
Received: June 7, 2021. Revised: August 13, 2021. 596

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.52

Minimum Search-time Algorithm for Image Retrieval in Cloud Computing

Abubakar Usman Othman1* Aisha Yahaya Umar2 Maryam Maishanu1

Hauwa Abubakar3 Boukari Souley1 Abdulsalam Ya’u Gital1

1Faculty of Science, Department of Mathematical Sciences, Abubakar Tafawa Balewa University Bauchi, Nigeria

2Department of Computer Science, Gombe State University, Nigeria
3Department of Computer Science, Umar Suleiman College of Education, Gashua, Nigeria

* Corresponding author’s Email: othman80s@yahoo.com

Abstract: Finding approximate nearest neighbour (ANN) is essential in huge database for efficient similarity search

to return the nearest neighbour of a given query. Many hashing algorithms have been designed to improve retrieval

accuracy and storage requirements of data in a large-scale database through long code word which increases the time

complexity in loading data into memory, but do not consider the search time which is an important parameter in the

field of information retrieval and pattern recognition. To address the aforementioned problem, this research therefore

proposes an improved search time algorithm for improving the retrieval time of data from a database in cloud

computing environment by optimising both the search accuracy and search time simultaneously. We improved the

minimum search time by the use of balance partitioning algorithm for the even distribution of data points into hash

buckets to minimise search time, and similarity preserving algorithm for search accuracy were designed for fast and

accurate retrieval of data in a database. An extensive experiment conducted on a cloud simulator and the result obtained

when the code length is 8, 96 bits, the retrieval time for the proposed system is 0.030sec, 0.260sec, and that of Density

Sensitive Hashing is 0.040, 0.400sec. Therefore, the retrieval difference is 0.010sec and 0.140sec. Also, the result

obtained for the rest of the code lengths of 16, 32 and 64 show that the improved minimum search time algorithm

outperforms the compared techniques in terms of the velocity of big data retrieval.

Keywords: Balance partitioning, CloudSim, Cloud computing, Data, Hashing, Information retrieval, Time.

1. Introduction

Cloud computing is a web-based application that

provides a shared pool of resources. The advance in

mobile technology have allowed mobile devices such

as smartphones and tablets to be used in a variety of

different applications [1]. The availability of internet

such as with the use of the wide spread broadband

Internet access [2, 3], coupled with these hand held

devices (mobile devices), resulted to the easy

collection of digital information in form of structured

and unstructured [4] data, had contributed to the

availability of large volumes of data known as big

data. Tremendous amount of data are generated every

day in Manufacturing, Business, Financial Services,

Science sectors and human personal lives. Adequate

and proper processing of these data is required to open

new discoveries and knowledge concerning markets,

societies and human environment [5-7]. As

unstructured data contributed to the availability of big

data, they need to be structuralised for its effective

understanding and processing through some

optimised techniques used for extracting information.

These information extracting techniques have been

vastly used to extract meaningful information from

raw or unstructured data [8]. Data has greatly changed

and influenced researches in sciences. The Sloan

digital sky survey is used by astronomers nowadays

as a pool of resources which serve as a database [9,

10]. Biological data and experimental data are stored

in a public storage facility and databases are created

such that other biologists and scientists can make use

of these generated biological and scientific data.

Many hashing based indexing techniques were

also proposed to overcome the growing volume and

Received: June 7, 2021. Revised: August 13, 2021. 597

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.52

search time for effective retrieval and management of

big data. Hashing based indexing techniques can be

grouped into two. The Data-independent hashing

techniques generates its projection randomly to

preserve the pairwise distances for data points, and

the Data-dependent hashing techniques that mapped

similar data pints to similar binary hash codes. The

data-independent hashing techniques uses many

random vectors for projection generation and these

techniques includes [11, 12]. Data-dependent

methods make complete use of the structure of data to

generate short-code-word to achieve high precision

and low memory cost and they includes [13-22], and

improved data-dependent hashing techniques [23-26],

were also proposed to reduce storage cost and to

improve the precision rate of image retrieval as well

as in a large database but incur high search time due

to the time complexity involve in loading queries into

memory. The time complexity slow the speed of data

retrieval. The paramount decision when choosing and

using supervised hashing techniques is based on the

choice of similarity encoding approach. [14],

proposed a novel graph-based hashing algorithm that

automatically discovers the neighbourhood structure

inherent in the data to learn compact hash codes. To

make such an approach computationally realisable,

the authors made use of Anchor Graphs to obtain

tractable low-rank adjacency matrices. The use of a

hierarchical threshold learning procedure in which

each eigenfunction yields multiple bits, leading to

higher search accuracy. Despite the gain, the anchor

graph hashing algorithm, the use of long hash odes

increase memory consumption and search time. [17],

proposed a Locality-Sensitive Binary Codes that is

similar to spectral hashing computationally, but is

derived from completely different considerations, is

amenable to full theoretical analysis, and shows better

practical behaviour as a function of code size. They

start with a low-dimensional mapping of the original

data that is guaranteed to preserve the value of a shift-

invariant kernel, specifically, the random Fourier

features of Rahimi and Recht [12]. [27], proposed a

supervised FastHash algorithm with a two-step

learning strategy that uses binary code inference and

followed it by binary classification that uses an

ensemble of decision trees. This method achieved

high performance with respect to search accuracy but

failed to consider the minimum search time in their

work.

