
Received: September 2, 2021. Revised: October 28, 2021. 235

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.22

Entropy Based Monotonic Task Scheduling and Dynamic Resource Mapping in

Federated Cloud Environment

Jeny Varghese1,2* Jagannatha Sreenivasaiah1

1Department of Computer Applications, MS Ramaiah Institute of Technology, Affiliated to VTU, Belagavi, India

2Department of Science and Humanities, PES University, India
* Corresponding author’s Email: jens4u@gmail.com

Abstract: Multiple cloud computing services are collectively managed as federated cloud. The growth of users into

this federated cloud for accessing a variety of services has introduced challenges on resource utilization and load

imbalance that consumes larger waiting time of users. To address these two issues, this paper proposes data center

(DC) clustering, virtual machine (VM) clustering, resource mapping and task scheduling. Initially the DCs are

clustered using region based fuzzy possibilistic C-means clustering (R-FPCM) algorithm. DC clustering is performed

by gathering the information of data dependency, million instructions per second (MIPS), latency, storage, bandwidth

and counts of VM. Depending on DC clustering, the VMs are clustered by multi-objective density-based spatial

clustering based on the estimated capacity and bandwidth. In order to balance load, Markov chain is applied to predict

future load and balance accordingly. An intermediate broker is employed to monitor the VM resources and map based

on the user’s task requirement. Service level agreement (SLA) is satisfied for every user by the broker and then fast 1

to N resource mapping algorithm is involved for mapping resources. This is followed by entropy-based monotonic

scheduling algorithm that arranges user tasks in an order that is determined from task type, task size, task arrival time

and deadline. The dynamic computation of entropy enables to improve scheduling with the current status of the system.

The extended simulations of this proposed system are simulated in Cloudsim and the results are evaluated in terms of

execution time, latency, resource utilization and response time and compared with the performance of Capacity based

VM clustering algorithm. These simulation results show that the performance of the proposed system is much better

than the existing approach.

Keywords: Clustering, Federated clouds, Load management, Resource utilization, Task scheduling.

1. Introduction

Cloud platforms provisions remote data access

via internet using modern technologies to cope up

with tremendous users’ participation [1]. The

incoming tasks are scheduled to support scalability in

the system. Scheduling of user tasks is handled based

on the resource that is utilized in the system. On

knowing the availability of resources, the tasks are

assigned into cloud for processing. Service-level

agreement (SLA) defines the requirements of user

which need to be satisfied by the cloud environment

[2, 3]. The proper handling of SLA constraints leads

to improve quality-of-service (QoS). Generally, the

attainment of SLA is essential to improve system

performance. Energy efficiency is also associated

with SLA constraints which are more peculiar in

enabling user requirement. The reduction in SLA

violations reflects its impact on the increase in energy

efficiency [4]. On satisfying the SLA requirements,

the user tasks are processed faster.

The processes of clustering and task scheduling

are commonly concentrated in federated clouds for

task assignment based on the resources [5]. Task

scheduling is supported by optimization algorithm in

which the key constraints that are taken in account are

deadline and budget [6]. Tasks are scheduled for the

purpose if reducing makespan and increasing the

resource utilization [7]. Broker acts as intimidator

who manages information of datacenter (DC) and

Received: September 2, 2021. Revised: October 28, 2021. 236

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.22

Broker

Users

Tasks Cloud Service Information

Datacenter

VMs

Resource Information

Resource Mapping

Queuing

Figure. 1 Broker assisted cloud design

user tasks as shown in Fig. 1.

The common advantages of using federated cloud

are: economical, availability at diverse location,

satisfied SLA and others [8]. The peculiar challenges

that are involved in federated cloud are enlisted as

follows,

• Firstly, resource provisioning and resource

management based on the incoming user tasks. A

scalability supported federated cloud design is

required.

• Secondly, satisfaction of SLA for individual user

task is critical due to the participation of multiple

users.

• Thirdly, load balancing is critical due to the

processing speed of users request into the DC.

The above challenges in federated cloud are

solved by proposed clustering, resource monitoring

and task scheduling. The process of task scheduling

and allocation of resources for tasks processing is

presented using meta-heuristic algorithm [9, 10].

Clustering was performed using k-means algorithm

for improving resource allocation process.

Cloud federation also focuses on allocation of

cloud resources with the provisioning of QoS [11].

The major metrics that are included into QoS are

execution price, execution time, reliability,

availability and security. On behalf of such

constraints, the resource allocation process is

performed. An efficient allocation of resources

results with better utilization of energy in DCs [12],

[13]. Hybrid optimization algorithm is enabled to

support efficient resource utilization as well as

manage SLA violations.

In this paper the objective of designed federated

cloud environment is to ensure minimized time. This

objective in federated cloud is achieved by

constructing DC clustering, VM clusters, load

balancing, resource mapping and task scheduling.

Based on the clustered VMs the resources are mapped

by broker and then allows scheduled tasks for

processing. On the other hand, the SLA requirements

are also satisfied before being processed into

federated cloud.

1.1 Motivation

Federated cloud is developed from smaller clouds

and it looks as one. The user task processed into the

cloud is more time sensitive [14]. Hereby,

extensively the growth of incoming users into

federated cloud requests for faster response time.

Time constraint is a key constraint in federated cloud

that is resolved by proper design. In order to enable

faster processing scheduling is incorporated using

static threshold or dynamic threshold. Task

scheduling is associated with the provisioning of

SLA constraints by the use of heuristic algorithms.

Also, controlling load in cloud is an essential process

that is supported by clustering [15, 16]. Ubiquitous

growth of users has increased the demand to access

cloud with the requirement of faster processing. The

main objective of this proposed federated cloud is to

develop a faster processing system.

The faster processing system achieves minimized

execution time, latency and response time. These

constraints are achieved by incorporating effective

clustering, resource mapping, load balancing and task

scheduling. Clusters are formed to enable resource

mapping and task allocation to satisfied VM. On

behalf of the above discussed motive, this system

proposes peculiar solution to minimize time of

processing and deliver user with lesser response time.

1.2 Research contribution

The major research contributions of this paper are

enlisted below,

• User tasks are processed in federated cloud with

the aim of reducing execution time, latency and

response time. These constraints are achieved by

incorporating DC clustering, VM clustering,

resource mapping and task scheduling.

• DC clustering and VM clustering are performed

in federated cloud using region based fuzzy

possibilistic C-means clustering and multi-

objective density based spatial clustering

respectively. These clustering enable to manage

resources by which the appropriate tasks are

allotted. Markov chain is involved for predicting

the load in the clustered VMs.

• Fast 1 to N resource mapping process is

employed in broker for mapping the resource

utilization and then allots the scheduled tasks into

federated cloud for processing. The process of

mapping is ensured to meet SLA requirements of

the task.

Received: September 2, 2021. Revised: October 28, 2021. 237

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.22

• The user tasks are scheduled using entropy based

monotonic scheduling algorithm by taking in

account of task’s type, size, arrival time and

deadline.

1.3 Paper organization

This paper is organized into following sections

as: section II deals with the study of previous research

works that have been involved for clustering and task

scheduling, section III keenly illustrates the defined

problems, section IV details the proposed solutions

that resolve the identified problems, section V

elaborates the results that are obtained from the

implementation and section VI concludes the

proposed work along with its future research

directions.

