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Abstract: This paper addresses the design of synergetic control (SC) for synchronizing two chaos systems 

represented by Takagi-Sugeno (T-S) fuzzy models. Unlike many works published, the present paper provides a new 

synchronization algorithm of two different hyperchaotic systems which corroborate the given analytical stability 

proof of the closed-loop systems. The main idea is to represent the chaos systems as an aggregated fuzzy model 

which compromises a set of linear models in the first place. Afterwards, the synergistic controller is applied to 

synchronize a nonlinear hyperchaotic (slave) system with another hyperchaotic (master) system. The proposed 

approach achieves hyperchaos synchronization such that it has a simple structure leading to an easy implementation. 

Then, theoretical analysis and numerical simulation results are compared to those obtained with a conventional 

sliding mode (SMC) approach clearly showing the effectiveness of the proposed strategy. 

Keywords: Chaos, Synchronization, Hyperchaos systems, T-S fuzzy modelling, Synergetic control, Fuzzy 

synergetic controller. 

 

 

1. Introduction 

Chaos control and chaos analysis as well as 

chaotification in dynamical systems have received 

increasing attention from research communities and 

have been studied extensively. Recently, chaotic 

systems with higher dimensional attractors called 

hyperchaotic systems have a broad spectrum of 

applications in the fields of chemical, electrical 

engineering, computer and information processing 

[1-5], etc. Moreover, hyperchaotic synchronization 

has been the subject of strong and fervent attention 

from the above fields. 

Hyperchaotic synchronization is based on the 

concept of closeness of the frequencies between two 

hyperchaotic systems that one is a master or drive 

system and the other one is a slave or response 

system. This process is realized by the development 

of adequate control laws ensuring asymptotically 

zero error between master and slave systems states.  

Since the discovery of hyperchaotic 

synchronization, various control techniques and 

methods have been proposed, such as passive [6], 

nonlinear feedback [7], adaptive [8], backstepping 

[9] and sliding mode [10]. In most of these 

approaches were not used to synchronize two 

different hyperchaotic systems due to their different 

structures and parameter mismatched. However, a 

fuzzy modeling approach based on synergetic 

control theory has been developed for hyperchaotic 

synchronization to overcome the above problem. 

Recently, fuzzy control techniques have been 

widely and successfully used in modeling and 

control of nonlinear systems [11-13]. Especially, 

Takagi-Sugeno (T-S) fuzzy model [13-17] has been 

a popular choice in industrial processes due to its 

ability to represent the nonlinear system without 

complex mathematical equations.  

The T-S fuzzy model provides a suitable 

framework for modeling by decomposition of a 
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nonlinear system into a collection of local linear 

models. The individual consequents are linear 

systems which can be analyzed by using the 

standard tools of linear systems theory. Indeed, the 

design of robust control methodologies which use 

fuzzy system techniques is being steadily more 

researched and extended, such as the integration of 

fuzzy sets and synergetic control (SC) can produce 

enhanced performances [11, 18, 19] resulting from 

the combination of the advantages of both 

techniques. The SC is a most propitious approach 

based on the invariance feature found in sliding 

mode control (SMC), yet devoid of its short coming: 

inherent chattering. Its robustness and its ease in 

implementation have put forth this fairly new 

control approach. 

In this paper, T-S fuzzy approach is used to 

present the desired dynamic characteristics of two 

different hyperchaotic systems. Then, the design of 

a fuzzy synergetic controller to synchronize the 

nonlinear systems obtained through the T-S fuzzy 

technique is undertaken and stability conditions are 

given. The performance of the newly designed 

controller is evaluated on the synchronization of 

hyperchaotic Lu and hyperchaotic Lorenz systems in 

comparison with the sliding mode control approach. 

2. T-S fuzzy modeling of hyperchaotic 

systems 

The T-S fuzzy modeling consists of determining 

validity regions and the corresponding local affine 

models, so that the overall nonlinear behavior of the 

system can be appropriately described by fuzzy 

merging of these models. Fuzzy dynamic model is 

described by fuzzy if-then rules and will be 

employed here to deal with the control design 

problem for the hyperchaotic system. In this section, 

an application example based on hyperchaotic Lu 

system is given to illustrate the effectiveness and 

advantages of the T-S fuzzy modeling method. 

Now, Consider the hyperchaotic Lu system [20, 

21] of the form: 
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Where y1, y2, y3 and y4 are the state variables and 

a, b, c and r are real system parameters.  

