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Abstract: Recently, resource management is the major issues in cloud computing (CC) environment because of 

dynamic heterogeneity of cloud computing environment. The task scheduling and virtual machines (VMs) allocation 

play a vital role in resources management of CC. Most of existing works for these issues aim to achieve single objective 

as maximizing resource utilization, load balancing, or power management. Currently, the big challenge in CC is 

building task scheduling and virtual machines (VMs) allocation algorithms that consider all these objectives in the 

same time. This problem is called task scheduling with VMs allocation multi-objectives problem which is NP 

completeness problem. In this paper, a new task scheduling algorithm is proposed for achieving efficient resource 

management based on these objectives. This proposed algorithm uses a modified genetic algorithm (GA) to find the 

optimal solution for choosing the most appropriate VMs for executing received tasks and their appropriate servers that 

will deploy these VMs. This proposed algorithm uses a matrix structure for representing the chromosome of GAS 

which combines the ids of tasks, VMs, and servers. Simulation results show that the proposed algorithm achieves 

better performance than ETVMC, TSACS, and ACO algorithms in terms of makespan, scheduling length, throughput, 

resource utilization, energy consumption, and imbalance degree.  

Keywords: Cloud computing, Task scheduling, VMs placement, Server consolidation, Makespan, Energy 

consumption. 

 

 

1. Introduction 

Cloud computing system is depended on 

virtualization technology that is virtualization 

technology enables the resources of a single physical 

cloud resources to be divided several isolated 

execution environments running on virtual machines 

(VMs). The VMs are instances of the physical 

resources it is created and managed by a software 

layer which is called a hypervisor or a Virtual 

Machine Monitor (VMM). The VM run a task of user 

and when the task is completed it will shut down or 

allocated to another task [1, 2]. Using virtualization 

technology in cloud computing increases the 

throughput as well as scalability of the system [3].  

Uninterrupted service is one of advantages of 

using cloud computing [4] that is needed to manage 

physical and virtual resources. Task scheduling and 

VMs placement are the two of the most important 

elements of resource management in cloud 

computing system. Task scheduling done based on 

objectives such as reduce time execution, reduce cost, 

load balancing on VMs, Quality of Service (QoS) or 

another objective. Also, VMs placement done based 

objective such as for maximizing resource utilization, 

load balancing, reduce wastage resources, or power 

management. Sometimes VMs placement done to 

meet the requirements of user which called initial 

VMs placement. Initial VMs placement is launching 

a VM on the nearest host. In this case may be there 

are VMs cannot deploy on hosts because required 

resources of VMs cannot provided by hosts. Another 

problem can happen when VMs assigned on host and 

the required resources of VMs less than the available 

resources in hosts (wastage resources this case called 

server sprawl). 
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However, because of dynamic heterogeneity of 

cloud computing environment, virtual machines are 

need to VMs replacement to improve the service 

availability which will be attractive for many users. 

VMs replacement Means movement the one or more 

VMs from physical host to another physical host this 

called VMs migration. VMs migration can happen 
when a physical server fails for any reason, VMs are 

deployed to other physical servers until the failure is 

corrected. Also, VM migration can done for 

maximizing resource utilization, load balancing, and 

power management [5-8].  
This paper proposes a new algorithm for solving 

the scheduling problem in cloud computing. The 

proposed algorithm uses a matrix structure for 

representing the chromosome of GAS which 

combines the ids of tasks, VMs, and servers to find 

the optimal solution for choosing the most 

appropriate VMs for executing received tasks and 

their appropriate servers that will deploy these VMs. 

This prevent the occurrence of server sprawl 

phenomenon and reduce the needing for VMs 

migration process. 

In this paper, the main contributions are: 

(1) Solving multi-objective task scheduling problem 

in cloud computing. 

(2) Using a modified genetic algorithm to find the 

optimal solution for choosing the most 

appropriate VMs for executing received tasks 

and their appropriate hosts that will deploy these 

VMs. 

(3) Optimizing resource management for different 

criteria, including performance, power and cost. 

G-MOTSA dynamically allocate the CPU, 

memory and I/O resources to virtual machines 

according to requirements of cloud and the 

objective of user. 

(4) Preventing the occurrence of server sprawl 

phenomenon and reduce the needing for VMs 

migration process. 

The rest of this paper is organized as follows: the 

related work will be introduced in Section 2. Section 

3. describes task scheduling and virtual machines 

(VMs) allocation problem. Section 4. problem 

formulation. Section 5. explains the proposed 

algorithm. Section 6. introduces the simulation and 

evaluation results of the proposed algorithm and 

Section 7. concludes the paper. 

