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Abstract: This paper considers the permutation flow shop scheduling problem to minimize total earliness and tardiness. 

We initiated a metaheuristic algorithm, namely a crossbreed discrete artificial bee colony. We modifications to the 

essential artificial bee colony and propose two versions of the crossbreed discrete artificial bee colony. Taguchi 

experimental design is used to test the performance of this. Several computational experiments using Vallada’s 

benchmark instances have been carried out to prove the performance of the proposed algorithms. The statistical test 

results show that the proposed algorithms have the largest negative mean of BRE’s value, each of -0.1959 for 

CDABC_ver1 and -0.1954 for CDABC_ver2. It means that the proposed algorithms perform significantly better than 

other algorithms. The results of the Kruskal Wallis H test show that the proposed algorithm has better performance 

than some dispatching rules and heuristic algorithms. Furthermore, the proposed algorithms can deliver better results 

in less time than mathematical model solution. 
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1. Introduction 

Scheduling allocates resources over time to 

complete a series of tasks to optimize one or more 

specified objective functions. One of the most widely 

studied scheduling problems is the flow shop 

sheduling problem (FSP). There are different variants 

of FSP such as permutation, non-permutation, no-

idle, nowait, and hybrid flow shop scheduling 

problems. The latest studies discussing review papers 

on FSP can be found in [1-4]. Permutation flow shop 

scheduling problem (PFSP) becomes the most 

common issue in obtaining a sequence given n jobs 

with the same order at m machines to find the 

objective function [5]. [2] discussed mathematical 

models and methods used by previous researchers to 

solve PFSP with the makespan criterion. [6] also 

reviewed and classified heuristics for PFSP with 

makespan. Meanwhile, [7] reviewed and evaluated 

the PFSP to minimize flowtime. From the results of 

the literature study, most of the PFSP still focuses on 

objectives based on the completion time (makespan 

and flowtime).  

The manufacturing industry has gradually shifted 

from mass production to mass customization. Their 

production planning goal is to satisfy each customer's 

individual delivery dates, regardless of the amount of 

their order or delivery destinations. Customers' 

delivery dates are met, which means there are fewer 

early arrivals and late deliveries. As an optimality 

criterion, Just-In-Time (JIT) manufacturing considers 

both earliness and tardiness (ET) penalties. In a JIT 

scheduling system, jobs that are done early must be 

held in inventory until their due dates, whereas jobs 

that are performed after their due dates may decrease 

customer satisfaction [8]. Given the widespread 

adoption of just-in-time systems, there has been an 

increasing interest in scheduling problems in which 

both earliness and tardiness are penalized [9].  

In the literature, some exact and approximation 

algorithms for the PFSP to minimize total ET have 

been proposed. In a multi-machine scheduling 

problem, [10] developed a mixed integer 

programming formulation. [11] proposed a heuristic 

method. Four new efficient heuristics are proposed by 

[9]. In order to reduce and accelerate the search space 
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of the heuristics, these heuristics integrate several 

properties and a speed up procedure.  [12] developed 

a variable neighbourhood search with mixed integer 

programming. [13] proposed a genetic algorithm. To 

solve PFSP, [14] presented two discrete particle 

swarm optimization (DPSO) algorithms. [8] 

developed a mix of Variable Neighbourhood Search 

(VNS) and Tabu Search (TS) which are stochastic 

search strategies capable of resolving the Multi-

Objective ET Scheduling Problem (MOETSP).  

ABC is a new swarm intelligence algorithm 

proposed by Karaboga in 2005 and inspired by honey 

bee behavior. Since its introduction, ABC has been 

used to address a variety of issues. ABC has a number 

of advantages: 1) Ease of hybridization with other 

optimization methods, 2) Use of fewer control 

parameters than many other search techniques, 3) 

Simplicity, flexibility, and robustness [15]. A survey 

paper on the ABC algorithm and its application was 

conducted by [16, 17]. However, only a few 

researchers have applied the ABC algorithm to PFSP. 

[18] proposed a DABC for the PFSP with total flow 

time criterion. [19] proposed a DABC with 

composite mutation strategies and fast local search 

for solving PFSP with the objective of minimizing 

total flow time and maximum lateness of jobs. [20] 

employed a hybrid DABC algorithm in solving the 

PFSP with the objective to minimize the makespan. 

In the manufacturing industry, dispatching rules 

are used to handle a wide variety of scheduling 

problems [21]. The priority sequencing rules include 

shortest processing time (SPT), largest processing 

time (LPT), earliest due date (EDD). [22] stated that 

SPT and EDD are among the most frequenly used as 

benchmarks in the literature which focused on due 

date-based objectives (lateness, tardiness, etc.). 

Futhermore several heuristics had been developed for 

solving the PFSP e.g., Palmer [23] , Gupta [24], 

Nawaz-Enscore-Ham (NEH) [25]. The NEH 

heuristic is now one of the most effective constructive 

heuristics [22]. When compared with classical and 

some of the recent methods, ABC algorithm has 

produced promising results [26]. To the best of our 

knowledge, there is no one paper on ABC algorithm 

for minimizing the total earliness and tradiness in the 

PFSP. So, we proposed a Crossbreed Discrete 

Artificial Bee Colony (CDABC) algorithm. The 

difference between the CDABC algorithm and other 

DABC algorithms lies in the local search technique. 

In this case, we present several new local search 

techniques based on the crossover between feasible 

solutions. This effort was made to minimize the 

tendency of "getting stuck" in the local optima. Thus, 

we can develop more cost-effective (i.e., less time-

consuming) global solutions to common real-world 

problems.  

In this paper, a mathematical method is used to 

find an analytical solution. The consistency, stability, 

and convergence test of the proposed algorithm is 

carried out by comparing the numerical solution with 

the analytical solution. If the absolute error between 

the two is close to zero, the numerical solution 

converges to the analytical solution. This will be 

much more efficient than doing a comparison of the 

numerical solution with other numerical solutions. In 

addition, there are not many studies that examine the 

development of swarm intelligence-based 

metaheuristic methods to solve the ET-PSFP 

problem. Therefore, we decide to compare the 

proposed CDABC's solutions with the optimal 

solution of mathematical model, dispatching rules 

(SPT, EDD, and LPT), and some heuristic algorithms 

(Palmer, Gupta, and NEH). To obtain a tremendous 

experimental analysis, we performed the Kruskal 

Wallis H test to compare the quality of the solutions 

solved by each algorithm. 

