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Abstract: Finding approximate nearest neighbour (ANN) is essential in huge database for efficient similarity search 

to return the nearest neighbour of a given query. Many hashing algorithms have been designed to improve retrieval 

accuracy and storage requirements of data in a large-scale database through long code word which increases the time 

complexity in loading data into memory, but do not consider the search time which is an important parameter in the 

field of information retrieval and pattern recognition. To address the aforementioned problem, this research therefore 

proposes an improved search time algorithm for improving the retrieval time of data from a database in cloud 

computing environment by optimising both the search accuracy and search time simultaneously. We improved the 

minimum search time by the use of  balance partitioning algorithm for the even distribution of data points into hash 

buckets to minimise search time, and similarity preserving algorithm for search accuracy were designed for fast and 

accurate retrieval of data in a database. An extensive experiment conducted on a cloud simulator and the result obtained 

when the code length is 8, 96 bits, the retrieval time for the proposed system is 0.030sec, 0.260sec, and that of Density 

Sensitive Hashing is 0.040, 0.400sec. Therefore, the retrieval difference is 0.010sec and 0.140sec. Also, the result 

obtained for the rest of the code lengths of 16, 32 and 64 show that the improved minimum search time algorithm 

outperforms the compared techniques in terms of the velocity of big data retrieval. 

Keywords: Balance partitioning, CloudSim, Cloud computing, Data, Hashing, Information retrieval, Time. 

 

 

1. Introduction 

Cloud computing is a web-based application that 

provides a shared pool of resources. The advance in 

mobile technology have allowed mobile devices such 

as smartphones and tablets to be used in a variety of 

different applications [1]. The availability of internet 

such as with the use of the wide spread broadband 

Internet access [2, 3], coupled with these hand held 

devices (mobile devices), resulted to the easy 

collection of digital information in form of structured 

and unstructured [4] data, had contributed to the 

availability of large volumes of data known as big 

data. Tremendous amount of data are generated every 

day in Manufacturing, Business, Financial Services, 

Science sectors and human personal lives. Adequate 

and proper processing of these data is required to open 

new discoveries and knowledge concerning markets, 

societies and human environment [5-7]. As 

unstructured data contributed to the availability of big 

data, they need to be structuralised for its effective 

understanding and processing through some 

optimised techniques used for extracting information. 

These information extracting techniques have been 

vastly used to extract meaningful information from 

raw or unstructured data [8]. Data has greatly changed 

and influenced researches in sciences. The Sloan 

digital sky survey is used by astronomers nowadays 

as a pool of resources which serve as a database [9, 

10]. Biological data and experimental data are stored 

in a public storage facility and databases are created 

such that other biologists and scientists can make use 

of these generated biological and scientific data. 

Many hashing based indexing techniques were 

also proposed to overcome the growing volume and 



Received:  June 7, 2021.     Revised: August 13, 2021.                                                                                                     597 

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021           DOI: 10.22266/ijies2021.1031.52 

 

search time for effective retrieval and management of 

big data. Hashing based indexing techniques can be 

grouped into two. The Data-independent hashing 

techniques generates its projection randomly to 

preserve the pairwise distances for data points, and 

the Data-dependent hashing techniques that mapped 

similar data pints to similar binary hash codes. The 

data-independent hashing techniques uses many 

random vectors for projection generation and these 

techniques includes [11, 12]. Data-dependent 

methods make complete use of the structure of data to 

generate short-code-word to achieve high precision 

and low memory cost and they includes [13-22], and 

improved data-dependent hashing techniques [23-26], 

were also proposed to reduce storage cost and to 

improve the precision rate of image retrieval as well 

as in a large database but incur high search time due 

to the time complexity involve in loading queries into 

memory. The time complexity slow the speed of data 

retrieval. The paramount decision when choosing and 

using supervised hashing techniques is based on the 

choice of similarity encoding approach. [14], 

proposed a novel graph-based hashing algorithm that 

automatically discovers the neighbourhood structure 

inherent in the data to learn compact hash codes. To 

make such an approach computationally realisable, 

the authors made use of Anchor Graphs to obtain 

tractable low-rank adjacency matrices. The use of a 

hierarchical threshold learning procedure in which 

each eigenfunction yields multiple bits, leading to 

higher search accuracy. Despite the gain, the anchor 

graph hashing algorithm, the use of long hash odes 

increase memory consumption and search time. [17], 

proposed a Locality-Sensitive Binary Codes that is 

similar to spectral hashing computationally, but is 

derived from completely different considerations, is 

amenable to full theoretical analysis, and shows better 

practical behaviour as a function of code size. They 

start with a low-dimensional mapping of the original 

data that is guaranteed to preserve the value of a shift-

invariant kernel, specifically, the random Fourier 

features of Rahimi and Recht [12]. [27], proposed a 

supervised FastHash algorithm with a two-step 

learning strategy that uses binary code inference and 

followed it by binary classification that uses an 

ensemble of decision trees. This method achieved 

high performance with respect to search accuracy but 

failed to consider the minimum search time in their 

work.  