2. Literature review

The authors have developed a two-stage strategy

for scheduling the incoming tasks [17]. Initially, in

the first stage Bayes classifier algorithm was used for

classifying the job and then followed by matching

with VMs in second stage. In this work, the VMs are

previously created by using the collected historical

scheduling data. The designed task scheduling

framework is composed of task classifier, matcher,

ready queue and waiting queue. The precreation of

VMs based on historical data was not able to serve

current user tasks, since the incoming number of

tasks will not be similar as in the previous history. In

[18] the authors have performed scheduling in

federated clouds using two broker-level schedulers.

The algorithms used are ant colony optimization

(ACO) and particle swarm optimization (PSO).

These optimization algorithms were enabled to pick

a datacenter with respect to latency, monetary cost

and availability. The weighted values are computed

for monetary cost and communication latency based

on which the datacenter was preferred. Once, the

VMs were assigned, then the tasks enter into first-in-

first-out (FIFO) policy for processing. FIFO based

task processing in VMs increases waiting time for

short tasks. In [32] the authors have given importance

to weighted parameters in possibilistic fuzzy c-means

which worked to improve the objective function

which resolved the problem of overcoming the defect

of sensitivity to noisy data.

A flexible model was implemented by new cloud

operators who can join or leave the federation [19].

This model has integrated the interactions between

broker agent optimization. In this method, the user

request was migrated between broker agents to

satisfy the user request requirements. Hereby each

broker maintains a list of providers. An un-satisfied

user request was migrated to another broker agent. In

this way the user request migration was performed

until the user request requirements were satisfied.

This process consumes larger time due to the

migration of request until it finds a satisfying VM. A

temporal load-based resource allocation in the system

was proposed [20]. Column generation (CG) method

was used to solve optimization problem. In this work,

power consumption of VM plays a major role based

on which the resources were allotted for processing.

An effective approach for VM allocation was

proposed to maximize the energy efficiency of the

DCs [21]. An evolutionary algorithm was used to for

the purpose of VM allocation. The algorithms used

are first fit heuristic (FF) and modified best fit

decreasing heuristic (MBFD) approach. A simulation

engine was used to accelerate the exploration of

optimal VM allocation. VM-to-PM mapping was

involved for allocating VMs. This work was resulted

with poor reliability due to the un-optimized energy

utilization. The provisioning of resource was

developed using residue-based approach [22]. Here,

each user with valid request should have minimum

quantities of essential utilities. The residue placer

element was used which acts as a combination of two

placers i.e., basic and equi placer. The basic placer

was used to perform one-time query processing and

equi placer was used for horizontal scaling across the

clouds. This was enabled to achieve low transaction

time for resource satisfaction and high transaction

success rate. The participation of multiple entities

into resource allocation makes the system more

complex. The authors in [33] emphasize on a meta-

heuristic, multi-objective approach for dynamic VM

allocation. The approach has been worked with

Google cluster traces and resulted in optimal VM

placements with better accuracy and diversity.

Resource allocation was also concentrated with

the satisfaction of SLA constraints of the system. A

reinforcement learning method was applied to the

dynamic environment for interactions [23]. The

designed framework was modeled to achieve energy-

efficient resource allocation. In this, the cloud

services are distributed and the satisfying cloud users

are allotted with resources in the basis of energy-

saving manner. The major SLA metrics that are taken

in account for process are CPU resources, amount of

money, permanent storage, system availability and

system performance. The appointed energy-efficient

resource allocator was employed to select the optimal

host by which it allocates VMs for the user request.

Another entity of SLA manager was present to track

the requirements of user. The power usage

effectiveness and data center infrastructure efficiency

were calculated. The resource allocation was handled

Received: September 2, 2021. Revised: October 28, 2021. 238

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.22

by reinforcement learning and fuzzy logic method.

According to the reward function in reinforcement

learning mechanism the fuzzy rules are mapped for

VM allocation with satisfied resources. In this work,

the metrics that are taken in account are not sufficient

which reflects on degradation in the performance.

Resource allocation was also handled by

clustering and load balancing [24]. Then, task

scheduling in cloud was performed for appropriate

allocation of the resources and to deliver user faster

responses. An improved PSO (IPSO) algorithm was

proposed to increase the performance when a large

number of tasks in process [25]. The incoming tasks

were collected in a queue and their attributes are

estimated. Adaptive splitting procedure was applied

to collect the tasks in the batches. Load was balanced

by moving the task from heaviest loaded VM with

maximum completion time to lightest loaded VM

with minimum completion time. Execution time-

based classification may lead to cause frequent

balancing of load. Backpropagation (BP) neural

network was used in a hybrid cloud to ensure

processing of all the tasks can within the specific

deadline [26]. The jobs were submitted into a hybrid

cloud and then allocated to the private cloud. If the

private cloud was not able to meet the demands of the

user, then the jobs were given to the public cloud.

Jobs were scheduled based on I/O intensive and CPU

intensive by logistic regression method. Optimal

choices of job queues were obtained by genetic

algorithm (GA). BP neural network and GA

consumes larger processing time.

The task execution within the deadline was the

major aim of task scheduling. Scheduling with

parallelism awareness (SPA) method was proposed

[27]. Tasks were assigned to be processed with the

earliest deadline first on the server. Here the tasks are

scheduled based on first come first serve method.

This SPA method rejects a task, in case of absence of

server and hence the task completion within the

deadline is tedious. A federated cloud processing of

tasks requires being appropriate in which all the tasks

are requested to be completed within the deadline.

For achieving this requirement, scheduling and

resource allocation are performed. As discussed

above, the major demerits are overwhelmed in the

proposed work.

3. Defined problem

In this section, the proposed work algorithms are

the major problem that is identified from previous

research work is addressed. Clustering is defined as a

solution in federated cloud for load balancing,

resource allocation and reduces processing time. VM

clustering and optimal sequencing algorithm was in

federated cloud environment that estimates MIPS and

bandwidth [28]. Then federation was applied on DCs

in concerned to cost and MIPS of the DC. Later the

VM clustering was handled based on VM capacity.

From the utilized capacity of the VM, load was

determined. In this work, clustering was fixed, but the

loads at VMs were dynamic and hence, this clustering

was not suitable. In [29] mean shift clustering

algorithm for resource allocation and dominant

sequence clustering for task scheduling. Tasks were

scheduled based on the priority and clusters were

constructed with the determined CPU speed, memory

and I/O capacity. The use of mean shift clustering has

the conventional demerit of higher time consumption

for clustering.

DC clustering was performed to mitigate latency,

in which k-means algorithm was used [30]. End-to-

end latency was determined and then clusters were

formed. Generally, in k-means clustering the

prediction of k-value is complex and if the k-value is

chosen random, then the clustering results

performance degradation. Both task scheduling and

resource allocation was developed in [31]. A

contract-based resource sharing model was

developed. The job requests were queued before

processing into cloud. The jobs were scheduled in

first-come-first out method in which the waiting time

for shorter jobs will be longer. The centralized

control for resource allocation causes single-point

failure in the system. On taking in account of these

problems that exist in scheduling, resource allocation

and load balancing, the proposed work incorporates

appropriate solution to mitigate consumption of

excess amount of processing time.

4. Proposed system

This section is categorized into four sub-sections

that details with the proposed solutions and their

work procedure. Hereby, this process is entirely

concentrated to complete the submitted task within

the specified deadline. This improves execution time

and response time. The proposed system consists of

users, task schedulers, brokers and federated cloud

groups. Users submit tasks into the scheduler and

then broker map to resources, later the allotted tasks

are processed in the federated cloud environment.