The system Eq. (1) exhibits hyperchaotic 

behavior [20, 21] when the parameter values are: 

a=36, b=3, c=20 and -0,35≤ r ≤ 1,3. Assume that 

y1(t) ϵ [-β β] and β > 0, then, the dynamic fuzzy 

model suitable to the system Eq. (1) can be 

described as follows: 

 
Rule1:If y

1
(t) is ξ1, Then ẏ(t)=A1 y(t)

Rule2:If y
1
(t) is ξ2, Then ẏ(t)=A2 y(t)

       (2) 

 

Where ξi (i=1,2) are the fuzzy sets and ỷ(t) =Ai 

y(t) is the output from the ith If-Then rules. So, the 

final output of the fuzzy model of the hyperchaotic 

system Eq. (1) is inferred as follows: 

 

ẏ(t)=∑ ξi(y1
) Ai y(t)

2
i=1                    (3) 

 

Where: 

 

A1= [

-a

0

a

c
0 1
-β 0

0 β b 0

0 0 β r

] , ξ1=0.5+
y

1
(t)
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and 

 

A2= [

-a

0

a

c
0 1
β 0

0 -β b 0

0 0 -β r

] , ξ2=0.5-
y

1
(t)

2β
 

 

The following numerical simulations are carried 

to verify that fuzzy system Eq. (3) indeed has a 

hyperchaotic behavior. 

System responses depicted in Fig. 1 are identical 

to results obtained and discussed in [20-21]. So, for 

any region of interest, hyperchaotic Lu system Eq. 

(1) can be modeled exactly by the fuzzy system Eq. 

(3). 

3. T-S fuzzy synergetic synchronization of 

hyperchaotic systems 

Synergetic control (SC) theory offers a control 

framework based on a theory conceived to control 

non-linear dynamical processes. The SC techniques 

[11, 18, 19, 22] can provide a kind of continuous 

control law, for driving the system states to 

regions/sets of attraction that correspond to the 

control purposes, and 60 then force the trajectories 

to stay on those regions. Some of basic SC concepts 

will be reviewed here before the proposed T-S fuzzy 

synergetic control scheme is introduced. First, 

consider the linear controllable system. 

 

ẋ(t)=A x(t)+B u(t)    (4) 
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(a)                                                                                          (b) 

             
(c)                                                                                           (d) 

Figure. 1 Typical dynamic behaviors of fuzzy system (3). Hyperchaotic attractors of the system: (a) in the space y1, y2, y3 , 

(b) in the plane y1, y3, (c) in the plane y1, y4, and (d) in the plane y2, y3 

 

Where xϵ ℜnx1 is system state, A ϵ ℜnxn and B ϵ 

ℜnxr are constant matrices and u ϵ ℜnx1 is the 

synergetic control to be designed. Basically, The SC 

synthesis begins by defining a designer chosen 

macro-variable that need to be zero. The macro-

variable is function of system variables which can 

be defined as: 

 

σ(x)=κ(x-y
d
)                           (5) 

 

Where yd =[y1d y2d … ynd] ϵ ℜnx1 is the desired 

output signal and is a constant matrix to be 

determined.  

Hence, to attain the control purposes, attractor is 

introduced where the macro-variable Eq. (5) is equal 

to zero. The SC gives an equation which can be used 

for creating dynamical system with attractor at σ=0 

which can be stated as:  

 

σ̇+τ σ=0                τ>0                       (6) 
 

Using Eq. (5) to solve the system Eq. (4) with 

the evolution condition Eq. (6), then one can have: 

 

κ A x(t)+κ B u(t)=-τ σ+κ ẏ
d
                 (7) 

 

The resulting synergetic control law can be 

expressed as: 
 

 u(t)=-(κ B)-1[κ A x(t)+τ σ - κẏ
d
],   (κB)≠0     (8) 

 

Next, synergetic controller design procedure for 

the synchronization of hyperchaotic systems is 

presented. Choose controlled Lu hyperchaotic 

system as drive system and considered Lorenz 

hyperchaotic system as a response system which has 

the following fuzzy model [23]. 

 

ẋ(t)=∑ ξi
'2

i=1 (x1)Ai
'  x(t)                     (9) 

 

The following structure of fuzzy rules is used to 

provide the synergetic control law which 

synchronize the two hyperchaotic systems. 
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Rule1:if y
1
(t) is ξ1 and x1(t) is ξ1

'
,                            

Then ẏ(t)=A1y(t)+B1u1(t) and

u1(t)=-(κB1)
-1[κA1y(t)+τ1σ-κA1

' x(t)]

Rule2:if y
1
(t) is ξ2 and x1(t) is ξ2

'
,                            

Then ẏ(t)=A2y(t)+B2u2(t) and

u2(t)=-(κB2)
-1[κA2y(t)+τ2σ-κA2

' x(t)]