The drawback of these schemes is that their

performance for a better precision needs long hash

codes which consumes large storage space. Also, the

long hash codes slow the speed of retrieval since the

search time depends on the number of data points

present in a hash table. In addition, high search time

is incurred due to the time complexity involve in

loading queries into memory. The time complexity

slow the speed of data retrieval. Researchers are often

faced with the difficulties of designing a suitable

research platform when carrying out research in cloud

computing [28]. Also, the cost of setting up a cloud

for the benefit of conducting research by scholars on

live cloud is highly exorbitant [29]. In lieu of the

above drawbacks of the existing hashing techniques,

this paper therefore, proposes an improved balance

partitioning algorithm to improve the minimum

search time and similarity preserving algorithm for

search accuracy by minimising the time complexity

involve in loading queries into memory. Equal

number of data points are distributed into hash

buckets to improve search time. To outline the main

contribution of this paper, advantages of the proposed

improved search time algorithm is as follows:

i. Search time of data depends on the number of

data points present in any selected hash table.

For these, we designed an improved

minimum search time algorithm to evenly

distribute data points to each hash table for

high speed of information from a database.

ii. We provided an algorithm for computing the

minimum search time difference in algorithm

2.

The rest of the paper is organised as follows:

related works are presented in Section 2,

methodology of the improved search time and

similarity preserving algorithms were presented in

Section 3. Reports based on our experimental findings

and discussions are presented in Section 4.

Conclusions of our work are summarised in Section 5.

2. Related works

2.1 Indexing techniques

[30], proposed a novel robust discrete code

modelling algorithm that learns high quality discrete

codes and hash functions by supressing the influence

of unreliable binary codes and potentially noisily-

labelled samples. The robust discrete code modelling

algorithm uses the 𝑡2,𝑝 norm to induce sample-wise

sparsity and simultaneously perform selection of code

and identification of noisy samples. [31], proposed an

image authentication algorithm based on robust

image hashing with geometric correction that

eliminates the influence of geometric transformation,

composite rotation-scaling-translation. Local features

and global features are incorporated to construct hash

functions. The local features were extracted from the

salient regions using the Markov absorption

probabilities. The global features used were the

Received: June 7, 2021. Revised: August 13, 2021. 598

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.52

statistical feature distance. The receiver operation

characteristics show that the proposed image

authentication algorithm shows superiority over some

state-of-the-art techniques. [32], proposed a novel

supervised discrete discriminant hash codes and

hashing function simultaneously. The algorithm

learned a robust similarity metric so as to maximise

the similarity of the same class discrete hash codes

and minimise the similarity of the different class

discrete hash codes simultaneously in order to learn

discrete hash codes to be optimal for classification.

The discriminant information of the training data can

then be incorporated into the learning framework.

Image retrieval in the field of multimedia

application have recorded a considerable percentage

of successes using the Deep hashing indexing

approaches for similarity search. [33], proposed a

binary generative adversarial networks for image

retrieval to address the challenges of generating

binary codes directly without relaxation, and

equipping the binary representation with the ability of

accurate image retrieval. Binary generative

adversarial network (BGAN) were used to embed

images to binary codes through the unsupervised

approach. A new sign-activation strategy and a loss

function was also proposed to steer the process of

learning that consists of new models for adversarial

loss, a content loss, and a neighbourhood structure

loss. To extract features for the encoder, the author

uses a structure of 5 groups of convolution layers and

5 maximum convolution pooling layers for the

hashing, a binary code is learned directly by

converting the L-dimensional representation z

learned from the previously connected layer that is

continuous in nature to the binary hash code ƅ with

respect to either +1 𝑜𝑟 − 1. [34], proposed a hashing-

based-estimator for kernel density in high dimensions.

Given a set of data P and a kernel function that returns

approximation to the kernel density of a query point

in sub-linear time. They introduce a class of unbiased

estimators for bounding the variance of such

estimators. The resultant estimators give rise to

efficient data structures for estimating the kernel

density in high dimensions for different commonly

used kernels. [35], propose a large graph hashing with

spectral rotation scheme by imposing spectral rotation

techniques to the spectral hashing objective. The

authors minimise the Euclidean distance in the

modified solution to obtain the binary codes for index

generation. This will result to semantical correlation

with manifold where codes constraint is held. [36],

proposed a novel hypersphere-based hashing function

to map more spatial coherent data points into a binary

hash code with a new binary code distance function

suitable to the hypersphere-based coding scheme.

[37], proposed a novel hashing algorithm for effective

high dimensional nearest neighbour search. Density

Sensitive Hashing (DSH) uses k-means to roughly

partition the data set into k-groups. Then for each pair

of adjacent groups, Density Sensitive Hashing

generates one projection vector which can well split

the two corresponding. From the generated

projections, DSH select the final ones according to the

maximum entropy principle in order to maximise the

information provided by each bit. Given 𝑛𝑖 data

points 𝑋 = [𝑥𝑖, … , 𝑥𝑛] ∈ 𝑅𝑖∗𝑛 , is to find 𝐿 hash

functions to map a data point 𝑥 to a 𝐿-bits hash code.

𝐻(𝑥) = [ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝐿(𝑥)] (1)

Where ℎ1(𝑥) ∈ {0, 1} is the 𝑙 − 𝑡ℎ hash

function.

Despite the gains in [37], there is minimal

improvement in performance as the code length

increases because the geometric discriminative

structure information of data is ignored and this result

to a suboptimal performance of Density Sensitive

Hashing (DSH). The DSH uses hyperplane-based

hashing function to encode high-dimensional data and

to partitioned data points into two sets and assigned

two different binary codes (-1 or +1) depending on

which set each point is assigned to. The proposed

Geo-SPEBH (Geometric similarity preserving

embedding-based hashing), hypersphere-based

hashing function are used to encode proximity regions

in high-dimensional spaces. The use of hypersphere

improves the performance of search accuracy and

time as the code length increases. Again, a good

binary code maximise information given by each bit.

That is, maximum information is given by a binary bit

that has a balanced partitioning of the data points.