Each entity plays a significant role that reflects on

minimizing execution time and response time while

processing larger number of tasks. Separate entities

appointed for their processing also reflect to

minimize complexity in the system. The distributed

federated cloud environment is supported for larger

number of incoming users.

Received: September 2, 2021. Revised: October 28, 2021. 239

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.22

4.1 Paper organization

The proposed system in federated cloud is

designed to map resources dynamically and schedule

the incoming tasks. The increase in number of user

participation reflects in the growth of number of

arrival tasks. This system is designed with 𝑁 number

of tasks as 𝑇𝑡𝑎𝑠𝑘𝑠 = 𝑇1, 𝑇2, … … , 𝑇𝑁 to be processed

in the federated cloud environment. Let the federated

cloud system be composed of 𝑛 number of DCs that

is denoted as 𝐷𝐶𝑓𝑐 = {𝐷𝐶1, 𝐷𝐶2, … … , 𝐷𝐶𝑛}, the DCs

in this federated cloud is represented as 𝐷𝐶𝑓𝑐 which

is clustered into groups. Each DC in this cloud

environment consists of 𝑉𝑀𝐷𝐶𝑛
=

{𝑉𝑀𝑙 , 𝑉𝑀𝑚, … … , 𝑉𝑀𝑘} , here {𝑙, 𝑚, 𝑘} denotes the

number of VMs that are present in individual DC in

the federated cloud. In this federated cloud design

multiple brokers are employed to solve single point

failure.

The federated cloud environment manages

clustered DCs and VMs. The DCs are clustered using

Region-Based Fuzzy Possibilistic C-Means

Clustering Algorithm and the VMs are clustered by

multi-objective density-based spatial clustering.

Based on the clustered VMs, the incoming tasks are

allocated for processing with respect to the mapped

resources. Meanwhile the loads at VMs are balanced

by Markov chain method. On the other hand, the

incoming tasks are scheduled by entropy based

monotonic scheduling algorithm which is operated

based on the obtained resource information. Then, as

per the mapped resources, the tasks are allotted into

VMs for processing. Fig. 2 illustrates the complete

process performed in the proposed system. In this

architecture the terms 𝐶1, 𝐶2, 𝐶3, … denotes the

clusters that are formed from DCs and VMs.

4.2 DC clustering

The DCs in the federated cloud environment is

clustered using region-based fuzzy possibilistic C-

means clustering algorithm. The federated clouds are

nothing but a composition of smaller clouds and so

they are spread distributed. Due to its widespread

nature, the initial step in this clustering is to identify

the regions of DC. After predicting their regions, the

clustering parameters that are taken into

consideration are data dependency, MIPS, latency,

storage, bandwidth and number of VMs.

The proposed clustering is a combination of

possibilistic c-means and fuzzy c-means algorithm.

In this proposed clustering algorithm, the

membership grades and possibilities play an

important role. Hereby the steps followed in the

proposed possibilistic fuzzy c-means algorithm are

descripted in the following,

Step 1: Begin with the initialization of the number

of DC clusters that is represented as 𝑐 which need to

satisfy 1 ≤ 𝑐 ≤ 𝑛. Then initialize partition matrix as

𝑈 ∈ 𝑀𝑓𝑐, the term 𝑀𝑓𝑐denotes the set obtained from

fuzzy partitioning space 𝑍 . Determine region in

which the particular DC is located in the designed

federated cloud.

Step 2: Compute cluster prototype i.e., mean

based on the individual constraints of DC as data

dependency, MIPS, latency, storage, bandwidth and

number of VMs. The mathematical formulation of

cluster prototype is given as,

𝑣𝑖 =
∑ (𝑎𝜇𝑖𝑘

𝑚+𝑏𝑡𝑖𝑘
𝜂

)
𝑚

𝑍𝑘
𝑛
1

∑ (𝑎𝜇𝑖𝑘
𝑚+𝑏𝑡𝑖𝑘

𝜂
)

𝑚𝑛
1

, 1 ≤ 𝑖 ≤ 𝑐 (1)

The weighted mean value 𝑣𝑖 is given based on the

constant values as 0 ≤ 𝜇𝑖𝑘 , 𝑡𝑖𝑘 ≤ 1, 𝜇𝑖𝑘 , 𝑡𝑖𝑘 are the

typicality constraint row and column sum and the

values 𝑎 > 0, 𝑏 > 0, 𝑚 > 1, 𝜂 > 1 are pre-defined.

𝑍𝑘 is the row vector that is given from the matrix.

Step 3: The distance is measured between a new

DC and the identified center. Distance is determined

using Euclidean formula.

Step 4: Update partition matrix from the

estimated distance value and also update typicality

matrix.

Step 5: Repeat steps until clusters are constructed,

iterations are performed up to the tolerance value 𝜀 is

reached.

The proposed DC clustering algorithm takes in

account of the following measures using which

clusters are constructed. The parameters that are

involved are,

• Data dependency – The data dependency is

denoted as 𝐷𝐷

• MIPS – This parameter is significant from which

the processing speed is identified. The faster

processing of tasks is attained by the key of MIPS.

• Latency – Latency 𝐿𝑐 is defined as the time delay

that the resources consume to complete a

particular task.

• Storage – Storage 𝑆𝑔 denotes the space to

maintain data for processing. An insufficient

storage in DC also fails to operate tasks.

• Bandwidth – Bandwidth 𝐵𝑤 defines the amount

of bandwidth that are supported at particular DC

using which the incoming tasks are performed by

VMs.

• Number of VMs – Each DC is composed of VMs

that are responsible for processing the tasks. The

Received: September 2, 2021. Revised: October 28, 2021. 240

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.22

number of VMs that are present in an individual

DC is represented as 𝑈𝑉𝑀𝑠.

The objective function of this proposed DC

clustering is given based on all the above-mentioned

constraints. The representation of objective function

is given as follows,

𝑀𝑎𝑥{𝐷𝐷, 𝑀𝐼𝑃𝑆, 𝑆𝑔, 𝐵𝑤 , 𝑈𝑉𝑀𝑠 }, 𝑀𝑖𝑛 {𝐿𝑐} (2)

Region-based fuzzy possibilistic C-means

clustering algorithm is proposed and the clusters are

created based on the developed objective function.

The DCs participating in the federated cloud are

clustered only once and here.

4.3 VM clustering

VM clustering is performed by multi-objective

density based spatial clustering algorithm. The

clustering of VMs is presented by the estimation of

capacity and bandwidth of individual VM. The

capacity of each VM is determined as follows,

𝑉𝑀𝑐𝑎𝑝𝑎 = 𝑁𝑃𝐸 + 𝑀𝐼𝑃𝑆 + 𝐵𝑤 (3)

The VM capacity 𝑉𝑀𝑐𝑎𝑝𝑎 is computed from

number of processing elements that is represented

as 𝑁𝑃𝐸 , 𝐵𝑤 that denotes the bandwidth utilized by

VM. On behalf of the 𝑉𝑀𝑐𝑎𝑝𝑎 and 𝐵𝑤, the VMs are

clustered in federated cloud environment. These two

measurements are applied into density based spatial

clustering algorithm for obtaining the objective using

the two constraints.
The potentialities of this proposed clustering

algorithm are,

The clusters shapes are not essential to be in

geometry.

The construction of only specified number of

clusters is not required.

