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Abstract: Prediction of leaf disease and soil property helps farmers improve crop production quality through 

maintaining the soil property and taking proper actions for leaf disease. Various techniques have been developed to 

predict leaf disease and soil properties. Support Vector Machine (SVM) is one of the machine learning techniques 

that was used to predict leaf disease and soil properties. To predict the leaf disease and soil property, SVM processed 

the extracted features from leaf images and soil images. Deep learning can be used for prediction, which has the 

advantage of machine learning is that one does not need to be concerned about domain knowledge as no feature 

engineering is required in this, unlike SVM-based prediction. In addition to this, SVM-based prediction is not very 

effective for handling multiple inputs. A Convolutional Neural Network (CNN) is a deep learner which was applied 

for the prediction of leaf disease and soil property. Even though this method has better performance, the information 

from leaf and soil images is mixed together, which may affect the prediction accuracy. So, in this paper, a Multi-

channel CNN (MCNN) method is introduced in which individual channels are used for leaf and soil images. In 

MCNN, the feature learning using MCNN for leaf images is kept distinct from the soil image to avoid data fusion 

between the leaf and soil images. The features related to leaf and soil images are paired and transferred over the 

corresponding channels for the prediction of leaf disease and soil property. After the prediction of leaf disease and 

soil property, the correlation between leaf disease and soil property is identified using the Pearson correlation 

coefficient and it is sent to the farmers using mobile phones to improve their crop production. Finally, these methods 

are validated by using different leaf infections and soil images for 3 types of crops. The experimental results show 

that the MCNN method achieves an average accuracy of 87.77% for leaf disease prediction and 90.38% for soil 

property prediction compared to the classical methods. 

Keywords: Leaf disease prediction, Soil property prediction, Deep learning, Multi-channel convolutional neural 

network. 

 

 

1. Introduction 

In cultivation, plants' leaves are essential for 

obtaining data regarding the nature and quantity of 

horizontal yield. Various aspects influence the 

production of crops, such as soil infertility, climate 

change and the presence of weeds. In contrast, leaf 

disease is a global hazard and a cause of financial 

damage for the development of many agricultural 

products. Precision farming [1-3] makes use of 

cutting-edge technologies to optimize crop 

production decisions making can be achieved by 

visual inspections by experts. However, it is 

normally time-consuming and highly expensive. In 

this era of technology and automation, it is not a 

very efficient approach. It would be much better if 

an automated system was used to predict the leaf 

disease automatically [4]. 

An automated system depending on SVM was 

developed for predicting the leaf disease with the 

consideration of different soil properties. 

Initially, leaf and soil images were captured and 

sent to the server using Internet-of-Things (IoT) 

techniques. The texture features and contour-based 

shape descriptors were extracted from the leaf 
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images. Also, the color histogram-based features 

were extracted from soil images. These features 

were used by SVM for plant leaf disease prediction. 

Deep learning is used for forecasting plant leaf 

disease. The benefit of deep learning over machine 

learning is that one does not need to be concerned 

about domain knowledge as no feature engineering 

is required in this, unlike in SVM-based leaf disease 

prediction. Also, SVM-based leaf disease prediction 

is not very effective for handling multiple inputs. 

CNN is a deep learning technique that was used 

for leaf disease prediction. Taking leaf and soil 

images as input, CNN processes the input on 

convolutional, pooling and fully connected layers to 

predict the leaf disease. In CNN-based leaf disease 

prediction, the information from soil and leaf images 

are mixed, which may affect the prediction accuracy. 

So, in this paper, an MCNN is introduced where 

separate channels are used for leaf and soil images 

using the concept that the primary attribute training 

using CNN for leaf image is being preserved 

regarding soil image to avoid the primary data 

fusion amid leaf and soil image. Hence, the features 

corresponding to each leaf and soil images are 

paired accordingly and transferred over the 

corresponding channels for leaf disease prediction. It 

also guarantees optimum generalizability and 

identifies the complex information in leaf and soil 

images for better prediction of leaf diseases and 

identification of correlations between leaf disease 

and soil properties. 

The remaining part of this article is structured as 

follows: Section 2 is an examination of the research 

related to the prediction of leaf disease. Section 3 

explains the MCNN for leaf disease prediction and 

Section 4 demonstrates its efficiency. Section 5 

summarizes the paper with future scope. 

2. Literature survey 

Dhingra et al. [5] proposed a computer vision-

based neutrosophic method to identify leaf infection. 