Despite their successes, the above mentioned

techniques are limited due to the longer time it take to

search and retrieve data, and long hash codes

consumes large memory thereby increasing the

storage cost while the short hash codes gives

unsatisfactory performance in terms of retrieval time.

For this, an optimised algorithm is require to improve

the search time and still maintain low memory cost.

The Geo-SPEBH Hashing aims at overcoming the

drawback of data-independent based hashing

methods and data-dependent based hash methods

with respect to minimum search time, computational

cost and memory cost. To guarantee the performance

will increase as the code length increases, Geometric

similarity preserving embedding-based hashing adopt

the framework as Density Sensitive Hashing (density

sensitive hashing). While Density Sensitive Hashing

uses the geometric structure of data to guide the

projections (hash tables) selection, Geo-SPEBH

Received: June 7, 2021. Revised: August 13, 2021. 599

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.52

makes use of the geometric properties of principal

component of features, which are confirmed to be

very discriminative, and ensure that fewer features are

inserted into the hash table. By using fewer features

into the hash table and the balance partitioning

algorithm that distributes data points uniformly into

hash buckets, the minimum search time, the

computational cost and memory cost will be greatly

reduced.

3. Proposed method

Here we present our proposed system and its

operational principle. The proposed system is

composed by four components that performed each

specific function to achieve the set objectives. The

objective of learning hashing-based methods is to use

the mapping function ℎ(𝑥) that projects m-

dimensional real valued feature vector to n-

dimensional binary hash codes and still preserve the

similarity among the feature vector and the data set.

The proposed method can preserve the underlying

discriminative geometric information among the data

points. The system explores the magnitude structure

of geometric features of data. Here the image features

are indexed from the quantised hashing results. The

Geometric similarity preserving embedding-based

hashing uses hypersphere-based hashing function for

computing the binary hash codes with a joint

algorithm that optimise search accuracy and search

time simultaneously. Samples of data points are

contained in a database which will be indexed to

reduce storage cost, computational cost and optimise

the search accuracy and time simultaneously. Here we

represent the data points’ samples as 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁,

and the database is represented as 𝑋 given below:

𝑋 = {𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛, … , 𝑥𝑁} ∈ 𝑅𝑑 × 𝑁 denotes

the data points contained in the database. Where 𝑋 is

the database and 𝑅𝑑 × 𝑁 represents the dimensional

space of size 𝑁. Then we design our hash function

that will map these data points to a k-bit binary hash

code by Eq. (2)

𝐻(𝑥) = {ℎ1(𝑥), … ℎ𝑘(𝑥)} ∈ {−1, 1}𝑘 (2)

Where 𝑘 is the length of the binary hash code and

𝑥. Represents the data points.

3.1 Similarity preserving term 𝑸(𝒚)

To improve the accuracy of searches in a database,

we use the similarity preserving term which contains

the similarity features among the data points, 𝑄(𝑦),

with a minimised Hamming distance in Eq. (11), [38].

This component of the proposed system is responsible

for preserving the similarities of two sample data

points in the training data set in our propose system.

Given a database 𝑋 , two data samples 𝑋𝑖 and 𝑋𝑗

contained in the training set. Extracting the similarity

between the two data samples as 𝑄𝑖𝑗 from similar

geometric feature points of image data is done.

Hashing methods require geometric coordinate

properties for similarity preserving. Next, the data

points that are similar are ensured to have similar

binary hash codes with small hamming distance. The

similarities among the sample data points detected

using SIFT is then preserved as a similarity

preserving term, and then we further seek a code that

maps similar data points to similar binary hash codes

known as similarity preserving. The Hamming

distance is then minimised between similar data

points and the corresponding similar binary hash

codes. The similarity preserving term, and Hamming

distance minimisation between similar data points

and it corresponding similar binary hash code are

represented in Eqs. (3) and (4) respectively. We sum

the similarity preserving term as the summation of 𝑥𝑖

samples of data points from 1 to 𝑁 plus the

summation of 𝑥𝑗 corresponding similar binary hash

code from 1 to 𝑁 as in Eq. (3). Hamming distance is

minimised by taking the absolute values of the of the

similarity term as in Eq. (4) [38].

Hamming distance = taking the absolute (abs)

values of Similarity term by Eqs. (3) and (4).

𝑄(𝑦) = ∑ 𝑥𝑖=1,…,𝑁 ∑ 𝑥𝑖=1,…,𝑁 = ∑ 𝑥𝑖𝑗=1,…,𝑁 (3)

𝑄𝐻(𝑦) = ∑ ∑ 𝑄𝑖𝑗||𝑌𝑖 − 𝑌𝑗||2
𝑗=1,…,𝑁𝑖=1,…,𝑁 (4)

Where 𝑄𝑖𝑗 is the sample data that has similarity,

𝑄(𝑦) is the similarity preserving term and 𝑄𝐻(𝑦) is

the absolute value of the similarity term 𝑄(𝑦).

For efficient search accuracy with respect to

similarity search, similar data points are mapped to

similar binary hash codes for similarity preserving.

This means that similar data points must have similar

binary hash codes with small Hamming distance by

minimisation through Eqs. (5) and (6).

∑ 𝑦𝑖 = 0𝑖 (5)

1

𝑛
 ∑ 𝑦𝑖𝑦𝑗𝑇 = 𝐼𝑖 (6)

Where the constraints Eq. (5) require each bit to

fire 50% of the time, and the constraint Eq. (6)

requires the bits to be uncorrelated. And, y is the set

of all 𝑌𝑖 . Then from Eq. (4), samples with high

similarity or with bigger similarity 𝑄𝑖𝑗 will have

Received: June 7, 2021. Revised: August 13, 2021. 600

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.52

similar binary hash codes with smaller Hamming

distance ||𝑌𝑖 − 𝑌𝑗||2. 𝑌𝑖 and 𝑌𝑗 are the similar binary

hash codes.

