
Received: June 28, 2021. Revised: August 7, 2021. 571

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.50

Genetic-Based Multi-objective Task Scheduling Algorithm in Cloud Computing

Environment

Farouk A. Emara1* Ahmed. A. A. Gad-Elrab1,2 Ahmed Sobhi1 K. R. Raslan1

1 Faculty of Science, Al-Azhar University - Cairo, Egypt

 2 Faculty of Computing and Information Technology, King Abdul-Aziz University, Jeddah, Saudi Arabia
Corresponding author’s Email: aly_emara86@azhar.edu.eg

Abstract: Recently, resource management is the major issues in cloud computing (CC) environment because of

dynamic heterogeneity of cloud computing environment. The task scheduling and virtual machines (VMs) allocation

play a vital role in resources management of CC. Most of existing works for these issues aim to achieve single objective

as maximizing resource utilization, load balancing, or power management. Currently, the big challenge in CC is

building task scheduling and virtual machines (VMs) allocation algorithms that consider all these objectives in the

same time. This problem is called task scheduling with VMs allocation multi-objectives problem which is NP

completeness problem. In this paper, a new task scheduling algorithm is proposed for achieving efficient resource

management based on these objectives. This proposed algorithm uses a modified genetic algorithm (GA) to find the

optimal solution for choosing the most appropriate VMs for executing received tasks and their appropriate servers that

will deploy these VMs. This proposed algorithm uses a matrix structure for representing the chromosome of GAS

which combines the ids of tasks, VMs, and servers. Simulation results show that the proposed algorithm achieves

better performance than ETVMC, TSACS, and ACO algorithms in terms of makespan, scheduling length, throughput,

resource utilization, energy consumption, and imbalance degree.

Keywords: Cloud computing, Task scheduling, VMs placement, Server consolidation, Makespan, Energy

consumption.

1. Introduction

Cloud computing system is depended on

virtualization technology that is virtualization

technology enables the resources of a single physical

cloud resources to be divided several isolated

execution environments running on virtual machines

(VMs). The VMs are instances of the physical

resources it is created and managed by a software

layer which is called a hypervisor or a Virtual

Machine Monitor (VMM). The VM run a task of user

and when the task is completed it will shut down or

allocated to another task [1, 2]. Using virtualization

technology in cloud computing increases the

throughput as well as scalability of the system [3].

Uninterrupted service is one of advantages of

using cloud computing [4] that is needed to manage

physical and virtual resources. Task scheduling and

VMs placement are the two of the most important

elements of resource management in cloud

computing system. Task scheduling done based on

objectives such as reduce time execution, reduce cost,

load balancing on VMs, Quality of Service (QoS) or

another objective. Also, VMs placement done based

objective such as for maximizing resource utilization,

load balancing, reduce wastage resources, or power

management. Sometimes VMs placement done to

meet the requirements of user which called initial

VMs placement. Initial VMs placement is launching

a VM on the nearest host. In this case may be there

are VMs cannot deploy on hosts because required

resources of VMs cannot provided by hosts. Another

problem can happen when VMs assigned on host and

the required resources of VMs less than the available

resources in hosts (wastage resources this case called

server sprawl).

Received: June 28, 2021. Revised: August 7, 2021. 572

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.50

However, because of dynamic heterogeneity of

cloud computing environment, virtual machines are

need to VMs replacement to improve the service

availability which will be attractive for many users.

VMs replacement Means movement the one or more

VMs from physical host to another physical host this

called VMs migration. VMs migration can happen
when a physical server fails for any reason, VMs are

deployed to other physical servers until the failure is

corrected. Also, VM migration can done for

maximizing resource utilization, load balancing, and

power management [5-8].
This paper proposes a new algorithm for solving

the scheduling problem in cloud computing. The

proposed algorithm uses a matrix structure for

representing the chromosome of GAS which

combines the ids of tasks, VMs, and servers to find

the optimal solution for choosing the most

appropriate VMs for executing received tasks and

their appropriate servers that will deploy these VMs.

This prevent the occurrence of server sprawl

phenomenon and reduce the needing for VMs

migration process.

In this paper, the main contributions are:

(1) Solving multi-objective task scheduling problem

in cloud computing.

(2) Using a modified genetic algorithm to find the

optimal solution for choosing the most

appropriate VMs for executing received tasks

and their appropriate hosts that will deploy these

VMs.

(3) Optimizing resource management for different

criteria, including performance, power and cost.

G-MOTSA dynamically allocate the CPU,

memory and I/O resources to virtual machines

according to requirements of cloud and the

objective of user.

(4) Preventing the occurrence of server sprawl

phenomenon and reduce the needing for VMs

migration process.

The rest of this paper is organized as follows: the

related work will be introduced in Section 2. Section

3. describes task scheduling and virtual machines

(VMs) allocation problem. Section 4. problem

formulation. Section 5. explains the proposed

algorithm. Section 6. introduces the simulation and

evaluation results of the proposed algorithm and

Section 7. concludes the paper.

2. Related work

In recent years, a lot of algorithms have been

proposed to schedule tasks on VMs [9-19]. These

algorithms differ from each other in their methods

and their objectives which are divided into three

categories which are task scheduling, VMs placement,

and complete mapping.