Initially, the collected image was segmented based 

on fuzzy logic and the segmented region was 

differentiated as proper, improper and transitional 

areas. According to these areas, novel attribute 

subsets were evaluated for identifying the leaf as a 

fit or infected leaf. However, the selection of 

membership function in fuzzy logic greatly 

influences the performance of leaf disease 

identification.  

Pantazi et al. [6] proposed an automatic leaf 

disease detection technique by using an image 

feature analysis technique and one class of 

classifiers. For feature extraction, Local Binary 

Patterns (LBPs) were applied to the collected images. 

The extracted features were trained and tested in one 

classifier for leaf disease detection. However, the 

symptoms in some cases were detected as outliers 

for other diseases concerning the same crop. 

Geetharamani & Pandian [7] used Principal 

Component Analysis (PCA) and deep CNN for the 

identification of plant leaf diseases. Some fine-

tuning techniques will be used to enhance the 

accuracy of this model. 

Jiang et al. [8] developed a model relying on 

Improved CNN (ICNN) for recognizing apple leaf 

infections. However, it is difficult when the infected 

region engages only a small segment of the image. 

Sorte et al. [9] proposed a coffee leaf infection 

detection method depending on the deep learner and 

texture features. More texture features like spectral 

features need to be extracted and enhanced to 

enhance the performance of this recognition method. 

Saleem et al. [10] designed three different deep 

learner meta-architectures such as Region-based 

Fully Convolutional Networks (RFCN), Single Shot 

multi-box Detector (SSD) and Faster Region-based 

CNN (RCNN) were explored through the 

TensorFlow object detection framework for 

identifying diseases in plant species. However, it 

needs further improvement in terms of mean average 

precision. 

Nigam et al. [11] developed a new idea for the 

recognition and classification of paddy leaf diseases. 

First, different paddy leaves were collected as digital 

images and then the RGB model was transformed 

into a Hue, Saturation, Value (HSV) model to resize 

the image by applying k-means clustering with 

image segmentation. The particular features in the 

transformed model were extracted by using PCA and 

these features were used in the Bacterial Foraging 

Optimization-Deep Neural Network (BFO-DNN) 

classifier for paddy leaf disease recognition and 

classification. However, the recognition time was 

high and DNN was computationally expensive while 

increasing the network depth.  

Sethy et al. [12] proposed a technique based on 

deep CNN for the identification of rice leaf disease. 

The deep features in the collected images were 

extracted by using deep CNN architectures and the 

extracted features were given as input to SVM for 

identification of rice leaf disease. A more fine-tuned 

CNN model will be used in the future with the 

expectation of better performance. Sun et al. [13] 

used the CNN technique for the detection of 

northern maize leaf blight in a complex field 

environment. Because of less convolution, this 

technique returned lower semantics and more noise, 

which affected the performance of the detection of  
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Figure. 1 MCNN-based leaf disease prediction and soil property prediction 

 

northern maize leaf blight. 

3. Proposed methodology 

This part describes the MCNN-based leaf 

disease prediction in detail. Initially, plant leaf 

images, as well as soil images, are collected by 

using a digital camera. The captured images are 

transmitted through either a wired or wireless 

network to an image processing unit for further 

processing. After the collection of leaf and soil 

images, a noise removal technique is applied to the 

collected images for the pre-processing process. The 

pre-processed image is given as input to the MCNN, 

which allows leaf and soil images to transfer via two 

dissimilar channels to optimize the attribute training 

and offer the forecasting possibilities through 

aggregating the attribute maps of the two channels. 

Based on the probability value, the correlation 

between diseased leaves and soil properties is 

predicted. Fig. 1 shows the block diagram of the 

MCNN-based leaf disease prediction method. 

3.1 Data collection 

First, the soil images and their related leaf 

disease images are collected for three different 

plants, like cotton, pineapple and strawberry. The 

considered types of soil images are over-watering 

and high nitrogen soil, contaminated soil, damp soil, 

high humidity soil, warm overlay moist soil and 

warm heated soil. Among these types, overwatering 

and high-nitrogen soil cause mealybugs on plant 

leaves. The warm heated soil causes spider mite 

disease and the warm overlay moist soil causes 

Rhizoctonia disease. The cylindrocladium leaf 

disease is caused by the high humidity soil and 

thielaviopsis disease (black root rot) is caused by the 

damp soil at a temperature of 55-65°F. Also, 

ralstonia solancearum (bacterial wilt) leaf disease is 

caused by contaminated soil. Normally, the collected 

images are corrupted by different types of noises. So, 

it is needed to remove the noise from the images for 

better prediction.  

