

friends. Search for the service is done by sending a 

direct request to all friends of the object. If any of its 

friends can fulfill the request, the service smart 

contract description is sent in the response; otherwise, 

the friend object will broadcast the request to its 

friends. This process continues until the desired 

service is founded. Both methods are fully distributed 

and independent of a central element. It effaces the 

single point of failure, and the service discovery 

process may continue if any nodes failed. 

Service ranking is carried out after the service 

discovery process. It is a modular process in which 

each object can customize this process based on user 

preferences. Service ranking can be calculated based 

on various parameters considering different weights. 

These parameters can include the current 

relationships between objects and the score of 

previous interactions and utilized services. 

Furthermore, trust computation algorithms [29] can 

be employed to calculate the degree to which a 

service can be trusted. These data can be extracted 

from 𝑃𝑢𝐷𝐿 , 𝑃𝑟𝐷𝐿𝑢 , or the local database of the 

object. Each user can define an algorithm for 

extracting the services’ scores to rank them for his 

own devices.  

Finally, upon selecting the best service provider, 

the service requester calls the service’s smart contract. 

Service provisioning is automatically conducted 

without a third party being involved based on the 

smart contract’s conditions. If conditions are met, the  

 
Figure. 2 Sequnce diagram of adding a new object 
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smart contract is executed, and the service requester 

is provided with the service address and API access 

key. The permissions level of the access key is 

adjusted based on the conditions stipulated in the 

smart contract. After the service is received, the 

transaction’s outcome is eventually stored on 𝑃𝑢𝐷𝐿 

and/or 𝑃𝑟𝐷𝐿𝑢. Although it is possible to submit and 

share all the relationships between objects and 

service requests on 𝑃𝑢𝐷𝐿, each of these transactions 

can be recorded only on 𝑃𝑟𝐷𝐿𝑢 to protect privacy. 

An essential capability of SocioChain is the use 

of smart contracts. Besides creating interoperability 

among objects, such contracts allow the automatic 

establishment of all relationships between the objects 

and service requests without user supervision or 

intervention. Consequently, every user can create 

predefined templates for smart contracts and deploy 

them automatically using an administrator. 

3.3 Transaction structure of ledgers 

As mentioned before, the architecture proposed in 

this study is independent of the utilized DLT. 

However, we use blockchain for more simplicity in 

describing the transaction structure in the SocioChain. 

In SocioChain, three types of data are recorded on 

ledgers. The first type is entries that determine the 

parental relationship. Manufacturers add these entries 

on the 𝑃𝑢𝐷𝐿. A block is added to the blockchain for 

a certain number of devices produced by the 

manufacturer. The manufacturer ID is included in the 

block’s header, and the IDs of the manufactured 

objects in a specified time interval are inserted into 

the block’s body. It is not needed to do this procedure 

at once by all manufacturers. They can adapt their 

devices to this architecture and add them to the 𝑃𝑢𝐷𝐿 

gradually. 

The second type includes the entries that 

determine the relationships between objects. As 

mentioned in the previous subsection, after creating a 

CWOR, CLOR, or SOR between two objects, a 

transaction is recorded on 𝑃𝑢𝐷𝐿  or 𝑃𝑟𝐷𝐿𝑢 . The 

transaction structure recorded in each ledger is 

different. The transactions on the 𝑃𝑢𝐷𝐿 include the 

public key and the signature of both objects. In 

contrast, some relationships are only registered on the 

𝑃𝑟𝐷𝐿𝑢 for privacy. In this case, both objects’ public 

keys are included in the transaction, but the object on 

the 𝑃𝑟𝐷𝐿𝑢 only signs the transaction. Each of these 

processes is executed based on the smart contract 

terms, and the transactions are recorded on the 

corresponding ledger. 

The structure of transactions on the 𝑃𝑢𝐷𝐿 is as 

follows: 

 

𝑇𝐼𝐷 || 𝑃𝑈𝑃𝐾1 || 𝑆𝐼𝐺1 || 𝑃𝑈𝑃𝐾2 || 𝑆𝐼𝐺2 

|| 𝑅𝑇 || 𝐸𝑋 || 𝑁𝑜𝑛𝑐𝑒 
 
𝑇𝐼𝐷 is the id of the transaction, which is the hash 

of the transaction content. 𝑃𝑈𝑃𝐾1  and 𝑃𝑈𝑃𝐾2  are 

the public keys of two objects for interacting on the 

𝑃𝑢𝐷𝐿 . 𝑆𝐼𝐺1  and 𝑆𝐼𝐺2  represent the 𝑇𝐼𝐷  signed by 

first and second objects, respectively. 𝑅𝑇  indicates 

the relationship type (i.e., CWOR, CLOR, SOR). 𝐸𝑋 

is used for extra information. It includes time 

boundaries or other constraints in a relationship. 