2.1 Task scheduling algorithms

Nasr et al. [9] interduce approach, called

Traveling Salesman Approach for task Scheduling

(TSACS). The main objective of this approach is

minimizing makespan. This approach converts task

scheduling problem into Traveling Salesman

Problem (TSP) and then apply the nearest neighbour

algorithm to solve the problem. This approach

consists of three phases, first phase creates a set of

clusters equal to number of available VMs by

grouping the tasks into several clusters. Second phase

calculate the cluster execution time to create Cluster

Scheduling (CS) matrix which like the TSP matrix.

Third phase apply the nearest neighbour algorithm to

solve the problem. The disadvantage of this approach

is that it focused only one criteria (makespan) at a

time. Alworafi et al. [10] introduced Hybrid-SJF-LJF

(HSLJF) algorithm which combines LJF and SJF

algorithms. HSLJF sorts the tasks in ascending order,

then selects one task based on SJF and another task

based on LSF. Finally, the selected task is submitted

to select VM that has minimum completion time. The

disadvantage of this approach is that it focused only

one criterion (minimum completion time) at a time.

Fang et al. [11] proposed a scheduling task approach

based on load balancing in cloud computing where

the VM is described according to the needed

resources for executing a task. Next it sorts the hosts

in ascending order based on their processing power.

Then VM selects a host that can provide the required

resources and the load is lightest. Finally, if a task has

been completed, the VM will be destroyed.

Disadvantage of this work is creating VM for each

task which is over head time. Also, if the resources

that are needed to deploy VM in host is not available,

then the VM waits for the second scheduling, which

is not achieve the objective of a user. Sindhu and

Mukherjee [12] introduced two scheduling methods

to schedule tasks, Shortest Cloudlet Fastest

Processing Element (SCFP) and Longest Cloudlet

Fastest Processing Element (LCFP). In LCFP, the

task that has large number of instructions is mapped

to VM that has high computation power for

minimizing the makespan. While in SCFP, the task

that has short number of instructions is mapped to

VM that has high commutating power for reducing

FlowTime (completion time summation of a set of

tasks). LCFP can minimize makespan but some tasks

will be assigned to VM that does not have the

minimum execution time for them. While SCFP can

minimize FlowTime but maximizes makespan and

Received: June 28, 2021. Revised: August 7, 2021. 573

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.50

decreases resource utilization. Also, LCFP may face

starvation problem. Rekha and Dakshayini [13]

proposed approach, called Efficient Task Allocation

Genetic Algorithm (ETA-GA). this approach used

genetic algorithm to reduce the task finishing time.

Panwar et al. [14] proposed combination of TOPSIS

algorithm and PSO algorithm called TOPSIS–PSO

algorithm. The proposed algorithm performed in two

stages. First stage is applied to obtain the relative

closeness of tasks based on selected criteria

(execution time, transmission time and cost). In

second stage the particle swarm optimization (PSO)

begins with computing relative closeness of the given

three criteria for all tasks in all VMs. A weighted sum

of execution time, transmission time and cost are

used as an objective function by TOPSIS to solve the

problem of multi objective task scheduling in cloud

environment.

2.2 VMs placement algorithms

Sadiq et al. [16] interduce two approach using the

cuckoo search optimization (CSO) algorithm to solve

the VM placement problem. One for reducing

number of active physical resources and another for

reduce wastage resources as well as minimize the

power consumption. In the second approach, Fuzzy

logic is used to combine reducing of the power

consumption and resource wastage into a single

objective and then applied CSO. The disadvantage of

this approach is that load balancing objective is not

considered. Tawfeek et al. [17] applied Ant Colony

Optimization (ACO) algorithm to solve the VM

placement problem. The main objective of this work

is reduced wastage resources of memory and CPU.

The disadvantage of this work is that load balancing

and minimizing power consumption objectives are

not considered. Although there are more VMs

placement algorithms like [18] but they are

developed to achieve a single objective and not to

achieve a multi objective.

2.3 Complete mapping algorithms

Complete mapping algorithms combine task

scheduling and VMs placement issues in their

solutions. Basu et al. [19] developed genetic

algorithm with local search (GALS) for task

scheduling and VM Placement. The main objective

of GA-LS is minimizing the energy consumption and

memory usage as well as performed load balancing

on physical resource. The main idea in this algorithm

is used the local search to select the two best

chromosomes for every crossover operation and VM

Migration done in mutation process to handles load

balancing on physical resource. The disadvantage of

this algorithm the time of execution, compilation

time, makespan or response time not considered.

Also, the chromosome represent distributions tasks

on VMs are deployed on one physical resource, that

is mean the resources request by all VMs needed to

be available on this physical resource. Mishra et al.

[6] introduced a complete mapping for task

scheduling and VMs placement. The main objective

of this work is reduced power consumption,

makespan, and task rejection rate. This work does

that sort tasks based on deadline time then classify

them into four types based on their resource

requirement. Also, there are four types of VM. All the

VM types are in ascending of their resource capacity.

Task assigned to fit VM of the same type. If the

required resource of a task is not available in same

type of VM, then search in the forward type for

suitable VM. After that searches the host where the

VM can deployed. The disadvantage of this work

sorting and classifying tasks and VMs increase

complexity. And load balancing objective is not

considered. Also, if task assigned to VM and cannot

deployed VM on host at this time, in this case the

objective cannot performed.

