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Abstract: This paper investigates the optimal layout of wind turbines (WTs) within a wind farm. Finding the best 

placement of WTs in a wind farm is a challenging process due to the existence of multiple wake effects.  A 

biogeography based optimization (BBO) algorithm method is proposed to search for the optimal location of WTs in a 

wind farm (WF), to maximize the power produced by the WF and improve the annual economic performance of the 

WF. A wind turbine (WT) that operates in the wake of one or more other turbines is subject to lower flow and therefore 

produces less power. When designing a wind project, the arrangement of the turbines with each other in a wind farm 

is a very important factor. The best layout of a wind farm is to achieve the optimal placement of the turbines in relation 

to each other in a given area to maximize the efficiency of the whole wind farm and reduce its cost.  A dense 

configuration would result in considerable power losses. Each turbine must have a sufficient distance from other 

turbines in the WF where the optimal number of turbines should be placed. The BBO approach is conducted on a 2 

km x 2 km wind farm assuming a constant wind speed of 12 m/s with a fixed wind direction, for solving the wind farm 

layout optimization problem in two different configurations which include 26 and 30 WTs respectively.  A comparison 

of the results obtained with the previous studies shows that the BBO is more efficient in terms of maximizing power 

output and economic profitability of the same wind farm model, which validates that BBO performs effectively in 

optimizing WTs placement within WF. BOO provides the greatest improvement in the optimal layout, for example, in 

the case of the layout for 30 WTs. The power output reaches 15,383 KW, the agreement between the ideal and the 

optimal layout is more favorable. The difference in output power is only 169 KW (1%).  Knowing that the ideal layout 

is reached if all WTs receive a wind flow with a maximum wind speed of 12 m/s. Furthermore, a case study of wind 

turbine layout optimization using the BBO program on the Alta X wind farm has been performed under variable wind 

speed and variable wind direction. The results indicate that the optimized layout of the Alta X wind farm achieves a 

12% increase in the power output for a similar cost when compared to the original layout of Alta X. It is also more 

appropriate for evaluating the wind farm layout in the Wind Power Project (WPP). 
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1. Introduction 

In recent years, the production of wind energy is 

in full expansion. Its advantages are numerous: first 

of all, it is a non-polluting renewable energy that 

contributes to a good air quality and to the fight 

against the greenhouse effect. The transition to 

renewable energies remains an essential issue for the 

world's economic future, as energy consumption is 

becoming enormous and continues to increase 

worldwide. Energy supply is mainly provided by 

fossil fuels, which remain the world's leading source: 

in 2019, coal, gas, and oil accounted for 84.3% of 

global energy consumption, compared to 11% for 

renewables and 4% for nuclear. [1] The share of 

renewable energy continues to grow every year, as 

reported by the International Energy Agency, the 

COVID-19 pandemic has not slowed the 

development of renewable energy [2]. While global 

electricity consumption decreased in 2020, 

renewable energy production increased up to 7%. 
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This year, 200 GWh of new generation capacity was 

added, an increase of 4%. Wind power capacity has 

increased by 60.4 gigawatts, or 19 percent, relative to 

2018. This was one of the highest growth rates 

reported by the global wind industry, in 2019 global 

wind power capacity has reached 650.8 GW [3]. 

The wind farm project (WFP) is especially 

complex to carry out, due to its multidisciplinary 

aspect. The identification of favorable sites for the 

implementation of a wind farm implies the 

availability of wind data for the location. The final 

selection of the site is based on a set of measurements 

to establish the wind data of the site. For that purpose, 

measurement surveys are conducted using measuring 

masts. They usually last 12 months. The main 

measurements are wind speed and direction. A wind 

farm operates best when winds are regular and 

frequent. Furthermore, the efficiency of a WT also 

depends on its placement with the other turbines. 

Separation of WTs and their position are crucial for 

the profitability of this kind of project. A wind turbine 

installed to take advantage of the prevailing wind is 

likely to disturb other neighboring turbines located 

downstream, due to the effects of blade movement. 

The wake effect is generated by the decrease in wind 

speed and the increase in turbulence, resulting not 

only in production losses for the downstream turbines 

but also in fatigue loads and premature wear of the 

installations. The design of a WF is generally 

described as a wind farm layout optimization 

problem (WFLOP). In the existing literature, various 

studies have investigated how to optimize the 

arrangement of wind turbines relative to each other to 

achieve maximum power output at a minimum cost.  