2. Problem description  

Flow shop is scheduling several jobs where all of 

these jobs must go through the same sequence of 

operations/production processes. Flow shop which 

deals with sorting n jobs on machines, where each job 

must be processed exactly one time on each machine 

in the same order, with certain processing time. The 

permutation shop flow scheduling (PFSP) problem is 

a special case in FSP, where n jobs are in the same 

order on each machine. Therefore, there are of 𝑛 jobs 

completed on 𝑚 machines in the same order. Each 

job consists of a set of operations. The processing 

time of job 𝑗 on machine 𝑖 is denoted by 𝑝𝑗,𝑖 . Each 

job can be processed on only one machine, and every 

machine can process only one job at the same time. 

Even the operation cannot be preemptable. All of the 

jobs to be processed on machines in the same 

sequence. A permutation of jobs is denoted by 𝜋 =
{𝜋1, 𝜋2, … , 𝜋𝑛} , where 𝑛  jobs are going to be 

sequenced through 𝑚 machine. Let 𝐶(𝜋𝑗, 𝑚) denote 

the completion time of job 𝜋𝑗  on machine 𝑚 . The 

completion time of the PFSP in line with the 

processing sequence 𝜋 is shown as follow: 

 

𝐶(𝜋, 1) = 𝑝𝜋1,1 

 

𝐶(𝜋𝑗, 1) = 𝐶(𝜋𝑗−1, 1) + 𝑝𝜋,1,     𝑗 = 2, … , 𝑛 

𝐶(𝜋1, 𝑖) = 𝐶(𝜋1, 𝑖 − 1) + 𝑝𝜋,𝑖,     𝑖 = 2, … , 𝑚 

(1) 

𝐶(𝜋𝑗 , 𝑖) = max (𝐶(𝜋𝑗−1, 𝑖), 𝐶(𝜋𝑗, 𝑖 − 1)) + 𝑝𝜋,𝑖,  

𝑗 = 2, … , 𝑛;  𝑖 = 2, … , 𝑚 



Received:  September 8, 2021.     Revised: November 26, 2021.                                                                                      443 

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022           DOI: 10.22266/ijies2022.0228.40 

 

Meanwhile, makespan is the time needed to 

complete all jobs at the shop. It can be defined by: 

 

𝐶𝑚𝑎𝑥(𝜋∗) ≤ 𝐶(𝜋𝑛, 𝑚),     ∀𝜋 ∈ Π          (2) 

 

As for the PFSP with the due date constraint, let 

𝐿(𝜋𝑗) the lateness of jobs 𝜋𝑗 and be defined as: 

 

𝐿(𝜋𝑗) = 𝐶(𝜋𝑗, 𝑚) − 𝑑(𝜋𝑗)               (3) 

 

Because earliness is positive lateness and 

tardiness is negative lateness, both can be defined as: 

 

𝐸(𝜋𝑗) = max(𝐿(𝜋𝑗), 0) 

𝑇(𝜋𝑗) = min(𝐿(𝜋𝑗), 0)                  (4) 

 

Where 𝑑(𝜋𝑗) is due date of jobs 𝜋𝑗 . Then, the 

sum of total earliness and total tardiness can be 

described as: 

 

𝑓(𝜋) = ∑ 𝐸(𝜋𝑗)𝑛
𝑗=1 + ∑ 𝑇(𝜋𝑗)𝑛

𝑗=1             (5) 

 

Furthermore, 𝜋∗  as the optimal solution should 

satisfy by the following criterion: 

 

𝑓(𝜋∗) ≤ 𝑓(𝜋),     ∀𝜋 ∈ Π                  (6) 

3. The Proposed algorithm  

Because the basic ABC is a continuous algorithm, 

the standard continuous encoding scheme cannot 

solve PFSP directly. One of the most significant 

issues to solve the PFS by ABC is determining a close 

relationship between the job sequences and the 

individual vectors in ABC. Although combinatorial 

cases can be resolved by brute force, they will require 

less time (less efficiency). If the case is indeed 

complicated, so it cannot be accepted practice. In this 

case, the proposed Crossbreed Discrete Artificial Bee 

Colony (CDABC) algorithm can be connected to beat 

combinatorial problems more practically and 

regularly. It is very well to use because there is a 

structured search and evaluation mechanism. In the 

proposed CDABC, the food source 𝑖 for scheduling 

problem and independent job in the PFSP is agreed 

with a job order 𝜋 = [[1], … , [𝑛]]. 
Additionally, 𝜑𝜋: {1, … , 𝑛} → {1, … , 𝑛}  is the 

mapping between the places during a π and the 

sequence job indexes. If jobs 𝑗  within the pth 

dimension of the 𝜋, we get 𝜑𝜋(𝑝) = 𝑗. For example, 

if job 4 in the dimension of 2nd of the π= [3,4,1,5,2], 
therefore 𝜑𝜋(2) = 4. The difference of food source 

in traditional ABC for continuous problems, 

CDABC, and corresponding schedule in CDABC is  
 

 
Figure. 1 An example of a CDABC solution 

 

clearly shown in Fig. 1. Random generation is used 

as an initialization mechanism. In other words, there 

are NP solutions (food sources) within the 

population, and every one solution is constructed 

randomly at time zero. 

3.1 CDABC Ver1 

The first proposed algorithm is modifying the 

traditional ABC in the employed, onlooker, and scout 

bee phases. Modifications are made by changing new 

solution generation techniques with neighborhood 

operators, consisting of swap operator, swap 

sequence, insert operator, and insert sequence. Fig. 3 

shows the pseudo code of CDABC_ver1. 

