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Abstract: The Swarm Intelligence Optimization Methods were widely used in science. Animals' swarming behaviour 

mainly inspires these methods. Conventional optimization for Harris Hawks (HHO) is a recent technique based on the 

hunting strategy of harris hawks. The parallelism technique was used in this study to try to improve the original version 

of the algorithm. The improved algorithm sets the parameters of two controllers designed to improve the 4-link flexible 

joint manipulator's dynamic performance. The integral sliding mode controller controls the flexible joints, and the 

adaptive output feedback tracking controller controls the rigid links. When the improved algorithm is tested on 

benchmark functions and compared to other optimization strategies. the results show that the improved algorithm is 

faster and more precise. The simulation results indicate the improved algorithm's capabilities, with an enhancement 

percentage of 76.72 percent for the first link and 70.91 percent for the first joint compared to the standard approach. 

Keywords: Flexible joint manipulator, An integral sliding mode controller, Adaptive output feedback tracking control, 

Parallel harris hawks optimizer, Harris hawks optimizer. 

 

 

1. Introduction 

An important field of research is robotic 

manipulation. The advancement of manipulator 

research can be grouped into two types: Rigid 

Manipulator and Flexible Manipulator (FM). Due to 

its many benefits over rigid manipulators, current 

research is oriented to FMs. The FMs benefit from 

light weight, low cost, reduced size, more workspace, 

portability and economy [1]. This has led to much 

research into developing high-performance control 

approaches using state-of-the-art control theories. 

For instance, hybrid PID controller [2], model 

reference adaptive control [3], nonlinear fractional-

order PID [4], adaptive fuzzy sliding mode control 

[5], Fuzzy logic self-tuning PID control [6] have been 

dedicated to the study of flexible-joint robots. 

An Integral Sliding Mode Controller (ISMC) 

tracks a flexible joint driven by a DC motor. It is an 

efficient control strategy for resolving many issues 

with the Sliding Mode Control (SMC) approach, 

including the high-frequency chattering effect and 

insensitivity[7]. 

All robot manipulator dynamic parameters are 

assumed to be unknown and the manipulator needs to 

follow the desired path. Adaptive Output Feedback 

Tracking Controller (AOFTC) allows robot 

manipulators to complete tasks in an unknown 

environment [8], This controller was utilized to 

control the rigid link in this work. 

In this research work, the ISMC & AOFTC 

parameters were tuned using the standard Harris 

Hawks Optimization (HHO) algorithm and a new 

nature-inspired algorithm named Parallel Harris 

Hawks Optimization (PHHO) algorithm. Parallel 

processing aims to produce the same results through 

multiple processors in order to minimize runtime. 

This technique was used in different algorithms like 

Parallel Genetic Algorithm [9], Parallel Particle 

Swarm Optimization with Communication Strategies 

[10], and parallel grey wolf optimizer [11]. 

HHO algorithm [12] is a nature-inspired 

optimization paradigm inspired by Harris hawks' 

cooperative behaviour in nature. The HHO has been 

used widely with mathematical models due to its 

nature to mimics the dynamic patterns of such models. 
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The authors have employed the HHO in various 

scientific topics such as environmental, medical, and 

chemical fields. The researchers proposed other 

techniques to enhance the HHO's performance to 

benefit its work, i.e. In [13], the authors present the 

MOHHO algorithm for environmental purposes to 

estimate air pollutant concentrations by adjusting the 

extreme learning machine (ELM) model parameters 

to achieve high precise and stable model. In [14], 

chaotic maps with HHO (CHHO) algorithm are 

introduced to improve feature selection of the 

medical field. Finally, on [15], a cuckoo search with 

chaotic map HHO (CHHO-CS) is presented to 

improve the performance of HHO that is used with 

chemical descriptor selection. In this work, compared 

to [13-15], in this paper, PHHO presents to increase 

the manipulator's ability to overcome the trajectory 

tracking problem by improving both exploration, 

exploitation, and feature selection speed. 

The PHHO performance is tested by benchmark 

test functions classified as (unimodal, multimodal, 

and fixed dimension multimodal test functions). The 

benchmark test functions are used to obtain the 

average and standard deviation for the improved 

algorithm to be demonstrated and finally compared to 

other optimization algorithms: Chaotic Harris Hawks 

Optimizer (CHHO) [16], HHO, Salp Swarm 

Algorithm (SSA) [17], Gravitational Search 

Algorithm (GSA) [18], and Particle Swarm 

Optimization (PSO) [19]. 

The robot manipulator with four degrees of 

freedom is considered. The task is to move the robot 

manipulator in the workspace along a desire position 

while minimizing an objective function. The 

objective function presents the error between the 

actual and the desired positions. Hence, the aim is to 

improve an optimization algorithm for tuning the 

controller parameters that consider the effects of 

system uncertainties, so the closed-loop system 

output tracking error converges to zero 

asymptotically. 

The rest of the paper is organized as follows: 

Section 2 establishes the modelling for four rigid link 

/ flexible joint manipulators. Section 3 presents the 

theoretical basics for controlling methods and the 

standard algorithm HHO. Section 4 the improvement 

of HHO and the flowchart are explored. Section 5 

contains the findings and discussion. Finally, section 

6 summarizes the findings of this research. 