Various heuristic optimization approaches have 

been used for solving the WFLOP. Mosetti et al. [4] 

and Grady et al. [5] solved the wind turbine 

positioning problem using a binary coded genetic 

algorithm (GA) to maximize energy production. 

Emami et al. [6] determined the optimal placement of 

wind turbines using GA with control on cost. Wan et 

al. [7] proposed a GA algorithm to find the optimal 

micrositing of WTs by incorporating more 

appropriate models of wind speed distributions and 

turbine power curves. 

González et al. [8] employed GA to achieve a 

more efficient optimal solution for optimizing the 

WTs layout by applying a more realistic cost model 

taking into account the initial investment, production, 

operation, and maintenance costs of a wind farm. 

Mittal [9] proposed a GA to optimize the placement 

of WTs in a large WF to minimize the cost per unit of 

power.  

Chen et al. [10] used the greedy algorithm to 

optimize the placement of WTs. Gao et al. [11] and 

Hassoine et al. [12, 13] proposed a multi-population 

genetic algorithm for solving WF layout optimization 

problem. Using the same WF and cost models as 

Mosetti, Pookpunt [14] and Asaah et al. [15] 

demonstrated optimal placement using particle 

swarm optimization to maximize energy production. 

Bansal [16] and Pouraltaf et al. [17] introduced a 

biogeography based optimization to solve WFLOP. 

This paper proposes an approach to optimize the 

layout of a wind farm using BBO.  Firstly, this 

method has been evaluated and compared with the 

results of previous studies in the literature, with the 

aim of finding the optimal placement of multiple 

WTs. Secondly, the BBO approach has been used to 

optimize the layout of the Alta X wind farm. The 

simulation results indicate that the proposed method 

is capable to find the best layouts that surpass the 

current design by increasing power and efficiency in 

a reasonable area. It is found that the proposed 

method is more promising and has a greater 

improvement in terms of maximum energy 

production compared to other previously studied 

methods. The remainder of this paper is organized as 

follows. Section 2 presents wind farm models and 

problem definition. Section 3 describes the 

optimization process for the wind farm layout. The 

results of WF layout optimization and discussion are 

shown in Section 4. In Section 5, the layout 

optimization of Alta X is investigated and discussed. 

The conclusion of this proposed work is given in 

section 6. 

2. Wind farm models and problem definition 

2.1 Power calculation and wake model 

The energy received by the WT depends on the 

mass and speed of the wind. The kinetic energy of the 

wind produces a rotational motion of the turbine rotor. 

According to Betz's limit, the wind turbine can 

convert up to 16/27 (or 59%) [18] of the kinetic 

energy of the wind into mechanical energy. The 

power output of the turbine can be expressed by Eq. 

(1): 

 

𝑃𝑤𝑡 =
1

2
𝜂𝜌𝐴𝑢3                              (1) 

 

Pwt is the power output, A is the area of the circle 

with a radius equal to the length of a blade, u is the 

wind speed, η is the efficiency of WT and ρ is the 

density of the air. 

In the present investigation, the wind farm is 

assumed to be a square area of 2000 m x 2000 m. The 

farm is divided into 100 unit areas (200 m x 200 m). 
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Figure. 1 Model of the wind farm 

 
Table 1. Wind turbine parameters 

Parameters Specifications 

Rated power (kW) 630 

Cut-in wind speed (m/s) 2.3 

Rated wind speed (m/s) 12.8 

Cut-out wind speed (m/s) 18 

Hub height (m)  60 

Rotor diameter(m) 40 

 

A unidirectional wind speed is assumed of 12 m/s 

coming from the north as seen in Fig. 1. 

The WT chosen for the present study is the same 

as that selected in previous studies [4, 5]. Table 1 

shows the technical characteristics of the WT. The 

thrust coefficient is assumed to be constant, for a 

speed of 12 m / s, with a value of 0.88 [4]. The surface 

roughness of the WF is 0.3. 