The drawback of these schemes is that their 

performance for a better precision needs long hash 

codes which consumes large storage space. Also, the 

long hash codes slow the speed of retrieval since the 

search time depends on the number of data points 

present in a hash table. In addition, high search time 

is incurred due to the time complexity involve in 

loading queries into memory. The time complexity 

slow the speed of data retrieval. Researchers are often 

faced with the difficulties of designing a suitable 

research platform when carrying out research in cloud 

computing [28]. Also, the cost of setting up a cloud 

for the benefit of conducting research by scholars on 

live cloud is highly exorbitant [29]. In lieu of the 

above drawbacks of the existing hashing techniques, 

this paper therefore, proposes an improved balance 

partitioning algorithm to improve the minimum 

search time and similarity preserving algorithm for 

search accuracy by minimising the time complexity 

involve in loading queries into memory. Equal 

number of data points are distributed into hash 

buckets to improve search time. To outline the main 

contribution of this paper, advantages of the proposed 

improved search time algorithm is as follows: 

i. Search time of data depends on the number of 

data points present in any selected hash table. 

For these, we designed an improved 

minimum search time algorithm to evenly 

distribute data points to each hash table for 

high speed of information from a database. 

ii. We provided an algorithm for computing the 

minimum search time difference in algorithm 

2. 

The rest of the paper is organised as follows: 

related works are presented in Section 2, 

methodology of the improved search time and 

similarity preserving algorithms were presented in 

Section 3. Reports based on our experimental findings 

and discussions are presented in Section 4. 

Conclusions of our work are summarised in Section 5.  

2. Related works 

2.1 Indexing techniques 

[30], proposed a novel robust discrete code 

modelling algorithm that learns high quality discrete 

codes and hash functions by supressing the influence 

of unreliable binary codes and potentially noisily-

labelled samples. The robust discrete code modelling 

algorithm uses the 𝑡2,𝑝 norm to induce sample-wise 

sparsity and simultaneously perform selection of code 

and identification of noisy samples. [31], proposed an 

image authentication algorithm based on robust 

image hashing with geometric correction that 

eliminates the influence of geometric transformation, 

composite rotation-scaling-translation. Local features 

and global features are incorporated to construct hash 

functions. The local features were extracted from the 

salient regions using the Markov absorption 

probabilities. The global features used were the 
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statistical feature distance. The receiver operation 

characteristics show that the proposed image 

authentication algorithm shows superiority over some 

state-of-the-art techniques. [32], proposed a novel 

supervised discrete discriminant hash codes and 

hashing function simultaneously. The algorithm 

learned a robust similarity metric so as to maximise 

the similarity of the same class discrete hash codes 

and minimise the similarity of the different class 

discrete hash codes simultaneously in order to learn 

discrete hash codes to be optimal for classification. 

The discriminant information of the training data can 

then be incorporated into the learning framework.   

Image retrieval in the field of multimedia 

application have recorded a considerable percentage 

of successes using the Deep hashing indexing 

approaches for similarity search. [33], proposed a 

binary generative adversarial networks for image 

retrieval to address the challenges of generating 

binary codes directly without relaxation, and 

equipping the binary representation with the ability of 

accurate image retrieval. Binary generative 

adversarial network (BGAN) were used to embed 

images to binary codes through the unsupervised 

approach. A new sign-activation strategy and a loss 

function was also proposed to steer the process of 

learning that consists of new models for adversarial 

loss, a content loss, and a neighbourhood structure 

loss. To extract features for the encoder, the author 

uses a structure of 5 groups of convolution layers and 

5 maximum convolution pooling layers for the 

hashing, a binary code is learned directly by 

converting the L-dimensional representation z 

learned from the previously connected layer that is 

continuous in nature to the binary hash code ƅ with 

respect to either +1 𝑜𝑟 − 1. [34], proposed a hashing-

based-estimator for kernel density in high dimensions. 

Given a set of data P and a kernel function that returns 

approximation to the kernel density of a query point 

in sub-linear time. They introduce a class of unbiased 

estimators for bounding the variance of such 

estimators. The resultant estimators give rise to 

efficient data structures for estimating the kernel 

density in high dimensions for different commonly 

used kernels. [35], propose a large graph hashing with 

spectral rotation scheme by imposing spectral rotation 

techniques to the spectral hashing objective. The 

authors minimise the Euclidean distance in the 

modified solution to obtain the binary codes for index 

generation. This will result to semantical correlation 

with manifold where codes constraint is held. [36], 

proposed a novel hypersphere-based hashing function 

to map more spatial coherent data points into a binary 

hash code with a new binary code distance function 

suitable to the hypersphere-based coding scheme. 