2. Modeling of four rigid link - flexible joint 

manipulator 

The general dynamic equation form for a four 

Rigid Link – Flexible Joint Manipulator (4-RLFJM) 

is presented in this section, and the state-space form 

is presented. The dynamics of the model robot 

manipulator can be described as [20]: 

 

𝝉 = 𝐌(𝒒)�̈� + 𝐂(𝒒, �̇�)�̇� + 𝐠(𝒒)               (1) 

 

Where 𝒒, �̇� , �̈�  ∈ 𝐑𝑛×𝑛  denote link position, 

velocity and acceleration vectors, respectively, 𝐌(𝒒) 
∈ 𝐑𝑛×𝑛 and 𝐂(𝒒, �̇�)  ∈ 𝐑𝑛×𝑛 are manipulator inertia 

and centrifugal/Coriolis forces, respectively and 

𝐠(𝒒)  ∈ 𝐑𝑛  is a vector of gravitational forces. 

Appendix A to show the element of the matrices. 

Electric motors have a mechanical subsystem and 

electrical subsystem, as illustrated in the following 

dynamic Eqs. (2), and (3), respectively [21]: 

 

𝐉�̈�𝐦 + 𝐁�̇�𝐦 + 𝐫𝝉 = 𝒌𝒎𝑰𝒂                 (2) 

 

𝑳𝒎�̇�𝒂 + 𝑹𝒎𝑰𝒂 +𝑲𝒃�̇�𝐦 = 𝒗(𝒕)            (3) 

 

where 𝒒𝐦, �̇�𝐦, �̈�𝐦  ∈ 𝐑𝑛  denote Joint position, 

velocity and acceleration vectors, respectively, 𝑱 ∈
R𝑛×𝑛 ,  𝐁 ∈ 𝐑𝑛×𝑛  and 𝐫 ∈ 𝐑𝑛×𝑛   are diagonal 

matrices to represent coefficients of the motor inertia, 

motor damping, and reduction gear, respectively. 

𝒌𝒎 ∈ R𝑛×𝑛  diagonal matrices for the coefficients of 

torque of the armature.  𝑳𝒎 ∈ R𝑛×𝑛 ,  𝑹𝒎 ∈
R𝑛×𝑛 , and 𝑲𝑏 ∈ R

𝑛×𝑛  illustrate the n × n diagonal 

matrices for the coefficients of electrical inductance, 

armature resistance, and back-EMF constant, 

respectively. 𝑰𝑎 ∈ 𝐑
𝑛 is a vector of armature current 

and  𝒗(𝒕) ∈ 𝐑𝑛is the control input voltage applied to 

the joint actuators. Torsional springs connect the 

rigid bodies. In this instance, the joint torques τ are 

transmitted through the n shafts:  

 

𝝉 = 𝑲𝒔(𝒓𝒒𝒎 − 𝒒)                      (4) 

 

where 𝒌𝒔 ∈ R
𝑛×𝑛  are diagonal matrices to represent 

coefficients of lumped flexibility. 

Then, Eqs. (1) and (2) can be written as follows 

to obtain the state space representation: 

 

�̈� = 𝑴(𝒒)−𝟏 [ 𝑲𝒔(𝒓𝒒𝒎 − 𝒒) − 𝑪(𝒒, �̇�)�̇� − 𝒈(𝒒)] 
(5) 

 

�̈�𝒎= 𝑱−𝟏(𝝉𝒎- B �̇�𝒎 - r 𝑲𝒔(𝒓𝒒𝒎 − 𝒒))        (6) 

3. Theoretical basics 

3.1 Integral sliding mode control 

ISMC's main concept is high-frequency 

switching gain, which forces the state to achieve the 

integral sliding surface [7]. The states are then guided 
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to the desired equilibrium point by the integral action 

in the sliding manifold. It reduces chattering and 

improving the control system's robustness and 

accuracy while maintaining nominal control 

efficiency. The sliding manifold selected for the 

system is [22]:  

 

𝒔 = �̇� + 𝒄𝒆 + 𝒌𝒊∫ �̇� + 𝒄𝒆 𝐝𝒕               (7) 

 

where c and ki are positive design parameters and e 

is the error value between the desired and actual 

angular positions (qd) and (q), respectively, 

 

𝒆 = 𝒒𝒅 − 𝒒 ;  �̇� = �̇�𝒅 − �̇�, and  𝒆 = �̈�𝐝  − �̈�  (8) 

 

where 𝒒𝒅  represents the joint positions that are 

desired. The control signal consists of two terms that 

are the equivalent (ueq) and the switching (usw) 

control laws, depicts through: 

 

𝒖 = 𝒖𝑒𝑞 + 𝒖𝑠𝑤                          (9) 

 

where the equivalent law is given by, 

 

𝒖𝒆𝒒𝒊 = 𝒘𝒊∫ �̇� + 𝒄𝒆 𝒅𝒕                    (10) 

 

where 𝒘𝒊 is a positive design parameter. 

Also, the design of the switching law is given by, 

 

𝒖𝒔𝒘𝒊 = 𝒌𝒊 𝑠𝑔𝑛 (𝒔𝒊)                     (11) 

 

Then, the control law u is important for driving 

the system's initial states to equilibrium in a finite 

time. 