Most of the previous work provided solutions for

either scheduling tasks or scheduling VMs separately.

Scheduling tasks algorithms are focused on the

performance efficiency in execution, but once of

important challenge faced task is that need to initial

VMs placement to obtain the objective of these

algorithms. In placement of initial VMs, VMs

replacement (VMs migration) is needed, if the

occurrence of server sprawl phenomenon or load

imbalance can happen. In case of VMs placement

done to perform maximizing resource utilization,

load balancing, and power management, there are

VMs not deployed on hosts because the requested

resources by them are not available on hosts at this

time. That is means objective of task scheduling

algorithms may be not achieved. Scheduling VMs, in

order to optimize resource management for different

criteria, including performance, power and cost. They

dynamically allocate the CPU, memory and I/O

resources to virtual machines according to

requirements of cloud, but they ignore the objective

of user.

3. Multi-objective task scheduling problem

Currently, the big problem in CC is building task

scheduling and virtual machines (VMs) allocation

algorithms that consider all these objectives in the

same time. This problem is called Multi-Objective

task scheduling problem (MOTSP) which is NP

completeness problem. In this section, the description

Received: June 28, 2021. Revised: August 7, 2021. 574

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.50

of MOTSP will be introduced, then this problem is

formulated.

3.1 Problem description

In cloud computing there are two main stages to

perform resource management. The first stage is task

scheduling which is determining the efficient VM for

executing a task. Task scheduling done based on

many objectives such as reducing time execution,

maximizing resource utilization, load balancing,

power management, or another objective. The second

stage is VMs allocation (also called VMs placement)

which is assigning VMs on a physical resource (i.e.,

host). VMs placement can be categorized into two

types: 1) Initial VMs placement which is launching a

VM on the nearest host to meet the requirements of a

user task and 2) Objective-based VMs placement

which is launching a VM on the most appropriate

host that meets a certain objective such as

maximizing resource utilization, load balancing, or

power management.

One of the problems in VMs placement is that

there are VMs cannot be deployed on the hosts

because their required resources cannot be provided

by these hosts (VMs rejection). Another problem that

can be happened when VMs are assigned to hosts is

that the available resources in these hosts are less than

the required resources of VMs (wastage resources

which is called server sprawl).

To solve these problem, VMs migration is needed.

VMs migration is happened when a physical host

fails in deploying its assigned VMs, for any reason.

As a result, VMs are deployed to some other physical

hosts until the failure is corrected. Also, VMs

migration is done for maximizing resource utilization,

load balancing, and power management. VMs

migration is a complex problem which needs to

predict or determine the source and destination hosts

and the number of VMs that will be replaced. Also,

whenever a VM is migrated, its CPU state, storage,

main memory, and network connections are taking

care of VMs continuous migration that causes

additional overhead [3, 5-8, 18, 20].

4. Problem formulation

In cloud computing system there is a set of tasks,

T= {T1, T2, ..., Tn} where n is the number of tasks.

And there is a set of physical hosts PR= {R1, R2, ...,

Rl} in distributed data centres where l is the number

of hosts. For each physical resource, Rk there is a set

of virtual machines, VMs= {VM1, VM2, ..., VMm}

will be deployed on Rk, m is the number of VMs. The

task Ti in T will be assigned to VMj which is the

efficient VM for executing task, and the VMj will be

deployed on physical resource, Rk.

Many parameters need to be considered to

achieve the objectives of a user or the objectives of a

cloud vendor such as completion time, response time,

makespan, resource utilization, wastage memory,

wastage CPU, throughput, scheduling length

(FlowTime), and power consumption. Assume that

the Ii is denoted as the total number of instructions of

task Ti, Pj is denoted as the total processing power of

VMj, and EXij is denoted as the execution time of task

Ti on VMj , which is the expected interval time

elapsed to execute Ti on VMj, then the execution time

EXij is calculated as follows.

𝐸𝑋𝑖𝑗 =
𝐼𝑖

𝑃𝑗
 (1)

Where 1≤ i ≤n, 1≤ j ≤m, and assume that Sij is denoted

as the started execution time of Ti on VMj and the

completion time of task Ti which is the expected time

for task finished execution on VMj represented by CTij.

If the tasks are independent and nonprimitive, then

the completion time of a task CTij is calculated as

follows.

𝐶𝑇𝑖𝑗 = 𝑆𝑖𝑗 + 𝐸𝑋𝑖𝑗 (2)

Assume that makespan is denoted as MK, which

the completion time of last task for all user is and is

calculated as follows.

𝑀𝐾 = 𝑚𝑎𝑥 (𝐶𝑇𝑖𝑗) (3)

And assume that scheduling length is denoted as SL,

which is the total sum of completion time of all tasks

(also called FlowTime) and is calculated as follows

[12].

𝑆𝐿 = ∑ ∑ 𝛼𝑖𝑗 × 𝐶𝑇𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

(4)

, 𝛼𝑖𝑗 = {
1 𝑇𝑖 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑉𝑀𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Also, assume that the throughput is denoted as TH,

which is the maximum rate of executing the tasks in

unit time (i.e. is the total number of tasks, whose

execution has been finished successfully per unit

time) and is calculated as follows [10].