2. Related work 

In recent years, a lot of algorithms have been 

proposed to schedule tasks on VMs [9-19]. These 

algorithms differ from each other in their methods 

and their objectives which are divided into three 

categories which are task scheduling, VMs placement, 

and complete mapping.  

2.1 Task scheduling algorithms 

Nasr et al. [9] interduce approach, called 

Traveling Salesman Approach for task Scheduling 

(TSACS). The main objective of this approach is 

minimizing makespan. This approach converts task 

scheduling problem into Traveling Salesman 

Problem (TSP) and then apply the nearest neighbour 

algorithm to solve the problem. This approach 

consists of three phases, first phase creates a set of 

clusters equal to number of available VMs by 

grouping the tasks into several clusters. Second phase 

calculate the cluster execution time to create Cluster 

Scheduling (CS) matrix which like the TSP matrix. 

Third phase apply the nearest neighbour algorithm to 

solve the problem. The disadvantage of this approach 

is that it focused only one criteria (makespan) at a 

time. Alworafi et al. [10] introduced Hybrid-SJF-LJF 

(HSLJF) algorithm which combines LJF and SJF 

algorithms. HSLJF sorts the tasks in ascending order, 

then selects one task based on SJF and another task 

based on LSF. Finally, the selected task is submitted 

to select VM that has minimum completion time. The 

disadvantage of this approach is that it focused only 

one criterion (minimum completion time) at a time.  

Fang et al. [11] proposed a scheduling task approach 

based on load balancing in cloud computing where 

the VM is described according to the needed 

resources for executing a task. Next it sorts the hosts 

in ascending order based on their processing power. 

Then VM selects a host that can provide the required 

resources and the load is lightest. Finally, if a task has 

been completed, the VM will be destroyed. 

Disadvantage of this work is creating VM for each 

task which is over head time. Also, if the resources 

that are needed to deploy VM in host is not available, 

then the VM waits for the second scheduling, which 

is not achieve the objective of a user. Sindhu and 

Mukherjee [12] introduced two scheduling methods 

to schedule tasks, Shortest Cloudlet Fastest 

Processing Element (SCFP) and Longest Cloudlet 

Fastest Processing Element (LCFP). In LCFP, the 

task that has large number of instructions is mapped 

to VM that has high computation power for 

minimizing the makespan. While in SCFP, the task 

that has short number of instructions is mapped to 

VM that has high commutating power for reducing 

FlowTime (completion time summation of a set of 

tasks). LCFP can minimize makespan but some tasks 

will be assigned to VM that does not have the 

minimum execution time for them. While SCFP can 

minimize FlowTime but maximizes makespan and 
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decreases resource utilization. Also, LCFP may face 

starvation problem. Rekha and Dakshayini [13] 

proposed approach, called Efficient Task Allocation 

Genetic Algorithm (ETA-GA). this approach used 

genetic algorithm to reduce the task finishing time. 

Panwar et al. [14] proposed combination of TOPSIS 

algorithm and PSO algorithm called TOPSIS–PSO 

algorithm. The proposed algorithm performed in two 

stages. First stage is applied to obtain the relative 

closeness of tasks based on selected criteria 

(execution time, transmission time and cost). In 

second stage the particle swarm optimization (PSO) 

begins with computing relative closeness of the given 

three criteria for all tasks in all VMs. A weighted sum 

of execution time, transmission time and cost are 

used as an objective function by TOPSIS to solve the 

problem of multi objective task scheduling in cloud 

environment.  

2.2 VMs placement algorithms 

Sadiq et al. [16] interduce two approach using the 

cuckoo search optimization (CSO) algorithm to solve 

the VM placement problem. One for reducing 

number of active physical resources and another for 

reduce wastage resources as well as minimize the 

power consumption. In the second approach, Fuzzy 

logic is used to combine reducing of the power 

consumption and resource wastage into a single 

objective and then applied CSO. The disadvantage of 

this approach is that load balancing objective is not 

considered. Tawfeek et al. [17] applied Ant Colony 

Optimization (ACO) algorithm to solve the VM 

placement problem. The main objective of this work 

is reduced wastage resources of memory and CPU. 

The disadvantage of this work is that load balancing 

and minimizing power consumption objectives are 

not considered. Although there are more VMs 

placement algorithms like [18] but they are 

developed to achieve a single objective and not to 

achieve a multi objective. 

2.3 Complete mapping algorithms 

Complete mapping algorithms combine task 

scheduling and VMs placement issues in their 

solutions. Basu et al. [19] developed genetic 

algorithm with local search (GALS) for task 

scheduling and VM Placement. The main objective 

of GA-LS is minimizing the energy consumption and 

memory usage as well as performed load balancing 

on physical resource. The main idea in this algorithm 

is used the local search to select the two best 

chromosomes for every crossover operation and VM 

Migration done in mutation process to handles load 

balancing on physical resource. The disadvantage of 

this algorithm the time of execution, compilation 

time, makespan or response time not considered. 