3.1.1. Detail CDABC_ver1 

3.1.1.1. Employed bee phase 

a. Swap operator (SO) or random swap 

For example, the random number is SO (2,4), 

then the new solution generated from the initial 

solution with SO is as follows in Fig. 2: 

 

𝑥𝑖 = 𝑥𝑖 + 𝑆𝑂 

𝑥𝑖 = (2 − 6 − 8 − 9 − 1) + 𝑆𝑂(2,4) 

𝑥𝑖 = (2 − 9 − 8 − 6 − 1) 
 

b. Swap sequence or random swap sequences 

 

𝑥𝑖 = 𝑥𝑖 + 𝑆𝑆 

𝑥𝑖 = 𝑥𝑖 + (𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3, … , 𝑆𝑂𝑛)  

 

𝑛 = Number of swap sequences, then calculate the 

probability value. 

 

𝑃𝑟𝑜𝑏𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑥𝑖)

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑥𝑘)𝑠
𝑘=1

 

 

𝑃𝑟𝑜𝑏𝑖 = The odds of choosing i-th employed bee. 

𝑆 = The number of employed bees. 

 

2 6 8 9 1 

2 9 8 6 1 

Figure. 2 An example of a swap operator 
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Table 1. Pseudo code of CDABC_ver1  

1. Initialize all required parameters 

2. Generate SN food source as an initial population Xij 

3. Evaluate the initial population, set as f(Xi) 

4. Find the initial best solution, and memorize it 

5. Set iter = 1 

6. While iter < itermax do 

7.  For i = 1 : SN 

8.   Set triali = 0 

  // Employed Bee Phase 

9.  Produce a new neighbor solution EBi by the  

           neighborhood operator (i.e. swap operator or  

           swap sequence). 

10.  Evaluate its fitness value, set as f(EBi) 

11.  If f(EBi) < f(Xi) 

12.   then replace the old solution with new  

                 solution, Xi = EBi  

13.    set triali = 0 

  Else 

14.   set triali = triali + 1 

  End If 

  // Probability Calculation Phase 

15.      Calculate the probability values Pi using  

           equation below: 

             𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑆𝑁
𝑗=1

 , where 𝑓𝑖𝑡𝑖 =

{

1

1+𝑓𝑖
𝑓𝑖 ≥ 0

1 + 𝑎𝑏𝑠(𝑓𝑖) 𝑓𝑖 < 0
   // Onlooker Bee Phase 

16.  If Pi > a random value in the range of [0,1] 

17.   Produce a new neighbor solution OBi by the  

                 neighborhood operator (i.e. insert operator  

                 or insert sequence). 

18.    Evaluate its fitness value, set as f(OBi) 

19.   If f(OBi) < f(Xi) 

20.    then replace the old solution with new   

                       solution, Xi = OBi 

21.    set triali = 0  

   Else 

22.    set triali = triali + 1 

   End If 

  End If 

  // Scout Bee Phase 

23.  If triali ≥ trialmax  

24.   Generate new solution randomly, then set as  

                 SBi 

25.   Replace the older solution Xi = SBi  

  End If 

 End For  

26. Set iter = iter + 1 

    End While 

27. Memorize the best solution so far 

3.1.1.2. Onlooker bee phase 

a. Insert operator 

The random number generated is IO (1,5). Then 

the new solutions resulting from the initial tour with 

IO are as follows in Fig. 3: 

 

2 6 8 9 1 

1 2 6 8 9 

Figure. 3 An example for insert operator 

 

𝑥𝑖 = 𝑥𝑖 + 𝐼𝑂 

𝑥𝑖 = (2 − 6 − 8 − 9 − 1) + 𝐼𝑂(1,5) 

𝑥𝑖 = (1 − 2 − 6 − 8 − 9) 
 

b. Insert sequence 

 
𝑥𝑖 = 𝑥𝑖 + 𝐼𝑂 

𝑥𝑖 = 𝑥𝑖 + (𝐼𝑂1, 𝐼𝑂2, 𝐼𝑂3, … , 𝐼𝑂𝑛)  

 

𝑛 = The number of insert sequence 

3.1.1.3. Scout bee phase 

After going through two repair solution phases, 

the employed bee level and the onlooker bee phase, 

each employed bee's quality calculation will be 

calculated. The number of scout bees is dynamic, 

depending on the number of employed bees 

exceeding the limit. If the bees' limit is to carry out 

the repair solution exceeds the specified maximum 

limit, the bee solution will be removed and replaced 

with a new solution using random techniques, 

updating the resulting distance, and resetting the limit 

back to 0. 

3.2 CDABC Ver2 

In the CDABC-ver2, different search operators 

are used to producing new solutions that have other 

exploration and exploitation characteristics 

differently. The search operator with the insert 

motion can be used to represent a permutation-based 

solution. Table. 2 shows the pseudo code of 

CDABC_ver2. 

3.2.1. Detail CDABC_ver2 

3.2.1.1. PBX (Position-based operator) 

The position-based operator starts by selecting a 

random set of job positions from parent 1. 

Furthermore, this operator forces the selected jobs' 

position on the related jobs of the other parent. The 

Bernoulli test with 0,5 probability for each position is 

used in position selection. First, the selected job 

positions are copied to the corresponding offspring 

positions. The unselected positions are copied from 

the second parent to offspring, starting from the left 

according to the second parent order. For example, 

consider the parent sequence (7-6-3-2-9-1-8-5-4) and 

(3-2-4-6-1-7-9-5-8); and suppose that the first, third, 

eighth, and ninth positions are selected. So, we get  
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Parent 1 7 6 3 2 9 1 8 5 4 

Offspring 7 2 3 6 1 9 8 5 4 

Parent 2 3 2 4 6 1 7 9 5 8 

Figure. 4 PBX operator scheme 

 

the following offspring: (7-2-3-6-1-9-8-5-4) (see Fig. 

4). 