𝑇𝐻 =
𝑛

𝑀𝐾
 (5)

Received: June 28, 2021. Revised: August 7, 2021. 575

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.50

where n is number of tasks. Assume that the system

performance is denoted by SP and is calculated as

follows

𝑆𝑃 = 𝑤𝑚𝑘 ×
1

𝑀𝐾
+ 𝑤𝑠𝑙 ×

1

𝑆𝐿
+ 𝑤𝑡ℎ × 𝑇𝐻 (6)

where wmk, wsl, and wth are the weights of makespan,

scheduling length, and throughput respectively.

These weights represent the importance of these

terms in the system performance such that the sum of

these weights must equal 1 as follows.

𝑤𝑚𝑘 + 𝑤𝑠𝑙 + 𝑤𝑡ℎ = 1 (7)

Assume that the available processing power by

physical resource Rk is denoted by βk and the wastage

processing power is represented by ρk and is

calculated as follows.

𝜌𝑘 = 𝛽𝑘 − ∑ 𝑝𝑗

𝑚

𝑗=1

× 𝜎𝑗𝑘

(8)

, 𝜎𝑗𝑘 = {
1 𝑉𝑀𝑗 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑 𝑜𝑛 𝑡𝑜 𝑅𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 1≤ k ≤l and assume that the available memory

by physical resource Rk is denoted by µk, the request

memory for deploying VMj represented by Mj, and the

wastage memory is represented by γk and is calculated

as follows.

𝛾𝑘 = µ𝑘 − ∑ 𝑀𝑗
𝑚
𝑗=1 × 𝜎𝑗𝑘,

(9)

, 𝜎𝑗𝑘 = {
1 𝑉𝑀𝑗 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑 𝑜𝑛 𝑡𝑜 𝑅𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Assume that the total wastage resource is denoted by

W and is calculated as follows.

𝑊 = 𝑤𝑝 × ∑ 𝜌𝑘

𝑙

𝑘=1

+ 𝑤𝑚 × ∑ 𝛾𝑘

𝑙

𝑘=1

 (10)

Where wp and wm are the weights of processing

power and memory respectively. These weights

represent the importance of these terms in the system

utilization and wastage resource such that the sum of

these weights must equal 1 as follows.

𝑤𝑝 + 𝑤𝑚 = 1 (11)

Assume that the estimated energy consumption

by system in unite time ut is denoted by εk,ut, which is

the amount of energy consumed by physical resource

Rk to deploy all the accepted virtual machines in unite

time and is calculated as follows.

𝜀𝑘,𝑢𝑡 = 𝜖 × 𝑈𝑃𝑘 (12)

where 𝜖 is power consumption of utilization by

physical resource in a time unit and UPk is the

utilization CPU of physical resource Rk and is

calculated as follows.

𝑈𝑃𝐾 =
∑ 𝑝𝑗

𝑚
𝑗=1 × 𝜎𝑗𝑘

𝛽𝑘
 (13)

The CPU performance that can significantly reduce

energy consumption. The total estimated energy

consumption by system is denoted by EG and is

calculated as follows.

𝐸𝐺

=
∑ [𝜀𝑘,𝑢𝑡

𝑙
𝑘=1 × ∑ ∑ 𝐸𝑋𝑖𝑗 ×∝𝑖𝑗

𝑛
𝑖=1

𝑚
𝑗=1 × 𝜎𝑗𝑘]

𝑢𝑡
 (14)

, 𝛼𝑖𝑗 = {
1 𝑇𝑖 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑉𝑀𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,and

𝜎𝑗𝑘 = {
1 𝑉𝑀𝑗 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑 𝑜𝑛 𝑡𝑜 𝑅𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Server consolidation is done by reduction of the

number of physical hosts. To increase energy

efficiency and maximize resource utilization,

packing the Active physical hosts with VMs as tightly

as possible (multiple VMs are packed on fewest

possible physical hosts and rest of the hosts are turned

down to sleep mode (low power state)). Also, server

consolidation technique is used for load balancing by

offloading over utilized hosts (movement the VMs

from physical hosts that is over load in which the

required resources of VMs more than the available

resources in host to physical host that is under load in

which the required resources of VMs less than the

available resources in host). Server Consolidation

technique prevent server sprawl phenomenon

happens. Inefficient resource allocation makes data

centres underutilized (there are multiple

underutilized physical hosts consume high resource

and power consumption not justified according the

workload being executed which called server sprawl

phenomenon) [8, 16, 20].

The main objective of this paper is minimizing

energy consumption by system (EG in Eq. (14)),

wastage resource (W in Eq. (10)), and numbering of

active physical resource and maximizing system

performance (SP in Eq. (6)) and can express as

Received: June 28, 2021. Revised: August 7, 2021. 576

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.50

𝑀𝑎𝑥𝑚𝑖𝑧𝑒 (𝑤𝑠𝑝 × 𝑆𝑃 + 𝑤𝑒 ×
1

𝐸𝐺
+ 𝑤𝑟 ×

1

𝑊

+ 𝑤𝑛

1

𝑁
) (15)

Such that

 ∑ ∝𝑖𝑗= 1 ∀ 𝑖 𝜖 {1,2, . . . , 𝑛}

𝑚

𝑗=1

 (16)

∑ 𝜎𝑗𝑘 = 1 ∀ 𝑗 𝜖 {1,2, . . . , 𝑚}

𝑙

𝑘=1

(17)

Where wsp, we, wr , and wn are the weights of system

performance, total energy consumption by system,

wastage resource and numbering of active physical

resource respectively. These weights represent the

importance of these terms in the objective of

scheduling in cloud computing such that the sum of

these weights must equal 1 as follows.