3.2 Noise removal 

An image (leaf or soil image) is assumed as a 

lattice pattern of 2D cell automata wherein every 

cell (𝑥0, 𝑦0)  relates to the image pixel (𝑥, 𝑦)  and 

probable conditions of the cells are the certain color 

value of that pixel. Every cell communicates with its 

adjacent pixels and changes its condition by the 

switch factor. Assume {𝐼1(𝑡), 𝐼2(𝑡), … , 𝐼𝑛(𝑡)} is the 

collection of 𝑛 pixels that are measured in a Moore 

vicinity of the pixel at time 𝑡. The Moore vicinity of 

distance 𝑟 is represented as:  

 

𝑁(𝑥0, 𝑦0) = {(𝑥, 𝑦): |𝑥 − 𝑥0| ≤ 𝑟, |𝑦 − 𝑦0| ≤ 𝑟} 

(1) 

 

In Eq. (1) 𝑁 represents neighbor of pixel and x,y 

represent pixel of the image. The order statistics 

result is given by ordering these values in increasing 

order of their intensity and denoted as 
{𝐼𝑖1(𝑡), 𝐼𝑖2(𝑡), … , 𝐼𝑖𝑛(𝑡)} . The centered pixel alters 

its values at the time 𝑡 + 1 is given as: 

 

𝐼(𝑡 + 1) =
1

𝑛−2(𝛼𝑛)
∑ 𝐼𝑗(𝑡)𝑛−(𝛼𝑛)

𝑗=(𝛼𝑛)+1 ,  

0 ≤ 𝛼 < 0.5                           (2) 

 

In Eq. (2), n represents the number of neighbor 

pixels and 𝛼  represents the scaling factor. The 

maximum and minimum intensity values are 

eliminated and the average of remaining pixel 

intensity values is calculated. Also, the quality of 

soil and leaf image is improved by using the 

histogram equalization technique which eliminates 

the background information, redundant and hidden 

Leaf images 

Soil images 

Noise removal MCNN 

Test Data 

Prediction of leaf disease 

Prediction of soil property 
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details. 

3.3 Plant leaf disease and soil property prediction  

After the noise removal from leaf and soil 

images, it is given as input to MCNN for plant leaf 

disease and soil property prediction. The model 

architecture for the MCNN is shown in Fig. 2. The 

MCNN architecture has two input channels for leaf 

and soil images, respectively. The features 

corresponding to each leaf and soil image are paired 

accordingly and transmitted over the corresponding 

channels. 

The convolution layer is the most unique part of 

CNN that is applied to traverse over the image 

matrix for generating an ultimate attribute matrix of 

spatially-oriented attributes by adapted filtering. 

This adapted filtering for the convolution layers in 

the several channels is regulated with respect to the 

input shape of the image matrix.  The best profile for 

the filtering is selected by  

 

𝑓(𝑥, 1) = [𝑟𝑜𝑢𝑛𝑑 (
𝑥

2
) + 𝑥 ⨸ 2]            (3) 

 

In Eq. (3), 𝑥 denotes the number of leaf or soil 

images used for training, (𝑥, 1) denotes the profile 

of the filtering, 𝑟𝑜𝑢𝑛𝑑 (∙)  denotes the round  

function and ⨸ represents the modulo function. Eq. 

(3) takes the leaf or soil image used for training as 

input and this image undergoes the addition of a 

round factor over 𝑥 and a modulo factor over 𝑥. It 

 

 

 
Figure. 2 MCNN architecture for plant leaf disease prediction and soil property prediction 
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offers the profile of the adapted filtering. Here, 1-D 

convolution is used so the profile of the filter is in 

the format of(𝑥, 1).  

The attribute maps from the primary convolution 

layer are transmitted to the 2nd convolution layer 

with no sub-sampling process. With the 

consideration of the large spatial density of the 

image which is learned on the CNN structure, it is 

stated that a sub-sampling process like pooling 

among successive CNN layers reduces the 

computational cost for prediction. However, the 

utilization of sub-sampling for the image whose 

statistical importance is highly vital compared to the 

spatial configuration possesses data failure. In the 

prediction of plant leaf disease and soil property, 

spatial arrangement information is more important. 