3.2 Balance partitioning for independence

To have uniform distribution of data points in

hash bucket, we make each hash function independent

of one another. That is the functionality of one hash

function does not depend on the other one to function.

This is because each hash function is depended on

itself to distribute data points in an evenly manner to

different hash codes. Therefore, each hash function is

given the opportunity of becoming 0 or 1 since binary

digits are represented by zeros (0’s) and ones (1’s).

This means that for hash functions to be independent,

each hash function should have the chance of being

one or zero and the different binary hash codes are

independent of each other as in Eq. (8) above.

Independence of hash functions is demonstrated in a

scenario as follows: As a typical scenario, the

probability that an event say 𝐵𝑖 be a hash function

that is one (1). 𝐵𝑖 is the event that ℎ𝑖(𝑥) = 1. Then

define two events 𝐵𝑖and 𝐵𝑗, next to be independent if

and only if the probability of 𝐵𝑖 = 1 and the

probability of 𝐵𝑗 = 1is equivalent to the probability

of 𝐵𝑖 = 1 multiply by the probability of 𝐵𝑗 = 1 as in

Eq. (10). Here, similar bits are mapped into same

bucket with high probability of having equal chance

of becoming one (1) by defining independence of

each bit. Any of Eqs. (7) and (8) is used to balance the

partitioning of data points for each bit.

𝑝𝑟[ℎ𝑖(𝑥𝑖) = 1] =
1

2
, 𝑥 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑡 (7)

𝑁𝑖 = ∑ 𝑁𝑖
2𝑀

𝑖=1 (8)

Where 𝑁𝑖 is the number of training samples in the

𝑖𝑡ℎ bucket and 𝑀 is the number of buckets,. 𝑝𝑟 is

probability. To achieve independence between two

bits given that 𝑥 ∈ 𝑋 and 1 ≤ 𝑖 < 𝑗 ≤ 𝑡 where 𝑖 and

𝑗 are the 𝑖𝑡ℎ and 𝑗𝑡ℎ data points, and 𝑡 is the

threshold, hash functions are design to be independent

Eqs. (9) and (10), and the data points are distributed

equally to each hash bucket.

𝑝𝑟[ℎ𝑖(𝑥) = 1, ℎ𝑗(𝑥) = 1] = 𝑝𝑟[ℎ𝑖(𝑥) = 1] .

𝑝𝑟[ℎ𝑗(𝑥) = 1] =
1

2
 .

1

2
 =

1

4
 (9)

𝑃𝑟[𝐵𝑖 ∩ 𝐵𝑗] = 𝑃𝑟[𝐵𝑖] . Pr [𝐵𝑗] (10)

𝑝𝑟[ℎ𝑖(𝑥𝑖) = 1] =
1

2
, 𝑥 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑡

𝑝𝑟 is probability. The intersection is the equal

chance of the code bit being a binary hash code 1.

The next is to incorporate the similarity

preserving term with the balance partitioning

components or terms together to simultaneously

improve the search accuracy and search time. We

insert the data points into each bucket in Eq. (8)

𝑁𝑖 =
𝑁

2𝑀 (8)

3.3 Optimisation of search accuracy and minimum

time

In this section, we integrate the similarity

preserving term 𝑄(𝑌) for search accuracy and the

minimum information criterion for the search time to

form a single entity. To enable a high search accuracy

with fast search time, the joint optimisation

component of the proposed system is formulated and

is responsible for the simultaneous optimisation of the

search accuracy and search time. A parameterisation

of a linear function is performed for easy optimisation,

and a relaxation is performed. The joint optimisation

is responsible for the computation of the hash bit that

will be used for query and the identification of the

bucket with the same hash bits with the query, and to

also oversee the loading of data samples from the

selected buckets into the memory. Here, the hash

function independent is made to be independent to

distribute data points evenly or equally to different

binary hash codes. To minimise the time complexity,

each bucket will contain equal number of samples to

have a balanced buckets. This is done to minimise the

search time. To have equal number of samples in each

bucket to balance the buckets, 𝑁 =
𝑁

2𝑀 [38], Eq. (8).

Here, the search accuracy is improved by

minimising the Hamming distance between similar

data points.

𝑄(𝑦) = 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑁 +

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑓𝑟𝑜𝑚 𝑗 𝑡𝑜 𝑁

Mathematically, this can be expressed as Eq. (11):

𝑄(𝑦) = ∑ 𝑥𝑖=1,…𝑁 + ∑ 𝑥 =𝑗=1,…𝑁 ∑ 𝑥𝑖𝑗=1,…,𝑁 (11)

The similarity preserving term and the balance

partitioning are incorporated together for

simultaneous improvement in search accuracy and

minimum search time, [38]. The minimum search

time (MST) is the minimum time taken from when a

query is sent to when relevant data are retrieved from

a database. Here we represent the time a query is sent

as lambda λ that is the start time, while the finished

time is represented as miu μ that is the time when data

are retrieved. Therefore, minimum search time is

Received: June 7, 2021. Revised: August 13, 2021. 601

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.52

calculated as the finished time minus the start time as

given in Eq. (12) below.

𝑀𝑆𝑇 = μ - λ (12)

Where 𝑀𝑆𝑇 is the minimum search time taken for

data to be retrieved, λ is the time when a query was

sent and μ is the time when a data were retrieved from

a database.