This clustering algorithm requires only 𝑂(𝑛)

memory for processing and 𝑂(𝑛 log 𝑛) for run time.

In this proposed system, multi-objective density

based spatial clustering is handled on the basis of

neighborhood point denoted as 𝜀 i.e., eps and

minimum points as 𝑚𝑖𝑛𝑃𝑡𝑠. The 𝜀 defines data point

that are present around the particular point. The

points that are closer to particular point in distance is

considered to be neighbor. As per the selected 𝜀 value

the clusters will be split are merged into one. This

value is determined using distance measure which is

given based on the similarity that is determined from

VM capacity and bandwidth of the VMs. Distance

equation used in this work for identifying the

neighborhood is given as,

𝐷 = √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 (4)

Let (𝑝1, 𝑝2) and (𝑞1, 𝑞2) be the two individual

points of VMs respectively. Then the value of

𝑚𝑖𝑛𝑃𝑡𝑠 has to be selected based on the number of

VMs that are participating in the federated cloud. If

the total number of VMs are in large number, then

certainly the 𝑚𝑖𝑛𝑃𝑡𝑠 is selected larger. As per this

work, the numbers of VMs are larger.

The following steps are performed to construct

VMs into clusters using multi-objective density

based spatial clustering,

Step 1: Divide the VMs data points into 𝐾

dimension

Step 2: Estimate neighbor points 𝜀 and predict

core points

Step 3: If the core point is not present in a cluster,

then create a new cluster with that core point

Step 4: After identifying a new cluster point, the

other connected points are determined and then added

into newly formed cluster

Step 5: Perform iteration until all the points in the

environment are visited.

Hereby, based on the objective of VM capacity

and bandwidth the VMs are clustered. The core point

in this work is defined as a point which has least

number of 𝑚𝑖𝑛𝑃𝑡𝑠 exists within the 𝜀. Based on the

clustered VMs the resources utilization is monitored

and updated by brokers. The clustered VMs are

required to be balanced in load, so that the frequent

clustering could be reduced. For this, Markov chain

is incorporate to balance load among clusters based

on their execution. The proposed Markov chain

model is associated with three states as under load,

normal load and overload. Let 𝑆 be the possible states

that whose transition probability is represented as

(𝑖, 𝑗) i.e., 𝑖 and 𝑗 denotes two different states

respectively. The initial state vector is given as 𝑆 × 1

matrix.

According to the predicted VM load, the load

balancing is handled. From the transition matrix the

changes of states from one to another is determined

in iterations. Hereby, this 𝑘-step transition matric is

estimated by performing matrix multiplication. The

clustered VMs are also balanced with the load which

is periodically updated in broker.

4.4 Task scheduling

Task scheduling is a key process performed to

enable faster response of the submitted task. Task

scheduling is handled using entropy-based

Received: September 2, 2021. Revised: October 28, 2021. 241

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.22

Cloud service

provider 1

Cloud service

provider 2

Cloud service

provider n

Data centers clustering based on Region-based fuzzy possibilistic c-

means algorithm

Multi-objective density based spatial clustering algorithm and Markov chain for Load balancing

Entropy based monotonic scheduling algorithm

T
as

k

T
as

k

T
as

k

T
as

k
N

…………………..

Users

User 3 User N

Broker 1

Fast 1 to N mapping resource allocation algorithm

Local

interactions

TASK

SCHEDULING

AND

RESOURCE

MAPPING

VM

clustering

DC clustering

DC(C1) DC(C2)

DC(C3)

DC(C1)

DC(C2)

DC(C3)

DC(C1)

DC(C3)

DC(C2)

C1 C2 Cn

VM1

VM2

…
…

..

VMn

VM1

VM2

…
…

..

VMn

……..

……..

……..

…
…

..

……..

…
…

..

VMn1

VMn2

VMnn

User 2 User 1

Resource

monitor 1

Resource

mapping 1

Resource

monitor 2

Resource

mapping 2

Resource

monitor 3

Resource

mapping 3

C1 C2 Cn

VM1

VM2

…
…

..

VMn

VM1

VM2

…
…

..

VMn

……..

……..

……..

…
…

..

……..

…
…

..

VMn1

VMn2

VMnn

C1 C2 Cn

VM1

VM2

…
…

..

VMn

VM1

VM2

…
…

..

VMn

……..

……..

……..

…
…

..

……..

…
…

..

VMn1

VMn2

VMnn

FEDERATION GROUP (DYNAMIC RESOURCE PROVISIONING)

Resource

allocation

Broker 2 Broker 3

Figure. 2 Proposed federated cloud architecture

S0 - Under

Load

S1 - Normal

Load

S2 - Over

Load

P(11)

P(22)

P(00)

P(01)

P(10)

P(21)

P(12)
P(20)

P(02)

Figure. 3 Load balancing by Markov chain

Received: September 2, 2021. Revised: October 28, 2021. 242

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.22

monotonic scheduling algorithm. Scheduling of the

tasks is based on the task type, task size, task arrival

time and deadline. The threshold for scheduling is

predicted dynamically using entropy function that is

based on the task arrival rate. Hereby, the entropy

function 𝐸(𝑉) is mathematically formulated as,

𝐸(𝑉) = − ∑ 𝑝(𝑥) log2 𝑝(𝑥)𝑥∈𝑋 (5)

From the above equation, 𝑉 is the random

variable, 𝑝(𝑥) = Pr{𝑋 = 𝑥} , 𝑥 ∈ 𝑋 defines the

probability mass function, the minimum and

maximum entropy values are 0 and log2 𝑜

respectively, where 𝑜 denotes the number of

outcomes. This monotonic scheduling algorithm is

operated with the provisioning of priority for tasks

based on task type 𝑡𝑝, task size 𝑡𝑠, task arrival time 𝑡𝑎

and task deadline 𝑡𝑑. The utilization bound (𝑈𝐵) test

is given as,

𝑈𝐵𝑀 = 𝑁[2(1
𝑁⁄) − 1] (6)

𝑁 denotes the number of tasks that are prioritized

based on the task constraints. The tasks are

schedulable only if the estimated 𝑈𝐵 is not greater

than 𝑈𝐵𝑀. If the utilization value is lesser then the

deadline of individual task is definitely met and so the

time taken for scheduling is shortened. Due to

dynamic threshold based on entropy, the scheduling

is performed appropriately and also it is capable to

assist processing within deadline.

Pseudo Code for task scheduling

1. begin

2. Submit 𝑖 tasks {𝑡1, 𝑡2, … … , 𝑡𝑖}

3. 𝑡1 → (𝑡𝑝, 𝑡𝑠, 𝑡𝑎, 𝑡𝑑)

4. Assign 𝑖 priority to 𝑖 tasks as

{𝑝1, 𝑝2, … 𝑝𝑖}

5. Compute 𝑈𝐵𝑀 for 𝑖 tasks

6. if (𝑈𝐵𝑚 < 𝑈𝐵)

 {

 𝑖 tasks are schedulable

 else

 𝑖 tasks are non-schedulable

 }

7. Scheduled 𝑖 tasks

8. end

A task 𝑇 is submitted with the following

parameters as (𝑡𝑝, 𝑡𝑠, 𝑡𝑎 , 𝑡𝑑) each constraint is

significant in scheduling since the processing time for

each task is not similar and so these four parameters

are taken in account for scheduling the tasks. The

definition for each parameter is illustrated in the

following,

• Task type – This denotes the type of tasks that the

user requires to perform. In this work, the task

type is categorized as real-time and non-real time

which is based on the application preferred by the

user. The real-time tasks usually have lesser

deadline which is given higher priority than the

non-real time tasks.