 
Table 2. Pseudo code of CDABC_ver2 

1. Initialize all required parameters 

2. Generate SN food source as an initial population Xij 

3. Evaluate the initial population, set as f(Xi) 

4. Set iter = 1 

5. While iter =< Max.iter do 

 // Employed Bee Phase 

6.  For each food source (Xi), where i = 1 : SN 

7.   Set triali = 0 

8.   Select the search operator S from (PBX, 1PX,  

            OABX, and PABX) randomly 

9.  Select a food source Randi different from Xi,  

           GBest and LBest 

10.   If S = ‘OABX’ or S = ‘PABX’ 

12.   Set Ri = a // a is random number between 0  

                 and 1 

13.   If Ri < ½ 

14.    Set (Parent1, Parent2, Parent3) as (Xi,  

                      Randi, LBest) 

   Else  

15.    Set (Parent1, Parent2, Parent3) as (Xi,  

                       Randi, GBest) 

   End If 

  Else 

16.    Set (Parent1, Parent2) as (Xi, Randi) 

  End If 

17.  Produce a new neighbor solution EBi by S. Use  

           the selected parent set with S. 

18.  Evaluate its fitness value, set as f(EBi) 

19.  If f(EBi) < f(Xi) 

20.   Replace the old solution with new solution,  

                 Xi = EBi  

21.   Set triali = 0 

  Else 

22.   set triali = triali + 1 

  End If 

  // Probability Calculation Phase 

23.  Calculate the probability values Pi using  

           equation below: 

             𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑆𝑁
𝑗=1

 , where 𝑓𝑖𝑡𝑖 =

{

1

1+𝑓𝑖
𝑓𝑖 ≥ 0

1 + 𝑎𝑏𝑠(𝑓𝑖) 𝑓𝑖 < 0
 

  // Onlooker Bee Phase 

24.  If Pi > a random value in the range of [0,1] 

25.   Select the search operator S from (PBX,  

                 1PX, OABX, and PABX) randomly 

26.   Select a food source Randi different from    

                 Xi, GBest and LBest 

27.    If S = ‘OABX’ or S = ‘PABX’ 

28.    Set Ri = a // a is random number between  

                       0 and 1 

29.    If Ri < ½ 

30.     Set (Parent1, Parent2, Parent3) as  

                            (Xi, Randi, LBest) 

    Else  

31.     Set (Parent1, Parent2, Parent3) as  

                            (Xi, Randi, GBest) 

    End If 

   Else 

32.     Set (Parent1, Parent2) as (Xi, Randi) 

   End If 

33.   Produce a new neighbor solution EBi by S.  

                 Use the selected parent set with S. 

34.   Evaluate its fitness value, set as f(EBi) 

35.   If f(EBi) < f(Xi) 

36.    Replace the old solution with new  

                       solution, Xi = EBi  

37.         Set triali = 0 

   Else 

38.    Set triali = triali + 1 

   End If 

  End If 

  // Scout Bee Phase 

39.  If triali ≥ Max.trial 

40.   Generate new solution randomly, then set as  

                 SBi 

41.   Replace the older solution Xi = SBi  

  End If 

 End For  

42. Set iter = iter + 1 

    End While 

43. Memorize the best solution so far 

 

 

Parent 1 7 6 3 2 9 1 8 5 4 

Offspring 7 6 3 2 4 1 9 5 8 

Parent 2 3 2 4 6 1 7 9 5 8 

Figure. 5 1PX operator scheme 

3.2.1.2. IPX (one-point operator) 

One arbitrary point is selected from Parent 1 and 

splits Parent 1 into two job sequences. Jobs in the left-

hand sequence are copied from Parent 1 to offspring 

directly. The order of the jobs on the right is arranged 

according to the job position in parent 2. Fig. 5 

depicts an example of a 1PX operator, where the 

points between the fourth and fifth positions are 

randomly selected for the dividing point. 

3.2.1.3. OABX (occurrence adjacency-based operator) 

The first job on Parent 1 and copies to offspring. 

Then, at each step, the first successor job of 

previously copied jobs, which is not offspring, is 

selected from the respective parent. Fig. 6 illustrates 

an example of the OABX operator. The yellow cells 
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show each parent's selected occupation, green cells 

indicate the job copied in the previous step, and other 

color cells show the offspring's value set. 

 

 

Parent 1 7 6 3 2 9 1 8 5 4 

Parent 2 3 2 4 6 1 7 9 5 8 

Parent 3 1 3 6 4 9 8 2 5 7 

Offspring 7                 
          

Parent 1 7 6 3 2 9 1 8 5 4 

Parent 2 3 2 4 6 1 7 9 5 8 

Parent 3 1 3 6 4 9 8 2 5 7 

Offspring 7 9               
          

Parent 1 7 6 3 2 9 1 8 5 4 

Parent 2 3 2 4 6 1 7 9 5 8 

Parent 3 1 3 6 4 9 8 2 5 7 

Offspring 7 9 8             
          

Parent 1 7 6 3 2 9 1 8 5 4 

Parent 2 3 2 4 6 1 7 9 5 8 

Parent 3 1 3 6 4 9 8 2 5 7 

Offspring 7 9 8 5           
          

Parent 1 7 6 3 2 9 1 8 5 4 

Parent 2 3 2 4 6 1 7 9 5 8 

Parent 3 1 3 6 4 9 8 2 5 7 

Offspring 7 9 8 5 3         
          

Parent 1 7 6 3 2 9 1 8 5 4 

Parent 2 3 2 4 6 1 7 9 5 8 

Parent 3 1 3 6 4 9 8 2 5 7 

Offspring 7 9 8 5 3 6       
          

Parent 1 7 6 3 2 9 1 8 5 4 

Parent 2 3 2 4 6 1 7 9 5 8 

Parent 3 1 3 6 4 9 8 2 5 7 

Offspring 7 9 8 5 3 6 2     
          

Parent 1 7 6 3 2 9 1 8 5 4 

Parent 2 3 2 4 6 1 7 9 5 8 

Parent 3 1 3 6 4 9 8 2 5 7 

Offspring 7 9 8 5 3 6 2 4   
          

Parent 1 7 6 3 2 9 1 8 5 4 

Parent 2 3 2 4 6 1 7 9 5 8 

Parent 3 1 3 6 4 9 8 2 5 7 

Offspring 7 9 8 5 3 6 2 4 1 

Figure. 6 OABX operator scheme 

3.2.1.4. PABX (probability adjacency-based operator) 

Generally, the PABX's mechanism is similar to 

the OABX. However, this operator uses a 

probabilistic selection to determine the parent where 

the job will be copied. Three probability selections, 

i.e., 𝑝1; 𝑝2 ; and 𝑝3 , are predefined for each parent 

such that 𝑝1 + 𝑝2 + 𝑝3 = 1. At each selection step, 

the parent's determination is made based on this 

probability, and the offspring will inherit a job from 

the first successor of the selected parent. 