[37], proposed a novel hashing algorithm for effective 

high dimensional nearest neighbour search. Density 

Sensitive Hashing (DSH) uses k-means to roughly 

partition the data set into k-groups. Then for each pair 

of adjacent groups, Density Sensitive Hashing 

generates one projection vector which can well split 

the two corresponding. From the generated 

projections, DSH select the final ones according to the 

maximum entropy principle in order to maximise the 

information provided by each bit. Given 𝑛𝑖  data 

points 𝑋 = [𝑥𝑖, … , 𝑥𝑛]  ∈  𝑅𝑖∗𝑛 , is to find 𝐿  hash 

functions to map a data point 𝑥 to a 𝐿-bits hash code. 

 

𝐻(𝑥) = [ℎ1(𝑥),   ℎ2(𝑥), … , ℎ𝐿(𝑥)]           (1) 

 

Where ℎ1(𝑥)  ∈  {0, 1}  is the 𝑙 − 𝑡ℎ hash 

function.  

Despite the gains in [37], there is minimal 

improvement in performance as the code length 

increases because the geometric discriminative 

structure information of data is ignored and this result 

to a suboptimal performance of Density Sensitive 

Hashing (DSH).  The DSH uses hyperplane-based 

hashing function to encode high-dimensional data and 

to partitioned data points into two sets and assigned 

two different binary codes (-1 or +1) depending on 

which set each point is assigned to. The proposed 

Geo-SPEBH (Geometric similarity preserving 

embedding-based hashing), hypersphere-based 

hashing function are used to encode proximity regions 

in high-dimensional spaces. The use of hypersphere 

improves the performance of search accuracy and 

time as the code length increases. Again, a good 

binary code maximise information given by each bit. 

That is, maximum information is given by a binary bit 

that has a balanced partitioning of the data points.  

Despite their successes, the above mentioned 

techniques are limited due to the longer time it take to 

search and retrieve data, and long hash codes 

consumes large memory thereby increasing the 

storage cost while the short hash codes gives 

unsatisfactory performance in terms of retrieval time. 

For this, an optimised algorithm is require to improve 

the search time and still maintain low memory cost. 

The Geo-SPEBH Hashing aims at overcoming the 

drawback of data-independent based hashing 

methods and data-dependent based hash methods 

with respect to minimum search time, computational 

cost and memory cost. To guarantee the performance 

will increase as the code length increases, Geometric 

similarity preserving embedding-based hashing adopt 

the framework as Density Sensitive Hashing (density 

sensitive hashing). While Density Sensitive Hashing 

uses the geometric structure of data to guide the 

projections (hash tables) selection, Geo-SPEBH 
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makes use of the geometric properties of principal 

component of features, which are confirmed to be 

very discriminative, and ensure that fewer features are 

inserted into the hash table. By using fewer features 

into the hash table and the balance partitioning 

algorithm that distributes data points uniformly into 

hash buckets, the minimum search time, the 

computational cost and memory cost will be greatly 

reduced. 

3. Proposed method 

Here we present our proposed system and its 

operational principle. The proposed system is 

composed by four components that performed each 

specific function to achieve the set objectives. The 

objective of learning hashing-based methods is to use 

the mapping function ℎ(𝑥)  that projects m-

dimensional real valued feature vector to n-

dimensional binary hash codes and still preserve the 

similarity among the feature vector and the data set. 

The proposed method can preserve the underlying 

discriminative geometric information among the data 

points. The system explores the magnitude structure 

of geometric features of data. Here the image features 

are indexed from the quantised hashing results. The 

Geometric similarity preserving embedding-based 

hashing uses hypersphere-based hashing function for 

computing the binary hash codes with a joint 

algorithm that optimise search accuracy and search 

time simultaneously. Samples of data points are 

contained in a database which will be indexed to 

reduce storage cost, computational cost and optimise 

the search accuracy and time simultaneously. Here we 

represent the data points’ samples as 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁, 

and the database is represented as 𝑋 given below: 

𝑋 = {𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛, … , 𝑥𝑁} ∈  𝑅𝑑 × 𝑁  denotes 

the data points contained in the database. Where 𝑋 is 

the database and 𝑅𝑑 × 𝑁  represents the dimensional 

space of size 𝑁. Then we design our hash function 

that will map these data points to a k-bit binary hash 

code by Eq. (2) 

 

𝐻(𝑥) = {ℎ1(𝑥), … ℎ𝑘(𝑥)}  ∈ {−1, 1}𝑘       (2) 

 

Where 𝑘 is the length of the binary hash code and 

𝑥. Represents the data points. 