 

(10) 

 

Thus, the general fuzzy model and the overall 

controller can be represented by 

 

ẏ(t)=∑ ξi(y1
) Ai y(t)

2
i=1 +∑ ξi(y1

) Bi u(t)
2
i=1  (11) 

 

u(t)=∑ ξi(yi
) ui(t)

2
i=1 -κ∑ Fi (xi)Ai

'  x(t)2
i=1      (12) 

 
Where: 

 

ui(t)=-(κBi)
-1[κAi y(t)+τiσ]              (13) 

 

By using the Lyapunov stability analysis, the 

following theorems for the stabilization and the 

synchronization of the hyperchaotic systems are 

verified. 

3.1 Theorem 1 

Consider the synchronization problem of the 

hyperchaotic Lorenz system [23] and the 

hyperchaotic Lu system (1), if the fuzzy SC action 

(13) is used and κBi = κBj= κB for i ≠ j, then the drive 

and response systems are asymptotically 

synchronized.  

3.2 Proof 

Let the Lyapunov function candidate be  

Z=0,5σTσ.   Therefore, 

 

Ż=σTσ̇=σT κ(ẏ - ẋ)                     (14) 

 

Substituting Eq. (11) into Eq. (14) yields 

 

Ż=σTκ(∑ ξi(y1
) Ai y(t)                         

2
i=1

+κ∑ ξi(y1
) Bi u(t)

2
i=1 -ẋ)

  (15) 

 

Then, using Eq. (12) and substituting the 

conditions of the theorem 1 into Eq. (15) yields 
 

Ż=σTκ(∑ ξi(y1
) Ai y(t)+κB∑ ξi(y1

)  ui(t)
2
i=1 )2

i=1   

≤-2∑ ξi(y1
)  τi Z(t) ≤ 02

i=1               (16) 

 

Since for (κB)-1≠ 0, ξi (y1) > 0
 
and τi > 0, then (16) 

indicates that the stats xi of the response system and 

the stats yi of drive system are synchronized 

asymptotically. 

4. Robustness analysis 

Next, the robustness of the proposed fuzzy 

synergetic control strategy is improved when the 

above theorem conditions κBi = κBj = κB for for i≠j 

are not easily applicable. 

4.1 Theorem 2 

Consider the synchronization problem of the 

hyperchaotic Lorenz system [23] and the 

hyperchaotic Lu system Eq. (1), if the fuzzy SC 

action Eq. (13) is redesigned as: 

 

ui(t)=uk(t)                                              

=-(κBk)
-1[κ Ak y(t)+τk σ- κ ẋ]

   (17) 

k={i:max[ξ1,…,ξi,…,ξr]}                                  

 
Where uk(t)

 
is the dominant control law in the 

fuzzy rules Eq. (10) and the control 
k satisfying: 

 

τk>τi                                (18) 

 

Where : 

 

τi =
‖κAi-κBi(κBk)

-1κAk‖

‖κ‖Q
min
(κBi(κBk)

-1+(κBi(κBk)
-1)T)

>0 

 

Then the two hyperchaotic systems are 

synchronized asymptotically. 

4.2 Proof 

Let’s consider Lyapunov function candidate: 
Z=0.5 σTσ, whose time derivative leads to: 

 

Ż=σTσ̇                                 (19) 

 

Then,  

 

Ż=σTκ(∑ ξi(y1
)Ai

2
i=1 y(t)+∑ ξi(y1

)Bi u(t)
2
i=1

-∑ ξi
'(xi)Ai

'  x(t)2
i=1 )

  

 
 =σT(∑ ξi(y1

)Ai
2
i=1 y(t)-∑ ξi(y1

)κBi        
2
i=1

((κBk)
-1[κAky(t)+τkσ]))

 (20) 

   =∑ ξi(y1
)σT ((κAi-κBi(κBk)

-1κAk)y(t)
2
i=1   

                                                    -κBi(κBk)
-1 τ

k 
σ)    
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Let Qmin > 0 denote the smallest eigenvalue of the 

matrix ((κBi (κBk)-1)T + (κBi (κBk)-1). Then, the 

minimization of Ż can be obtained as: 

 

Ż≤ -∑ ξi(y1
) ‖y(t)‖ (Q

min
(κBi(κBk)

-1)
T             2

i=1

+κBi(κBk)
-1 τk‖κ‖-‖κAi-κBi(κBk)

-1 κAk‖)‖σ‖ 
  

    ≤0                  (21) 

 

Where the gain condition Eq. (18) has been 

applied. Since Ż ≤ 0 it can be concluded that the 

asymptotical synchronization and the global stability 

are guaranteed. 