Algorithm 1. Balance Partitioning

1. Start

2. Let V = 2**M

3. Input: N; M//N is the number of training

sample in the 𝑖𝑡ℎ bucket//

4. //M is the number of buckets//

5. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑉//𝑉 is the memory location for

2**𝑀//

6. get 𝑁(𝑖)

7. BP = N(𝑖) ∗∗ 2

8. 𝑖 = 𝑖 + 1
9. 𝑖𝑓 𝑖 ≤ 𝑉 goto step 6

10. end if

11. end for

12. Print BP//output balance partitioning//

13. Stop

Algorithm 2. Minimum Search Time

1. Start

2. //Algorithm to calculate minimum search

time//

3. Input: λ; μ// λ is the start time for search//

4. //μ is the finished search time//

5. 𝑀𝑆𝑇 = μ - λ

6. //𝑀𝑆𝑇 is the time taken for the minimum

search//

7. Print 𝑀𝑆𝑇//output minimum search time.

8. stop

Algorithm 3. Improved search accuracy and time

1. Start

2. Input: the training dataset𝑋𝑖, 𝑖 = 1,2,3, … , 𝑁,
similarity matrix 𝑊 and 𝑊 = 𝑊𝑖𝑗 ; the

number of required bits 𝐾 to map the full

dataset as hash codes; BP; N; M;

3. Initialise: Sum = 0; Sim = 0; SimM = 0; BP =

0; V = 2**M; yi = 0; JointO = 0//jointO is the

memory location for joint optimisation

4. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑐

5. 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑐

6. Get y(𝑖), y(𝑗), x(𝑖, 𝑗)

7. Sum = Sum + (𝑦(𝑖) − 𝑦(𝑗))**2

8. j = j + 1

9. 𝑖𝑓 𝑗 ≤ 𝑐 goto step 6

10. end if

11. 𝑖 = 𝑖 + 1

12. 𝑖𝑓 𝑖 ≤ 𝑐 goto step 17

13. end if

14. end for

15. end for

16. Sim = Sum

17. break;

18. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑉

19. get 𝑁(𝑖)

20. BP = N(𝑖) ∗∗ 2

21. 𝑖 = 𝑖 + 1
22. 𝑖𝑓 𝑖 ≤ 𝑉 goto step 40

23. end if

24. end for

25. Print Sim, BP

26. //Incorporating similarity preserving term

and balanced partitioning//

27. JointO = Sim + BP

28. //computing 𝑢𝑖//

29. 𝑇(𝑎, 𝑏) = 0, swap = 0

30. Get x

31. Get b

32. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑎

33. 𝑓𝑜𝑟 𝑗 = 𝑖 + 1 𝑡𝑜 𝑏

34. Get 𝑇(𝑖, 𝑗)

35. j = j + 1

36. 𝑖𝑓 𝑗 ≤ 𝑏 goto step 55

37. i = i + 1

38. 𝑖𝑓 𝑖 ≤ 𝑎 goto step 55

39. end if

40. end if

41. end for

42. end for

43. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑎

44. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑏

45. Swap = 𝑇(𝑖, 𝑗)

46. 𝑇(𝑖, 𝑗) = 𝑇(𝑗, 𝑖)

47. 𝑇(𝑗, 𝑖) = 𝑠𝑤𝑎𝑝

48. ℎ(𝑖) = 𝑠𝑖𝑔𝑛(𝑇(𝑗, 𝑖) ∗ 𝑥(𝑖) − 𝑏 //T is the

projection matrix of 𝑑 × 𝑀 and 𝑏 is a vector//

49. 𝑗 = 𝑗 + 1

50. 𝑖𝑓 𝑗 ≤ 𝑏 goto step 45

51. 𝑖 = 𝑖 + 1

52. 𝑖𝑓 𝑖 ≤ 𝑎 goto step 44

53. end if

54. end if

55. end for

56. end for

57. for i = 1

58. Print h(i)

Received: June 7, 2021. Revised: August 13, 2021. 602

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.52

59. 𝑖 = 𝑖 + 1

60. 𝑖𝑓 𝑖 ≤ 𝑎 goto step 78

61. end if

62. end for

63. Stop

4. Experimental setup

4.1 Performance metrics

The metric used to compare the proposed method

is time. The Geo-SPEBH will be compared with

existing techniques to obtain the minimum search

time. We implement our method to measure the

performance of retrieval result on the minimum time

taken to send a query to when the data is retrieved

from the database using the SIFT 1B dataset [39]. It

is calculated using the time of the system used for the

conduct of the experiment.

4.2 Comparison competitors

The technique used in validating the performance

of the improve algorithm is simulation. The

evaluation method used is time. The competitor

algorithms used in the comparison are as follows:

1. Robust Discrete Code Modelling (RDCM)

learns high quality discrete codes and hash

functions [30].

2. Robust Geometric Correction (RGC)

eliminates the influence of geometric

transformation, composite rotation-scaling-

translation [31].

3. Discrete Discriminant Hashing (DDH) The

algorithm learned a robust similarity metric

so as to maximise the similarity of the same

class discrete hash codes and minimise the

similarity of the different class discrete hash

codes simultaneously [32].

4. Binary Generative Adversarial Networks

(BGAN) use binary generative adversarial

network embed images to binary codes

through the unsupervised approach [33].

5. Large Graph Hashing (LGH) minimised the

Euclidean distance in the modified solution to

obtain the binary codes for index generation

[35].

6. Spectral Hashing (SpH) is a classic approach

that quantised the values of analytical Eigen

functions computed along the principal

component analysis of the data [36].

7. Density Sensitive Hashing (DSH): is a semi-

supervised based hashing techniques that

combined the characteristics of data-

independent and data-dependent hashing

techniques. [37].

8. Geo-SPEBH: This algorithm used the

geometric similarities of data points and also

distributes the data points evenly into hash

buckets [15].