• Task size – The task size defines the size of the

task.

• Task arrival time – Arrival time denotes the time

during which the task is arrived at scheduler.

• Task deadline – This is one of the significant

constraints in scheduling based on which the task

has to be processed and the response needs to be

delivered.

Once the set of tasks received at time 𝑇𝑚1 is

scheduled, then the next set of tasks will be scheduled.

All the scheduled tasks are processed in broker for

assigning a VM for processing. All the scheduled

tasks are assigned to VMs at one instance.

4.5 Resource mapping

The process of resource mapping is performed

with fast 1 to N resource mapping algorithm. The

proposed algorithm is designed to map with the

resources with respect to the SLA requirements of the

tasks. The three significant constraints that are

considered for processing are CPU, memory and

bandwidth. The mapping of resources is applicable

only when the SLA constraints of the particular task

are satisfied. The participation of many numbers of

VMs will certainly satisfy the SLA requirements.

This fast 1 to N resource mapping is operated on

multiple brokers who are already equipped with the

information of VM utilization and the availability of

resources in individual VM. On knowing this updated

VM1

VM2

VM l

B

VM m

VM k

Task 1

Task 2

Task i

A
CPU1

Memory1

Bandwidth1

CPU2

Memory2

Bandwidth2

CPU l

Memory l

Bandwidth l

CPU m

Memory m

Bandwidth m

CPU k

Memory k

Bandwidth k

1 to N Mapping
User 1

User 2

User K

Figure. 4 Fast 1 to N resource mapping

Received: September 2, 2021. Revised: October 28, 2021. 243

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.22

information, the mapping of all the resource

constraints is performed. Mapping is a simpler

process that is functioned by matching the SLA

requirements of the tasks with respect to the SLA

constraints that currently exists in the VMs.

According to this mapping the scheduled tasks are

allotted to VM by the brokers for processing.

In this proposed fast 1 to N resource mapping

algorithm, the individual tasks are mapped to the

corresponding VMs that matches with SLA

requirements. As shown in the figure, assume A as

total tasks and B as total number of VM that are

clustering in the federated cloud. Let the 1 to N

resource mapping function be,

𝑓: 𝐴 → 𝐵; ∀𝑖 ∈ 𝐴, ∀𝑘𝜖𝐵, 𝑓(𝑎) → 𝑏𝑥 (7)

The 𝑓(𝑎) maps with the suitable 𝑏𝑥 i.e., the VM

which satisfies the SLA constraints of that particular

task. The mapped VM will be selected to operate the

task. Similarly, each task is mapped with the

appropriate VM and then the requested process is

performed. The parallel mapping of resources for

each task simultaneously leads to faster allocation of

tasks into VMs.

5. Result evaluation

In this section, the proposed system is evaluated

by implementing in a tool with the proposed methods.

This section is composed of implementation setup,

comparative results and discussion of achievements.

5.1 Implementation environment

Federated cloud environment is incorporated with

task scheduling, resource mapping and clustering for

faster resource allocation that improves execution

time and response time. The proposed task

scheduling and resource mapping in federated cloud

environment is implemented in Cloudsim 3.0

framework that offers flexibility on building multiple

concepts in cloud environment.

Cloudsim is an efficient simulation tool which is

presented to evaluate the performances of proposed

operating mechanisms. This is similar to the real-

world deployment and so Cloudsim is preferred for

designing federated cloud environment. Cloudsim is

a toolkit that is programmed using JDK 1.8 installed

in NetBeans 8.2. Cloudsim is supported in Windows

7 operating system.

The significant requirements that are essential for

implementing this work include hardware elements

as well as simulation parameters.

Table 1. Hardware specifications

Element Range

RAM 2.00 GB

Processor Pentium

Speed 3.00 GHz

System type 32-bit

Operating

system

Windows 7 (X86

ultimate)

Table 2. Cloudsim specifications

Parameter Value

Number of Users 5 – 10

Number of DCs 10 – 30

Number of VMs in each

DC

12 – 15

Number of Tasks 25 and above

Number of Brokers 3 – 4

VM

Bandwidth 500 – 1000 kbps

Memory 128 – 2048 GB

MIPS 9600

Task length 1500 – 3000

Storage capacity 11 TB

Scheduling interval 30 ms

Monitoring interval 180 ms

Table 1 and 2 depicts the major hardware

specification and simulation specification

respectively. Cloudsim is enabled to develop

simulation of federated clouds with the participation

of large scale DCs, VMs and brokers. The flexibility

of Cloudsim has enabled to develop new problem-

solving solutions in the proposed system. Hereby, the

Cloudsim toolkit is presented with the development

of DC clustering using region based fuzzy

possibilistic c-means clustering, VM clustering by

multi-objective density based spatial clustering,

resource mapping by fast 1 to N mapping and entropy

based monotonic scheduling algorithm. Also, the

loads at VMs are balanced by the involvement of

Markov chain method.

Fig. 6 depicts the cloud reports that are obtained

for the developed system. As per the number of tasks

the process is begun for each task and then the

successful completion time of each task is resulted on

cloud log reports. These reports are generated based

on the efficiency of the proposed methods as

mentioned above. Each method is appointed for

performing its own process and finally the finish time

shows the time at which the particular task is

completely processed.

The major entities that are involved in the

proposed system design are,

• Users

Users are the initial participants those who submit

tasks into the cloud for processing. Each user’s task

differs in task type, size, deadline and others. The

Received: September 2, 2021. Revised: October 28, 2021. 244

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.22

users in this system are supposed to submit the task

and wait for the response.

• Task Scheduler

Scheduler is appointed in this system to schedule

the incoming tasks based on the task information. The

task information includes task type, task size, task

deadline. The proposed algorithm is applied into task

scheduler for scheduling the arrived set of tasks in the

cloud.

• Broker

All the scheduled tasks enter into broker entity for

processing in a VM. In this proposed work more than

one broker is involved to avoid single point failure

problem. Here the brokers exchange with the

resource information via local interactions. Also, the

broker communicates with the cloud environment

and updates the current resource information.

• Federated Cloud

This is composed of DCs and VMs in the

clustered form. Using algorithms, the DCs are

clustered static and the VMs are dynamically

clustered based on their varying capacity.

As per the specified specifications the federated

cloud environment is developed with the proposed

algorithms for scheduling and allocating resources in

VMs. Individual entity in the designed federated

cloud environment has their own working

functionalities in the system.

5.2 Comparative results

In this section the results of proposed system are

compared with previous works to determine the

efficiencies of the proposed federated cloud. The key

objective of processing the task within deadline is

enabled with the processes of DC clustering, VM

clustering, resource mapping, load balancing and task

scheduling. For comparison, the parameters that are

computed as, execution time, latency, resource

utilization, and response time. Each parameter in this

system is taken in account of evaluating the

processing efficiency of the proposed system.

Hereby, the disadvantages that existed in

previous research works are illustrated in Table 3. On

behalf of the methods, algorithms and constraints that

are used in previous work the demerits were existed.

So, these demerits are limited in the proposed work

by designing appropriate solution of clustering, load

balancing, resource allocation and task scheduling.