5. Type-style and fonts simulation result 

In this section, an application example based on 

the hyperchaotic Lorenz system is given to illustrate 

the effectiveness and advantages of the proposed 

method. The simplified schematic diagram of the 

proposed synchronization method and the 

interconnection of the techniques used are illustrated 

in Fig. 2. 

The fuzzy model of hyperchaotic Lu system is 

obtained by linearizing the nonlinear Eq. (1) over 

two operation points as given in section 2. In this 

paper, the hyperchaotic Lorenz system has the 

following form [23]: 

 

{

ẋ1=a' (x2-x1)                   
ẋ2= b' x1-x2- x1x3+x4       
ẋ3= c' x1+x1x2                 

ẋ4= k1x1+ k2x2                

              (22) 

 
Where x1, x2, x3 and x4 are the state variables and 

a', b', c', k1 and k2 are constant parameters. The 

system Eq. (22) exhibits hyperchaotic behavior 

when the parameter values are [23]: a'=10, b'=28, 

c'=8/3 , k1=-9.3 and k2=1.  

The T-S fuzzy model for the hyperchaotic 

Lorenz system Eq. (22) is introduced in [24]. 

Where: 

 

A1
' = [

-a'

b'

a'

-1

0 0

-α 1
-c' α 0 0
k1 k2 0 0

] ,ξ1
'
=

1

2
(1+

x1(t)

2α
) 

 

And 

  

 A2
' = [

-a'

b'

a'

-1

0 0

α 1
-c' - α 0 0
k1 k2 0 0

] , ξ2
'
=

1

2
(1-

x1(t)

2α
) 

 
Figure. 2 Overall scheme of the fuzzy synergetic 

controller for synchronization of hyperchaotic systems  

 

 
Figure. 3 Trajectories of the drive system y1 and the 

response system x1 

 

To obtain an effective fuzzy synergetic 

synchronization between the above hyper-chaotic 

systems; the control gain is chosen to be τk = 9 which 

is greater than all. Also Qmin > 0 is satisfied for all i

and k.  

Firstly, hyperchaotic Lu system is regarded as a 

drive system, the initial conditions of the drive and 

response systems are selected as x(0) = y(0) = [-1 1 -

0.1 0.1].  

The simulation results of the proposed 

synchronization algorithm are provided in 

comparison with the results of the SMC method [25] 

and time trajectories of the synchronization state 

systems are shown in Fig. 6 to 9. The controller is 

off for t < 6s and is on for t ≥ 6s. 

Obviously, the dynamics of synchronization 

variable states between hyperchaotic Lu system (yi, 
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Figure. 4 Trajectories of the drive system y2 and the 

response system x2 

 

 
Figure. 5 Trajectories of the drive system y3 and the 

response system x3 

 

 
Figure. 6 Trajectories of the drive system y4 and the 

response system x4 

 
Figure. 7 Trajectories of the drive system x1 and the 

response system y1 

 

 
Figure. 8 Trajectories of the drive system x2 and the 

response system y2 

 

 
Figure. 9 Trajectories of the drive system x3 and the 

response system y3 

 

drive system) and hyperchaotic Lorenz system (xi, 

response system) are indeed achieved with chaos 

synchronization. It is obtained from zoomed time 

windows in Fig. 6 to 9 that the FSC method 

provides a faster and more accurate convergence to 

the master states compared to the other method. 

Secondly, hyperchaotic Lorenz system is 

regarded as a drive system, the initial conditions of 

the drive and response systems are selected as 

x(0)=y(0)=[5 8 -1 -2]. 

Numerical simulation results are shown in Fig. 

10 to 13, which shows that the proposed method is 

successful in synchronizing the two systems 

compared with the results of the SMC method. 
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Figure. 10 Trajectories of the drive system x4 and the 

response system y4 

6. Conclusion 

The objective for this investigation was to 

propose a robust controller for synchronization of 

hyperchaotic systems based on synergetic control 

theory combined with Takagi–Sugeno fuzzy model 

properties, which is carried out through numerical 

simulations. Furthermore, a Lyapunov based 

synthesis method was developed to ensure the 

asymptotic synchronization and stability of the 

general fuzzy models. Hyperchaotic Lu and 

hyperchaotic Lorenz systems was used to illustrate 

the performance of the proposed control strategy. 

Simulation results show the effectiveness and the 

robustness of the proposed approach in chaos 

synchronization problem comparatively to other 

considered controllers. For future work, the 

proposed scheme should be used for an efficient 

synchronization or anti-synchronization of more 

types of hyperchaotic systems. 
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