The efficiency is considered equal to 40% [4], the 

Eq. (1) will be used as given by the Eq. (2) shown 

below: 

 

𝑃𝑤𝑡 =
40

100
×

1

2
× 1.2 × 𝜋 × (20)2 × 𝑢3 

𝑃𝑤𝑡 = 0.3𝑢3𝐾𝑊    (2) 
 

The power of WT, is explained by the Eq. (3) as 

follows: 

 

𝑃𝑤𝑡(u) = {

0;  𝑢 < 2.3

0.3𝑢3;  2.3 ≤ 𝑢 ≤ 12.8
630;  12.8 ≤ 𝑢 ≤ 18

0;  𝑢 ≥ 18

           (3) 

where the wind speed u is given in m/s and the 

power output Pwt in kW. 

When a WF is composed of multiple wind 

turbines, the wind farm power output is determined 

by the Eq. (4): 

 

𝑃𝑤𝑓 = ∑ 𝑃𝑖

𝑁

𝑖=1

                                 (4) 

 
 where Pwf  is power output of WF, N is the 

number of turbines and Pi is the power of the i-th 

WT. 

The efficiency of the WF is defined as the ratio of 

the power of the WF to the summation of the power 

output of the individual WT without wake effects. 

This efficiency is given as shown in Eq. (5): 

 

𝜂𝑤𝑓 =
𝑃𝑤𝑓

∑ 𝑃𝑠𝑖
𝑁
𝑖=1

                               (5) 

 

Where ηwf  efficiency of WF, Psi is the power of 

the i-th wind turbine if it works as a separate WT. 

When the wind passes across the rotor of a wind 

turbine, a wake is generated behind it, the wake 

extends with distance. The speed of the turbines 

positioned downstream of the other turbines has a 

speed deficit. To estimate this deficit, we used the 

Jensen model [19]. This model assumes that the wake 

grows linearly with distance.  The calculation of the 

wind speed deficit at the downstream distance is 

given by Eq. (6): 

 
𝑢𝑤(𝑥)

𝑢0
= 1 −

2𝑎

(1 + 2𝛼 (
𝑥

𝐷𝑟
))

2              (6) 

 
where u0 is the mean wind speed, x is the 

downstream distance, a is the axial induction factor, 

uw wind speed of wake at downstream distance, α is 

the decay factor and Dr is the downstream rotor 

diameter of the turbine. The decay factor α describes 

how the wake expands. The Wake width is defined as 

shown in Eq. (7): 

 

 𝐷𝑤(𝑥) = 𝐷𝑟 + 2𝛼𝑥           (7) 

  

where Dw is the diameter of the wake at 

downstream distance. 

The wake decay constant (decay factor) depends 

on the hub height (Z) and the surface roughness 

height (Z0). This decay factor can be calculated from 

Eq. (8) [18]: 
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𝛼 =
0.5

ln(𝑧/𝑧0)
                                 (8) 

 

The downstream rotor diameter (Dr) of the 

turbine is related to the wind turbine rotor diameter 

(D) through the Betz relations as given in Eq. (9) 

[18]: 

 

𝐷𝑟 = 𝐷√
(1 − 𝑎)

(1 − 2𝑎)
 ;  𝑎 =

1 − √1 − 𝐶𝑇

2
     (9) 

 

 Here, CT is the thrust coefficient of the turbine 

and a is the axial induction factor of WT. 

When a wind turbine is exposed to the wake of 

multiple turbines, various methods can be employed 

to combine the multiple wakes. Among those are the 

sum of squares of velocity deficits, the energy 

balance method, the geometric sum, and the linear 

superposition [20, 21]. In the present article, we use 

the sum-of-squares model. The equation for the sum 

of squares of velocity deficits is given by Eq. (10) as 

follows [22]. 

 

(1 −
𝑢𝑖

𝑢0
)

2

= ∑ (1 −
𝑢𝑖𝑗

𝑢0
)

2

                (10)

𝑁

𝑗=1
𝑗≠𝑖

 

 
 where ui velocity of wind turbine i, uij is the 

velocity in the downstream wake region of the turbine 

j which affects turbine i and uo is the mean wind speed. 

2.2 Cost model and objective function 

The predicted cost of a WF per year was 

determined by Mosetti et al. [4]. using the number of 

WTs N. The annual non-dimensional cost of one WT 

is assumed to be 1. For an additional turbine, the 

maximum possible cost reduction is equal to 1/3. The 

cost function formula is given by Eq. (11). 