The efficiency in the result is attained only due to the

perfect development of proposed algorithms. Each

method in the proposed work reflects on better

achievements in the proposed work. To be noted, in

this work, DC clustering is performed only once,

whereas the VMs are clustered dynamic in

accordance to their time varying property. The

performances of the proposed federated cloud

environment are studied.

Figure. 6 Cloudsim reports

Received: September 2, 2021. Revised: October 28, 2021. 245

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.22

Table 3. Existing work and their demerits

Prior method Demerit

Broker agent-

based task

processing [19]

Larger processing time, since the

broker forwards request until the

requirements are satisfied.

VM capacity

based VM

clustering [28]

Clusters are constructed initially,

however the capacity of VM is

dynamic based on the arrival of

tasks. Hence this clustering

increases load and processing

time.

Mean shift

clustering for VM

clustering [29]

Conventionally the mean shift

clustering algorithm consumes

larger time.

DC clustering

using k-means

algorithm [30]

1. Tedious in selection of k value

2. Single constraint of latency-

based clustering is inefficient,

since the low latency DC always

stays idle.

First-come first-

out method-based

task scheduling

[31]

1. The task with larger size at the

last has to wait until all the other

tasks are processed.

2. Centralized entity for resource

allocation cause single point

failure

3. Unsatisfied SLA requirements.

5.2.1. Execution time

The time taken for processing a set of tasks is

defined as execution time. Execution time is

improved by designing faster processing algorithms.

The proposed task scheduling and resource mapping

unique allocate the tasks into VMs with the

satisfaction of SLA requirements. In contrast, the

existing work failed to satisfy SLA requirements and

hence it increases execution time.

The clustered VMs are easier in resource

management; however, the faster mapping of

resource based on the task requirements ensure with

the improvement in the execution time. As shown in

Fig. 7, the execution time of proposed work is lesser

than the existing federated cloud due to the static

Figure. 7 Comparison on execution time

clustering. The VMs were clustered initially based on

their capacity and based on it the incoming tasks are

allocated. Due to this, a greater number of tasks may

be continuously allotted into the same VMs which

increases load and hence execution time also

increases. High execution time also reflects to

degrade on other parameters. According to increase

in the number of tasks the execution time will be

increases, but if there exists larger number of idle

VMs then certainly the execution time is minimized.

The execution time difference of about 15 – 20 ms

occurs between existing and proposed.

5.2.2. Latency

Latency is a delay constraint which increases in

accordance to poor system design. The selection of

optimal VM with respect to the resources enables to

minimize latency. The reduction in latency will

certainly reduce processing time of tasks. The latency

in the federated cloud is estimated using the

following formulations,

𝐿𝑐 = ∑ ∑ ∑ 𝑙(𝑉𝑀𝑝
𝑖𝑗

, 𝑉𝑀𝑞
𝑙𝑘)

𝑛(𝑉𝑀𝑖𝑗)
𝑝,𝑞=1

𝑛𝑡𝑦𝑝𝑒

𝑖,𝑙=1
𝑛𝑑𝑐
𝑗,𝑘=1 (8)

The term 𝑉𝑀𝑝
𝑖𝑗

 defines 𝑝𝑡ℎ VM with 𝑖𝑡ℎ instance

type involved in 𝑗𝑡ℎ DC. Similarly, 𝑉𝑀𝑞
𝑙𝑘 denotes

𝑞𝑡ℎ VM with 𝑙𝑡ℎ instance type involved in 𝑘𝑡ℎ DC.

Then, 𝑛𝑑𝑐 represents the number of DCs, 𝑛𝑡𝑦𝑝𝑒

denotes number of types that the VM instances exists

and 𝑛(𝑉𝑀𝑖𝑗) defines the VM present with 𝑖𝑡ℎ

instance type involved in 𝑗𝑡ℎ DC.

Fig. 8 illustrates the graphical plot of comparing

latency of proposed and existing work. Latency in the

proposed work is lesser than the existing due to the

prompt assignment tasks for processing. Task

Figure. 8 Comparison on latency

20

40

60

80

100

120

140

160

180

5 10 15 20 25

E
x
ec

u
ti

o
n

 t
im

e
(m

s)

Number of Tasks

Proposed Federated Cloud

Capacity based VM clustering

0

20

40

60

80

100

120

140

160

180

200

5 10 15 20 25

L
at

en
cy

 (
m

s)

Number of Tasks

Proposed Federated Cloud

Capacity based VM clustering

Received: September 2, 2021. Revised: October 28, 2021. 246

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.22

Table 4. Measured mean latency

Work Latency (ms)

Capacity based VM

clustering

126

Proposed 84

scheduling is performed by considering task deadline,

size and others which schedules the tasks accordingly.

The proper scheduled tasks allotted with mapped VM

have minimized latency. However, the latency

increases with respect to the increase in number of

tasks, it is tolerable in proposed system. On an

average of 10 – 15% of latency is reduced in proposed

than the previous research.

The average latency of proposed and existing is

also varying nearly 35 – 40ms which is too large. The

mean value for 25 tasks is too high in existing and so

it grows higher with respect to increase in the task.

Reduction in this parameter ensure with the

improvement in the system performance.

5.2.3. Response time

Response time is one of the key parameters that

is measured to evaluate the performance of the

system in terms of time constraint. Shorter the

response time ensures to improve performance and

intimates that the processing of the tasks is attained

within the deadline. Response time of the system is

defined as the time taken for the cloud to process the

request and response particular task. Response time

in federated cloud environment is computed as per

the following,

𝑅𝑇 = 𝑇𝐶𝑝 − 𝑡𝑎 + 𝑇𝑡 (9)

The response time 𝑅𝑇 is determined from 𝑇𝐶𝑝, 𝑡𝑎

and 𝑇𝑡 that denotes time needed to complete the task,

time at which the task is arrived and transfer time for

the task respectively. In proposed system, the

response time is reduced by the following,

• Tasks are scheduled using the constraints of task

size, task type and deadline by which they are

arranged appropriately in the schedule.

• Broker maps with the SLA requirement

satisfying VM faster by mapping function.

Parallel mapping for each task in accordance to

SLA requirements enables to satisfy SLA

requirements as well as processes the task in most

suitable VM.

The response time of the system is compared with

previous research work and this plot is shown in

terms of number of VMs and number of tasks as in

Fig. 9. The response time curve in proposed system

is increased and decreased where the curve in existing

(a)

(b)

Figure. 9 Comparison on response time with respect to (a)

Number of VMs and (b) Number of tasks

is gradually increasing. The immediate increase and

decrease in the response time are due to the task type

that is introduced for processing. However, the

response time has ups and downs with respect to the

number of VMs and number of tasks, it is higher in

existing. The major response for increase in response

time in previous work is,

• Static clustering was employed in which cluster

were created based on the VM capacity, whereas

the proposed federated cloud constructs dynamic

VM clustering.

• Due to static clustering with timely varying

capacity, many numbers of tasks could be

satisfied by a particular VM and hence it will be

chosen for processing. Continuous selection of

particular VM for processing will certainly

increases load at VM and it increases response

time.

Received: September 2, 2021. Revised: October 28, 2021. 247

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.22

Table 5. Measured mean response time

Work
Response time (ms)

of VMs # of tasks

Capacity based

VM clustering
78 70

Proposed 53 55

Hereby, Table 5 illustrates the estimated mean

response time with respect to the number of tasks and

VMs. An approximate difference of 20 – 25 ms is

higher in the previous work. In this time the proposed

work algorithms are capable to process nearly 5 – 10

tasks. Hence the proposed federated cloud

environment results with better response time than

the previously existing capacity-based clustering

method. The reduction in response time for multiple

tasks ensures that all the tasks are satisfied in

processing. The tasks are processed at faster rate,

since they are assigned to an SLA satisfied VM.