Also, the chromosome represent distributions tasks 

on VMs are deployed on one physical resource, that 

is mean the resources request by all VMs needed to 

be available on this physical resource. Mishra et al. 

[6] introduced a complete mapping for task 

scheduling and VMs placement. The main objective 

of this work is reduced power consumption, 

makespan, and task rejection rate. This work does 

that sort tasks based on deadline time then classify 

them into four types based on their resource 

requirement. Also, there are four types of VM. All the 

VM types are in ascending of their resource capacity. 

Task assigned to fit VM of the same type. If the 

required resource of a task is not available in same 

type of VM, then search in the forward type for 

suitable VM. After that searches the host where the 

VM can deployed. The disadvantage of this work 

sorting and classifying tasks and VMs increase 

complexity. And load balancing objective is not 

considered. Also, if task assigned to VM and cannot 

deployed VM on host at this time, in this case the 

objective cannot performed. 

Most of the previous work provided solutions for 

either scheduling tasks or scheduling VMs separately. 

Scheduling tasks algorithms are focused on the 

performance efficiency in execution, but once of 

important challenge faced task is that need to initial 

VMs placement to obtain the objective of these 

algorithms. In placement of initial VMs, VMs 

replacement (VMs migration) is needed, if the 

occurrence of server sprawl phenomenon or load 

imbalance can happen. In case of VMs placement 

done to perform maximizing resource utilization, 

load balancing, and power management, there are 

VMs not deployed on hosts because the requested 

resources by them are not available on hosts at this 

time. That is means objective of task scheduling 

algorithms may be not achieved. Scheduling VMs, in 

order to optimize resource management for different 

criteria, including performance, power and cost. They 

dynamically allocate the CPU, memory and I/O 

resources to virtual machines according to 

requirements of cloud, but they ignore the objective 

of user. 

3. Multi-objective task scheduling problem 

Currently, the big problem in CC is building task 

scheduling and virtual machines (VMs) allocation 

algorithms that consider all these objectives in the 

same time. This problem is called Multi-Objective 

task scheduling problem (MOTSP) which is NP 

completeness problem. In this section, the description 
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of MOTSP will be introduced, then this problem is 

formulated. 

3.1 Problem description 

In cloud computing there are two main stages to 

perform resource management. The first stage is task 

scheduling which is determining the efficient VM for 

executing a task. Task scheduling done based on 

many objectives such as reducing time execution, 

maximizing resource utilization, load balancing, 

power management, or another objective. The second 

stage is VMs allocation (also called VMs placement) 

which is assigning VMs on a physical resource (i.e., 

host). VMs placement can be categorized into two 

types: 1) Initial VMs placement which is launching a 

VM on the nearest host to meet the requirements of a 

user task and 2) Objective-based VMs placement 

which is launching a VM on the most appropriate 

host that meets a certain objective such as 

maximizing resource utilization, load balancing, or 

power management. 

One of the problems in VMs placement is that 

there are VMs cannot be deployed on the hosts 

because their required resources cannot be provided 

by these hosts (VMs rejection). Another problem that 

can be happened when VMs are assigned to hosts is 

that the available resources in these hosts are less than 

the required resources of VMs (wastage resources 

which is called server sprawl).  

To solve these problem, VMs migration is needed. 

VMs migration is happened when a physical host 

fails in deploying its assigned VMs, for any reason. 

As a result, VMs are deployed to some other physical 

hosts until the failure is corrected. Also, VMs 

migration is done for maximizing resource utilization, 

load balancing, and power management. VMs 

migration is a complex problem which needs to 

predict or determine the source and destination hosts 

and the number of VMs that will be replaced. Also, 

whenever a VM is migrated, its CPU state, storage, 

main memory, and network connections are taking 

care of VMs continuous migration that causes 

additional overhead [ 3, 5-8, 18, 20]. 

4. Problem formulation 

In cloud computing system there is a set of tasks, 

T= {T1, T2, ..., Tn} where n is the number of tasks. 

And there is a set of physical hosts PR= {R1, R2, ..., 

Rl} in distributed data centres where l is the number 

of hosts. For each physical resource, Rk   there is a set 

of virtual machines, VMs= {VM1, VM2, ..., VMm} 

will be deployed on Rk, m is the number of VMs. The 

task Ti in T will be assigned to VMj which is the 

efficient VM for executing task, and the VMj will be 

deployed on physical resource, Rk. 