So, in the MCNN architecture, the sub-sampling 

process has been avoided. 

The feature matrix which is generated by the 2nd 

convolution layer is given as input to the flattening 

layer. It transforms the attribute matrix from a 2D 

matrix to a 1D array as the following phases 

encompass the dense layers. The data must be in 

one-dimensional format when the set of images is 

fed to the dense layer. 

The outcome of the flattening layer is given as 

input to the dropout layer, which is typically applied 

to execute the normalization and support the MCNN 

to prevent overfitting. It enables MCNN to extract 

highly complicated and strong feature correlations 

from leaf and soil images by reducing the number of 

neurons from the perceptible and hidden layers for 

performing highly randomized attribute training. 

The sixth layer in the MCNN structure is a dense 

layer which is a fully connected layer with 64 

neurons. It performed a linear function on the 

attribute matrix which is created by the convolution 

layer. In addition to this, as the convolution layer 

operates in the vicinity of the spatial collection of 

distinct filters that move over the image matrix, the 

dense layer is performed as a global layer in which 

every layer’s node contributes and is linked to each 

other node in the subsequent layers. Hence, the 

dense layer in MCNN establishes a global 

correlation among the attributes and also considers 

the abstraction of highly complicated structures in 

the leaf and soil images. 

The ninth layer in the MCNN is the 

concatenation layer, which combines the attribute 

matrices from every channel. Based on multiple 

features from leaf and soil images, attribute matrices 

are aggregated to predict leaf disease and soil 

property. Hence, for achieving a better prediction of 

leaf disease and soil properties based on leaf and soil 

images, the aggregation of attribute matrices 

between two different channels is needed. 

The following layer is the concatenation layer, 

the successive layer is the fully connected layer with 

32 units. It is used to fetch the combined 

correlations among the aggregated attribute matrices 

from several channels. It gives the complicated 

attributes, correlations and structures amid the 

aggregated attribute matrices which help us predict 

leaf disease and soil property. The last layer (output) 

consists of 6 units for 6 different leaf diseases and 

their related soil properties. The last dense layer 

gives the forecasting chance of every image for 6 

different labels. 

After the prediction of leaf disease and its 

related soil property, a loss function is applied for 

estimating the variability amid the estimated 

outcome (𝑦̂) and the underlying range (𝑦). In this 

model, a softmax loss i.e., the cross-entropy loss 

function is used which compares each predicted 

class value to the original class value for calculating 

the score. Then, this is considered for penalizing the 

prediction chance depending on the variance from 

the original value. So, the softmax loss is defined by 

 

𝐿(𝑦, 𝑦̂) =
1

𝑛
∑ ∑ 𝐿(𝑦𝑖,𝑗 𝑙𝑜𝑔(𝑦̂𝑖,𝑗))6

𝑗=1
𝑛
𝑖=1           (4) 

 

In Eq. (4), the dual sum is applied on 𝑖𝑡ℎ image 

samples range between 1 and 𝑛 and the labels vary 

between 1 and 6. Also, 𝑦𝑖,𝑗 is the original class value 

at 𝑖𝑡ℎ image of 𝑗𝑡ℎ type and 𝑦̂𝑖,𝑗 is the prediction for 

the images as 𝑖𝑡ℎ  image. Thus, the soil property 

related to plant leaf diseases is effectively predicted 

for different types of plants. 

3.4 Communication phase 

The communication phase is used to maintain 

the soil property and prevent leaf disease by 

notifying the leaf diseases based on the soil 

categories through mobile phones to the cultivators. 

So, it enhances the crop yield by maintaining the 

soil properties and preventing leaf diseases. 

4. Result and discussion 

In this section, the performance of both leaf 

disease prediction and soil property prediction is 

evaluated for existing and proposed methods with 

different evaluation metrics. In this experiment, 

different soil images and their related leaf diseases 

for cotton, pineapple and strawberry plants are 

collected (described in Section 3.1). The results of 

MCNN-based leaf disease prediction are compared 

with the SVM, CNN, fuzzy logic [5], ICNN [8] and 

RFCN [10] methods. The results of MCNN-based 
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soil property prediction are compared with the 

Logistic Regression (LR), Linear SVM (LSVM), 

Gaussian SVM (GSVM) [14] and Extreme Learning 

Machine (ELM) [15] methods. Fig. 3 displays the 

sample leaf images for each type of disease and Fig. 