 

𝐶𝑜𝑠𝑡 = 𝑁 (
2

3
+

1

3
𝑒−0.00174𝑁2

)              (11) 

 

where Cost is the cost per year of a wind farm. 

The first derivative of the cost function cost 

grows linearly at N > 30. This means that at N > 30 

the cost of the (1+N) th turbine is higher than the cost 

of the N th turbine. When looking for the best wind 

farm layout that minimizes the unit cost of energy 

produced. The goal can be formulated as maximizing 

the power produced by the wind farm while 

minimizing the installation cost of the wind farm. An 

objective function will be used to minimize the cost 

per unit of energy produced, which is the effective 

cost per KW (Kilo Watt) of energy produced. This 

objective function is expressed by the following Eq. 

(12). 

 

Objective =
𝐶𝑜𝑠 𝑡

𝑝𝑤𝑓
                              (12) 

 
where Pwf is the power output of the wind farm. 

2.3 Wind farm layout optimization problem 

definition 

Assuming the WF has N wind turbines and, the 

width of the WF is 2000 m. The wind farm layout 

optimization problem is to determine the best 

placement of the WTs in the wind farm area, such that 

the output power is maximized while cost is 

minimized. Therefore, the aim is to know the x-

coordinates and y-coordinates of N wind turbines 

when the objective function reaches the minimal 

value. All the WTs in the wind farm are supposed to 

be identical and have a similar power curve. The 

number of variables for optimization is 2N (x; y), the 

range of each variable is [0, 2000]. 

3. Wind farm layout optimization process 

Wind farm layout optimization refers to the 

identification of optimal turbine positions in a 

specified area, that minimize the wake impacts with 

the condition of minimizing the cost and maximizing 

the power output of WF. In the present study, we 

propose the use of Biogeography-Based 

Optimization (BBO) for the design search of a wind 

farm. In this section, a description of the BBO 

process is presented.  

The BBO method was proposed by Simon in 

2008 [23] and was motivated by biogeography on the 

migration of species between habitats. The BBO 

method optimizes a given problem by iteratively and 

randomly improving the candidate solutions against 

an objective function (fitness).  

The optimization process starts with the 

production of a finite number of selected individuals 

(habitats) by random selection in the search space, 

forming the initial population. Following evaluation 

of the initial population, certain individuals are 

selected to participate in the migration process that 

generates a new set of individuals. This phase is 

stochastic and depends on the emigration and 

immigration rates of the individuals concerned. The 

descendants will in turn be mutated. The mutation 

rate defines the proportion of the population that will 

be renewed at each generation. Elitism makes it  
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Table 2. The parameters of BBO 

Parameters Value 

Population size 10 

Mutation probability 0.015 

Elitism rate 2 

Iteration number 10000 

 

possible to keep the best individuals found, as long as 

they are not surpassed by others. Finally, a 

replacement phase consists of substituting the parents 

for the new descendants to create a new population of 

the same size as at the beginning of the iteration. 

Simon, in 2008 [23], has demonstrated that the 

BBO has good convergence characteristics for 

various benchmark functions when compared to 

other metaheuristics such as particle swarm 

optimization (PSO), ant colony optimization (ACO), 

and genetic algorithm (GA). Considering that the WF 

layout optimization problem has been solved for 

many years using PSO, ACO, and GA approaches. 

We can therefore summarize that the BBO presents a 

good alternative for WFLOP solution. 

The WF receives a uniform and unidirectional 

wind speed.  The calculation of the WF's power 

output requires the calculation of the speed of each 

turbine. The performance of the WF is evaluated by 

the fitness value using Eq. (12). 

In a WF, the positions of the number of (N) wind 

turbines are determined by two dimensional 

coordinates (x; Y). The wind speed of each wind 

turbine is computed by using the Jensen wake model 

as showed in Eq. (6), and the superposition effects of 

multiple wakes upstream of each wind turbine are 

calculated employing the sum-of-squares method, as 

shown in Eq. (10). The power output of the individual 

turbines and, the power output of the WF are 

calculated by utilizing Eqs. (3) and (4). 

The optimal layout is found through an iterative 

process by writing code in MATLAB based on BBO. 

The outputs of the computational results are the 

coordinates of the turbines, the wind speed of the 

individual turbines, the power output, and the 

levelized cost (fitness) of the WF. The process stops 

once the best fitness keeps the identical value for 500 

generations. The BBO parameters are given in Table 

2. 