𝑁𝑜𝑛𝑐𝑒 follows this, which is a random number. An 

overview of the process is shown in Fig. 3. 

In this case, either one of the two objects or their 

administrator calls the smart contract. The smart 

contract needs the public key and the signature of the 

first object as input. The first object calculates and 

signs the 𝑇𝐼𝐷 by hashing 𝑅𝑇, 𝐸𝑋, and 𝑁𝑜𝑛𝑐𝑒 agreed 

by both parties. Therefore, the service provider 

cannot change these fields. The smart contract 

validates the signature and the signed fields, and then 

the transaction is submitted on the 𝑃𝑢𝐷𝐿  with the 

specified structure. Fig. 4 (a) shows an example of 

such smart contracts. 

On the other hand, the structure of the recorded 

transactions available on the 𝑃𝑟𝐷𝐿𝑢  is as follows: 

 
Figure. 3 Flow of registering new relationship and requesting a service, on PuDL 
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𝑇𝐼𝐷 || 𝑃𝑅𝑃𝐾1 || 𝑆𝐼𝐺 || 𝑃𝑈𝑃𝐾2 || 𝑅𝑇 || 𝐸𝑋 || 𝑁𝑜𝑛𝑐𝑒 

 

This transaction is submitted on the 𝑃𝑟𝐷𝐿𝑢  of 

each object by the objects themselves or their 

administrators. The 𝑇𝐼𝐷  field is the ID of the 

transaction. Each object should use public and private 

key pairs of the 𝑃𝑟𝐷𝐿𝑢. The 𝑃𝑅𝑃𝐾1 is the public key 

of the object on the 𝑃𝑟𝐷𝐿𝑢, while the SIG is the 𝑇𝐼𝐷 

signed by this object’s private key. 𝑃𝑈𝑃𝐾2  is the 

public key of the other object, which is on the 𝑃𝑢𝐷𝐿. 

𝑅𝑇 and 𝐸𝑋 indicate the relationship type and a field 

for extra information about the relationship, 

respectively. 𝑁𝑜𝑛𝑐𝑒 is a random number. 

In this case, even the second object publicly 

shares the information against the contract terms, the 

transaction will not be valid due to the lack of the first 

object’s signature. 
Finally, the third type of data recorded on the 

ledger is service transactions. Similar to the 

relationship entries, service entries can be recorded in 

either 𝑃𝑢𝐷𝐿  or 𝑃𝑟𝐷𝐿𝑢 . The service transactions 

recorded on the 𝑃𝑢𝐷𝐿 are public. However, when an 

object wants to use a service privately, for reasons 

such as privacy, the service transactions are only 

recorded on the 𝑃𝑟𝐷𝐿𝑢. These transactions are only 

accessible by the objects on the 𝑃𝑟𝐷𝐿𝑢. 

The service request transactions recorded on the 

𝑃𝑢𝐷𝐿 have the following structure: 

 

𝑇𝐼𝐷 || 𝑃𝑈𝑃𝐾1 || 𝑆𝐼𝐺1 || 𝑃𝑈𝑃𝐾2 || 𝑆𝐼𝐺2 

|| 𝑆𝐷 || 𝐸𝑋 || 𝑁𝑜𝑛𝑐𝑒 

𝑇𝐼𝐷  is the transaction identifier, which is 

calculated by hashing the transaction content. 𝑃𝑈𝑃𝐾1 

is the public key, and 𝑆𝐼𝐺1  is the signature of the 

service requester on the 𝑇𝐼𝐷. 𝑃𝑈𝑃𝐾2  and 𝑆𝐼𝐺2  are 

the public key and the service provider signature on 

the 𝑇𝐼𝐷 , respectively. 𝑆𝐷  is a description of the 

service, and 𝐸𝑋 is used to record additional service 

information. Fig. 3 shows an overview of the process. 