𝑤𝑠𝑝 + 𝑤𝑒 + 𝑤𝑟 + 𝑤𝑛 = 1 (18)

And N is the number of active physical resource. The

first condition in Eq. (16) meaning that the task will

be execute on only one VM. The second condition in

Eq. (17) meaning that the VM will be deploy on only

one physical resource.

5. The proposed task scheduling and VM

allocation algorithm

Efficient resource management in cloud

computing environment for multiple tasks which are

submitted by a user is one of the most challenging

problems. The optimal assigning of tasks to virtual

machines (VMs) and VMs to physical machines

problem are necessary for advancing energy

consumption and resource utilization. The main

processes in resource management are determining

the efficient VM for executing task and are

determining the efficient host for binding VM. To

make the best resource management in cloud

environment, it is necessary to consider the required

resources for tasks and the available resources of

cloud hosts to prevent server sprawl happens and

VMs rejection happens. In addition, the resource

scheduling must satisfy the objectives of users and

cloud vendors and improve the overall performance

of the cloud computing environment.

To solve MOTSP in CC, a new task scheduling

algorithm is proposed called Genetic-Based Multi-

Objective Task Scheduling Algorithm, G-MOTSA is

Figure. 1 Flowchart of genetic algorithm

proposed. The goals of G-MOTSA are achieving

multi-objective issues for resource management and

satisfying trade-off conflicting requirements between

users and cloud providers without performing any

VMs migration. This section introduces the basic

idea of G-MOTSA, then the proposed G-MOTSA in

details.

5.1 Basic idea

The basic idea of G-MOTSA is based on the data

centre broker receives information about the tasks to

be performed in terms required resources, the

available servers and their characteristics (available

number of core, speed of core , available memory and

network bandwidth), as well as information about the

VMs in terms of its characteristics (the required

resources to deploy VM). After that, G-MOTSA uses

a modified genetic algorithm (GA) to choose the

appropriate VMs to implement those tasks and the

appropriate servers to deploy the VMs, so that these

chooses give the best performance of the system with

the fewest number of servers, the least consuming

energy, and the least wasting resources.

The multi-objective of G-MOTSA considers

system performance, number of active hosts, energy

consumption, and load balancing on host and

resource utilization. G-MOTSA can minimize energy

consumption, this is because that if there is no VM

assigned to a host, place it to the sleep mode, where

the servers switch off unneeded subsystems and put

the RAM into a minimum power state. For example,

IBM is developing a mode named deep sleep for its

new Power processors that will allow them to

consume almost no power when they are idle [21].

5.2 The proposed algorithm

For resource management, G-MOTSA uses

genetic algorithm (GA) for distributing tasks on VMs

and distributing VMs on available hosts of data

centres by using three tuples: (1) a tuple for

representing the IDs of tasks, (2) a tuple for

representing the IDs of VMs, and (3) a tuple for

representing the IDs of hosts. Therefore, G-MOTSA

proposed a matrix structure for representing the

Received: June 28, 2021. Revised: August 7, 2021. 577

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.50

Figure. 2 Chromosome representation

chromosome of GA which combines the three

different tuples. By using this matrix structure, the

flow chart of GA processes is shown in Fig. 1.

In the next subsections, these processes will be

described in detail.

5.2.1. Initialization process

Genetic algorithm begins with the initialization of

population. The initial population is the set of all

individuals that are used in the GA to represent the

possible solution to the scheduling problem. Every

individual is represented as a chromosome which is

one such solution. Every chromosome consists of a

set of genes. Gene is a one element position of a

chromosome. The value of gene takes for a particular

chromosome called Allele. The proposed solution

represents the chromosome by 3 x n matrix, where n

is the number of tasks. And the first row represents id

of a task, the second row represents id of a VM, and

the third row represents id of a host as shown in Fig.

2.

As shown in Fig. 2 tasks have ids 0, 4 will be

execute on VM has id 1, while task has id 1 will be

execute on VM has id 2. VMs have ids 1,2 will be

deploy on host has id 1, so the VM has id 1 must be

appropriate to implement the tasks that have ids 0,4

in terms of the required resources and give the highest

system. Also, the choosing the least number of

servers must be appropriate to deploy the VMs in

terms of the required resources and give less wastage

resource and less total energy consumption.

5.2.2. Evaluation process

Each chromosome is evaluated by a fitness

function (objective). Fitness function measures the

fitness value of chromosome. The fitness value

determines the performance of an individual in the

population. The Fitness function of the proposed

solution is to minimize energy consumption by

system, wastage resource, and numbering of active

physical resource and maximize system performance

Eq. (15).

5.2.3. Selection process

This process selects individuals from the

Figure. 3 Single point crossover operator

Figure. 4 Mutation operator

population for mating. There are various selection

mechanisms to select the best chromosomes such as

selection based on rank, roulette wheel, tournament

selection, and Boltzmann strategy. G-MOTSA used

tournament selection mechanism.

5.2.4. Crossover process

Crossover operation can be applied by selecting two

individuals and using one of the two kinds of

thecrossover operators that are single point crossover

and order crossover operators. G-MOTSA used

single point crossover. Crossover operation applied

on the second and the third rows of the matrix (id of

VM and id of host). Crossover operation generates

new individuals see Fig. 3.