3.1 Similarity preserving term 𝑸(𝒚) 

To improve the accuracy of searches in a database, 

we use the similarity preserving term which contains 

the similarity features among the data points, 𝑄(𝑦), 

with a minimised Hamming distance in Eq. (11), [38]. 

This component of the proposed system is responsible 

for preserving the similarities of two sample data 

points in the training data set in our propose system. 

Given a database 𝑋 , two data samples 𝑋𝑖 and 𝑋𝑗  

contained in the training set. Extracting the similarity 

between the two data samples as 𝑄𝑖𝑗 from similar 

geometric feature points of image data is done. 

Hashing methods require geometric coordinate 

properties for similarity preserving. Next, the data 

points that are similar are ensured to have similar 

binary hash codes with small hamming distance. The 

similarities among the sample data points detected 

using SIFT is then preserved as a similarity 

preserving term, and then we further seek a code that 

maps similar data points to similar binary hash codes 

known as similarity preserving. The Hamming 

distance is then minimised between similar data 

points and the corresponding similar binary hash 

codes. The similarity preserving term, and Hamming 

distance minimisation between similar data points 

and it corresponding similar binary hash code are 

represented in Eqs. (3) and (4) respectively. We sum 

the similarity preserving term as the summation of 𝑥𝑖 

samples of data points from 1 to 𝑁  plus the 

summation of 𝑥𝑗  corresponding similar binary hash 

code from 1 to 𝑁 as in Eq. (3). Hamming distance is 

minimised by taking the absolute values of the of the 

similarity term as in Eq. (4) [38]. 

Hamming distance = taking the absolute (abs) 

values of Similarity term by Eqs. (3) and (4). 

 

𝑄(𝑦) =  ∑ 𝑥𝑖=1,…,𝑁  ∑ 𝑥𝑖=1,…,𝑁 =  ∑ 𝑥𝑖𝑗=1,…,𝑁    (3) 

 

𝑄𝐻(𝑦) =  ∑ ∑ 𝑄𝑖𝑗||𝑌𝑖 −  𝑌𝑗||2
𝑗=1,…,𝑁𝑖=1,…,𝑁     (4) 

 

Where 𝑄𝑖𝑗 is the sample data that has similarity, 

𝑄(𝑦) is the similarity preserving term and 𝑄𝐻(𝑦) is 

the absolute value of the similarity term 𝑄(𝑦).  

For efficient search accuracy with respect to 

similarity search, similar data points are mapped to 

similar binary hash codes for similarity preserving. 

This means that similar data points must have similar 

binary hash codes with small Hamming distance by 

minimisation through Eqs. (5) and (6). 

 

∑ 𝑦𝑖 = 0𝑖                             (5) 

 
1

𝑛
 ∑ 𝑦𝑖𝑦𝑗𝑇 = 𝐼𝑖                          (6) 

 

Where the constraints Eq. (5) require each bit to 

fire 50% of the time, and the constraint Eq. (6) 

requires the bits to be uncorrelated. And, y is the set 

of all 𝑌𝑖 . Then from Eq. (4), samples with high 

similarity or with bigger similarity 𝑄𝑖𝑗  will have 
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similar binary hash codes with smaller Hamming 

distance ||𝑌𝑖 − 𝑌𝑗||2. 𝑌𝑖  and 𝑌𝑗 are the similar binary 

hash codes.  

3.2 Balance partitioning for independence 

To have uniform distribution of data points in 

hash bucket, we make each hash function independent 

of one another. That is the functionality of one hash 

function does not depend on the other one to function. 

This is because each hash function is depended on 

itself to distribute data points in an evenly manner to 

different hash codes. Therefore, each hash function is 

given the opportunity of becoming 0 or 1 since binary 

digits are represented by zeros (0’s) and ones (1’s). 

This means that for hash functions to be independent, 

each hash function should have the chance of being 

one or zero and the different binary hash codes are 

independent of each other as in Eq. (8) above. 

Independence of hash functions is demonstrated in a 

scenario as follows: As a typical scenario, the 

probability that an event say 𝐵𝑖  be a hash function 

that is one (1). 𝐵𝑖 is the event that ℎ𝑖(𝑥) = 1. Then 

define two events 𝐵𝑖and 𝐵𝑗, next to be independent if 

and only if the probability of 𝐵𝑖 = 1  and the 

probability of 𝐵𝑗 = 1is equivalent to the probability 

of 𝐵𝑖 = 1 multiply by the probability of 𝐵𝑗 = 1 as in 

Eq. (10). Here, similar bits are mapped into same 

bucket with high probability of having equal chance 

of becoming one (1) by defining independence of 

each bit. Any of Eqs. (7) and (8) is used to balance the 

partitioning of data points for each bit.  