 

𝒖𝑰𝑺𝑴𝑪 = 𝒌𝒊 𝑠𝑔𝑛(𝒔𝒊) + 𝒘𝒊∫ �̇� + 𝒄𝒆 𝒅t        (12) 

3.2 Adaptive output feedback tracking control 

The adaptive controller for a four-link 

manipulator system with unknown manipulator 

parameters is formulated. A control law for actuator 

torques and an estimation law for unknown 

parameters have been developed. The manipulator 

output 𝒒  tracks the desired trajectories 𝒒𝒅  after an 

initial adaptation process [8].  

3.2.1. Control law 

The control law can be defined to design an 

adaptive controller: 

 

           𝒖𝑨𝑶𝑭𝑻𝑪 = 𝒀(𝒒𝒅,�̇�𝒅, �̈�𝒅)�̂� + 𝑲𝒗 𝒕𝒂𝒏𝒉(�̃�) +

                                    𝑲𝒑 𝒕𝒂𝒏𝒉 (𝝈𝒆)                        (13) 

 

where 
𝑲𝒗 =𝐝𝐢𝐚𝐠 {𝒌𝒗𝟏… . 𝒌𝒗𝒏}: is a positive definite 

matrix 

𝑲𝒑 =𝐝𝐢𝐚𝐠{𝒌𝒑𝟏… . 𝒌𝒑𝒏}: is a positive definite 

matrix 

𝝈 ∶ is positive constant 

�̃� ∶ is the estimated velocity 

�̂�:  is the estimated parameter 

𝒀(𝒒𝒅, �̇�𝒅, �̈�𝒅):  is the regressor matrix 

 

The estimated velocity �̃�  in the adaptive 

controller (1) is obtained from the following 

nonlinear filter:  

 
�̇� = 𝑨 𝑡𝑎𝑛ℎ (�̃�)
�̃� = 𝒙 + 𝑩 𝒆

                 (14) 

 

where A= diag {𝑎1… . 𝑎𝑣𝑛}  and 

B=diag {𝑏1… . 𝑏𝑝𝑛} are positive definite matrices. 

3.2.2. Analysis 

The adaptation parameters of the robot are 

calculated as follows for adaptive controller analysis 

(Appendix B to Show the theoretical derivation).:  

 

�̂�

= 𝜞 [𝒀𝑻(𝒒𝒅,�̇�𝒅, �̈�𝒅)𝒆

− ∫  
𝒕

𝟎

{�̇�𝑻(𝒒𝒅,�̇�𝒅, �̈�𝒅)𝒆−𝝃𝒀
𝑻(𝒒𝒅,�̇�𝒅, �̈�𝒅)𝑡𝑎𝑛ℎ (𝝈𝒆)}𝒅𝒕 

(15) 

where 𝚪  is a positive definite matrix and 𝜉 ∈
(𝝃𝒎𝒊𝒏, 𝝃𝒎𝒂𝒙) the strictly positive constant. 

For forming a closed-loop system, the control law 

was given in Eq. (13) is replaced in the dynamic 

equation of robots given in Eq. (1). The estimation 

error parameter is specified: 

 

�̃� = 𝒒 − �̂� ∈ ℝ𝒓                        (16) 

3.3 Standard harris hawks optimizer 

The Harris Hawks Optimizer is a new 

metaheuristic algorithm to solve problems of global 

optimization. Generally, the HHO mimics the 

activities of hawks in nature while hunting for and 

catching prey. The HHO searches for two stages 

(exploration and exploitation), employing a variety of 

methods. The following are the symbols used in this 

algorithm to make HHO easier to understand [23] : 

1. Vector of Hawks position (search agents) 𝑿𝒊(𝒕). 
2. Position of Rabbit (best agent) Xrabbit(𝒕). 
3. Position of a random Hawk Xrand(𝒕). 
4. Hawks average position Xm(𝒕). 
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5. Maximum number of iterations, swarm size, 

iteration counter T, N, t. 

6. Random numbers between (0, 1) r1, r2, r3, r4, r5, q, 

u, v. 

7. Dimension, lower and upper bounds of variables D, 

LB, UB. 

8. Initial state of energy, escaping energy E0, E. 

9. The difference between the position vector of the 

rabbit and the current location ∆X(t). 

10. The rabbit's random jump strength during the 

escape method J. 

3.3.1. Exploration phase  

It is defined as: 

 

𝑿(𝒕 + 𝟏) = 

{
 
 

 
 𝑿rand (𝒕) − 𝒓𝟏|𝑿rand (𝒕) − 𝟐𝒓𝟐𝑿(𝒕)|

𝒒 ≥ 𝟎. 𝟓

(𝑿rabbit (𝒕) − 𝑿𝒎(𝒕)) −

𝒓𝟑(𝑳𝑩 + 𝒓𝟒(𝑼𝑩 − 𝑳𝑩))        𝒒 < 𝟎. 𝟓

     (17) 

 

The average location of the Hawks Xm is 

represented by 

 

𝑿𝒎(𝒕) =
𝟏

𝑵
∑  𝑵
𝒊=𝟏 𝑿𝒊(𝒕)                 (18) 

3.3.2. Transition from exploration to exploitation 

The HHO algorithm can change from exploration 

to exploitation and switch between several 

exploitative behaviors, depending on the prey's 

escape energy. During the escape behavior, a prey's 

energy level plummets dramatically. A rabbit's 

energy is modelled as follows: 

 

𝑬 = 𝟐𝑬𝟎 (𝟏 −
𝒕

𝑻
)                      (19) 

3.3.3. Exploitation phase 

Case1: Soft besiege 

When r ≥ 0.5 and |E| ≥ 0.5, the rabbit still has 

enough energy to attempt to escape by making a 

series of random, deceptive hops. The Harris' hawks 

encircle the rabbit softly during their attempts to tire 

it and then perform the surprise pounce. 