When the ranking is performed and the service 

provider is determined, the service requester object or 

its administrator calls the smart contract. 𝑇𝐼𝐷 

calculates by hashing 𝑆𝐷, 𝐸𝑋, and 𝑁𝑜𝑛𝑐𝑒 fields and 

then signed by the service requester object. The smart 

contract receives the public key and the signed 𝑇𝐼𝐷 

as inputs. In the smart contract, the signature and the 

signed fields’ validity are first checked, then the 

transaction is submitted to the 𝑃𝑢𝐷𝐿  with the 

specified structure. Finally, the service is provided to 

the service requester via a REST API. Fig. 4(b) shows 

an example of the structure of such smart contracts. 

Once the service is received, the service requester can 

record a transaction at any time to specify the result 

of the received service in 𝑃𝑢𝐷𝐿. 

Private service transactions are submitted to the 

𝑃𝑟𝐷𝐿𝑢  by the object or its administrator. The 

structure of these transactions includes: 

 

𝑇𝐼𝐷 || 𝑃𝑅𝑃𝐾1 || 𝑆𝐼𝐺 || 𝑃𝑈𝑃𝐾2 || 𝑆𝐷 || 𝐸𝑋 || 𝑁𝑜𝑛𝑐𝑒 

 
𝑇𝐼𝐷  is the transaction identifier. The service 

requester object should use public/private key pairs  

 
Figure.4 Sample smart contract for: (a) establishing relationship and (b) serve 
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for the 𝑃𝑟𝐷𝐿𝑢 to insert a transaction in it. 𝑃𝑅𝑃𝐾1 is 

the public key of the object on the 𝑃𝑟𝐷𝐿𝑢, and the 

SIG is the signed 𝑇𝐼𝐷 by the private key of the object. 

𝑃𝑈𝑃𝐾2  is the public key of the service requester 

object on the 𝑃𝑢𝐷𝐿 . 𝑆𝐷  is the service description, 

𝐸𝑋 is a field for supplementary information of the 

service, and 𝑁𝑜𝑛𝑐𝑒 is a random number. Since the 

transaction is recorded on the 𝑃𝑟𝐷𝐿𝑢 , the service 

provider signature is unnecessary because all the 

objects on the 𝑃𝑟𝐷𝐿𝑢  have OOR, and their 

information is trustworthy. Later, the service 

requester object can add a transaction on the 𝑃𝑟𝐷𝐿𝑢 

to submit the service results. 

3.4 Ledgers size analysis 

As mentioned before, in SocioChain, users have 

the authority to declare their own objects’ 

relationship and service transactions publicly on 

𝑃𝑢𝐷𝐿 or to store some information on their exclusive 

𝑃𝑟𝐷𝐿𝑢 to be accessible only by their own devices. 

Furthermore, there is no constraint imposed on the 

data storage location. Users can freely choose the 

storage location of 𝑃𝑟𝐷𝐿𝑢  and 𝑃𝑢𝐷𝐿 . Under such 

circumstances, the user can store ledgers’ data on 

local storage or any cloud service provider. In the 

former case, a remarkable limitation is the size of 

ledgers (i.e., 𝑃𝑟𝐷𝐿𝑢  and 𝑃𝑢𝐷𝐿 ). Since each user 

owns a limited number of devices, the number of 

OORs and private relationships are restricted. 

Consequently, the 𝑃𝑟𝐷𝐿𝑢 of each user is small, and 

storing the 𝑃𝑟𝐷𝐿𝑢  locally is not a challenge. 

Nevertheless, the size of the 𝑃𝑢𝐷𝐿 can be significant. 

Data stored on the 𝑃𝑢𝐷𝐿, includes public POR, SOR, 

C-WOR, C-LOR transactions, service transactions, 

and smart contracts. Table 1 shows the symbol 

notation used to calculate the size of the 𝑃𝑢𝐷𝐿. It is 

assumed that any chosen DLT requires some space 

for each block’s header. 

As described in section 3, POR transactions are 

created and submitted by the manufacturer. If each 

block can store B transactions, the manufacturer 

submits one block on the 𝑃𝑢𝐷𝐿 for each batch of B 

devices of the same model. The space required for the 

blocks is calculated as follows. 