4. Wind farm layout optimization results 
and discussion 

We consider a 2000m×2000m WF that is 

segmented in 100 squares (200m×200m). In contrast  

 

Table 3. Comparison of Layouts 

 Layout1 Layout2 

Number of turbines 26 30 

Fitness value 0.0014928 0.0014358 

Power output (KW) 13401.42 15383.85 

Efficiency (%) 99.42 98.91 

Number of iterations 10000 10000 

 

to the earlier approaches in which a turbine would be 

positioned in the center of the square, the present 

work limits the minimum distance between any two 

adjacent turbines to 200 m (5D), and the turbines can 

be placed anywhere in the WF. To perform our 

proposed approach, we have developed a MATLAB 

code that uses the BBO algorithm. The output 

computational results are wind speed, total power 

output, and cost. The program will be terminated 

under the condition that the best fit will remain the 

same with no change in 500 iterations.  

The BBO is implemented using the Jensen model 

for the computation of the wake effects. A population 

of ten individuals has been implemented to evolve 

over 10000 iterations.  After the BBO program is run 

on two areas of investigation, two optimal layouts of 

the wind farm are achieved. 

For the first area (layout 1), after 1139 iterations, 

the value of the best fit keeps nearly constant and the 

best layout of 26 WTs is attained for the best fitness 

value of 0.0014928 and the power output is 13401.42 

kW with an efficiency of 99.42 %. Figs. 2 and 3, 

respectively, show the convergence plot of the fitness 

curve and the evolution of the power output for layout 

1. 

In the second area (layout 2), the best layout for 

30 WTs is achieved after 1612 iterations with the best 

fitness value of 0.0014358 and the power output is 

15383.85 kW with an efficiency of 98.91 %. Figs. 4 

and 5 respectively show the convergence plot of the 

fitness curve and the evolution of the output power 

for layout 2. Table 3 shows a comparison of the two 

optimal layouts.  

The optimized result for 30 WTs shows, on the 

one hand, that the optimal layout for 30 WTs gives a 

lower cost than 26 WTs. On the other hand, the layout 

for 26 WTs gave a better performance, but for 4 more 

WTs, the search space became narrower to search for 

optimal placement, Fig. 7. shows a denser layout than 

in Fig. 6. 

The results achieved using biogeography based 

optimization (BBO) are compared to the previous 

studies that are performed with various approaches. 
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Figure. 2 Convergence curve of fitness for layout 1 

 

 
Figure. 3 Evolution of power output for layout 1 

 

 
Figure. 4 Convergence curve of fitness for layout 2 

 

 
Figure. 5 Evolution of power output for layout 2 

 

Like genetic algorithm (GA) and its variants such as 

real coded genetic algorithm (RCGA), multi-

population genetic algorithm (MPGA), real coded 

multi-population genetic algorithm (RCMPGA) and  

 

 
Figure. 6 Optimal layout of 26 WTs 

 

 
Figure. 7 Optimal layout of 30 WTs 

 

enhanced genetic algorithm (EGA) as well as particle 

swarm optimization (PSO) and greedy algorithm 

(GRA). 

 Some comparisons of the fitness value and 

power output, as well as the efficiency of the results 

achieved by BBO and the previous articles, are 

reported in Table 4. Before discussing and comparing 

the results of Table 4. A brief description of the GA, 

PSO, and GRA approaches is presented below. 

Genetic algorithms are search techniques inspired 

by the natural phenomena of genetics and evolution. 

GA is used to find optimal solutions to optimization 

problems. At the start of the optimization process, a 

set of solutions named individuals is randomly 

constructed, the solutions are coded by a binary or 

real coding. When solving the WFLOP, each solution 

is a possible layout of the turbines in the wind farm, 

the arrangement gives a different set of the x-

coordinates and y-coordinates of N wind turbines. 

The individuals constitute one or more populations. 

Genetic reproduction is performed using crossover 

and mutation operators that recombine the best 

individuals. The evaluation of the population 



Received:  July 3, 2021.     Revised: August 6, 2021.                                                                                                        565 

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021           DOI: 10.22266/ijies2021.1031.49 

 

(solutions) is done by using the objective function 

(fitness). The individual selection is executed 

following a procedure that selects the parents 

according to a probability proportional to their 

relative value (fitness) and explores the solution area 

in search of better and better solutions. The 

optimization process ends if the best fitness is 

maintained without any change for a significant 

number of generations. Genetic algorithms perform 

well for complicated problems, however, take a long 

time to find an optimal solution. 