 

𝑿(𝒕 + 𝟏) = 𝜟𝑿(𝒕) − 𝑬|𝑱𝑿rabbit (𝒕) − 𝑿(𝒕)| (20) 

 

𝜟𝑿(𝒕) = 𝑿rabbit (𝒕) − 𝑿(𝒕)              (21) 

 

Case2: Hard besiege 

When r ≥0.5 and |E| <0.5, the prey is completely 

exhausted, with very little escaping energy. In 

addition, the Harris' hawks hardly surround the 

intended prey to perform the surprise hit finally 

 

𝑿(𝒕 + 𝟏) = 𝑿rabbit (𝒕) − 𝑬|𝜟𝑿(𝒕)|          (22) 

 

Case3: Soft besiege with progressive rapid dives 

When still |E| ≥0.5 but r < 0.5, even though the 

rabbit has enough stamina to escape successfully, a 

soft besiege is built before the surprise pounce. The 

Lévy Flights (LF) are started here to emulate Hawk 

and rabbit's various movements. 

 

𝒀 = 𝑿rabbit (𝒕) − 𝑬|𝑱𝑿rabbit (𝒕) − 𝑿(𝒕)|     (23) 

 

𝒁 = 𝒀 + 𝑺 × 𝑳𝑭(𝑫)                  (24) 

 

where S is the size 1xD random vector and LF is the 

levy flight function, 

 

𝑳𝑭(𝒙) = 𝟎. 𝟎𝟏 ×
𝒖×𝝈

|𝒗|
𝟏
𝜷

,  

𝝈 = (
𝜞(𝟏+𝜷)×𝒔𝒊𝒏 (

𝝅𝜷

𝟐
)

𝜞(
𝟏+𝜷

𝟐
)×𝜷×𝟐

(
𝜷−𝟏
𝟐
)
)

)

𝟏

𝜷

             (25) 

 

In the end, the position of the hawks should be 

updated using: 

 

𝑿(𝒕 + 𝟏) = {
𝒀     if 𝑭(𝒀) < 𝑭(𝑿(𝒕))
𝒁     if 𝑭(𝒁) < 𝑭(𝑿(𝒕))

       (26) 

 

where Y and Z are obtained using equations. 

 

Case4: Hard besiege with progressive rapid dives  

When |E| <0.5 and r < 0.5, because the rabbit's 

ability to escape is insufficient, a hard siege is 

recommended before carrying out a series of surprise 

attacks to capture and kill the prey.in this step, hawks 

attempt to lower the varied distances between their 

prey and the average position. 

 

𝑿(𝒕 + 𝟏) = {
𝒀     if 𝑭(𝒀) < 𝑭(𝑿(𝒕))
𝒁     if 𝑭(𝒁) < 𝑭(𝑿(𝒕))

       (27) 

 

By applying new rules, new Y and Z values are 

proposed. Eqs. (28) and (29) where Xm(t) is obtained 

using Eq. (18) 

 

𝒀 = 𝑿rabbit (𝒕) − 𝑬|𝑱𝑿rabbit (𝒕) − 𝑿𝒎(𝒕)|  (28) 

 

𝒁 = 𝒀 + 𝑺 × 𝑳𝑭(𝑫)                   (29) 

 

Fig.1 illustrates all phases of HHO [12]. 
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Figure .1 Shows all phases of HHO 

4. Proposed parallel optimizer 

The purpose of parallel processing is to provide 

the same results using several processors to reduce 

the processing time. Pipeline processing and data 

parallelism are the two most common parallel 

processing methods [11]. This technique has been 

used in different algorithms such as Parallel Genetic 

Algorithm or Parallel Particle Swarm Optimization 

with communication Strategies. At first, the Harris 

hawks have two or more sub-groups divided into. 

Each subgroup is implemented independently based 

on the main structure of the algorithm as well as the 

results are shared each time the iteration happens. Fig. 

2 shows the procedure for the improved algorithm. 

5. Numerical results and discussions 

5.1 Test functions details 

Twelve benchmark problems were used to 

measure PHHO's ability in this part. The benchmark 

functions are a set of five unimodal functions have 

used (F01-F04), while five multimodal functions 

were used (F05-F08), and finally, fixed dimension 

multimodal functions were used (F09-F12). 

5.2 Proposed algorithm evaluation 

In comparison to the twelve test functions chosen, 

the proposed algorithm was evaluated with other 

optimization algorithms, like CHHO [16], HHO [12], 

SSA [17], GSA [18], PSO [19]. The mean and standard 

deviation were determined after each test was run 30 

times for a maximum of 500 iterations. In Fig. 3, the 

performance of PHHO against other optimization 

algorithms is shown. Table 1 shows the results of the 

chosen benchmarking functions. 