 

𝑆𝑃 =
𝐷

𝐵
× (𝐻𝑃 + 𝐵 × 𝑇𝑝)                 (1) 

 
Users either share data with others or not for a 

variety of reasons [30]. 𝜃𝑅  and 𝜃𝑉  are added to the 

equations to consider this probability. The required 

space for SOR, CWOR, and CLOR transactions 

recorded on the 𝑃𝑢𝐷𝐿 are as follows: 

 

𝑆𝑅 = 𝜃𝑅 × (
𝑅

𝐵
) × (𝐻𝑅 + 𝐵 × 𝑇𝑅)         (2) 

 
The space required for the service transactions 

can be obtained as follows: 

 

𝑆𝑉 = 𝜃𝑉 × (
𝑉

𝐵
) × (𝐻𝑉 + 𝐵 × 𝑇𝑉)          (3) 

 
Finally, the size of the required space to store 

smart contracts on the ledger is determined as 

follows: 

 

𝑆𝐶 = 𝐶 × 𝐴                            (4) 

 
The summation of the above values calculates the 

total size of the ledger. 

 

𝑆𝐷𝐿 = 𝑆𝑃 + 𝑆𝑅 + 𝑆𝑉 + 𝑆𝐶               (5) 

4. Implementation and performance 

evaluation 

The ledger size is an essential parameter in the 

possibility of implementation of the SocioChain. In 

this section, we first calculate the ledger size for 

different numbers of users using long-term 

simulation. Next, the performance of the proposed 

architecture is evaluated based on the results obtained 

in the first section. 

4.1 Size of ledgers 

The size of the 𝑃𝑢𝐷𝐿  is one of the impactful 

parameters in implementing SocioChain in the real 

Table 1. Parameters of PuDL size 

Symbol Definition 

𝐵 No. of transactions in a block 

𝐷 No. of all connected devices 

𝐻𝑃 Size of the header of POR blocks 

𝐻𝑅 Size of the header of REL blocks 

𝐻𝑉 Size of the header of SER blocks 

𝑃 Total no. of POR transactions 

𝑅 Total no. of REL transactions 

𝑉 Total no. of SER transactions 

𝑇𝑃 Size of a POR transaction 

𝑇𝑅 Size of a REL transaction 

𝑇𝑉 Size of a SER transaction 

𝜃𝑅 
Probability of sharing a relationship 

publicly 

𝜃𝑉 
Probability of sharing a service request 

publicly 

𝐶 Total no. of smart contracts 

𝐴 Average size of a smart contract 
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world. It affects the possibility of the local storage of 

two ledgers and also the speed of data retrieval. The 

number of transactions in 𝑃𝑢𝐷𝐿 determines its size. 

Due to the different sizes of the headers and blocks 

on the DLTs, the 𝑃𝑢𝐷𝐿 size order can be estimated 

by assessing the number of transactions, i.e., the 

number of established relationships. To this end, we 

need to have real data of a large number of connected 

devices and their information, such as their 

capabilities, model, and brand, over time. Although 

some initial implementation of the SIoT is conducted 

[22], few real devices are now connected to it. A 

dataset is also provided for the SIoT using simulation 

[31], but it simulated the SIoT only for ten days. So, 

an alternative solution is required. To achieve this, 

We utilized SWIM [32], a mobility model, to 

simulate the devices’ mobility and study their social 

behavior and relationships. This model considers 

social relationships among people through the 

simulation of their movements. In SWIM, the 

destination is determined based on its distance to the 

user’s home or the place’s popularity. The α 

parameter, varying from 0 and 1, specifies people’s 

tendency to go to destinations closer to their home or 

more popular destinations. 

The user perception radius is another influential 

parameter in the SWIM model. It determines the 

communication radius for each user, i.e., how far 

each user can communicate with another user. Since 

the available space is in the range of [0, 1] in the 

model, horizontal and vertical axes are divided based 

on this parameter. The number of simulation cells is 

determined based on it. Therefore, to increase the 

number of cells in the model, we need to decrease this 

parameter. 

The output of the SWIM model is a trace of 

individuals’ movements. In the simulation of the 

devices’ movement, it is assumed that each user owns 

a set of devices. Some of the devices are in the user’s 

house, while the rest are mobile and move with the 

user. To assign the devices to users, we used the data 

from the Global Web Index report in 2019 [33]. It is 

provided by a survey of more than 270,000 Internet 

users. According to the report (Table 2), a set of 

devices were assigned to each user in the SWIM 

model. Based on the resulting network, it is possible 

to create traces of the devices’ movements and their 

interactions. 