 

𝑝𝑟[ℎ𝑖(𝑥𝑖) = 1] =  
1

2
, 𝑥 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑡        (7) 

 

𝑁𝑖 = ∑ 𝑁𝑖
2𝑀

𝑖=1                            (8) 

 

Where 𝑁𝑖 is the number of training samples in the 

𝑖𝑡ℎ bucket and 𝑀  is the number of buckets,.  𝑝𝑟  is 

probability. To achieve independence between two 

bits given that 𝑥 ∈ 𝑋 and 1 ≤ 𝑖 < 𝑗 ≤ 𝑡 where 𝑖 and 

𝑗  are the 𝑖𝑡ℎ and 𝑗𝑡ℎ data points, and 𝑡  is the 

threshold, hash functions are design to be independent 

Eqs. (9) and (10), and the data points are distributed 

equally to each hash bucket.  

 

𝑝𝑟[ℎ𝑖(𝑥) = 1, ℎ𝑗(𝑥) =  1] =  𝑝𝑟[ℎ𝑖(𝑥) = 1] .  

𝑝𝑟[ℎ𝑗(𝑥) = 1] = 
1

2
 . 

1

2
 =

1

4
                  (9) 

 

𝑃𝑟[𝐵𝑖 ∩ 𝐵𝑗] = 𝑃𝑟[𝐵𝑖] . Pr [𝐵𝑗]           (10) 

𝑝𝑟[ℎ𝑖(𝑥𝑖) = 1] =  
1

2
, 𝑥 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑡 

𝑝𝑟  is probability. The intersection is the equal 

chance of the code bit being a binary hash code 1.  

The next is to incorporate the similarity 

preserving term with the balance partitioning 

components or terms together to simultaneously 

improve the search accuracy and search time. We 

insert the data points into each bucket in Eq. (8) 

 

𝑁𝑖 =
𝑁

2𝑀                               (8) 

3.3 Optimisation of search accuracy and minimum 

time 

In this section, we integrate the similarity 

preserving term 𝑄(𝑌)  for search accuracy and the 

minimum information criterion for the search time to 

form a single entity. To enable a high search accuracy 

with fast search time, the joint optimisation 

component of the proposed system is formulated and 

is responsible for the simultaneous optimisation of the 

search accuracy and search time. A parameterisation 

of a linear function is performed for easy optimisation, 

and a relaxation is performed. The joint optimisation 

is responsible for the computation of the hash bit that 

will be used for query and the identification of the 

bucket with the same hash bits with the query, and to 

also oversee the loading of data samples from the 

selected buckets into the memory. Here, the hash 

function independent is made to be independent to 

distribute data points evenly or equally to different 

binary hash codes. To minimise the time complexity, 

each bucket will contain equal number of samples to 

have a balanced buckets. This is done to minimise the 

search time. To have equal number of samples in each 

bucket to balance the buckets, 𝑁 =
𝑁

2𝑀 [38], Eq. (8). 

Here, the search accuracy is improved by 

minimising the Hamming distance between similar 

data points.  

𝑄(𝑦) =  𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑁 + 

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑓𝑟𝑜𝑚 𝑗 𝑡𝑜 𝑁 

Mathematically, this can be expressed as Eq. (11): 

 

𝑄(𝑦) = ∑ 𝑥𝑖=1,…𝑁 + ∑ 𝑥 =𝑗=1,…𝑁 ∑ 𝑥𝑖𝑗=1,…,𝑁   (11) 

 

The similarity preserving term and the balance 

partitioning are incorporated together for 

simultaneous improvement in search accuracy and 

minimum search time, [38]. The minimum search 

time (MST) is the minimum time taken from when a 

query is sent to when relevant data are retrieved from 

a database. Here we represent the time a query is sent 

as lambda λ that is the start time, while the finished 

time is represented as miu μ that is the time when data 

are retrieved. Therefore, minimum search time is 
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calculated as the finished time minus the start time as 

given in Eq. (12) below. 

 

𝑀𝑆𝑇 = μ - λ                          (12) 

 

Where 𝑀𝑆𝑇 is the minimum search time taken for 

data to be retrieved, λ is the time when a query was 

sent and μ is the time when a data were retrieved from 

a database. 