 

 
Figure. 2 Flowchart of the improved algorithm 

 

 
(a) 

 
(b) 

Figure. 3 Performance comparison of algorithms based on 

the selected test functions: (a) F3(Schwefel 2.21) and (b) 

F8(Generalized Penalized) 
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Table 1. Comparison of PHHO with CHHO, HHO, 

SSA, GSA, PSO. 

Function algorithms avg std 

F1 

Sphere 

PHHO 0 0 

CHHO 2.779*10-95 1.379*10-94 

HHO 1.056*10-27 1.296*10-27 

SSA 1.189*10-6 1.086*10-6 

GSA 1.579*10-3 6.737*10-4 

PSO 1.969*10-3 2.113*10-4 

F2 

step 

PHHO 0 0 

CHHO 5.649*10-52 3.024*10-51 

HHO 3.045*10-5 1.218*10-4 

SSA 1.026*104 4.962*103 

GSA 1.007*103 3.693*102 

PSO 7.804*10 6.062*10 

F3 

Schwefel 

2.21 

PHHO 7.49*10-215 0 

CHHO 1.397*10-48 6.234*10-48 

HHO 8.309*10-7 9.969*10-7 

SSA 2.901*10 7.160330 

GSA 7.253 1.807 

PSO 1.1439 2.758*10-1 

F4 

Schwefel 

2.22 

PHHO 8.48*10-214 0 

CHHO 7.481*10-40 6.954*10-40 

HHO 3.071*10-41 1.403*10-40 

SSA 5.707*10 3.505*10 

GSA 1.451*10-1 4.417*10-1 

PSO 3.054*10-2 2.564*10-2 

F5 

Rastrigin 

PHHO 1.376*10-3 2.294*10-3 

CHHO 2.725*10-1 2.725*10-1 

HHO 2.793*10 4.256 

SSA 3.169*102 6.868*102 

GSA 8.719*10 5.428*102 

PSO 7.249*10 8.433*10 

F6 

Ackley 

PHHO 8.882*10-16 0 

CHHO 1.025*10-13 1.881*10-14 

HHO 8.882*10-16 0 

SSA 6.445 1.673 

GSA 3.104*10-2 1.701*10-1 

PSO 2.735*10-1 5.297*10-1 

F7 

Penalized 1 

PHHO 7.836*10-05 9.664*10-5 

CHHO 6.419*10-3 9.871*10-3 

HHO 2.227*10-3 2.025*10-3 

SSA 2.087*10 7.802 

GSA 1.776 1.234 

PSO 3.459*10-3 2.893*10-2 

F8 

Generalize

d 

Penalized 

PHHO 9.493*10-5 1.281*10-4 

CHHO 3.618*10-2 3.256*10-2 

HHO 6.413*10-1 1.245*10-1 

SSA 1.407*10 1.169*10 

GSA 1.023 7.045 

PSO 6.424*10-3 6.163*10-3 

F9 

Shekel’s 

Foxholes 

PHHO 1.328 9.467*10-1 

CHHO 4.228 4.257 

HHO 3.719 2.991 

SSA 2.824 2.165 

GSA 6.295 4.554 

PSO 2.874 2.165 

F10 PHHO -3.322 1.521*10-15 

Hartman 5 CHHO -3.183 6.347*10-2 

HHO -2.265 1.426*10-1 

SSA -3.223 5.633*10-2 

GSA -3.101 1.443*10-1 

PSO -3.291 5.348*10-2 

F11 

Shekel 5 

PHHO -9.143 2.344 

CHHO -7.761 2.441 

HHO -5.033 2.079*10-2 

SSA -6.064 3.503 

GSA -6.665 3.792 

PSO -6.713 3.192 

F12 

Shekel 10 

PHHO -9.169 2.081 

CHHO -6.009*10 1.689 

HHO -5.237 5.299*10-1 

SSA -4.779 3.862 

GSA -1.031*10 1.284 

PSO -5.931 2.747 

 

According to the above, there is only one local 

minima value for unimodal test functions, but 

multimodal test functions have multiple local minima 

values as the number of task dimensions increases 

[24]. However, based on the above result, it is clear 

that unimodal test functions (F1, F2, F3, and F4), 

multimodal test functions (F5, F6, F7, and F8), and 

fixed multimodal test functions (F9, F10, F11, and 

F12) tend to reach towards more optimal minimum 

value than that HHO and SSA. At the same time, it 

nearly converges (F10), but it has a lower minimum 

amount than HHO and SSA.  

5.3 Model results and discussions 

Results from simulations in MATLAB/ Simulink 

are used to check the efficiency and efficiency of a 

system of the suggested algorithm for tracking 

control of four-link flexible joint manipulators. The 

system's dynamic equation and parameter values are 

provided in Table 2 to evaluate the system's 

performance with a population size of 30, max 

iteration=200, lower bound =-300, and upper bound 

=300. 