4.3 System requirements and tools

All the experiments were conducted and run on a

Table 1. SIFT 1Billion data set use in implementing the

existing system

Datas

et

Dimensi

on

No. of base

vectors

No.

of

query

vecto

rs

No. of

learn

vectors

SIFT

1B

128 1,000,000,0

00

10,00

0

100,000,0

00

Table 2. Simulation results for the proposed and existing

methods

 Time (sec)

 Code length (bits)

METHO

DS

8 16 32 48 64 96

RDCM

[30]

0.05

3

0.10

8

0.30

0

0.39

0

0.49

0

0.63

0

RGC [31] 0.05

3

0.08

0

0.24

8

0.31

0

0.41

2

0.52

2

DDH [32] 0.04

1

0.18

9

0.24

9

0.33

6

0.44

6

0.56

8

BGAN

[33]

0.06

0

0.19

2

0.36

2

0.59

1

0.76

6

0.88

0

LGH [35] 0.04

0

0.08

0

0.16

0

0.28

0

0.33

0

0.42

0

SpH [36] 0.05

0

0.16

0

0.32

0

0.48

0

0.63

0

0.79

8

DSH
[37]

0.04

0

0.08

0

0.16

0

0.24

0

0.32

0

0.40

0

Geo-

SPEBH

[15]

0.03

0

0.06

0

0.11

0

0.17

0

0.20

0

0.26

0

Received: June 7, 2021. Revised: August 13, 2021. 603

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.52

Figure. 1 Search time for random-based algorithms on

SIFT 1B dataset

3.40 GHz CPU with four cores and 16 G RAM, in a

Java software tool built on CloudSim for

experimentation, simulation and implementation. The

CloudSim is configured with 1 data centre on 100

cloudlets with the capacity of accepting input and

output size of 300 each and length of 5000. The

bandwidth requirement is 1GB network bandwidth.

4.4 Simulation results

SIFT 1B dataset from simulation results carried

out on the existing algorithm implemented on the

proposed system Geometric similarity preserving

embedding-based hashing algorithm compared the

result with some state-of-the-art-existing techniques.

The results obtained are listed in Table 2 and Fig. 1.

The SIFT BM [39] dataset is a dataset that consist

of one million SIFT features represented by 128

dimension vectors. The number of base vectors is

1,000,000,000 while the query vectors 10, 000,

100,000,000 vectors are used for learning. This

dataset is run with all the algorithms with varied

number of bits, 8, 16, 34, 48, 64, 96 to obtain the

velocity of data retrieval for each query sent. We

select 1K data points as the queries and the remaining

are used to form the gallery database. It can be shown

in Table 2 and Fig. 1 that the Geometric similarity

preserving embedding-based hashing algorithm takes

less time to retrieved data from a database because of

the use of hyper-sphere and the even distribution of

data points to each hash buckets. When the code

length is 8, Geometric similarity preserving

embedding-based hashing algorithm has a retrieval

time of 0.03 sec. and 0.053, 0.053, 0.041, 0.060, 0.040,

0.050, and 0.040 sec. respectively for Robust Discrete

Code Modelling [30], Robust Geometric Correction

[31], Discrete Discriminant Hashing [32], Binary

Generative Adversarial Networks [33], Large Graph

Hashing [35], SpH [6] and SH [37] which indicate an

impressive performance as the time taken to retrieved

data from the database is minimal because of the short

code length. As the code length increases, the

performance of the competitor algorithms decreases

from 8 bits to 96bits as can be shown in Table 2 and

Fig. 1. It takes more time to retrieved data from a

database for a query sent. The presence of unrealiable

binary codes and potentially noisily-labelled samples

in the data points degrade the performance RDCM

[30] as the code length increases which make Geo-

SPEBH has a performance difference of 0.023sec

over RDCM [30] and RGC [31], as the incorporation

of global and local features into [31] to construct hash

function improved on the authentication of image but

increase the retrieval time because in resulted to long

hash code to have better authentication as can be

shown in Table 2 and Fig. 1. [32] Maximised the

similarity of the same class discrete hash codes and

then minimised the different class discrete hash codes

increases the retrieval time of information as the code

length increases. It can be shown in Table 2 as

Geometric similarity preserving embedding-based

hashing [15] has 0.308sec performance difference

over [32] when the code length is 96bits. This is

because the time it takes to load data into memory is

the same in Geo-SPEBH hashing [15] as each hash

bucket has equal number of data points and binary

hash codes, and the data points are tight with closed

region using hyper-sphere. The closely competitors

with our Geometric similarity preserving embedding-

based hashing [15] as shown in the Table 2 are DDH

[32], LGH [35] and DSH [37] which recorded

0.041sec, 0.040secs for the code length of 8bits,

0.446sec, 0.330sec and 0.320 for the code length of

64bits, and 0.568sec, 0.420sec., and 0.400sec for the

code lengths of 96bits. The Geo-SPEBH [15] has a

performance gain over the most closely competitor

Density Sensitive Hashing [37] of 0.010sec., 0.060sec

and 0.140secs for the codes lengths of 8, 64 and 96

bits respectively. Memory cost is the amount of

memory or storage space occupied by the data in the

data base. In Table 2, the number of bits from 8 to 96

indicate the memory cost for each algorithm occupied

by data points as represented by binary hash codes.