4 displays the sample soil images for different 

categories. 
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Figure. 3 Sample leaf images for various types of diseases 
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Contaminated soil 
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Over watering and high 

nitrogen soil 
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soil 
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Figure. 4 Sample soil images 

 

4.1 Accuracy  

Accuracy is defined as the ratio of true positives 

and true negatives to the sum amount of all results 

examined. It is measured as: 

 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Fig. 5 shows the accuracy of different 

classification methods for leaf disease prediction. 

The accuracy of MCNN for cotton leaf disease 

prediction is 8.59%, 6.17%, 3.61%, 2.99% and 2.38% 

greater than the fuzzy logic, SVM, CNN, ICNN and 

RFCN methods. Hence, it is proved that the 

proposed MCNN based leaf disease prediction has 

high accuracy than all other classification methods 

for leaf disease prediction.  

 

 
Figure. 5 Comparison of accuracy for leaf disease 

prediction 
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Figure. 6 Comparison of accuracy for soil property 

prediction 
 

Fig. 6 shows the accuracy of different 

classification methods for soil property prediction. 

The accuracy of MCNN for contaminated soil 

prediction is 7.62%, 6.48%, 5.85% and 2.84% 

greater than the LR, LSVM, GSVM and ELM 

methods. Therefore, it is proved that the proposed 

MCNN based soil property prediction has high 

accuracy than all other classification methods.  

4.2 Precision 

Precision value is defined as the ratio of 

predicted features that are relevant and evaluated at 

the true positive outcomes. It is computed as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)
 

 

 
Figure. 7 Comparison of precision for leaf disease 

prediction 

 
Figure. 8 Comparison of precision for soil property 

prediction 

 

Fig. 7 shows the precision of various 

classification methods for leaf disease prediction in 

terms of precision. The precision of MCNN for 

cotton leaf disease prediction is 10.65%, 8.18%, 

4.68%, 4.18% and 3.93% greater than the fuzzy 

logic, SVM, CNN, ICNN and RFCN classification 

methods. Hence, it is proved that the proposed 

MCNN method has high precision than all other 

methods for leaf disease prediction.  

Fig. 8 shows the precision of different soil 

property prediction methods. The precision of 

MCNN for contaminated soil prediction is 8.43%, 

7.66%, 6.76% and 3.81% greater than the LR, 

LSVM, GSVM and ELM methods. From this 

analysis, it is proved that the proposed MCNN 

method has high precision than all other methods for 

soil property prediction.  

4.3 Recall 

Recall value is calculated based on the 

prediction value at true positive and false negative 

predictions. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
 

 

Fig. 9 shows the recall of various classification 

methods for leaf disease prediction in terms of 

precision. The recall of MCNN for cotton leaf 

disease prediction is 9.61%, 7.7%, 3.96%, 3.09%  
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Figure. 9 Comparison of recall for leaf disease prediction 

 

 
Figure. 10 Comparison of recall for soil property 

prediction 

 

and 1.64% greater than the fuzzy logic, SVM, CNN, 

ICNN and RFCN classification methods. Hence, it 

is proved that the proposed MCNN method has high 

recall than all other methods for leaf disease 

prediction. 

Fig. 10 shows the recall of different soil property 

prediction methods. The recall of MCNN for 

contaminated soil prediction is 8.98%, 8.08%, 7.06% 

and 4.6% greater than the LR, LSVM, GSVM and 

ELM methods. From this analysis, it is proved that 

the proposed MCNN method has high recall than all 

other methods for soil property prediction.  

This improvement on efficiency is because of 

using different channels for both leaf and soil 

images to simultaneously predict the leaf infections 

and soil properties. 

5. Conclusion 

In this paper, MCNN is introduced for better 

prediction of leaf disease and soil property. At first, 

IOT technology is used to send the captured leaf and 

soil images to the server. Then, the cellular automata 

filters are used for noise removal from leaf and soil 

images. The preprocessed leaf images and soil 

images are processed in two different channels of 

CNN and finally the feature matrices of leaf images 

and soil images are concatenated for prediction of 

leaf disease and soil property. MCNN based 

prediction method ensures the optimum 

generalizability by concatenating the feature 

matrices from two different channels for leaf image 

and soil image. The experimental results proved that 

the MCNN based leaf disease prediction and soil 

property prediction has better has better accuracy, 

precision and recall than the state-of-the-art methods.  
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