The gains in controls are optimized by optimizing 

the system's dynamic response. First, the standard 

HHO was used to tune the controllers' parameters, 

then compared with the PHHO tuning results. Fig. 4 

shows the robot response by AOFTC – HHO with 

AOFTC - PHHO for a(1st link, b( 2nd link, 

 
Table 2. Parameters of the system [21, 25] 

Parameters Value Parameters Value 

B 0.1 KS 4 

Kb 0.01 J 0.01 

Km 0.01 L 0.34 

Rm 1 m 1.51 

Lm 0.5 g 9.81 
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c( 3rd link,  and d) 4th link positions. Fig. 5 illustrates 

the robot manipulator response by ISMC - HHO and 

ISMC – PHHO for a(1st joint, b( 2nd joint, c( 3rd joint,  

and d) 4th joint positions.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure. 4 Position tracking results of: (a) 1st link, (b) 2nd 

link, (c) 3rd link, and (d) 4th link controlled by AOFTC-

PHHO & AOFTC-HHO 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure. 5 Position tracking results of: (a) 1st joint, (b) 2nd 

joint, (c) 3rd joint, and (d) 4th joint controlled by ISMC-

PHHO & ISMC-HHO 
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Table 3. Cost function (controllers-PHHO) 

Theta1 0.0149 Thetam1 0.1862 
Theta2 0.0664 Thetam2 0.1201 
Theta3 0.0346 Thetam3 0.1201 
Theta4 0.0104 Thetam4 0.0903 

 
Table 4. Cost function (controllers-HHO) 

Theta1 0.064 Thetam1 0.64 
Theta2 0.105 Thetam2 0.378 
Theta3 0.098 Thetam3 0.342 
Theta4 0.0497 Thetam4 0.325 

 

The better position is where the objective function is 

lower, also known as the fitness function. The ITAE 

performance criterion is the cost function that must 

be minimized. The criterion of the integral of the 

absolute magnitude of error (ITAE) has the following 

definition [25]:  

 

𝑰𝑻𝑨𝑬 = ∫  
𝑻

𝟎
𝒕|𝒆(𝒕)|𝒅𝒕                   (30) 

 

The results obtained in Table 4 and Table 5 

clearly show that the controllers tuned by PHHO 

present a better cost function than the typical HHO, 

which present lower performance for 1st link position 

(Theta1) and 1st joint position (Thetam1), 2nd link 

position (Theta2) and 2nd joint position (Thetam2), 3rd 

link position (Theta3) and 3rd joint position 

(Thetam3), and the same indication observed for 4th 

link position (Theta4) and 4th joint position 

(Thetam4).  

The enhancement percentage can be calculated 

according to the following equation: 

 

𝑬𝑷]𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝑨 𝒐𝒗𝒆𝒓 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝑩 = (𝟏 −
𝑶𝑩]𝑨
𝑶𝑩]𝑩

) × 

𝟏𝟎𝟎%                             (31) 

 

EP described the enhancement percentage, while 

OB described the objective function value of each 

algorithm. Then, the enhancement of PHHO, which 

is the new version of HHO over its original algorithm, 

is: 

 

𝐸𝑃]𝐴𝑂𝐹𝐶−𝑃𝐻𝐻𝑂 𝑜𝑣𝑒𝑟 𝐴𝑂𝐹𝐶−𝐻𝐻𝑂 = (1 −
0.0149

0.064
) ×

100% = 76.72% (for 1st link position) 

 

𝐸𝑃]𝐼𝑆𝑀𝐶−𝑃𝐻𝐻𝑂 𝑜𝑣𝑒𝑟 𝐼𝑆𝑀𝐶−𝐻𝐻𝑂 = (1 −
0.1862

0.64
) ×

100% = 70.91 % (for 1st joint position) 

 

The same procedure can be used on the remaining 

joints and links, with the following results: 

36.76%, 64.69%, 78.78 % for second, third, fourth 

link positions, respectively, and 68.23 %, 96.49 %, 

72.22% for the second, third, fourth joint positions. 

6. Conclusions 

In this paper, an improved algorithm called 

PHHO tuners is proposed to determine the optimal 

design parameters of controllers used for tracking 

control of robot manipulators. Compared to HHO and 

other algorithms, experimental results showed the 

developed algorithm is more efficient in delivering 

high-quality solutions with rational computational 

iteration (unimodal, multimodal, and fixed 

dimensions multimodal. The enhancement 

percentage indicates that the responses obtained from 

the controllers that tuned by PHHO optimization are 

better compared to the results obtained from the 

controllers that tuned by HHO optimization by 

76.72% and 70.91% for first link and joint 

respectively, as well as for the rest of the links 

and the joints as illustrated above. In the future, 

the authors plan to the experimental implementation 

of this work on a real robot. 
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Appendix A 

The model for the four-link manipulator was 

derived from the two-link manipulator concept [20] 

as follows: 

[

𝝉𝟏
𝝉𝟐
𝝉𝟑
𝝉𝟒

] = [

𝑴𝟏𝟏

𝑴𝟐𝟏

𝑴𝟑𝟏

𝑴𝟒𝟏

𝑴𝟏𝟐

𝑴𝟐𝟐

𝑴𝟑𝟐

𝑴𝟒𝟐

𝑴𝟏𝟑

𝑴𝟐𝟑

𝑴𝟑𝟑

𝑴𝟒𝟑

𝑴𝟏𝟒

𝑴𝟐𝟒

𝑴𝟑𝟒

𝑴𝟒𝟒

] [

�̈�𝟏
�̈�𝟐
�̈�𝟑
�̈�𝟒

] + 

[

𝑪𝟏
𝑪𝟐
𝑪𝟑
𝑪𝟒

] [

�̇�𝟏
�̇�𝟐
�̇�𝟑
�̇�𝟒

] + [

𝑮𝟏
𝑮𝟐
𝑮𝟑
𝑮𝟒

]                   (A.1) 