4. Result and discussion 

4.1 Parameter tuning 

The quality and effectiveness of algorithm are 

affected by parameter configuration. Therefore, to 

obtain optimal performance, these parameters must 

be adjusted. Taguchi's experimental design method 

was used to analyze the impacts of the whole set of 

parameters using a small number of experiments 

based on an extraordinary orthogonal array design. 

There are three control parameters considered for 

factor analysis to optimize CDABC performance: (1) 

population size, (2) number of maximum (limit) 

increase trials (3) selection probability of the PABX 

operator. Each parameter is categorized into five 

levels and summarized in Table 3. An orthogonal 

array 𝐿25(55) with two dummy factors was chosen as 

the experimental design. 

The signal-to-noise (S/N) ratio is used to analyze 

variations of CDABC performance in response to 

each set of parameters. The signal describes the 

desired impact of the yield, while the noise represents 

the undesired impact. Because the S / N ratio comes 

from the quadratic loss function, three examples are 

widely used which are (1) the nominal is best, (2) the 

smaller is better and (3) the bigger is better. In this 

study, the smaller the better it is used, because the 

objective function is a minimization. Then, the S / N 

ratio is calculated by: 

 
Table 3. Levels of parameter 

No Factor 
Level Factor 

1 2 3 4 5 

 1 
Population 

Size (SN)  
 50 100 150 200 250 

 2 

Max. Trial 

Number  

(Max trial) 

 25  50  75  100  125 

3 

Selection 

Probabilities  

(𝑝1, 𝑝2, 𝑝3) 

0.2; 

0.6; 

0.2 

0.6; 

0.2; 

0.2 

0.3; 

0.35; 

0.3 

0.2; 

0.2; 

0.6 

0.45; 

0.1; 

0.45 

Table 4. Response table of factors (SN, Max.Trial, SP) 
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SN Ratios Response Table 

Smaller is better 

Level SN Max.Trial SP 

1 -11,318 -9,728 -6,631 

2 -9,823 -8,513 -11,708 

3 -8,163 -8,933 -9,823 

4 -7,147 -9,599 -11,584 

5 -11,745 -11,422 -8,449 

Delta 4,597 2,909 5,077 

Rank 2 3 1 
 

 
𝑆

𝑁
= −10 log (

1

𝑛
∑ 𝑦𝑖

2𝑛
𝑖=1 )                  (7) 

 

where 𝑛  is the number of replication and 𝑦  is the 

output of the 𝑖th replication. 

In this study, five instances are selected based 

on each job size (50, 150, 250, 350) from benchmark 

sets, and five replications are done for each problem. 

The CPU time limit is selected as the secondary 

stopping criteria and set to 60 minutes. The best 

relative error (BRE) is taken as the output. Table 4 

shows that the SN-5, Max.Trial-5 and SP-2 give the 

smallest S/NR value, it means that these factors give 

the smallest BRE. Then, the row with rank values 

denotes the descending rank of factors due to 

descending Δ values. The results show that SP-1 is 

the factor that most influences the algorithm 

performance (BRE's value), followed by Max Trial-2 

and SN-4.  
 

Table 5. ANOVA for parameter tunning 

Analysis of Variance 

Source DF 

Seq 

SS 

Adj 

SS 

Adj 

MS 

F-

Value 

P-

Value 

  SN 4 7,850 7,850 1,9624 11,06 0,001 

 Max.Trial 4 3,517 3,517 0,8793 4,96 0,014 

  SP 4 10,215 10,215 2,5537 14,40 0,000 

Error 12 2,129 2,129 0,1774   

Total 24 23,711     
 

 

 
Figure. 7 Factor level patterns (SN, Max.Trial, SP) 

ANOVA analysis was also performed to measure 

the level of statistical significance of the effect of the 

factor on the outcome. Then the results are shown in 

Table 5. It can be reasoned that all factors have a 

measurably significant impact on the results with a 

95% confidence level. Since all p-values are less than 

0.05 and the residue is extensively small. In addition, 

the factor level pattern for each level is shown in Fig. 

7. Based on the maximum response rate obtained for 

each factor, the best configuration for the three 

control parameters is as follows:  𝑆𝑁 = 250 , 

𝑀𝑎𝑥. 𝑇𝑟𝑖𝑎𝑙 = 125  and 𝑝1, 𝑝2, 𝑝3 = (0.60, 0.20,
0.20). The parameter setting results show that bigger 

population and higher trial limit give better results. In 

addition, improved execution can be reached by using 

a higher selection probability for the third parent in 

the exploitation behaviour of proposed CDABC_ver2. 

4.2 Comparison algorithm and evaluation 

To analyze the proposed algorithm efficiency, the 

benchmark instances are solved. In this paper, we 

have selected the benchmark instances proposed by 

[27].  There are two considerations: 1) the instance 

set is explained in detail, and we could download it 

via http://soa.iti.es/rruiz, 2) the number of jobs up to 

350 and the number of machines up to 50; therefore, 

we get instances to vary widely. Regarding the 

number of jobs and machines, the following values 

are selected:  𝑛 = {50,150,250,350} , and the 

number of machines 𝑚 = {10,30,50}. The due dates 

are generated with a uniform distribution according 

to the tardiness factor (T) and the due date range (R). 

They proposed the following values: 𝑇 =
{0.2, 0.4, 0.6} and 𝑅 =  {0.2, 0.6, 1}. Vallada used a 

full factorial experiment with five replications in each 

combination, so there are 540 test problems related to 

the 𝑛, 𝑚, 𝑇, 𝑅 configurations described previously. 