 

Algorithm 1. Balance Partitioning 

1. Start 

2. Let V = 2**M 

3. Input:  N; M//N is the number of training 

sample in the 𝑖𝑡ℎ bucket//  

4. //M is the number of buckets// 

5. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑉//𝑉 is the memory location for 

2**𝑀// 

6. get 𝑁(𝑖) 

7. BP = N(𝑖) ∗∗ 2 

8. 𝑖 = 𝑖 + 1  
9.     𝑖𝑓 𝑖 ≤ 𝑉 goto step 6 

10.      end if 

11.     end for 

12.  Print BP//output balance partitioning// 

13.  Stop  

 

Algorithm 2. Minimum Search Time 

1. Start 

2. //Algorithm to  calculate minimum search 

time// 

3. Input: λ; μ// λ  is the start time for search//  

4. //μ is the finished search time// 

5. 𝑀𝑆𝑇 = μ - λ  

6. //𝑀𝑆𝑇  is the time taken for the minimum 

search// 

7. Print 𝑀𝑆𝑇//output minimum search time. 

8. stop 

 

 

Algorithm 3. Improved search accuracy and time 

1. Start 

2. Input: the training dataset𝑋𝑖, 𝑖 = 1,2,3, … , 𝑁, 
similarity matrix 𝑊  and 𝑊 = 𝑊𝑖𝑗 ; the 

number of required bits 𝐾  to map the full 

dataset as hash codes; BP; N; M; 

3. Initialise: Sum = 0; Sim = 0; SimM = 0; BP = 

0; V = 2**M; yi = 0; JointO = 0//jointO is the 

memory location for joint optimisation   

4.                 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑐 

5.                        𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑐 

6.                        Get y(𝑖), y(𝑗), x(𝑖, 𝑗) 

7. Sum = Sum + (𝑦(𝑖) − 𝑦(𝑗))**2 

8.                        j = j + 1  

9.                      𝑖𝑓 𝑗 ≤ 𝑐 goto step 6 

10.                        end if 

11.                                𝑖 = 𝑖 + 1 

12.                                𝑖𝑓 𝑖 ≤ 𝑐 goto step 17 

13.                                end if  

14.                         end for 

15.                 end for 

16.  Sim = Sum 

17.                    break; 

18.                         𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑉 

19.                              get 𝑁(𝑖) 

20.                            BP = N(𝑖) ∗∗ 2 

21.                            𝑖 = 𝑖 + 1  
22.                            𝑖𝑓 𝑖 ≤ 𝑉 goto step 40 

23.                            end if 

24.                      end for 

25.  Print Sim, BP 

26.  //Incorporating similarity preserving term 

and balanced partitioning// 

27. JointO = Sim + BP 

28. //computing 𝑢𝑖// 

29. 𝑇(𝑎, 𝑏) = 0, swap = 0 

30.  Get x 

31.  Get b 

32.                      𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑎 

33.                             𝑓𝑜𝑟 𝑗 = 𝑖 + 1 𝑡𝑜 𝑏 

34.                                 Get 𝑇(𝑖, 𝑗) 

35.                                 j = j + 1  

36.                                𝑖𝑓 𝑗 ≤ 𝑏 goto step 55 

37.                                i = i + 1 

38.                                      𝑖𝑓 𝑖 ≤ 𝑎 goto step 55 

39.                                      end if  

40.                                  end if 

41.                              end for 

42.                       end for 

43.        𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑎 

44.              𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑏 

45. Swap = 𝑇(𝑖, 𝑗) 

46. 𝑇(𝑖, 𝑗) = 𝑇(𝑗, 𝑖) 

47. 𝑇(𝑗, 𝑖) = 𝑠𝑤𝑎𝑝 

48. ℎ(𝑖)  = 𝑠𝑖𝑔𝑛(𝑇(𝑗, 𝑖) ∗ 𝑥(𝑖) − 𝑏 //T is the 

projection matrix of 𝑑 × 𝑀 and 𝑏 is a vector// 

49.             𝑗 = 𝑗 + 1 

50.                   𝑖𝑓 𝑗 ≤ 𝑏 goto step 45 

51.            𝑖 = 𝑖 + 1 

52.                   𝑖𝑓 𝑖 ≤ 𝑎 goto step 44 

53.                                        end if  

54.                                  end if 

55.                              end for 

56.                       end for 

57. for i = 1 

58. Print h(i) 
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59. 𝑖 = 𝑖 + 1 

60.            𝑖𝑓 𝑖 ≤ 𝑎 goto step 78 

61.             end if 

62.  end for         

63.  Stop  

4. Experimental setup 

4.1 Performance metrics 

The metric used to compare the proposed method 

is time. The Geo-SPEBH will be compared with 

existing techniques to obtain the minimum search 

time. We implement our method to measure the 

performance of retrieval result on the minimum time 

taken to send a query to when the data is retrieved 

from the database using the SIFT 1B dataset [39]. It 

is calculated using the time of the system used for the 

conduct of the experiment. 