 

The elements of the matrices M, C, and G in 

equation A.1 are defined as: 

 

𝑀11 = 𝜇1𝐿1
2 + 𝜇2𝐿2

2 + 𝜇3𝐿3
2 + 𝜇4𝐿4

2 + 2𝜇2𝑣1 

+2𝜇3(𝑣2 + 𝑣3) + 2𝜇4(𝑣4 + 𝑣5 + 𝑣6) 
𝑀12 = 𝑀21 = 𝜇2𝐿2

2 + 𝜇3𝐿3
2 + 𝜇4𝐿4

2 + 𝜇2𝑣1 

+𝜇3(𝑣2 + 2𝑣3) + 𝜇4(𝑣4 + 2𝑣5 + 2𝑣6) 
𝑀13 = 𝑀31 = 𝜇3𝐿3

2 + 𝜇4𝐿4
2 + 𝜇3(𝑣2 + 𝑣3) + 𝜇4(𝑣4

+ 𝑣5 + 2𝑣6) 
𝑀14 = 𝑀41 = 𝜇4𝐿4

2 + 𝜇4(𝑣4 + 𝑣5 + 𝑣6) 
𝑀22 = 𝜇2𝐿2

2 + 𝜇3𝐿3
2 + 𝜇4𝐿4

2 + 2𝜇3𝑣3 + 2𝜇4(𝑣5
+ 𝑣6) 

𝑀23 = 𝑀32 = 𝜇3𝐿3
2 + 𝜇4𝐿4

2 + 𝜇3𝑣3 + 𝜇4(𝑣5 + 2𝑣6) 
𝑀24 = 𝑀42 = 𝜇4𝐿4

2 + 𝜇4(𝑣5 + 𝑣6) 
𝑀33 = 𝜇3𝐿3

2 + 𝜇4𝐿4
2 + 2𝜇3𝑣3 + 2𝜇4𝑣6 

𝑀34 = 𝑀43 = 𝜇4𝐿4
2 + 𝜇4𝑣6 

𝑀44 = 𝜇4𝐿4
2  

 

𝐺1 = 𝜇1𝐿1𝑔𝑐1 + 𝜇2𝐿2𝑔𝑐12 + 𝜇3𝐿3𝑔𝑐123
+ 𝜇4𝐿4𝑔𝑐1234 

𝐺2 = 𝜇2𝐿2𝑔𝑐12 + 𝜇3𝐿3𝑔𝑐123 + 𝜇4𝐿4𝑔𝑐1234 

𝐺3 = 𝜇3𝐿3𝑔𝑐123 + 𝜇4𝐿4𝑔𝑐1234 

𝐺4 = 𝜇4𝐿4𝑔𝑐1234 

 

C1 = −𝜇2L1L2𝑆2(2�̇�1�̇�2 + �̇�2
2)

− 𝜇3L1L3𝑆23(�̇�2 + �̇�3) 
(2�̇�1 + �̇�2 + �̇�3) − 𝜇3L2L3𝑆3(�̇�3)(2�̇�1 + 2�̇�2 + �̇�3) 
−𝜇4L1L4𝑆234(�̇�2 + �̇�3 + �̇�4)(2�̇�1 + �̇�2 + �̇�3

+ �̇�4) 
−𝜇4L2L4𝑆34(�̇�3 + �̇�4)(2�̇�1 + 2�̇�2 + �̇�3 + �̇�4) 

−𝜇4L3L4𝑆4(�̇�4)(2�̇�1 + 2�̇�2 + 2�̇�3 + �̇�4) 
C2 = 𝜇2L1L2𝑆2(�̇�1

2) + 𝜇3[L1L3𝑆23(�̇�1
2) − L2L3 

𝑆3(�̇�3)(2�̇�1 + 2�̇�2 + �̇�3)] + 𝜇4[L1L4𝑆234(�̇�1
2) 

−L2L4𝑆34(�̇�3 + �̇�4)(2�̇�1 + 2�̇�2 + �̇�3 + �̇�4) 
−L3L4𝑆4(�̇�4)(2�̇�1 + 2�̇�2 + 2�̇�3 + �̇�4)] 

C3 = 𝜇3[L1L3𝑆23(�̇�1
2) + L2L3𝑆3(�̇�1 + �̇�2)

2] 
+𝜇4[L1L4𝑆234(�̇�1

2) + L2L4𝑆34(�̇�1 + �̇�2)
2 

−L3L4𝑆4(�̇�4)(2�̇�1 + 2�̇�2 + 2�̇�3 + �̇�4)] 
C4 = 𝜇4L1L4𝑆234(�̇�1

2) + 𝜇4L2L4𝑆34(�̇�1 + �̇�2)
2 

+𝜇4L3L4𝑆4(�̇�1 + �̇�2 + �̇�3)
2 

where, 

𝜇1 = m1 +m2 +m3 +m4 

𝜇2 = m2 +m3 +m4 

𝜇3 = m3 +m4 

𝜇4 = m4 

 