The higher the memory cost, the more time it takes to

retrieved data from the database in cloud computing

environment for the SIFT 1B [37] dataset for all code

lengths. The low memory cost recoded by our

proposed Geo-SPEBH hashing algorithm with high

performance indicate that it can handle large amount

of data (huge database). Table 2 gives the simulation

results based on time (sec), and it can be shown that

the use of tighter region, use of independent hashing

function, and the balance partitioning of data points

Received: June 7, 2021. Revised: August 13, 2021. 604

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.52

proposed by Geo-SPEBH [15] algorithm improved

the speed of retrieving information from a database

from a database within the shortest possible time. The

proposed algorithm out-performed the compared

state-of-the-art techniques with a performance

difference of 0.140sec. When the code length is 96bit

as compare to the most close competitor DSH [37]

algorithm. Therefore, the proposed Geometric

similarity preserving embedding-based hashing [15]

algorithm takes less time to retrieve information from

a database in cloud computing environment.

5. Conclusion

In this paper, we present a Geometric similarity

preserving embedding-based hashing with a balance

partitioning algorithm for improving the minimum

search for each query sent for faster information

retrieval from a database by distributing equal number

of data points to hash buckets, and an algorithm that

find and calculate the time difference with the

compared algorithms. To maintained fast retrieval

time performance with short code-word, we use a

similarity preserving term to minimise memory cost

experiment was conducted and the simulation results

shows that Geometric similarity preserving

embedding-based hashing outperformed the stat-of-

the-art techniques as it provides faster retrieval of

information. Our future research will measure the

amount of bandwidth required to transfer information

from source to destination.

Conflicts of Interest

I, Abubakar Usman Othman, declare no conflicts.

Author Contributions

This research was carried out by all the authors.

The supervision was done by Professor Boukari

Souley and Associate Professor Abdulsalam Y.G.

Conceptualisation, Methodology were contributed by

Abubakar U.O., Hauwa A., Maryam M., Aisha Y. U.

Software: Abubakar U.O. formal analysis,

investigation, validation and resources was done by

all the Authors. Abubakar U.O., did the writing, draft

preparation and submission of the manuscript.

References

[1] T. Danan, S. C. Surya, C. N. Rafael, and A. Leila,

“A platform for monitoring and sharing of

generic health data in the cloud”, Future

Generation Computer System, Vol. 35, pp. 102-

113, 2014.

[2] N. Davidovitch and R. Yavich, “The impact of

mobile tablet use on students’ perception of

learning processes”, Problems of Education in

the 21st Century, Vol. 76, No. 1, pp. 29-42, 2018.

[3] S. Tatcha and M. Hitoshi, “The Internet of

Things as an accelerator of advancement of

broadband networks: A case of Thailand”,

Telecommunications Policy, Vol. 42, No. 4, pp.

293-303, 2018.

[4] M. Gartner, A. Rauber, and H. Berger, “Briging

structured and unstructured data via hybrid

semantic search and interactive ontology-

enhanced query formulation”, Knowledge

Information System, pp. 1-32, 2013.

[5] J. Chen, C. Yuegue, E. Lia, I. L. Cuiping, and U.

L. Jiaheng, “Big Data Challenges: A data

Management Perspective”, Higher Education

Press and Springer Verlag Berlin Heidelberg,

Vol. 7, No. 2, pp. 157-164, 2013.

[6] Y. Wang, L. A. Kung, and T. A. Byrd, “Big data

analytics: Understanding its capabilities and

potential benefits for healthcare organizations”,

Technological Forecasting and Social Change,

Vol. 126, pp. 3-13, 2015.

[7] X. Guohui and D. Linfang, “KB4Rec”, Data

Intelligence, Vol. 23, pp. 0-2, 2019.

[8] S. Liu, Y. Wang, A. Wen, L. Wang, N. Hong, F.

Shen, S. Bedrick, W. Hersh, and H. Liu,

“CREATE: Cohort Retrieval Enhanced by

Analysis of Text from Electronic Health Records

using OMOP Common Data Model. 5”,

http://arxiv.org/abs/1901.07601, 2019.

[9] D. Agrawal, P. Bernstein, E. Bertino, S.

Davidson, and U. Dayal, “Challenges and

Opportunities with Big Data”, A White Paper

Prepared for the Computing Community

Consortium, pp. 1-16, 2012.

[10] A. Merkys, A. Vaitkus, D. Chateigner, P. Moeck,

P. Murray-rust, M. Quiros, R. T. Downs, W.

Kaminsky, and A. L. Bail, “Crystallography

Open Database : history, development,

perspectives”, http://arxiv.org/abs/1901.07601,

2018.

[11] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and

K. Li, “Multi-probeLSH: Efficient indexing for

high-dimensional similarity search”, In: Proc. of

International Conference on Very Large Data

Bases, pp. 950-961, 2007.

[12] W. Dong, Z. Wang, W. Josephson, M. Charikar,

and K. Li, “Modelling LSH for performance

tuning”, In: Proc. of the ACM Conference on

Information and Knowledge Management, pp.

669-678, 2008.

[13] Y. Gong and S. Lazebnik, “Iterative

Quantisation: A procrustean approach to

learning binary codes”, In: Proc. of IEEE

Received: June 7, 2021. Revised: August 13, 2021. 605

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.52

Conference on Computer Visionand Pattern

Recognition, pp. 817-824, 2011.

[14] W. Liu, J. Wang, S. Kumar, and S. F. Chang,

“Hashing with graphs”, In: Proc. of International

Conference on Machine Learning, 2011.

[15] U. O. Abubakar, S. Boukari, Y. G. Abdulsalam,

and A. Hauwa, “Performance Evaluation of

Geometric Similarity Preserving embedding-

Based Hashing for Big Data in Cloud

Computing”, Journal of Theoretical & Applied

Information Technology, Vol. 98, No. 3, pp. 378-

390, 2020.

[16] S. Boukari, U. O. Abubakar, Y. G. Abdulsalam,

and M. A. Iliya, “Performance Evaluation of

Geometric Similarity Preserving”, Global

Scientific Journals, Vol. 7, No. 4, pp. 642-657,

2019.