This research has used taguchi experimental 

design to test the performance of the proposed 

algorithms. As we know, the number of experiments 

to be conducted under full factorial design is very 

high as many factors are to be examined. When the 

number of factors increases, it becomes laborious and 

complex. To overcome this, Taguchi suggested 

experimental design using an orthonal array. We can 

perform the more factors with lesser  number of 

experiments, so that costs and time can be saved   

[28]. 

Based on the Vallada configuration described in 

the benchmark instances. We have chosen the 

following configuration for the experimental Taguchi 

design: 𝑇 = (0.2, 0.4, 0.6) , 𝑅 = (0.2, 0.6, 1.0) , 𝑛 =
(50, 150, 250), and 𝑚 = (10, 30, 50).  We have 4 

factors and each of them has 3 levels, then an 𝐿9(32)  
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Table 6. BRE and ARE value of the proposed algorithms 

Experiment 

Number  

Instance Test Problem 

T | R | n | m | 

replication 

C* 

CDABC_ver1 CDABC_ver2 

 
BRE ARE BRE ARE 

1 I_0,2_0,2_50_10 

0,2_0,2_50_10_1 14820 0,974 1,004 1,069 1,106 

0,2_0,2_50_10_2 14175 1,004 1,054 1,004 1,048 

0,2_0,2_50_10_3 15146 0,830 0,961 0,971 0,992 

0,2_0,2_50_10_4 14844 0,986 1,046 0,937 1,062 

0,2_0,2_50_10_5 18050 0,514 0,619 0,557 0,599 

2 I_0,2_0,6_150_30 

0,2_0,6_150_30_1 62638 1,598 1,612 1,498 1,506 

0,2_0,6_150_30_2 66167 1,202 1,283 1,217 1,220 

0,2_0,6_150_30_3 85190 1,216 1,234 1,176 1,205 

0,2_0,6_150_30_4 79305 0,974 0,997 0,919 0,946 

0,2_0,6_150_30_5 328471 -0,483 -0,475 -0,471 -0,468 

3 I_0,2_1_250_50 

0,2_1_250_50_1 Unknown -1,000 -1,000 -1,000 -1,000 

0,2_1_250_50_2 Unknown -1,000 -1,000 -1,000 -1,000 

0,2_1_250_50_3 Unknown -1,000 -1,000 -1,000 -1,000 

0,2_1_250_50_4 Unknown -1,000 -1,000 -1,000 -1,000 

0,2_1_250_50_5 Unknown -1,000 -1,000 -1,000 -1,000 

 

4 

 

I_0,4_0,2_150_50 

0,4_0,2_150_50_1 Unknown -1,000 -1,000 -1,000 -1,000 

0,4_0,2_150_50_2 Unknown -1,000 -1,000 -1,000 -1,000 

0,4_0,2_150_50_3 Unknown -1,000 -1,000 -1,000 -1,000 

0,4_0,2_150_50_4 Unknown -1,000 -1,000 -1,000 -1,000 

0,4_0,2_150_50_5 Unknown -1,000 -1,000 -1,000 -1,000 

5 I_0,4_0,6_250_10 

0,4_0,6_250_10_1 930579 -0,589 -0,588 -0,586 -0,585 

0,4_0,6_250_10_2 822150 -0,511 -0,507 -0,507 -0,497 

0,4_0,6_250_10_3 945230 -0,596 -0,596 -0,594 -0,594 

0,4_0,6_250_10_4 239158 0,663 0,667 0,698 0,764 

0,4_0,6_250_10_5 269043 0,439 0,455 0,432 0,437 

6 
I_0,4_1_50_30 

 

0,4_1_50_30_1 96254 -0,201 -0,172 -0,174 -0,163 

0,4_1_50_30_2 99089 -0,264 -0,241 -0,241 -0,227 

0,4_1_50_30_3 67972 -0,073 -0,069 -0,063 -0,055 

0,4_1_50_30_4 70799 0,012 0,022 -0,023 0,018 

0,4_1_50_30_5 62145 -0,052 0,005 -0,007 0,044 

7 I_0,6_0,2_250_30 

0,6_0,2_250_30_1 Unknown -0,999 -0,999 -0,999 -0,999 

0,6_0,2_250_30_2 Unknown -0,999 -0,999 -0,999 -0,999 

0,6_0,2_250_30_3 Unknown -0,999 -0,999 -0,999 -0,999 

0,6_0,2_250_30_4 Unknown -0,999 -0,999 -0,999 -0,999 

0,6_0,2_250_30_5 Unknown -0,999 -0,999 -0,999 -0,999 

8 I_0,6_0,6_50_50 

0,6_0,6_50_50_1 166159 -0,024 -0,017 -0,069 -0,062 

0,6_0,6_50_50_2 163556 -0,064 -0,059 -0,075 -0,063 

0,6_0,6_50_50_3 158970 -0,034 -0,015 -0,058 -0,029 

0,6_0,6_50_50_4 155808 -0,070 -0,055 -0,063 -0,042 

0,6_0,6_50_50_5 165306 -0,052 -0,040 -0,068 -0,064 

9 I_0,6_1_150_10 

0,6_1_150_10_1 188782 0,157 0,181 0,162 0,166 

0,6_1_150_10_2 158740 0,234 0,263 0,146 0,223 

0,6_1_150_10_3 458305 -0,497 -0,494 -0,501 -0,497 

0,6_1_150_10_4 411084 -0,584 -0,570 -0,573 -0,569 

0,6_1_150_10_5 450930 -0,533 -0,526 -0,518 -0,513 

   Average -0,196 -0,178 -0,195 -0,180 
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orthogonal array (OA) is most suitable for 

experimental design. This OA assumes that there is 

no interaction between any two factors. There are 

totally nine experiments to be conducted and five 

replications in each experiment. In total, we only 

need 45 of the 540 test problems in Vallada’s 

benchmark instances. 