5.2.4. Resource utilization

Resource utilization is a common parameter that

is computed for evaluating the efficiency of VM

resource. In federated cloud VM resources play a

vital role in handling incoming tasks. The effective

utilization of resource is achieved only by proper load

balancing and task assignment to apt VM. The

utilization of resource is significant in evaluating the

performance of federated cloud. A federated cloud is

deployed with sufficient number of resources;

however, it is efficient only when they are utilized

properly. The utilization of resources is computed

using the following expression as,

𝑅𝑈 =
𝑇𝐶𝑝

𝑀𝑘𝑠𝑝×𝑅
 (10)

The utilized amount of resource 𝑅𝑈 is

determined from 𝑀𝑘𝑠𝑝 that denotes makespan of the

Figure. 10 Comparison on resource utilization

Table 6. Successful task processing

Number

of Tasks

Number of tasks processed

within deadline

Capacity based

VM clustering
Proposed

10 8 10

20 15 19

30 23 28

set of tasks that are operated in the VM and 𝑅 denotes

the number of resource present in VM.

Resource utilization for proposed and previous

VM capacity-based clustering is compared as shown

in Fig. 10. The utilization of required number of

resources enables to assist improvement in system

performance. On an average 30% and 50% of

resources are utilized in proposed and existing

respectively. This result is obtained while processing

with same number of tasks with same type. Hereby

nearly 70% of resources were save in proposed, in

contrast equal half of the resource were utilized and

save in VM capacity-based clustering.

Hereby, the increase in resource utilization will

certainly degrades the performance and also it

becomes tedious to support for large scale

environment. Therefore, the proposed system with

faster allocation of VM based on the satisfied SLA

requirements ensures to improve resource utilization

even for larger number of tasks. Also, the number of

incoming tasks is successfully processed in the

proposed work which is depicted in Table 6.

According to the number of incoming tasks, they are

processed in cloud and it is required to be completed

within the deadline of the task. The tasks that fail to

finish the particular task within deadline leads to poor

system design.

From Table 6, the served number of tasks within

the deadline is depicted. As per the increase in

number of tasks into the cloud, it is essential to be

allocated into efficient processing VM and so the task

will be completed within deadline. In VM capacity-

based clustering; multiple tasks may prefer a

particular VM due to which it increases load and

response time. This eventually fails to complete the

task within deadline whereas the appropriate

allocation of VM in proposed is capable to complete

the task within deadline.

5.3 Result discussion

The main goal of this proposed system is to

complete the task processing within the deadline. In

order to achieve this objective, a system is developed

on federated cloud. This federated cloud performs

DC clustering, VM clustering and load balancing.

0

10

20

30

40

50

60

70

80

5 10 15 20 25

R
es

o
u

rc
e

u
ti

li
za

ti
o

n
(%

)

Number of Tasks

Proposed Federated Cloud

Capacity based VM clustering

Received: September 2, 2021. Revised: October 28, 2021. 248

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.22

Table 7. Processes involved in proposed federated cloud

Process Method used Metrics estimated

DC

clustering

Region-Based

Fuzzy

Possibilistic C-

Means

Clustering

Algorithm

1.Data dependency

2.MIPS

3.Latency

4.Storage

5.Bandwidth

6.Number of VMs

VM

clustering

Multi-objective

density-based

spatial

clustering

1.Capacity

2.Bandwidth

Load

balancing
Markov chain VM capacity

Resource

mapping

Fast 1 to N

Resource

Mapping

Algorithm

SLA Constraints

1.CPU

2.Memory

3.Bandwidth

Task

scheduling

Entropy-based

monotonic

scheduling

algorithm

1.Task type

2.Task size

3.Task arrival time

4.Deadline

Clustering is involved for efficient resource

allocation for the incoming tasks and based on which

the time taken for processing is not extended.

Similarly, the deployment of multiple brokers in this

system avoids the problem of single point failure in

the system. The tasks received from the users are

scheduled and then each task is mapped with

appropriate VM for processing. Hereby, the mapping

of tasks with respect to the VM resources, result with

appropriate VM for task processing.

On discussing the results of proposed work, the

reason for the achievement is depicted in Table 7. The

metrics that are taken in account for each processing

reflects on the improvement in the proposed system.

Due to these processing in federated cloud, the

incoming tasks are allotted to appropriate VM and

reduce response time.

6. Conclusion

The objective of this paper is to complete the task

within deadline and improve response time,

execution time and resource utilization. The proposed

federated cloud environment is designed with the

processes of DC clustering, VM clustering, resource

mapping and task scheduling. The clustering

processes are handled in federated cloud, resource

mapping by brokers and scheduling by the task

scheduler. Initially, the federated cloud maintains DC

clusters and VM clusters that are created using region

based fuzzy possibilistic c-means clustering and

multi-objective density based spatial clustering

respectively. The DC clusters are static and the VMs

clusters are frequently upgraded due to the changes

in their capacity. Consequently, load at VMs is

balanced using Markov chain model. The incoming

tasks are scheduled with entropy based monotonic

scheduling algorithm which is performed by

considering task information. After scheduling, the

tasks are allotted into VM in accordance to the

satisfied SLA requirements. Brokers are incorporate

with fast 1 to N resource mapping algorithm for

identifying a suitable VM to process the task. Herby,

the appropriate assignment of VM for processing

tends to reduce execution time and improve response

time.

In future work we have planned to concentrate

more on VM load balancing by performing VM

migration and VM swapping for analyzing the

utilization of resources.

Conflicts of Interest

The authors Jeny Varghese and Dr. Jagannatha

Sreenivasaiah declare no conflicts of interest.

Author Contributions

Jeny Varghese and Dr. Jagannatha Sreenivasaiah

contributed to the design and implementation of the

research, to the analysis of the results and to the

writing of the manuscript.

References

[1] J. Sun, Y. Zhang, Z. Wu, Y. Zhu, Z. Ding, Z.

Wei, J. Plaza, and A. Plaza, “An Efficient and

Scalable Framework for Processing Remotely

Sensed Big data in Cloud Computing

Environments”, IEEE Transactions on

Geoscience and Remote Sensing, Vol. 57, No. 7,

pp. 4294-4308, 2019.

[2] L. Chunlin, T. Jianhand, and L. Youlong,

“Distributed QoS-aware scheduling

optimization for resource-intensive mobile

application in hybrid cloud”, Cluster Computing,

Springer, Vol. 21, No. 2, pp. 1331-1348, 2018.

[3] S. Suprakash and S. P. Balakannan, “Service

Level Agreement Based Catalogue Management

and Resource Provisioning in cloud for optimal

Resource Utilization”, Mobile Networks and

Applications, pp. 1-9, 2019.

[4] S. Mustafa, K. Bilal, S. U. R. Malik, and S. A.

Madani, “SLA-Aware Energy Efficient

Resource Management for Cloud

Environments”, Emerging Trends, Issues, and

Challenges in Energy-Efficient Cloud

Computing, IEEE Access, Vol. 6, pp. 15004-

15020, 2018.