5.2.5. Mutation process

After crossover, mutation process takes place to

prevent the population of individuals from changing

into the same as one other. It occurs during evolution

according to mutation probability. Mutation

operation changes one or more gene values in the

individual from its initial state. Mutation operation

applied on the second and the third rows of the matrix

(id of VM and id of host). This can produce the

entirely new ids of VM and host. In Fig. 4 there are

new ids of VM (VM has id 5 is new id) and host (host

has id 3 is new id). With these new VM id and new

host id, the genetic algorithm may be able to produce

a better solution than was previously.

6. Simulation results and analysis

In this section, the simulation results will be

presented to show the scheduling performance using

G-MOTSA compared with performance ETVMC [6],

TSACS [9], and ACO [17] algorithms.

Simulations are performed for two tests, in first

test, the number of tasks is fixed and the number of

VMs varies from 10 to 50. And in the second test,

with the number of VMs is fixed and the number of

tasks varies from 500 to 1000. Also, in two tests, the

Received: June 28, 2021. Revised: August 7, 2021. 578

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.50

Figure. 5 Makespan vs. No. of VMs

Figure. 6 Makespan vs. No. of tasks

number of hosts is fixed. In each test, the resource

requirement, the length of the tasks, and the resources

for the VMs are generated randomly. All experiments

were done using CloudSim [22] which is a simulator

for cloud computing environments supporting

multiple VMs within a data centre node.

6.1 Makespan

Minimizing the time consumed for finishing

execution time of all tasks (makespan) to satisfy the

objectives of user and cloud vendors.

Figs. 5 and 6 show the makespan of G-MOTSA,

ETVMC [6], TSACS [9], and ACO [17] algorithms

for different values of VMs, when the number of

tasks was fixed and for different values of tasks and

the number of VMs was fixed, respectively.

As shown in Figs. 5 and 6, makespan for the G-

MOTSA and TSACS [9] algorithm is much lower

than ETVMC [6] and ACO [17]. Because ACO [17]

solves only part of the problem (VMs allocation with

the least wastage resources) and ETVMC [6] there

are several tasks of a certain classification that have

no parallel from the VMS, and therefore they are

assigned to the VMs that achieves less execution time.

6.2 Scheduling length

Figure. 7 Scheduling length vs. No. of VMs

Figure. 8 Scheduling length vs. No. of Tasks

Figs. 7 and 8 show the scheduling length of G-

MOTSA, ETVMC [6], TSACS [9], and ACO [17]

algorithms for different values of VMs, when the

number of tasks was fixed and for different values of

tasks and the number of VMs is fixed, respectively.

As shown in Fig. 7 scheduling length for the proposed

G-MOTSA, ETVMC [6], TSACS [9], and ACO [17]

decreases as the number of VMs increases, this is

because, existing of more VMs, will give opportunity

to finish tasks earlier.

As shown in Fig. 8, scheduling length for the

proposed G-MOTSA, ETVMC [6], TSACS [9], and

ACO [17] increases as the number of tasks increases,

this is because, adding more tasks with different

execution times needs more executing times which

increases the total scheduling length. From Figs. 7

and 8, the scheduling length of the G-MOTSA and

TSACS [9] algorithm is much lower than ETVMC

[6] and ACO [17].

6.3 Throughput

Figs. 9 and 10 show the throughput of G-

MOTSA, ETVMC [6], TSACS [9], and ACO [17]

algorithms for different values of VMs, when the

Received: June 28, 2021. Revised: August 7, 2021. 579

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.50

Figure .9 throughput vs. No. of VMs

Figure. 10 Throughput vs. No. of tasks

number of tasks was fixed and for different values of

tasks and the number of VMs is fixed, respectively.

As shown in Fig. 9, throughput for the proposed

G-MOTSA, ETVMC [6], TSACS [9], and ACO [17]

increases as the number of VMs increases, this is

because, existing of more VMs, will give opportunity

to maximize the throughput of the system.

As shown in Fig. 10, throughput for the

proposedG-MOTSA and TSACS [9] is less

changeable when the number of tasks increases, this

is because G-MOTSA can adapt the number of

assigned tasks to VMs. While throughput for

ETVMC [6] is less affected by the increasing number

of VMs, this is because ETVMC [6] cannot adapt the

number of required VMs for executing the tasks.

From Fig. 9 and 10, the throughput of G-MOTSA and

TSACS was much higher than ETVMC [6] and ACO

[17].

6.4 Resource utilization

Resource utilization (RU) is one of the objectives

of cloud providers. The scheduling technique should

improve the system performance and takes resource

utilization into consideration. Resource utilization is

Figure 11. Resource utilization vs. No. of VMs

Figure 12. Resource utilization vs. No. of tasks

calculated as follows [10].

𝑅𝑈 =
∑ 𝑀𝐾𝑘

𝑙
𝑘=1

𝑙 × (𝑀𝑎𝑥(𝑀𝐾𝑘))
 (19)

where 1≤ k ≤l and l is the number of hosts and MKk is

the makespan of all tasks that executed on host k.