Many parameters need to be considered to 

achieve the objectives of a user or the objectives of a 

cloud vendor such as completion time, response time, 

makespan, resource utilization, wastage memory, 

wastage CPU, throughput, scheduling length 

(FlowTime), and power consumption. Assume that 

the Ii is denoted as the total number of instructions of 

task Ti, Pj is denoted as the total processing power of 

VMj, and EXij is denoted as  the execution time of task 

Ti  on VMj , which is the expected interval time 

elapsed to execute Ti on VMj,  then the execution time 

EXij is calculated as follows. 

 

𝐸𝑋𝑖𝑗 =
𝐼𝑖

𝑃𝑗
                                    (1) 

 

Where 1≤ i ≤n, 1≤ j ≤m, and assume that Sij is denoted 

as the started execution time of Ti on VMj and the 

completion time of task Ti which is the expected time 

for task finished execution on VMj represented by CTij. 

If the tasks are independent and nonprimitive, then 

the completion time of a task CTij is calculated as 

follows. 

 

𝐶𝑇𝑖𝑗 = 𝑆𝑖𝑗 + 𝐸𝑋𝑖𝑗                           (2) 

 

Assume that makespan is denoted as MK, which 

the completion time of last task for all user is and is 

calculated as follows. 

 

𝑀𝐾 = 𝑚𝑎𝑥 ( 𝐶𝑇𝑖𝑗)                       (3) 

 

And assume that scheduling length is denoted as SL, 

which is the total sum of completion time of all tasks 

(also called FlowTime) and is calculated as follows 

[12]. 

 

𝑆𝐿 = ∑ ∑ 𝛼𝑖𝑗 × 𝐶𝑇𝑖𝑗

𝑚

𝑗=1

𝑛  

𝑖=1 

 

(4) 

, 𝛼𝑖𝑗 = {
1           𝑇𝑖 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑉𝑀𝑗

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
 

 

Also, assume that the throughput is denoted as TH, 

which is the maximum rate of executing the tasks in 

unit time (i.e. is the total number of tasks, whose 

execution has been finished successfully per unit 

time) and is calculated as follows [10]. 

 

𝑇𝐻 =
𝑛

𝑀𝐾
                                         (5) 
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where n is number of tasks. Assume that the system 

performance is denoted by SP and is calculated as 

follows 

𝑆𝑃 = 𝑤𝑚𝑘 ×
1

𝑀𝐾
+ 𝑤𝑠𝑙 ×

1

𝑆𝐿
+ 𝑤𝑡ℎ × 𝑇𝐻         (6) 

 

where wmk, wsl, and wth are the weights of makespan, 

scheduling length, and throughput respectively. 

These weights represent the importance of these 

terms in the system performance such that the sum of 

these weights must equal 1 as follows. 
 

𝑤𝑚𝑘 + 𝑤𝑠𝑙 + 𝑤𝑡ℎ = 1                          (7) 
 

Assume that the available processing power by 

physical resource Rk is denoted by βk and the wastage 

processing power is represented by ρk and is 

calculated as follows. 
 

𝜌𝑘 = 𝛽𝑘 − ∑ 𝑝𝑗

𝑚

𝑗=1

× 𝜎𝑗𝑘 

(8) 

, 𝜎𝑗𝑘 = {
1           𝑉𝑀𝑗 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑 𝑜𝑛  𝑡𝑜 𝑅𝑘

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
 

 

where 1≤ k ≤l and assume that the available memory 

by physical resource Rk is denoted by µk, the request 

memory for deploying VMj represented by Mj, and the 

wastage memory is represented by γk and is calculated 

as follows. 

 

𝛾𝑘 = µ𝑘 − ∑ 𝑀𝑗
𝑚
𝑗=1 × 𝜎𝑗𝑘, 

(9) 

, 𝜎𝑗𝑘 = {
1           𝑉𝑀𝑗 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑 𝑜𝑛  𝑡𝑜 𝑅𝑘

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
 

 

Assume that the total wastage resource is denoted by 

W and is calculated as follows. 

 

𝑊 = 𝑤𝑝 × ∑ 𝜌𝑘

𝑙

𝑘=1

+ 𝑤𝑚 × ∑ 𝛾𝑘

𝑙

𝑘=1

         (10) 

 
Where wp and wm are the weights of processing 

power and memory respectively. These weights 

represent the importance of these terms in the system 

utilization and wastage resource such that the sum of 

these weights must equal 1 as follows. 

 

𝑤𝑝 + 𝑤𝑚 = 1                            (11) 

 

Assume that the estimated energy consumption 

by system in unite time ut is denoted by εk,ut, which is 

the amount of energy consumed by physical resource 

Rk to deploy all the accepted virtual machines in unite 

time and is calculated as follows.  