Each test problem is solved using an exact model, 

dispatching rules and heuristic algorithms, and 

proposed algorithms. All algorithms are coded in 

MATLAB R2014a and run on a computer with Intel 

Core i3-6006U CPU at 2.0 GHz, 8Gb RAM, and 1TB 

HDD in Windows 7 system. Meanwhile, the solution 

of the PFSP mathematical model using an exact 

algorithm will be obtained by using LINGO solver. 

PFSP problem is an NP-hard optimization problem. 

LINGO software is not able to solve large-scale 

problems in an acceptable time. To get a fair 

performance comparison between exact and heuristic 

algorithms, the computation time to solve each 

instance is equal to 60 minutes. The algorithm 

parameters are determined based on the results of the 

previous tuning parameters, i.e. 𝑆𝑁 = 250 , 

𝑀𝑎𝑥. 𝑇𝑟𝑖𝑎𝑙 = 125  and 𝑝1, 𝑝2, 𝑝3 = (0.60, 0.20,
0.20). 

The best objective of the mathematical model 

solution obtained from the LINGO software (C*) are 

shown in Table 6. We compared the relative error of 

the two proposed algorithms in Table 6. BRE 

represents the mean of the relative error to C*. Then, 

ARE represents the mean of the average relative error 

to C*. BRE and ARE are defined: 

 

𝐵𝑅𝐸 =
𝐻𝑒𝑢𝑏𝑒𝑠𝑡−𝐵𝑒𝑠𝑡𝑘𝑛𝑜𝑤𝑛

𝐵𝑒𝑠𝑡𝑘𝑛𝑜𝑤𝑛
                   (8) 

 

𝑅𝐸 = ∑ [
𝐻𝑒𝑢𝑖−𝐵𝑒𝑠𝑡𝑘𝑛𝑜𝑤

𝐵𝑒𝑠𝑡𝑘𝑛𝑜𝑤
×

1

𝑛
]𝑛

𝑖=1                (9) 

 

From Table 6, we can see running for 60 minutes 

with LINGO software on experiments 3, 4, and 7 (the 

combination of the number of jobs and machines are 

250 and 50, 150 and 50, 250 and 30), then the solution 

is still unknown. The mean BRE and ARE values for 

the whole experiment between CDABC_ver1 and 

CDABC_ver2 are only different by 0.001 and 0.002, 

respectively. Therefore, we can conclude that the 

performance of the two algorithms is almost the same. 

The computing result in Table 7 and Fig. 8 show 

that the number of machines m (Delta 52.278, Rank 

= 1) has the largest effect on the S/N ratio, followed 

by number of jobs n (Delta 48.735, Rank = 2), then 

followed by due date range R, and tardiness factor T. 

Besides, the Table 7 indicates that the number of 

machine m has the largest effect on the signal-to- 
 

Table 7. Response table of factors (T, R, n, m) 
a) SN Ratios Response Table (CDABC_ver1) 

Smaller is better 

Level T R n m 

1 32,549 49,013 6,962 6,882 

2 31,391 6,271 29,627 26,235 

3 28,612 37,268 55,963 59,435 

Delta 3,937 42,743 49,001 52,553 

Rank 4 3 2 1 

b) SN Ratios Response Table (CDABC_ver2) 

Smaller is better 

Level T R n m 

1 31,914 48,519 6,564 6,518 

2 30,909 6,015 29,349 25,898 

3 28,390 36,679 55,299 58,796 

Delta 3,525 42,504 48,735 52,278 

Rank 4 3 2 1 
 

 

 
Figure. 8 Factor level trends (T, R, n, m) 

 
Table 8. ANOVA for normalized BRE in different 

problem size 
a) Analysis of Variance (CDABC_ver1) 

Source DF Seq SS Adj SS Adj MS 

F-

Value 

P-

Value 

  T 2 0,6761 0,6761 0,33807 16,44 0,000 

  R 2 0,6529 0,6529 0,32643 15,88 0,000 

  N 2 1,0001 1,0001 0,50003 24,32 0,000 

  M 2 0,8524 0,8524 0,42620 20,73 0,000 

Error 36 0,7403 0,7403 0,02056     

Total 44 3,9217         

b) Analysis of Variance (CDABC_ver2) 

Source DF Seq SS Adj SS Adj MS 

F-

Value 

P-

Value 

  T 2 0,7449 0,7449 0,37244 17,64 0,000 

  R 2 0,6621 0,6621 0,33104 15,68 0,000 

  N 2 1,1000 1,1000 0,55002 26,05 0,000 

  M 2 0,9568 0,9568 0,47839 22,66 0,000 

Error 36 0,7601 0,7601 0,02112     

Total 44 4,2239         
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Table 9. Result of comparison between proposed CDABC, dispatching rules, and heuristic algorithms 

s instances BRE 
SPT  

[21] 

EDD  

[21] 

LPT 

[21] 

Palmer 

[23] 

Gupta 

[24] 