[17] M. Raginsky and S. Lazebnik, “Locality-

sensitive Binary Codes from Shift Invariant

Kernels”, In: Proc. of Advance Neural

Information Processing System, pp. 1509-1517,

2009.

[18] C. Wu, J. Zhu, D. Cai, C. Chen, and J. Bu, “Semi-

supervised nonlinear hashing using bootstrap

sequential projection learning”, IEEE

Transaction on Knowledge Data Engineering,

Vol. 25, No. 6, pp. 1380-1393, 2013.

[19] X. Li, L. Gao, X. Xu, J. Shao, F. Shen, and J.

Song, “Kernel based latent semantic sparse

hashing for large-scale retrieval from

heterogeneous data sources”, Neurocomputing,

Vol. 253, pp. 89-96, 2017.

[20] A. Chakraborty and S. Bandyopadhyay,

“conLSH: Context based Locality Sensitive

Hashing for Mapping of noisy SMRT Reads”,

ArXiv.Org, q-bio.GN, pp. 1-11, 2019.

[21] Y. Wang and J. Wang, “FLASH : Randomized

Algorithms Accelerated over CPU-GPU for

Ultra-High Dimensional Similarity Search”,

2018.

[22] B. Seok, J. Park, and J. H. Park, “A lightweight

hash-based blockchain architecture for industrial

IoT”, Applied Sciences (Switzerland), Vol. 9, No.

18, 2019.

[23] M. Norouzi and D. M. Blei, “Minimal loss

hashing for compact binary codes”, In: Proc. of

International Conference on Machine Learning,

pp. 353-360, 2011.

[24] M. Norouzi and D. J. Fleet, “Cartesian K-means”,

In: Proc. of International Conference on

Computer Vision and Pattern Recognition, pp.

3017-3024, 2013.

[25] Y. Gong, S. Kumar, H. A. Rowley, and S.

Lazebnik, “Learning binary codes for high-

dimensional data using bilinear projection”, In:

Proc. of IEEE on international conference on

computer vision and pattern recognition, pp.

484-491, 2013.

[26] L. Yueming, W. Y. Wing, Z. Ziqian, S.Y. Daneil,

and P. K. Patrick, “Asymetric Cyclcial Hashing

for Large-Scale-Image Retrieval”, IEEE

Transaction on Multimedia, Vol. 17, No. 8, pp.

1225-1235, 2015.

[27] R. Ye and L. Xuelong, “Compact Structure

Hashing Via Sparse and Similarity Embedding”,

IEEE Transactions on Cybernetics, Vol. 46, No.

3, pp. 718-728, 2016.

[28] S. Georgia and L. George, “A survey on

mathematical models, simulation approaches

and testbeds used for research in cloud

computing”, Simulation Modelling Practice and

Theory, pp. 1-12, 2013.

[29] S. S. Pericherla, “A Comparative Analysis of

Cloud Simulators”, International Journal of

Modern Education and Computer Science, Vol.

4, pp. 64-71, 2016.

[30] L. Yadan, Y. Yang, F. Shn, H. Zi, Z. Pan, and S.

H. Tao, “Robust Discrete Code Modeelling for

Suppervised Hashing”, In: Proc. of International

Conference on Pattern Recognition, 2017.

[31] K. K. Ram, S. Arunav, and H. L. Rabul, “Image

Authentication Based on Robust Image Hashing

with Geometric correction”, Journal of

Multimdia Tools and Applications, Vol. 77, No.

19, pp. 25409-25429, 2017.

[32] C. Yan, J. Jielin, L. Zhihui, H. Zuojin, and W.

Waikeun, “Supervised discrete discriminant

Hashing for Image Retrieval”, In: Proc. of

International Conference on Pattern

Recognition, Vol. 78, pp. 79-90, 2018.

[33] S. Jingkuan, T. He, G. Lianli, X. Xing, H. Alan,

and S. T. Heng, “Binary Generative Adversarial

Networks for Image Retrieval”, In: Proc. of the

AAAI Conference on Artificial Intelligence, Vol.

32, No. 1, 2018.

[34] M. Charikar and P. Siminelakis, “Hashing-

based-estimators for Kernel Density in High

Dimension”, In: Proc. of IEEE 58th Annual

Symposium on Foundation of Computer Science

(FOCS), pp. 1032-1043, 2017.

[35] X. Li, D. Hu, and F. Nie, “Large Graph Hashing

with Spectral Rotation”, In: Proc. of the AAAI

Conference on Artificial Intelligence, Vol. 31,

No. 1, 2017.

[36] J. P. Heo, L. Youngwoon, H. Junfeng, C. S. Fu,

and Y. S. Eui, “Spherical Hashing: Binary Code

Embedding with Hypersphere”, IEEE

Transaction on Pattern Analysis and Machine

Inteligence, pp. 1-14, 2015.

Received: June 7, 2021. Revised: August 13, 2021. 606

International Journal of Intelligent Engineering and Systems, Vol.14, No.5, 2021 DOI: 10.22266/ijies2021.1031.52

[37] Z, L. C. Jin, Y. Lin, and D. Cai, “Density

Sensitive Hashing”, IEEE Transactions on

Cybernetics, Vol. 44, No. 8, pp. 1362-1371, 2014.

[38] H. Junfeng, R. Regunathan, H. S. Fu, and B.

Claus, “Compact Hashing with Joint

Optimisation of Search Accuracy an Time”,

CVPR, pp. 753-760, 2011.

[39] H. Jegou, D. Matthijs, and S. Cordelia, “Product

Quantisation for Nearest Neighbour Search”,

IEEE Transaction on Pattern Analysis and

Machine Intelligence, Vol. 33, No. 1, pp. 117-28,

2011.