 

𝜀𝑘,𝑢𝑡 = 𝜖 × 𝑈𝑃𝑘                         (12) 

 

where 𝜖  is power consumption of utilization by 

physical resource in a time unit and UPk is the 

utilization CPU of physical resource Rk and is 

calculated as follows. 

 

𝑈𝑃𝐾 =
∑ 𝑝𝑗

𝑚
𝑗=1 × 𝜎𝑗𝑘

𝛽𝑘
                        (13) 

 

The CPU performance that can significantly reduce 

energy consumption. The total estimated energy 

consumption by system is denoted by EG and is 

calculated as follows. 

 

𝐸𝐺

=
∑ [𝜀𝑘,𝑢𝑡

𝑙
𝑘=1 × ∑ ∑ 𝐸𝑋𝑖𝑗 ×∝𝑖𝑗

𝑛
𝑖=1

𝑚
𝑗=1 × 𝜎𝑗𝑘]

𝑢𝑡
       (14) 

, 𝛼𝑖𝑗 = {
1           𝑇𝑖 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑉𝑀𝑗

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
 

 ,and   

𝜎𝑗𝑘 = {
1           𝑉𝑀𝑗 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑 𝑜𝑛  𝑡𝑜 𝑅𝑘

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
 

 

Server consolidation is done by reduction of the 

number of physical hosts. To increase energy 

efficiency and maximize resource utilization, 

packing the Active physical hosts with VMs as tightly 

as possible (multiple VMs are packed on fewest 

possible physical hosts and rest of the hosts are turned 

down to sleep mode (low power state)). Also, server 

consolidation technique is used for load balancing by 

offloading over utilized hosts (movement the VMs 

from physical hosts that is over load in which the 

required resources of VMs more than the available 

resources in host to physical host that is under load in 

which the required resources of VMs less than the 

available resources in host). Server Consolidation 

technique prevent server sprawl phenomenon 

happens. Inefficient resource allocation makes data 

centres underutilized (there are multiple 

underutilized physical hosts consume high resource 

and power consumption not justified according the 

workload being executed which called server sprawl 

phenomenon) [8, 16, 20]. 

The main objective of this paper is minimizing 

energy consumption by system (EG in Eq. (14)), 

wastage resource (W in Eq. (10)), and numbering of 

active physical resource and maximizing system 

performance (SP in Eq. (6)) and can express as 
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𝑀𝑎𝑥𝑚𝑖𝑧𝑒 (𝑤𝑠𝑝 × 𝑆𝑃 + 𝑤𝑒 ×
1

𝐸𝐺
+ 𝑤𝑟 ×

1

𝑊

+ 𝑤𝑛

1

𝑁
)                                          (15) 

 

Such that 

 

  ∑ ∝𝑖𝑗= 1                    ∀  𝑖 𝜖 {1,2, . . . , 𝑛}

𝑚

𝑗=1

       (16) 

 

∑ 𝜎𝑗𝑘 = 1                 ∀  𝑗 𝜖 {1,2, . . . , 𝑚}       

𝑙

𝑘=1

(17) 

 

Where wsp, we, wr , and wn  are the weights of system 

performance, total energy consumption by system, 

wastage resource and numbering of active physical 

resource respectively. These weights represent the 

importance of these terms in the objective of 

scheduling in cloud computing such that the sum of 

these weights must equal 1 as follows. 

 
𝑤𝑠𝑝 + 𝑤𝑒 + 𝑤𝑟 + 𝑤𝑛 = 1                  (18) 

 
And N is the number of active physical resource. The 

first condition in Eq. (16) meaning that the task will 

be execute on only one VM. The second condition in 

Eq. (17) meaning that the VM will be deploy on only 

one physical resource.  

5. The proposed task scheduling and VM 

allocation algorithm 

Efficient resource management in cloud 

computing environment for multiple tasks which are 

submitted by a user is one of the most challenging 

problems. The optimal assigning of tasks to virtual 

machines (VMs) and VMs to physical machines 

problem are necessary for advancing energy 

consumption and resource utilization. The main 

processes in resource management are determining 

the efficient VM for executing task and are 

determining the efficient host for binding VM. To 

make the best resource management in cloud 

environment, it is necessary to consider the required 

resources for tasks and the available resources of 

cloud hosts to prevent server sprawl happens and 

VMs rejection happens. In addition, the resource 

scheduling must satisfy the objectives of users and 

cloud vendors and improve the overall performance 

of the cloud computing environment.  