4.2 Comparison competitors 

The technique used in validating the performance 

of the improve algorithm is simulation. The 

evaluation method used is time. The competitor 

algorithms used in the comparison are as follows: 

1. Robust Discrete Code Modelling (RDCM) 

learns high quality discrete codes and hash 

functions [30]. 

2. Robust Geometric Correction (RGC) 

eliminates the influence of geometric 

transformation, composite rotation-scaling-

translation [31].  

3. Discrete Discriminant Hashing (DDH) The 

algorithm learned a robust similarity metric 

so as to maximise the similarity of the same 

class discrete hash codes and minimise the 

similarity of the different class discrete hash 

codes simultaneously [32]. 

4. Binary Generative Adversarial Networks 

(BGAN) use binary generative adversarial 

network embed images to binary codes 

through the unsupervised approach [33]. 

5. Large Graph Hashing (LGH) minimised the 

Euclidean distance in the modified solution to 

obtain the binary codes for index generation 

[35]. 

6. Spectral Hashing (SpH) is a classic approach 

that quantised the values of analytical Eigen 

functions computed along the principal 

component analysis of the data [36]. 

7. Density Sensitive Hashing (DSH): is a semi-

supervised based hashing techniques that 

combined the characteristics of data-

independent and data-dependent hashing 

techniques. [37].  

8. Geo-SPEBH: This algorithm used the 

geometric similarities of data points and also 

distributes the data points evenly into hash 

buckets [15]. 

4.3 System requirements and tools 

All the experiments were conducted and run on a  
 

 

Table 1. SIFT 1Billion data set use in implementing the 

existing system 

Datas

et  

Dimensi

on  

No. of base 

vectors 

No. 

of 

query 

vecto

rs 

No. of 

learn 

vectors 

SIFT 

1B 

128 1,000,000,0

00 

10,00

0 

100,000,0

00 

 
Table 2. Simulation results for the proposed and existing 

methods 

 Time (sec) 

 Code length (bits) 

METHO

DS 

8 16 32 48 64 96 

       

RDCM 

[30] 

0.05

3 

0.10

8 

0.30

0 

0.39

0 

0.49

0 

0.63

0 

RGC  [31] 0.05

3 

0.08

0 

0.24

8 

0.31

0 

0.41

2 

0.52

2 

DDH [32] 0.04

1 

0.18

9 

0.24

9 

0.33

6 

0.44

6 

0.56

8 

BGAN 

[33] 

0.06

0 

0.19

2 

0.36

2 

0.59

1 

0.76

6 

0.88

0 

LGH [35] 0.04

0 

0.08

0 

0.16

0 

0.28

0 

0.33

0 

0.42

0 

SpH  [36] 0.05

0 

0.16

0 

0.32

0 

0.48

0 

0.63

0 

0.79

8 

DSH 
[37] 

0.04

0 

0.08

0 

0.16

0 

0.24

0 

0.32

0 

0.40

0 

Geo-

SPEBH 

[15] 

0.03

0 

0.06

0 

0.11

0 

0.17

0 

0.20

0 

0.26

0 



Received:  June 7, 2021.     Revised: August 13, 2021.                                                                                                     603 

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021           DOI: 10.22266/ijies2021.1031.52 

 

 

Figure. 1 Search time for random-based algorithms on 

SIFT 1B dataset 

 

3.40 GHz CPU with four cores and 16 G RAM, in a 

Java software tool built on CloudSim for 

experimentation, simulation and implementation. The 

CloudSim is configured with 1 data centre on 100 

cloudlets with the capacity of accepting input and 

output size of 300 each and length of 5000. The 

bandwidth requirement is 1GB network bandwidth. 

4.4 Simulation results 

SIFT 1B dataset from simulation results carried 

out on the existing algorithm implemented on the 

proposed system Geometric similarity preserving 

embedding-based hashing algorithm compared the 

result with some state-of-the-art-existing techniques. 

The results obtained are listed in Table 2 and Fig. 1. 