In contrast to GA, the PSO approach does not 

have crossover and mutation operators. In PSO, 

possible solutions are named particles. A particle is 

an individual in a population or swarm. Each particle 

is characterized by a position and speed which 

include the value of the objective function. The 

position of a particle is the candidate solution. A 

particle searches for the optimal position in the search 

area of the wind farm by changing its velocity. The 

process is started when a population of solutions is 

constructed randomly, the search for optimal 

solutions is done by updating the generations. In PSO, 

the particles fly along the space of the problem 

following the current optimal particles. At each 

generation, the particles are updated according to the 

two "best" values. The first is the best possible 

solution (fitness) it has obtained so far. This value is 

denoted pbest. An additional value is the highest 

value achieved so far by any particle. This best value 

is a global value and named gbest. The best value of 

particle is the best location. Once the two best values 

are found, the particle updates its velocity and 

position based on the pbest and gbest values, so that 

the particles can gradually converge to a global 

minimum. Particle swarm optimization can converge 

faster than genetic algorithms, however, it can 

converge prematurely and be stuck in a local 

minimum, especially for complex problems. 

A greedy algorithm is an algorithm that works 

step by step, the algorithm looks for a local optimal 

solution hoping to find a global optimal solution. The 

process includes two phases. The first phase begins 

with an empty layout. The turbines are inserted into 

the wind farm one by one by evaluating the objective 

function of a single turbine, a turbine added to the WF 

for the maximum wind speed. Each empty area is 

assessed. A new turbine is placed at the area of 

maximum evaluation value, the order of adding the 

turbines to the wind farm is stored. If the required 

number of turbines is reached, the phase is completed. 

In the second phase, a turbine is removed according 

to the order of the turbines in the addition process. To 

ensure that an optimal overall solution is obtained. 

Then a new optimal placement is found for the 

turbine with all empty areas. The turbine is replaced 

at the location where the maximum evaluation value 

is achieved. The process is terminated when all 

turbines pass through the relocation procedure. A 

greedy algorithm is easier to implement. However, 

the optimal global solution is not always reached. 

The results of all studies in Table 4 were 

completed for identical simulation conditions. To 

solve the wind farm layout optimization problem, a 

wind farm (2 km × 2 km) was employed, which was 

partitioned into 100 cells to place 26 and 30 WTs 

respectively, the minimum spacing between two 

neighboring wind turbines is 200 m, under conditions 

of uniform wind direction with a wind speed of 12 m 

/ s. 

The results in Table 4 show that multiple studies 

provided similar results, particularly for the 30 WT 

case.  Grady et al., Emami et al., and González et al. 

have found a power output of 14,310 KW for an 

optimal configuration of 30 WTs. This case 

illustrates that the use of various population size and 

number of generations used in the genetic algorithms 

lead to the same outputs. For illustrative purposes. 

Grady et al. utilized a population of 600 individuals 

in 20 subpopulations to evolve over 3000 iterations. 

Gonzalez et al. used 100 individuals to evolve over 

81 generations. In contrast, Emami et al. used 20 

individuals to evolve over 150 generations. 

In addition, the other approaches yielded similar 

values. In particular, Pookpunt employed particle 

swarm optimization, and Chen et al. used the greedy 

algorithm to find the optimal layout for 30 WT. It is 

important to note that the power output does not 

exceed 14,310 kW. This limitation is caused by the 

fact that the wind farm is divided into 100 cells and 

the turbines are placed in the center of the cells, the 

width of each cell is equal to the five rotor diameters 

(5D). 

In contrast to this restriction, the optimal layout 

of 30 WTs was improved by placing the turbines 

freely in the WF with a minimum distance of 200 m 

between two adjacent WTs. 
Studies that adopted this strategy provided better 

results. However, the results were not similar. As a 

result, Mittal's work slightly increased the power 

output by 14,336 KW, Yin improved the layout of 30 

WT, the power reaches 15,091 KW. The results of 

Wan et al. and Gao et al. indicate a significant 

improvement in the turbine layout, the power output 

reaches 15,220 KW and 15,346 KW, respectively. 