NEH 

[25] 
DABC_ver1  DABC_ver2  

1 I_0,2_0,2_50_10 

Mean (%) 1,974 1,179 1,575 1,423 1,633 1,024 0,862 0,908 

Max (%) 2,266 1,337 1,935 1,674 1,784 1,182 1,004 1,069 

Best (%) 1,502 0,958 1,070 0,887 1,217 0,578 0,514 0,557 

2 I_0,4_1_50_30 

Mean (%) 4,201 0,896 3,869 3,561 3,793 ∞ 0,901 0,868 

Max (%) 6,420 1,511 5,347 5,607 5,452 ∞ 1,598 1,498 

Best (%) 0,335 -0,469 0,264 0,229 0,318 ∞ -0,483 -0,471 

3 I_0,6_0,6_50_50 

Mean (%) -0,999 -1,000 -0,999 -0,999 -0,999 ∞ -1,000 -1,000 

Max (%) -0,999 -1,000 -0,999 -0,999 -0,999 ∞ -1,000 -1,000 

Best (%) -0,999 -1,000 -0,999 -0,999 -0,999 ∞ -1,000 -1,000 

4 I_0,6_1_150_10 

Mean (%) -0,999 -1,000 -0,999 -1,000 -0,999 ∞ -1,000 -1,000 

Max (%) -0,999 -1,000 -0,999 -0,999 -0,999 ∞ -1,000 -1,000 

Best (%) -0,999 -1,000 -0,999 -1,000 -0,999 ∞ -1,000 -1,000 

5 I_0,2_0,6_150_30 

Mean (%) 1,312 -0,106 1,237 1,084 1,253 ∞ -0,119 -0,111 

Max (%) 3,070 0,698 3,401 2,969 3,265 ∞ 0,663 0,698 

Best (%) 0,125 -0,594 -0,018 -0,030 0,028 ∞ -0,596 -0,594 

6 I_0,4_0,2_150_50 

Mean (%) 0,158 -0,008 0,265 0,103 0,225 -0,258 -0,116 -0,101 

Max (%) 0,318 0,109 0,484 0,283 0,510 -0,162 0,012 -0,007 

Best (%) -0,053 -0,107 -0,015 -0,106 -0,061 -0,381 -0,264 -0,241 

7 I_0,4_0,6_250_10 

Mean (%) -0,999 -0,999 -0,999 -0,999 -0,999 ∞ -0,999 -0,999 

Max (%) -0,999 -0,999 -0,999 -0,999 -0,999 ∞ -0,999 -0,999 

Best (%) -0,999 -0,999 -0,999 -0,999 -0,999 ∞ -0,999 -0,999 

8 I_0,6_0,2_250_30 

Mean (%) -0,045 0,042 0,030 -0,032 0,030 -0,145 -0,049 -0,067 

Max (%) -0,019 0,091 0,049 -0,013 0,049 -0,116 -0,024 -0,058 

Best (%) -0,083 0,018 0,004 -0,049 0,004 -0,171 -0,070 -0,075 

9 I_0,2_1_250_50 

Mean (%) 0,580 -0,215 0,759 0,560 0,697 ∞ -0,245 -0,257 

Max (%) 1,744 0,277 1,844 1,820 1,752 ∞ 0,234 0,162 

Best (%) -0,054 -0,557 0,036 -0,126 0,031 ∞ -0,584 -0,573 

 

noise ratio. On average, experimental runs with 

number of machines in level 3 had much higher 

signal-to-noise ratios than the other at different levels. 

The tardiness factor had a small effect or no effect on 

the signal-to-noise ratio.  

Based on ANOVA output in Table 8, it can be 

seen that all the selected factors significantly affect 

the BRE value. This can be seen by comparing the F-

ratio using alpha 5%. From the F table, 𝐹0,05;2;9 =
4,256 is much smaller than the calculated F-ratio of 

each factor. In addition, Sig. value at P-value = 0.000 

across all factors. Thus, at the real level = 0.05, we 

reject Ho. It means that the problem complexity has 

a significant effect on the quality of the resulting 

solution (based on the normalized BRE value). 

Our proposed algorithms are compared with 

some dispatching rules such as SPT, EDD, and LPT. 

In addition, we compared the solution with several 

heuristic algorithms such as Palmer, Gupta and NEH. 

Any best feasible solutions are generated by each 

algorithm. It will be compared with the optimal 

solution which is obtained from the mathematical 

model. So that the mean, max, and best value of BRE 

are obtained (see Table 9).  

Furthermore, we performed the Kruskal Wallis H 

test to compare the quality of the solutions solved by 

each algorithm. The Kruskal Wallis test is a ranking-

based nonparametric test whose objective is to 

determine whether there is a significant difference 

between two or more independent variables on the 

dependent variable on the numerical data scale 

(interval/ratio) or ordinal scale. The Kruskall Wallis 

H value is indicated by the H-value of 15.68 on DF 7 

with a P-value of 0.028, which is smaller than the 

critical limit of 0.05 so that the hypothesis decision is 

to accept H1 or which means that each method 

makesa significant difference to the quality of the 

resulting solution (best value of BRE). 

The Kruskall Wallis value for TIES is also not 

much different, 15.69 on DF 7 with a P-value of 

0.028 (see Table 10), which is still smaller than the 

critical limit of 0.05. It means that the two algorithms  
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Table 10. Kruskall Wallis H test for comparing result 

Wallis H Test 

Null hypothesis H₀: All medians are equal 

Alternative 

hypothesis 

H₁: At least one median is 

different 

Method DF H-Value 
P-

Value 

Not adjusted 

forties 
7 15,68 0,028 

Adjusted forties 7 15,69 0,028 

 

 
Figure. 9 Histogram of BRE’s best value 

 

can provide the best solution from other algorithms. 

Furthermore, it is known that the two proposed 

algorithms have the largest negative mean of BRE's 

best value, each of -0.1959 for CDABC_ver1 and -

0.1954 for CDABC_ver2 (see Fig. 9). It means that 

the two algorithms can provide the best solution from 

other algorithms. 

5. Conclusion 

In this paper, we consider the permutation flow 

shop scheduling problem by minimizing total 

earliness and tardiness. We propose two versions of 

the Crossbreed Discrete Artificial Bee Colony 

(CDABC). Several computational experiments using 

benchmark instances have been carried out to prove 

the performance of the proposed algorithms. This 

research has used taguchi experimental design to test 

the performance of the proposed algorithms. We can 

perform with lesser number of experiments, so that 

cost and time can be saved. The statistical test results 

show that the proposed algorithms have the largest 

negative mean of BRE’s value, each of -0.1959 for 

CDABC_ver1 and -0.1954 for CDABC_ver2. It 

means that the proposed algorithms perform 

significantly better than other algorithms. The results 

of the Kruskal Wallis H test show that the proposed 

algorithm has better performance than some 

dispatching rules and heuristic algorithms. 

Furthermore, the proposed algorithms can deliver 

better results in less time than mathematical model 

solution. Therefore, future research can be directed to 

comparisons with several metaheuristic algorithms 

developed by other researchers. The proposed 

algorithms are modified to solve the permutation 

flow shop scheduling problem with other objective 

functions such as makespan, mean flow time, and 

maximum tardiness. 
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