Figs. 11 and 12 show the resource utilization of G-

MOTSA, ETVMC [6], TSACS [9], and ACO [17]

algorithms for different values of VMs, when the

number of tasks was fixed and for different values of

tasks and the number of VMs is fixed, respectively.

As shown in Figs. 11 and 12, resource utilization

for the proposed G-MOTSA, ETVMC [6], TSACS

[9], and ACO [17] algorithms are changed as the

number of VMs and tasks increases. Also, resource

utilization of G-MOTSA was higher than other

algorithms and G-MOTSA can achieve resource

utilization up to 90% in two cases.

6.5 Estimated consumed energy

Figs. 13 and 14 show the estimated consumed

energy of G-MOTSA, ETVMC [6], TSACS [9], and

ACO [17] algorithms for different values of VMs,

when the number of tasks was fixed and for different

values of tasks and the number of VMs is fixed,

Received: June 28, 2021. Revised: August 7, 2021. 580

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.50

Figure. 13 Estimated consumed energy vs. No. of VMs

Figure. 14 Estimated consumed energy vs. No. of Tasks

Figure. 15 Degree of imbalance vs. No. of VMs

Figure. 16 Degree of imbalance vs. No. of Tasks

respectively. As shown in Figs. 13 and 14, the

estimated consumed energy for the proposed G-

MOTSA, ETVMC, TSACS [9], and ACO [17]

algorithms are changed as the number of VMs and

tasks increases. Also, estimated consumed energy of

G-MOTSA and TSACS [9] was much lower than

ETVMC [6] and ACO [17].

6.6 Degree of imbalance

The degree of imbalance (DI) measures the

imbalance among hosts. DI is calculated as follows.

𝐷𝐼 =
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

𝑇𝑎𝑣𝑔
 (20)

Where, Tmax, Tmin and Tavg are the maximum,

minimum and average total execution time (in

seconds) of all hosts, respectively.

Figs. 15 and 16 show the degree of imbalance

obtained by applying the G-MOTSA, ETVMC [6],

TSACS [9], and ACO [17] algorithms for different

values of VMs, when the number of tasks was fixed

and for different values of tasks and the number of

VMs is fixed, respectively. As shown in Figs. 15 and

16, degree of imbalance for the G-MOTSA and other

algorithms is changed as the number of VMs and

tasks increases. Also, degree of imbalance of G-

MOTSA was much lower than other algorithms. This

means that the G-MOTSA can achieve good system

load balance.

Based on these results, the results obtained by

applying the proposed G-MOTSA are the best in

terms resource utilization, energy consumption, and

imbalance degree among all other algorithms. This

prevent the occurrence of server sprawl phenomenon

and reduce the needing for VMs migration process.

While in terms of makespan, Scheduling length, and

throughput, TSACS [9] and G-MOTSA algorithms

achieve the best results with small difference between

two algorithms, where this difference decreases with

the increasing in the number of VMs or tasks. In

addition, TSACS [9] algorithm solves only part of the

problem (scheduling tasks with the least completion

time). Also, TSACS [9] algorithm select All VMs

that is need the resource request by VMs should be

available by hosts, in most time cannot achieve.

Finally, the complexity degree the TSACS [9]

algorithm is greater than the others.

7. Conclusion and future work

In this paper, a new task scheduling algorithm is

proposed called G-MOTSA for solving multi-

objective task scheduling problem in cloud

Received: June 28, 2021. Revised: August 7, 2021. 581

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.50

computing. G-MOTSA uses a modified genetic

algorithm to find the optimal solution for choosing

the most appropriate VMs for executing received

tasks and their appropriate hosts that will deploy

these VMs. G-MOTSA can optimize resource

management for different criteria, including

performance, power and cost. G-MOTSA
dynamically allocate the CPU, memory and I/O

resources to virtual machines according to
requirements of cloud and the objective of user,
while most of existing algorithms do not take the
objective of user into account. G-MOTSA can

prevent the occurrence of server sprawl phenomenon

and reduce the needing for VMs migration process.

The simulation results shown that G-MOTSA can

achieve better performance than some of existing

methods in terms of makespan, scheduling length,

throughput, resource utilization, and energy

consumption. In the future work, the task types

(dependent) and priorities, in the optimization model

will be considered. In addition, the proposed model

will be implemented in a real cloud environment.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Conceptualization, methodology, software,

validation, validation, formal analysis, investigation,

resources, data curation, and writing—original draft

preparation, Ahmed. A. A. Gad-Elrab and Farouk A.

Emara; writing—review and editing, Ahmed. A. A.

Gad-Elrab; supervision, Ahmed. A. A. Gad-Elrab, K.

R. Raslan, and Ahmed Sobhi.

Acknowledgments

This research was supported by Faculty of

Science, Al-Azhar University, Cairo, Egypt. In

addition, it was partially supported by King Abdul-

Aziz University, Jeddah, Saudi Arabia. I thank both

for providing us the ability to conduct and finish this

research.

Reference

[1] B. Furht and A. Escalante, Handbook of cloud

computing, Vol. 3, Springer, 2010.

[2] D. Sullivan, “The definitive guide to cloud

computing”, Real Time Nexus, No. 1, pp. 4–11,

2010.

[3] Z. Usmani and S. Singh, “A survey of virtual

machine placement techniques in a cloud data

center”, In: Proc. of 1st International Conf. on

Information Security and Privacy, pp. 491-498,

2016.