Furthermore, the results of Hassoine et al. show a 

powerful improvement in the layout of 30 WTs. The 

output power reaches 15,362 KW. The proposed 

BOO provides the highest enhancement of the layout 

30 WTs. The power output reaches 15,383 KW.  
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Table  4. comparison of our present study and previous results 

Studies Number of WT Fitness value 

(×10-3) 

Power output(kW) Efficiency (%) 

Mosetti et al. [4] 26 1.6200 12,352 91.65 

Grady et al. [5] 30 1.5440 14,310 92.02 

Wan et al. [7] 30 1.4513 15,220 97.87 

Emami et al. [6] 30 0.1221 14,310 92 

González et al. [8] 30 1.5440 14,310 92.02 

Mittal [9] 30 1.5410 14,336 92.18 

Chen et al. [10] 30 1.5440 14,311 92 

Pookpunt [14] 30 1.5440 14,310 92.02 

Gao et al. [11] 26 1.5230 13,141 97.50 

Gao et al. [11] 30 1.4400 15,346 98.67 

Yin [24] 30 1.4637 15,091 - 

Hassoine et al. [12] 26 1.4955 13,377 99.25 

Hassoine et al. [12] 30 1.4379 15,362 98.77 

Proposed BBO 26 1.4928 13,401 99.42 

Proposed BOO 30 1.4358 15,383 98.91 

For the proposed BOO results of 30 WTs, the 

agreement between the ideal and optimal layout is 

more favorable. Knowing that the ideal layout is 

achieved, if all WTs receive a wind flow with a 

maximum wind speed of 12 m/s, then the output 

power reaches 15,552 KW. Therefore, the difference 

in output power is only 169 KW (1%). 

In the case of 26 WTs. The output power reaches 

13,478 KW of the ideal layout. The proposed BOO 

provides the best results with the greatest 

improvement, the output power reaches 13,401 KW.  

Consequently, the difference of output power is only 

77.4 KW (0.57%). The results give a lower value of 

the objective function (fitness). This means a lower 

cost per unit of energy produced. The work of Mosetti 

et al. provides the lowest power output value of 

12,352 KW. Mosetti et al. were the first to use genetic 

algorithms to solve WFLOP problems. 

The proposed BBO simulation provides better 

results compared to the previous approaches. The 

results obtained indicate that the proposed method is 

more suitable for solving WFLOP. This performance 

is due to the fact that even though BBO is based on 

solution populations, the solutions are conserved and 

modified by the migration operator after each 

iteration considering the biogeographic roots of the 

algorithm. On the contrary, in other conventional 

approaches, such as genetic algorithms or particle 

swarms, new generations are formed at each iteration. 

5. Layout optimization of Alta X  

The comparative study started in Section 4, 

demonstrated the validity of the BBO approach, in 

the rest of this study, we apply the method under real 

wind conditions on an existing wind farm named Alta 

X. 

5.1 Alta X wind farm models and data source 

description 

The Alta X wind farm is part of the larger Alta 

Wind Energy Center (AWEC), which is located in 

southeastern Kern County in California, 

approximately 4.8 kilometers northwest of the city of 

Mojave, and 18 km east of the city of Tehachapi, Fig. 

8 shows a map of Alta X wind farm (AXWF). AWEC 

is the third largest wind farm in the world [25] with 

an installed capacity of 1,548 MW. The AXWF is 

composed of 48 WTs of 2.85 MW (GE 2.85-103) 

manufactured by General Electric. The coordinates of 

AXWF are 35° 5' 2.472'' N and 118° 15' 17. 1'' E. The 

numbers from 1 to 48 are used in the numbering 

scheme as seen in Fig. 9. 

Alta X is located within the high desert plains and 

hills on the western edge of the Mojave Desert. The 

surface roughness value of 0.3. The thrust coefficient 

is assumed to be constant for a speed of 10 to 11 m /  
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Figure. 8 Map of Alta X 

 

 
Figure. 9 Numbering scheme of Alta X 

 
Table 5. Characteristics of WT. 

Parameters Specifications 

Wind turbine model GE 2.85-103 

Rated power (kW) 2850 

Cut-in wind speed (m/s) 3 

Rated wind speed (m/s) 12.5 

Cut-out wind speed (m/s) 25 

Hub height (m) 85 

Rotor diameter (m) 103 

 

s, with a value of 0.5 [26]. Table 5 shows the 

technical characteristics of the General Electric 

turbine (GE 2.85 -103) [27]. 