𝑐1 = cos(𝑞1) , 𝑐12 = cos(𝑞1 + 𝑞2)  … 

𝑆1 = sin(𝑞1) , 𝑆12 = sin(𝑞1 + 𝑞2)   … 

 
𝑣1 = L1L2cos(𝑞2) 
𝑣2 = L1L3cos(𝑞2 + 𝑞3) 
𝑣3 = L2L3cos(𝑞3) 
𝑣4 = L1L4cos(𝑞2 + 𝑞3 + 𝑞4) 
𝑣5 = L2L4cos(𝑞3 + 𝑞4) 
𝑣6 = L3L4cos(𝑞4) 

Appendix B 

Also, the controller for the four-link manipulator 

was derived based on the two link manipulator [8], 

then let the parameter be: 

 

R1 = (m1 +m2 +m3 +m4)L1
2  

R2 = (m2 +m3 +m4)L2
2  

R3 = (m3 +m4)L3
2  

R4 = (m4)L4
2  

R5 = (m2 +m3 +m4)L1L2 

R6 = (m3 +m4)L1L3 

R7 = (m3 +m4)L2L3 

R8 = (m4)L1L4 

R9 = (m4)L2L4 

R10 = (m4)L3L4 

R11 = (m1 +m2 +m3 +m4)L1 

R12 = (m2 +m3 +m4)L2 

R13 = (m3 +m4)L3 

R14 = (m4)L4 

 

Sub. Equations (B.1) into the element of the 

matrices (D, C, G) to get the regressor matrix that 

consisting of four rows and fourteen columns in: 

 

𝐘(𝐪𝐝,�̇�𝐝, �̈�𝐝) 

= [

𝑎11 𝑎12 ⋯ 𝑎113 𝑎114
⋮ ⋱ ⋮

𝑎41 𝑎42 ⋯ 𝑎413 𝑎414
]

4×14

 

 

𝑎11 = 𝑞1̈  

𝑎12 = 𝑎22 = 𝑞1̈ + 𝑞2̈   

𝑎13 = 𝑎23 = 𝑎33 = 𝑞1̈ + 𝑞2̈ + 𝑞3̈    

𝑎14 = 𝑎24 = 𝑎34 = 𝑎44 = 𝑞1̈ + 𝑞2̈ + 𝑞3̈ + 𝑞4̈   

𝑎15 = (2𝑞1̈ + 𝑞2̈) 𝐶2 − (2�̇�1�̇�2 + �̇�2
2)𝑆2 

𝑎16 = (2𝑞1̈ + 𝑞2̈ + 𝑞3̈)𝐶23 − 

(�̇�2 + �̇�3)(2�̇�1 + �̇�2 + �̇�3)𝑆23 

𝑎17 = 𝑎27 = (2𝑞1̈ + 2𝑞2̈ + 𝑞3̈)𝐶3 − (�̇�3) 

(B.1) 
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(2�̇�1 + 2�̇�2 + �̇�3)𝑆3 

𝑎18 = (2�̇�1 + �̇�2 + �̇�3 + �̇�4)𝐶234 

−(�̇�2 + �̇�3 + �̇�4)(2�̇�1 + �̇�2 + �̇�3 + �̇�4)𝑆234 

𝑎19 = 𝑎29 = (2�̇�1 + 2�̇�2 + �̇�3 + �̇�4)𝐶34 

−(�̇�3 + �̇�4)(2�̇�1 + 2�̇�2 + �̇�3 + �̇�4)𝑆34 

𝑎110 = 𝑎210 = 𝑎310 = (2�̇�1 + 2�̇�2 + 2�̇�3 + �̇�4)𝐶4 

−(�̇�4)(2�̇�1 + 2�̇�2 + 2�̇�3 + �̇�4)𝑆4 

𝑎111 = 𝐶1𝑔   

𝑎112 = 𝑎212 = 𝐶12𝑔 
𝑎113 = 𝑎213 = 𝑎313 = 𝐶123𝑔 

𝑎114 = 𝑎214 = 𝑎314 = 𝑎414 = 𝐶1234𝑔 

𝑎21 = 𝑎31 = 𝑎32 = 𝑎41 = 𝑎42 = 𝑎43 = 𝑎35 =
𝑎45 = 𝑎46 = 𝑎47 = 𝑎211 = 𝑎311 = 𝑎312 = 𝑎411 =
𝑎412 = 𝑎413 = 0    

𝑎25 = 𝑞1̈𝐶2 − �̇�1
2𝑆2 

𝑎26 = 𝑎36 = 𝑞1̈𝐶23 − �̇�1
2𝑆23 

𝑎28 = 𝑎38 = 𝑎48 = 𝑞1̈𝐶234 − �̇�1
2𝑆234 

𝑎37 = (𝑞1̈ + 𝑞2̈ + 2𝑞3̈)𝐶3 − (�̇�1 + �̇�2)
2𝑆3 

𝑎39 = 𝑎49 = (𝑞1̈ + 𝑞2̈)𝐶34 − (�̇�1 + �̇�2)
2𝑆34 

𝑎410 = (�̇�1 + �̇�2 + �̇�3)𝐶4 − (�̇�1 + �̇�2 + �̇�3)
2𝑆4 

 