[4] Y. Jadeja and K. Modi, “Cloud computing -

concepts, architecture, and challenges”, In: Proc.

of International Conf. on Computing,

Electronics and Electrical Technologies

(ICCEET), pp. 877–880, 2012.

[5] A. Choudhary, S. Rana, and K. Matahai, “A

critical analysis of energy efficient virtual

machine placement techniques and its

optimization in a cloud computing environment”,

In: Proc. of 1st International Conf. on

Information Security and Privacy, pp. 132-138,

2016.

[6] S. Mishra, D. Puthal, B. Sahoo, P. Jayaraman, S.

Jun, A. Zomaya, and R. Ranjan, “Energy-

efficient VM-placement in cloud data center”,

Sustainable Computing: Informatics and

Systems, Vol. 20, pp. 48 – 55, 2018.

[7] A. Bhandari and K. Kaur, “An Enhanced Post-

migration Algorithm for Dynamic Load

Balancing in Cloud Computing Environment”,

In: Proc. of International Conf. on Ethical

Hacking, Singapore, pp. 59-73, 2019.

[8] M. Shirvani, A. Rahmani, and A. Sahafi, “A

survey study on virtual machine migration and

server consolidation techniques in DVFS-

enabled cloud datacenter: Taxonomy and

challenges”, Journal of King Saud University -

Computer and Information Sciences, Vol. 32,No.

3, pp. 267–286, 2020.

[9] A. Nasr, N. E. Bahnasawy, G. Attiya, and A. E.

Sayed, “Using the tsp solution strategy for

cloudlet scheduling in cloud computing”,

Journal of Network and Systems Management,

Vol. 27, No. 2, pp. 366–387, 2019.

[10] M. Alworafi, A. Dhari, S. E. Booz, A. Nasr, A.

Arpitha, and S. Mallappa, “An enhanced task

scheduling in cloud computing based on hybrid

approach”, In: Proc. of International Conf. on

Data Analytics and Learning, pp. 11–25, 2019.

[11] Y. Fang, F. Wang, and J. Ge, “A task scheduling

algorithm based on load balancing in cloud

computing”, In: Proc. of International Conf. on

Web Information Systems and Mining, Berlin,

Heidelberg, pp. 271–277, 2010.

[12] S. Sindhu and S. Mukherjee, “Efficient task

scheduling algorithms for cloud computing

environment”, In: Proc. of International Conf.

on High Performance Architecture and Grid

Computing, Berlin, Heidelberg, pp. 79-83, 2011.

[13] P. Rekha and M. Dakshayini, “Efficient task

allocation approach using genetic algorithm for

cloud environment”, Cluster Computing, Vol.

22, No. 4, pp. 1241–1251, 2019.

Received: June 28, 2021. Revised: August 7, 2021. 582

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.50

[14] N. Panwar, S. Negi, M. Rauthan, and K. Vaisla,

“Topsis–pso inspired non-preemptive tasks

scheduling algorithm in cloud environment”,

Cluster Computing, Vol. 22, No. 4, pp. 1379–

1396, 2019.

[15] K. Naik, G. Gandhi, and S. Patil,

“Multiobjective virtual machine selection for

task scheduling in cloud computing”, In: Proc.

of International Conf. on Computational

Intelligence: Theories, Applications and Future

Directions, Singapore, pp. 319-331, 2019.

[16] S. Sait, A. Bala, and A. E. Maleh, “Cuckoo

search based resource optimization of

datacenters”, Applied Intelligence, Vol. 44, No.

3, pp. 489–506, 2016.

[17] M. Tawfeek, A. E. Sisi, A. Keshk, and F. Torkey,

“Virtual machine placement based on ant colony

optimization for minimizing resource wastage”,

In: Proc. of International Conf. on Advanced

Machine Learning Technologies and

Applications, Cham, pp. 153-164, 2014.

[18] D. Patel, R. Gupta, and R. Pateriya, “Energy-

Aware Prediction-Based Load Balancing

Approach with VM Migration for the Cloud

Environment”, In: Proc. of International Conf.

on Data, Engineering and applications,

Singapore, pp. 59-74, 2019.

[19] S. Basu, G. Kannayaram, S. Ramasubbareddy,

and C. Venkatasubbaiah. “Improved genetic

algorithm for monitoring of virtual machines in

cloud environment”, In: Proc. of International

Conf. on Intelligent Computing and Applications,

Singapore, pp. 319-326, 2019.

[20] N. Vahed, M. G. Arani, and A. Souri,

“Multiobjective virtual machine placement

mechanisms using nature inspired metaheuristic

algorithms in cloud environments: A

comprehensive review”, International Journal

of Communication Systems (IJCS), Vol. 32, No.

14, 2019.

[21] D. Meisner, B. Gold, and T. Wenisch, “The

powernap server architecture”, ACM

Transactions on Computer Systems, Vol. 29, No.

1, 2011.

[22] R. Calheiros, R. Ranjan, A. Beloglazov, C. D.

Rose, and R. Buyya “Cloudsim: a toolkit for

modeling and simulation of cloud computing

environments and evaluation of resource

provisioning algorithms”, Software: Practice

and Experience, Vol. 41, No. 1, pp. 23–50, 2011.

https://dl.acm.org/journal/tocs
https://dl.acm.org/journal/tocs