The frequency distribution of the wind speed has 

been described using the Weibull distribution 

function. Here a graphical method [28] was used in 

which the Weibull parameters were calculated using 

the least squares linear regression method [29]. The 

wind speed is extrapolated to the hub height of the 

WT using the power law. Here, we use one year 

(2012) of hourly wind data extracted from the NREL 

Wind Integration National Dataset [30], also known 

as the WIND Toolkit. Fig. 10 shows the hourly wind 

speed of AXWF at 80 meters, with an average of 

10.43 m/s marked by the green line. The values of the 

 

 
Figure. 10 Wind speed in Alta X, from 01 January 2012 

to 31 December 2012 

 

 
Figure. 11 Wind rose of wind speed of AXWF 

 

shape parameter (k) and the scale parameter (c) are, 

respectively, 1.7227 and 11.7082 m/s. To give an 

overview of how wind speed and direction are 

distributed, the wind rose is used to illustrate the 

predominant wind directions at the Alta X site. The 

predominant wind direction in this area is calculated 

over a period of 8670 hours, which shows that the 

wind direction is mainly generated from the WNW 

(West Northwest) and SW (Southwest) as seen in  Fig. 

11. 

The mean yearly production of the Alta X 

between 2014 and 2019 is 347,161 MW [31]. The 

maximum production is achieved in 2018 when 

reaching 373,532 MW. 

5.2 Alta X layout optimization  

In the Alta X Layout Optimization process, wind 

speed data from NREL (2012) are considered. A 

population of fifteen individuals was allowed to 

evolve over 2000 iterations. After executing the BBO 

program for 1264 iterations, the results of the 48 WTs 

layout optimization in AXWF are achieved with the 

fitness value of 0.0445560 and the power output of 

43683.18 kW with an efficiency of 31.93%. Fig. 12 

shows the optimal layout of Alta X. We can observe 

that the minimum distance constraint between two 

adjacent turbines is sufficiently respected. The 

placements achieved have a good distribution when 
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Table 6. Comparison of results. 

 
Optimized 

Layout 

Initial 

Layout 

Number of turbines 48 48 

Power output (KW) 43683.18 38973 

Efficiency (%) 31.93 28.48 

Energy (MWh) 382664.65 341403.48 

 

 
Figure. 12 Optimal layout of Alta X 

 

 
Figure. 13 WTs Power output of Initial Layout 

 

 
Figure. 14 WTs Power output of the optimized Layout 

 

compared with the original layout of Alta X. The  

results are compared in Table 6. 

The power output of the wind farm is 

significantly improved (12%). We can see in Fig. 14 

that all turbines deliver the maximum power from the 

available wind conditions when compared with the 

power output of turbines within the initial layout in 

Fig. 13. 

6. Conclusions 

In this work, the optimal placement of turbines in 

a wind farm was solved using a biogeography based 

optimization approach and Jensen's wake model. 

Biogeography based optimization was applied to 

obtain the best placements of WTs, to maximize the 

power generated by the WTs, and improve the 

economic performance of the wind farm. 

The BBO algorithm is applied to a 2 km*2 km 

wind farm to solve the layout optimization problem 

in two different configurations. The outputs show 

that in the first configuration, the output power 

reaches 15,383 KW for an optimal layout of 30 WTs, 

the agreement between the ideal layout and the 

optimal configuration is more favorable, the 

difference in output power is only 1%. In the second 

configuration, the output power reaches 13,401 KW 

for an optimal layout of 26 WTs, the difference in 

output power is only 0.57%. The concordance 

between the ideal layout and the optimal 

configuration is higher. A case study of the Alta X 

wind farm was also performed with a variable wind 

speed and direction. The results obtained demonstrate 

that the optimized layout of the Alta X wind farm 

achieves a 12% increase in power output at a similar 

cost to the original layout. 

The results obtained with the proposed approach 

are very promising and more appropriate to evaluate 

the placement of WTs in a wind farm project. In the 

ongoing research, we will consider more realistic 

wind farm conditions and more advanced wake 

models, such as computational fluid dynamics (CFD) 

models. 
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