To solve MOTSP in CC, a new task scheduling 

algorithm is proposed called Genetic-Based Multi-

Objective Task Scheduling Algorithm, G-MOTSA is  

 
Figure. 1 Flowchart of genetic algorithm 

 

proposed. The goals of G-MOTSA are achieving 

multi-objective issues for resource management and 

satisfying trade-off conflicting requirements between 

users and cloud providers without performing any 

VMs migration. This section introduces the basic 

idea of G-MOTSA, then the proposed G-MOTSA in 

details. 

5.1 Basic idea 

The basic idea of G-MOTSA is based on the data 

centre broker receives information about the tasks to 

be performed in terms required resources, the 

available servers and their characteristics (available 

number of core, speed of core , available memory and 

network bandwidth), as well as information about the 

VMs in terms of its characteristics (the required 

resources to deploy VM). After that, G-MOTSA uses 

a modified genetic algorithm (GA) to choose the 

appropriate VMs to implement those tasks and the 

appropriate servers to deploy the VMs, so that these 

chooses give the best performance of the system with 

the fewest number of servers, the least consuming 

energy, and the least wasting resources.  

The multi-objective of G-MOTSA considers 

system performance, number of active hosts, energy 

consumption, and load balancing on host and 

resource utilization. G-MOTSA can minimize energy 

consumption, this is because that if there is no VM 

assigned to a host, place it to the sleep mode, where 

the servers switch off unneeded subsystems and put 

the RAM into a minimum power state. For example, 

IBM is developing a mode named deep sleep for its 

new Power processors that will allow them to 

consume almost no power when they are idle [21]. 

5.2 The proposed algorithm 

For resource management, G-MOTSA uses 

genetic algorithm (GA) for distributing tasks on VMs 

and distributing VMs on available hosts of data 

centres by using three tuples: (1) a tuple for 

representing the IDs of tasks, (2) a tuple for 

representing the IDs of VMs, and (3) a tuple for 

representing the IDs of hosts. Therefore, G-MOTSA 

proposed a matrix structure for representing the  
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Figure. 2 Chromosome representation 

 

chromosome of GA which combines the three 

different tuples. By using this matrix structure, the 

flow chart of GA processes is shown in Fig. 1. 

In the next subsections, these processes will be 

described in detail. 

5.2.1. Initialization process 

Genetic algorithm begins with the initialization of 

population. The initial population is the set of all 

individuals that are used in the GA to represent the 

possible solution to the scheduling problem. Every 

individual is represented as a chromosome which is 

one such solution. Every chromosome consists of a 

set of genes. Gene is a one element position of a 

chromosome. The value of gene takes for a particular 

chromosome called Allele. The proposed solution 

represents the chromosome by 3 x n matrix, where n 

is the number of tasks. And the first row represents id 

of a task, the second row represents id of a VM, and 

the third row represents id of a host as shown in Fig. 

2.  

As shown in Fig. 2 tasks have ids 0, 4 will be 

execute on VM has id 1, while task has id 1 will be 

execute on VM has id 2. VMs have ids 1,2 will be 

deploy on host has id 1, so the VM has id 1 must be 

appropriate to implement the tasks that have ids 0,4 

in terms of the required resources and give the highest 

system. Also, the choosing the least number of 

servers must be appropriate to deploy the VMs in 

terms of the required resources and give less wastage 

resource and less total energy consumption. 

5.2.2. Evaluation process 

Each chromosome is evaluated by a fitness 

function (objective). Fitness function measures the 

fitness value of chromosome. The fitness value 

determines the performance of an individual in the 

population. The Fitness function of the proposed 

solution is to minimize energy consumption by 

system, wastage resource, and numbering of active 

physical resource and maximize system performance 

Eq. (15). 

5.2.3. Selection process 

This process selects individuals from the  

 
Figure. 3 Single point crossover operator 

 

 
Figure. 4 Mutation operator 

 

population for mating. There are various selection 

mechanisms to select the best chromosomes such as 

selection based on rank, roulette wheel, tournament 

selection, and Boltzmann strategy. G-MOTSA used 

tournament selection mechanism. 

5.2.4. Crossover process 

Crossover operation can be applied by selecting two 

individuals and using one of the two kinds of 

thecrossover operators that are single point crossover 

and order crossover operators. G-MOTSA used 

single point crossover. Crossover operation applied 

on the second and the third rows of the matrix (id of 

VM and id of host). Crossover operation generates 

new individuals see Fig. 3. 

5.2.5. Mutation process 

After crossover, mutation process takes place to 

prevent the population of individuals from changing 

into the same as one other. It occurs during evolution 

according to mutation probability. Mutation 

operation changes one or more gene values in the 

individual from its initial state. Mutation operation 

applied on the second and the third rows of the matrix 

(id of VM and id of host). This can produce the 

entirely new ids of VM and host. In Fig. 4 there are 

new ids of VM (VM has id 5 is new id) and host (host 

has id 3 is new id). With these new VM id and new 

host id, the genetic algorithm may be able to produce 

a better solution than was previously. 