The purpose of this simulation is to show how the 

number of relationships changes over time. To this 

end, we conducted the simulation using a virtual 

server with 20 vCPUs and 16 GB RAM by adjusting 

the α equal to 0.9 [31]. We simulated two scenarios. 

In the first scenario, the simulation runs for a varied 

number of users for 100 days. The second scenario  

 
 

 
 

simulates 1000 users for 1000 days. Table 3 shows 

the information and configurations used in the 

simulations.  

Since the number of objects is fixed, the number 

of PORs does not change. The objects’ ownership is 

assumed to be permanent, and thus, the number of 

OORs is fixed too. CLOR is established between the 

static objects that are in the communication range of 

each other. Each user has a specific number of static 

devices in two scenarios, and therefore, the number 

of CLOR does not change over time.  

CWOR and SOR are two types of relationships 

whose numbers increase over time in these scenarios. 

CWOR is created between a mobile object and a 

static object if the meeting duration is longer than 𝑇𝐶. 

It was assumed that 𝑇𝐶 is 1 hour. SOR is established 

between two mobile objects. It is set if the two objects 

meet each other 𝑁𝑀  times, the meeting duration is 

more than 𝑇𝑀 , and the time interval between two 

consecutive meetings is longer than 𝑇𝐼 . In this 

scenario, 𝑁𝑀, 𝑇𝑀, and 𝑇𝐼 were considered equal to 3, 

1h, and 6h, respectively. Additionally, we introduced 

𝑇𝐿  to closing the long-term simulations’ results to 

real-world data. If the time interval between two 

consecutive meetings is longer than 𝑇𝐿, the 𝑁𝑀 will 

be reset to zero. In other words, the 𝑁𝑀 will hit zero 

if the two objects have not established a relationship 

yet and didn’t meet in the interval of 𝑇𝐿.  

Fig. 5 and 6 show the number of established 

CWOR and SOR in the first scenario for 100 days, 

respectively. We assumed 𝑇𝐿 = ∞. The results show 

that the number of established relationships is a small  

Table 2. Device ownership 

Device Ownership (%) Type 

Smartphone 95 Mobile 

Pc/Laptop 70 Static 

Smart TV 39 Static 

Tablet 37 Mobile 

Game Console 22 Static 

TV Streaming Device 15 Static 

Smartwatch 13 Mobile 

e-Reader 12 Mobile 

Smart Wristband 11 Mobile 

Smart Home Devices 12 Static 

 

Table 3. Simulation configuration parameters 

No. 

of 

Users 

No. of 

Mobile 

Devices 

No. of 

Static 

Devices 

Total 

No. of 

Devices 

User 

Perception 

Radius 

500 841 803 1644 0.0141 

1000 1674 1608 3282 0.0100 

2000 3416 3180 6596 0.0070 

4000 6773 6378 13151 0.0050 
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percentage of all possible relationships between the 

objects. For example, 0.36% of all CWORs are set for 

4000 users after 100 days. This value is only about 

0.14% for the complete graph of SOR. The trend of 

establishing new relationships in Fig. 5 shows a 

nearly linear function. In Fig. 6, the function initially 

has an ascending slope due to the 

constraintsconsidered to establish the SORs. Some 

objects might not meet each other enough times in the 

initial days. SOR is established between them as the 

meeting number increases over time. Therefore, the 

number of SORs has a higher slope at the first 60 to 

70 days, but the function has become linear later. 

Fig. 7 and 8 showing the number of established 

SORi and CWORi in the second scenario in which 

index “i” is the value of 𝑇𝐿  in terms of days. For 

example, in CWOR10, 𝑇𝐿 is set to 10 days. We have 

done the simulation for 𝑇𝐿 = 10, 20, 30, 40, 50 days 

and also 𝑇𝐿 = ∞. In the two figures, if 𝑇𝐿 = ∞, the 

function increases linearly over time. If the valid 

interval for establishing of relationship (i.e., 𝑇𝐿 ) is 

limited, the number of established relationships 

decreased. In the case of CWOR, because users often 

visit constant locations over time, all of CWORs are 

set in the first 100 days. Besides, by limiting 𝑇𝐿, the 

number of established SORs shapes a concave 

function whose slope has decreased over time. The 

results show that in a more realistic scenario, by  

 
 

 
 

limiting 𝑇𝐿, the number of established relationships 

doesn’t jump up very high. A small percentage of all 

possible relationships between the objects are set 

after 1000 days. For example, with 𝑇𝐿 = 50, only 

about 0.85% of all CWORs and 12.04% of all SORs 

are established for 1000 users after 1000 days. 