The SIFT BM [39] dataset is a dataset that consist 

of one million SIFT features represented by 128 

dimension vectors. The number of base vectors is 

1,000,000,000 while the query vectors 10, 000, 

100,000,000 vectors are used for learning. This 

dataset is run with all the algorithms with varied 

number of bits, 8, 16, 34, 48, 64, 96 to obtain the 

velocity of data retrieval for each query sent. We 

select 1K data points as the queries and the remaining 

are used to form the gallery database. It can be shown 

in Table 2 and Fig. 1 that the Geometric similarity 

preserving embedding-based hashing algorithm takes 

less time to retrieved data from a database because of 

the use of hyper-sphere and the even distribution of 

data points to each hash buckets. When the code 

length is 8, Geometric similarity preserving 

embedding-based hashing algorithm has a retrieval 

time of 0.03 sec. and 0.053, 0.053, 0.041, 0.060, 0.040, 

0.050, and 0.040 sec. respectively for Robust Discrete 

Code Modelling [30], Robust Geometric Correction 

[31], Discrete Discriminant Hashing [32], Binary 

Generative Adversarial Networks [33], Large Graph 

Hashing [35], SpH [6] and SH [37] which indicate an 

impressive performance as the time taken to retrieved 

data from the database is minimal because of the short 

code length. As the code length increases, the 

performance of the competitor algorithms decreases 

from 8 bits to 96bits as can be shown in Table 2 and 

Fig. 1. It takes more time to retrieved data from a 

database for a query sent. The presence of unrealiable 

binary codes and potentially noisily-labelled samples 

in the data points degrade the performance RDCM 

[30] as the code length increases which make Geo-

SPEBH has a performance difference of 0.023sec 

over RDCM [30] and RGC [31], as the incorporation 

of global and local features into [31] to construct hash 

function improved on the authentication of image but 

increase the retrieval time because in resulted to long 

hash code to have better authentication as can be 

shown in Table 2 and Fig. 1. [32] Maximised the 

similarity of the same class discrete hash codes and 

then minimised the different class discrete hash codes 

increases the retrieval time of information as the code 

length increases. It can be shown in Table 2 as 

Geometric similarity preserving embedding-based 

hashing [15] has 0.308sec performance difference 

over [32] when the code length is 96bits. This is 

because the time it takes to load data into memory is 

the same in Geo-SPEBH hashing [15] as each hash 

bucket has equal number of data points and binary 

hash codes, and the data points are tight with closed 

region using hyper-sphere. The closely competitors 

with our Geometric similarity preserving embedding-

based hashing [15] as shown in the Table 2 are DDH 

[32], LGH [35] and DSH [37] which recorded 

0.041sec, 0.040secs for the code length of 8bits, 

0.446sec, 0.330sec and 0.320 for the code length of 

64bits, and 0.568sec, 0.420sec., and 0.400sec for the 

code lengths of 96bits. The Geo-SPEBH [15] has a 

performance gain over the most closely competitor 

Density Sensitive Hashing [37] of 0.010sec., 0.060sec 

and 0.140secs for the codes lengths of 8, 64 and 96 

bits respectively. Memory cost is the amount of 

memory or storage space occupied by the data in the 

data base. In Table 2, the number of bits from 8 to 96 

indicate the memory cost for each algorithm occupied 

by data points as represented by binary hash codes. 

The higher the memory cost, the more time it takes to 

retrieved data from the database in cloud computing 

environment for the SIFT 1B [37] dataset for all code 

lengths. The low memory cost recoded by our 

proposed Geo-SPEBH hashing algorithm with high 

performance indicate that it can handle large amount 

of data (huge database). Table 2 gives the simulation 

results based on time (sec), and it can be shown that 

the use of tighter region, use of independent hashing 

function, and the balance partitioning of data points 



Received:  June 7, 2021.     Revised: August 13, 2021.                                                                                                     604 

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021           DOI: 10.22266/ijies2021.1031.52 

 

proposed by Geo-SPEBH [15] algorithm improved 

the speed of retrieving information from a database 

from a database within the shortest possible time. The 

proposed algorithm out-performed the compared 

state-of-the-art techniques with a performance 

difference of 0.140sec. When the code length is 96bit 

as compare to the most close competitor DSH [37] 

algorithm. Therefore, the proposed Geometric 

similarity preserving embedding-based hashing [15] 

algorithm takes less time to retrieve information from 

a database in cloud computing environment.  

5. Conclusion 

In this paper, we present a Geometric similarity 

preserving embedding-based hashing with a balance 

partitioning algorithm for improving the minimum 

search for each query sent for faster information 

retrieval from a database by distributing equal number 

of data points to hash buckets, and an algorithm that 

find and calculate the time difference with the 

compared algorithms. To maintained fast retrieval 

time performance with short code-word, we use a 

similarity preserving term to minimise memory cost 

experiment was conducted and the simulation results 

shows that Geometric similarity preserving 

embedding-based hashing outperformed the stat-of-

the-art techniques as it provides faster retrieval of 

information. Our future research will measure the 

amount of bandwidth required to transfer information 

from source to destination. 
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