6. Simulation results and analysis 

In this section, the simulation results will be 

presented to show the scheduling performance using 

G-MOTSA compared with performance ETVMC [6], 

TSACS [9], and ACO [17] algorithms.  

Simulations are performed for two tests, in first 

test, the number of tasks is fixed and the number of 

VMs varies from 10 to 50. And in the second test, 

with the number of VMs is fixed and the number of 

tasks varies from 500 to 1000. Also, in two tests, the  
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Figure. 5 Makespan vs. No. of VMs 

 

 
Figure. 6 Makespan vs. No. of tasks 

 

number of hosts is fixed. In each test, the resource 

requirement, the length of the tasks, and the resources 

for the VMs are generated randomly. All experiments 

were done using CloudSim [22] which is a simulator 

for cloud computing environments supporting 

multiple VMs within a data centre node.  

6.1 Makespan 

Minimizing the time consumed for finishing 

execution time of all tasks (makespan) to satisfy the 

objectives of user and cloud vendors. 

Figs. 5 and 6 show the makespan of G-MOTSA, 

ETVMC [6], TSACS [9], and ACO [17] algorithms 

for different values of VMs, when the number of 

tasks was fixed and for different values of tasks and 

the number of VMs was fixed, respectively. 

As shown in Figs. 5 and 6, makespan for the G-

MOTSA and TSACS [9] algorithm is much lower 

than ETVMC [6] and ACO [17]. Because ACO [17] 

solves only part of the problem (VMs allocation with 

the least wastage resources) and ETVMC [6] there 

are several tasks of a certain classification that have 

no parallel from the VMS, and therefore they are 

assigned to the VMs that achieves less execution time. 

6.2 Scheduling length 

 
Figure. 7 Scheduling length vs. No. of VMs 

 

 
Figure. 8 Scheduling length vs. No. of Tasks 

 

Figs. 7 and 8 show the scheduling length of G-

MOTSA, ETVMC [6], TSACS [9], and ACO [17] 

algorithms for different values of VMs, when the 

number of tasks was fixed and for different values of 

tasks and the number of VMs is fixed, respectively. 

As shown in Fig. 7 scheduling length for the proposed 

G-MOTSA, ETVMC [6], TSACS [9], and ACO [17] 

decreases as the number of VMs increases, this is 

because, existing of more VMs, will give opportunity 

to finish tasks earlier.  

As shown in Fig. 8, scheduling length for the 

proposed G-MOTSA, ETVMC [6], TSACS [9], and 

ACO [17] increases as the number of tasks increases, 

this is because, adding more tasks with different 

execution times needs more executing times which 

increases the total scheduling length. From Figs. 7 

and 8, the scheduling length of the G-MOTSA and 

TSACS [9] algorithm is much lower than ETVMC 

[6] and ACO [17]. 

6.3 Throughput 

Figs. 9 and 10 show the throughput of G-

MOTSA, ETVMC [6], TSACS [9], and ACO [17] 

algorithms for different values of VMs, when the  
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Figure .9 throughput vs. No. of VMs 

 

 
Figure. 10 Throughput vs. No. of tasks 

 

number of tasks was fixed and for different values of 

tasks and the number of VMs is fixed, respectively. 

As shown in Fig. 9, throughput for the proposed 

G-MOTSA, ETVMC [6], TSACS [9], and ACO [17] 

increases as the number of VMs increases, this is 

because, existing of more VMs, will give opportunity 

to maximize the throughput of the system.  

As shown in Fig. 10, throughput for the 

proposedG-MOTSA and TSACS [9] is less 

changeable when the number of tasks increases, this 

is because G-MOTSA can adapt the number of 

assigned tasks to VMs. While throughput for 

ETVMC [6] is less affected by the increasing number 

of VMs, this is because ETVMC [6] cannot adapt the 

number of required VMs for executing the tasks. 

From Fig. 9 and 10, the throughput of G-MOTSA and 

TSACS was much higher than ETVMC [6] and ACO 

[17].  

6.4 Resource utilization  

Resource utilization (RU) is one of the objectives 

of cloud providers. The scheduling technique should 

improve the system performance and takes resource 

utilization into consideration. Resource utilization is  

 
Figure 11. Resource utilization vs. No. of VMs 

 

 
Figure 12. Resource utilization vs. No. of tasks 

 

calculated as follows [10]. 