The simulation results demonstrated that storing 

𝑃𝑢𝐷𝐿 in local storage is feasible; however, solutions 

like Light Node [34] and Pruning [35] can be applied 

when its size has become increasingly large. The 

scalability of SocioChain depends on the degree to 

which the utilized DLT is scalable. Currently, 

solutions such as Sidechain Technology [36] and 

Sharding [37] are being used to improve the 

scalability of DLTs. Utilizing such solutions can help 

us reach more than 1,000,000 transactions per second, 

which has highly exceeded the current maximum 

transactional throughput of centralized solutions [38]. 

4.2 Comparison and performance analysis 

Scalability and latency are two important aspects 

that should be considered in SocioChain. We 

implemented an experiment to demonstrate the 

efficiency of this architecture and compare it with the  

 
Figure.5 No. of established SOR over time 
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Figure.6 No. of established CWOR over time 
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Figure.7 No. of established CWOR over the time for 1000 

users 
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Figure.8 No. of established SOR over the time for 1000 users 
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previous cloud-based/centralized SIoT architectures. 

One of the main operations in SIoT is accessing the 

details of the relationship between objects. According 

to the last section results, it is possible to keep ledgers 

data locally. Ledgers data must be indexed to be 

explorable. Using relational database structure is a 

common approach for indexing ledgers data. An 

Example of such indexers is Eth-indexer 

(https://github.com/getamis/eth-indexer). We 

developed a web application using Python, which is 

connected to a MySQL database, containing 

information about the relationships between objects. 

We conducted our experiment in two scenarios. 

In the first scenario, the database and web application 

are deployed on a server featuring eight vCPUs cores 

of Intel(R) Xeon(R) E-2176G. In the second scenario, 

a Raspberry Pi 3 Model B was employed as an IoT 

device on which the database and web application 

were deployed. We assumed that 10,000 new entries 

are added to the relationships database for every 1000 

devices added to the network in both scenarios. In the 

first scenario, 10% of the devices send requests to the 

server simultaneously. In our second scenario, only 

the database size increases as more devices are added 

to the network, and there will be only one request 

from the device itself at any moment. 

To dimension our experiments, we use a 

benchmark tool called ApacheBench, which is a tool 

for measuring the performance of web servers. Fig. 9 

presented the results of implementing the 

experiments in both scenarios on a logarithmic scale. 

In the cloud server scenario, the latency has grown 

dramatically by increasing the number of devices and 

simultaneous requests. In the local server scenario, 

although response time has increased with the 

growing number of relationships in the database, the 

search operation is still conducted in an admissible 

time. This demonstrates that removing the central 

SIoT server in SocioChain leads to more efficient and 

scalable architecture comparing to other SIoT 

implementations. 

5. Conclusion 

This paper proposed a distributed architecture for 

social relationships between IoT objects, using the 

promising SIoT architecture. The new architecture is 

more scalable, secure, and privacy-preserving; 

besides, it exploits establishing social relationships 

between objects. In this architecture, objects 

relationships and service transactions are stored as 

entries in a two-layer distributed ledger. Public 

transactions are added to 𝑃𝑢𝐷𝐿 , and private 

transactions are inserted in 𝑃𝑟𝐷𝐿𝑢. 

A challenge in implementing SocioChain is 

storing ledgers’ data locally. We initially present an 

equation to calculate the size of 𝑃𝑢𝐷𝐿 . Then, we 

simulate the social movements and relationships of 

users and their devices using the SWIM simulator. 

The results show that less than 10% of all possible 

relationships are established after 1000 days. So, 

ledgers’ data may be kept in the local storage. Based 

on these results, we conducted another experiment to 

compare latency in Sociochian and previous SIoT 

implementation. It revealed that the proposed 

architecture has a significant advantage in latency 

and is more scalable. For instance, response latency 

in SocioChain is ten times less than previous SIoT-

based architectures for 10000 devices. 
Our future work plan is to develop an 

implemented prototype of SocioChain to analyze its 

efficiency in the real world and various domains, 

such as smart cities and vehicular networks. Also, we 

will study and analyze diverse DLTs to determine the 

best one for SocioChain with the highest efficiency 

and scalability. 
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