Received: September 2, 2021. Revised: October 28, 2021. 249

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.22

[5] N. Chitgar, H. Jazayeriy, and M. Rabiei,

“Improving Cloud Computing Performance

Using Task Scheduling Method Based on VMs

Grouping”, In: Proc. of 27th Iranian Conference

on Electrical Engineering, 2019.

[6] Y. Cui and Z. Xiaoqing, “Workflow tasks

scheduling optimization based on genetic

algorithm in clouds”, In: Proc. of IEEE 3rd

International Conference on Cloud Computing

and Big Data Analysis, 2018.

[7] B. Anushree and V. M. A. Xavier, “Comparative

Analysis of Latest Task Scheduling Techniques

in Cloud Computing environment”, In: Proc. of

Second International Conference on Computing

Methodologies and Communication, 2018.

[8] C. S. Rajarajeswari, “Challenges in Federated

Cloud”, International Journal of Current

Engineering and Scientific Research, Vol. 4, No.

10, pp. 55-59, 2017.

[9] G. M. Bhatu and K. S. Subhash, “Task

scheduling and resource allocation in cloud

computing using a heuristic approach”, Journal

of Cloud Computing: Advances, Systems and

Applications, 2018.

[10] A. H. Maryam, M. Mehrdad, and H. Majid, “An

Energy-Efficient Dynamic Resource

Management Approach Based on Clustering and

Meta-Heuristic Algorithms in Cloud Computing

IaaS Platforms”, Wireless Personal

Communications, Vol. 104, No. 4, pp. 1367-

1391, 2019.

[11] M. Kun, B. Antoine, M. Hope, and C. Antonio,

“Modelling cloud Federation: A Fair Profit

Distribution Strategy Using the Shapley Value”,

In: Proc. of IEEE 6th International Conference

on Future Internet of Things and Cloud, 2018.

[12] S. Kim, “Dual-Level Cooperative Game

Approach for Energy-Aware Resource

Allocation in Data Centers”, IEEE Access, Vol.

7, pp. 113642-113652, 2019.

[13] N. K. Sharma and G. R. M. Reddy, “Multi-

Objective Energy Efficient Virtual Machines

Allocation at the Cloud Data Center”, IEEE

Transactions on Services Computing, Vol. 12,

No. 1, pp. 158-171, 2019.

[14] K. Spiros, M. Paul, Z. Huan, H. Yang, W.

Junchao, C. Thierry, G. Baptiste, H. Jani, D. L.

Cees, and Z. Zhiming, “Time-critical data

management in clouds: challenges and a

Dynamic Real-Time Infrastructure Planner

(DRIP) Solution”, Concurrency and

Computation Practice and Experience, 2019.

[15] S. Sobhanayak, A. Turuk, and B. Sahoo, “Task

scheduling for cloud computing using multi-

objective hybrid bacteria foraging algorithm”,

Future Computing and Informatics Journal, Vol.

3, No. 2, pp. 210-230, 2018.

[16] N. Jargalsaikhan, H. Taejin, B. Jaewon, and L.

Hyuk, “Dependency Analysis based Approach

for Virtual Machine Placement in Software-

Defined Data Center”, Applied Sciences, 2019.

[17] Y. Z. Pei and Z. MengChu, “Dynamic Cloud

Task Scheduling Based on Two-Stage Strategy”,

IEEE Transactions on Automation Science and

Engineering, Vol. 15, No. 2, pp. 772 - 783, 2018.

[18] P. Elina, L. Lucas, M. Cristian, and G. G. Carlos,

“A Bio-inspired Datacenter Selection Scheduler

for Federated Clouds and Its Application to Frost

Prediction”, Journal of Network and Systems

Management, Vol. 27, No. 3, pp. 688 - 729, 2019.

[19] K. Sofiane, Z. Abdelhafid, and D. Mahieddine

“AMACE: agent-based multi-criterions

adaptation in cloud environment”, Human-

centric Computing and Information Sciences,

2018.

[20] V. Shahin, “Energy efficient temporal load

aware resource allocation in cloud computing

datacenters”, Journal of Cloud Computing, 2018.

[21] Z. Xinqian, W. Tingming, C. Mingsong, W.

Tongquan, Z. Junlong, H. Shiyan, and B.

Rajkumar, “Energy-aware virtual machine

allocation for cloud with resource reservation”,

Journal of Systems and Software, Vol. 147, pp.

147-161, 2019.

[22] S. Kirthica and RajeswariSridhar, “A residue-

based approach for resource provisioning by

horizontal scaling across heterogeneous clouds”,

International Journal of Approximate

Reasoning, Vol. 101, pp. 88-106, 2018.

[23] T. Thandar, M. M. Myint, P. Sazia, and G.

Amjad, “Reinforcement Learning based

Methodology for Energy-efficient Resource

Allocation in Cloud Data Centers”, Journal of

King Saud University - Computer and

Information Sciences, 2018.

[24] R. K. Devi and G. Murugaboopathi, “An

efficient clustering and load balancing of

distributed cloud data centers using graph

theory”, International Journal of

Communication Systems, Vol. 32, No. 5, 2019.

[25] S. Heba, N. Heba, S. Walaa, and H. Hany, “IPSO

Task Scheduling Algorithm for Large Scale

Data in Cloud Computing Environment”, IEEE

Access, 2018.

[26] C. Li, J. Tang, and Y. Luo, “Hybrid Cloud

Adaptive Scheduling Strategy for

Heterogeneous Workloads”, Journal of Grid

Computing, Vol. 17, pp. 419-446, 2019.

[27] W. Bo, S. Ying, C. Jie, C. Xiao, and Z. Ling,

“Improving task scheduling with parallelism

Received: September 2, 2021. Revised: October 28, 2021. 250

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.22

awareness in heterogeneous computational

environments”, Future Generation Computer

Systems, Vol. 94, pp. 419-429, 2019.

[28] S. K. Sonkar and M. U. Kharat, “Load prediction

analysis based on virtual machine execution

time using optimal sequencing algorithm in

cloud federated environment”, International

Journal of Information Technology, Vol. 11, pp.

265-275, 2019.

[29] A. Amer, A. Saleh, A. Abdullah, and A. Muder,

“Novel Approach to Task Scheduling and Load

Balancing Using the Dominant Sequence

Clustering and Mean Shift Clustering

Algorithms”, Future Internet, Vol. 11, p. 109,

2019.

[30] W. Jie, Z. Ao, Y. Jie, and Y. Fangchun,

“AIMING: Resource Allocation with Latency

Awareness for Federated-Cloud Applications”,

Wireless Communications and Mobile

Computing, Vol. 2018, pp. 1-11, 2018.

[31] X. Jinlai and P.Balaji, “Optimized Contract-

based Model for Resource Allocation in

Federated Geo-distributed Clouds”, IEEE

Transactions on Services Computing, pp. 1-1,

2018.

[32] C. Jiashun, Z. Hao, P. Dechang, K. Mehmed, Q.

Yin, and L. Xin, “A Weight Possibilistic Fuzzy

C-Means Clustering Algorithm”, Hindawi

Scientific Programming, Vol. 2021, p. 10, 2021.

[33] T. Ennio, J. D. Juan, D. M. Vincenzo, A. Prateek,

B. Shajulin, S. Nishant, and P. Radu, “A

dynamic evolutionary multi-objective virtual

machine placement heuristic for cloud data

centers”, Information and Software Technology,

Vol. 128, 2020.

https://www.sciencedirect.com/science/journal/09505849/128/supp/C