 

𝑅𝑈 =
∑ 𝑀𝐾𝑘

𝑙
𝑘=1

𝑙 × (𝑀𝑎𝑥(𝑀𝐾𝑘))
                 (19) 

 
where 1≤ k ≤l and l is the number of hosts and MKk is 

the makespan of all tasks that executed on host k.  

Figs. 11 and 12 show the resource utilization of G- 

MOTSA, ETVMC [6], TSACS [9], and ACO [17] 

algorithms for different values of VMs, when the 

number of tasks was fixed and for different values of 

tasks and the number of VMs is fixed, respectively. 

As shown in Figs. 11 and 12, resource utilization 

for the proposed G-MOTSA, ETVMC [6], TSACS 

[9], and ACO [17] algorithms are changed as the 

number of VMs and tasks increases. Also, resource 

utilization of G-MOTSA was higher than other 

algorithms and G-MOTSA can achieve resource 

utilization up to 90% in two cases. 

6.5 Estimated consumed energy  

Figs. 13 and 14 show the estimated consumed 

energy of G-MOTSA, ETVMC [6], TSACS [9], and 

ACO [17] algorithms for different values of VMs, 

when the number of tasks was fixed and for different 

values of tasks and the number of VMs is fixed,  
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Figure. 13 Estimated consumed energy vs. No. of VMs 

 

 
Figure. 14 Estimated consumed energy vs. No. of Tasks 

 

 
Figure. 15 Degree of imbalance vs. No. of VMs 

 

 
Figure. 16 Degree of imbalance vs. No. of Tasks 

 

respectively. As shown in Figs. 13 and 14, the 

estimated consumed energy for the proposed G-

MOTSA, ETVMC, TSACS [9], and ACO [17] 

algorithms are changed as the number of VMs and 

tasks increases. Also, estimated consumed energy of 

G-MOTSA and TSACS [9] was much lower than 

ETVMC [6] and ACO [17]. 

6.6 Degree of imbalance 

The degree of imbalance (DI) measures the 

imbalance among hosts. DI is calculated as follows. 

 

𝐷𝐼 =
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

𝑇𝑎𝑣𝑔
                          (20) 

 

Where, Tmax, Tmin and Tavg are the maximum, 

minimum and average total execution time (in 

seconds) of all hosts, respectively. 

Figs. 15 and 16 show the degree of imbalance 

obtained by applying the G-MOTSA, ETVMC [6], 

TSACS [9], and ACO [17] algorithms for different 

values of VMs, when the number of tasks was fixed 

and for different values of tasks and the number of 

VMs is fixed, respectively. As shown in Figs. 15 and 

16, degree of imbalance for the G-MOTSA and other 

algorithms is changed as the number of VMs and 

tasks increases. Also, degree of imbalance of G-

MOTSA was much lower than other algorithms. This 

means that the G-MOTSA can achieve good system 

load balance. 

Based on these results, the results obtained by 

applying the proposed G-MOTSA are the best in 

terms resource utilization, energy consumption, and 

imbalance degree among all other algorithms. This 

prevent the occurrence of server sprawl phenomenon 

and reduce the needing for VMs migration process. 

While in terms of makespan, Scheduling length, and 

throughput, TSACS [9] and G-MOTSA algorithms 

achieve the best results with small difference between 

two algorithms, where this difference decreases with 

the increasing in the number of VMs or tasks. In 

addition, TSACS [9] algorithm solves only part of the 

problem (scheduling tasks with the least completion 

time). Also, TSACS [9] algorithm select All VMs 

that is need the resource request by VMs should be 

available by hosts, in most time cannot achieve. 

Finally, the complexity degree the TSACS [9] 

algorithm is greater than the others. 

7. Conclusion and future work 

In this paper, a new task scheduling algorithm is 

proposed called G-MOTSA for solving multi-

objective task scheduling problem in cloud 
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computing. G-MOTSA uses a modified genetic 

algorithm to find the optimal solution for choosing 

the most appropriate VMs for executing received 

tasks and their appropriate hosts that will deploy 

these VMs. G-MOTSA can optimize resource 

management for different criteria, including 

performance, power and cost. G-MOTSA 
dynamically allocate the CPU, memory and I/O 

resources to virtual machines according to 
requirements of cloud and the objective of user, 
while most of existing algorithms do not take the 
objective of user into account. G-MOTSA can 

prevent the occurrence of server sprawl phenomenon 

and reduce the needing for VMs migration process. 

The simulation results shown that G-MOTSA can 

achieve better performance than some of existing 

methods in terms of makespan, scheduling length, 

throughput, resource utilization, and energy 

consumption. In the future work, the task types 

(dependent) and priorities, in the optimization model 

will be considered. In addition, the proposed model 

will be implemented in a real cloud environment. 
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