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Abstract: More than seventy million protein sequences exist now, with just around 1% of their functions known. 

Multi-domain protein prediction is one of the problems in the Bioinformatics field, which was conducted to find the 

function of proteins. As a result, the researchers attempt to develop algorithms that predict protein functions based on 

their sequences. We might think of the tremendous rise in sequencing and structural genomics as providing us with a 

lot of data to expose the complicated sequence, structure, and functional correlations that exist in proteins. However, 

because of the critical functions that these macromolecules perform in biological mechanisms, acquiring a thorough 

understanding of their activity has recently emerged as a major challenge. Furthermore, multi-domain protein 

function prediction approaches are more efficient than methods that are fully processed based on protein sequencing. 

In this research, we used a model for predicting multi-domain protein function using a Fuzzy Convolutional Neural 

Network. In this research, we used a novel hybrid CNN and Fuzzy for sequence labelling, specifically to predict the 

function of the protein. Our hybrid model managed to outperform recent previous studies in terms of accuracy 

(95.02%) and performance on the UniProtKB dataset, and they showed significant improvements, in the execution 

time spent in the prediction process. It's crucial to keep your attention on this strategy. Further, study will be needed. 

Keywords: FCNN, Protein function, Multi-domain proteins, Function prediction, UniProtKB. 

 

 

1. Introduction 

Proteins are macromolecules that have a 

complicated structure made up of 20 distinct types 

of amino acids and are essential for cellular survival. 

Protein structure is important in cell biology, 

pharmacology, molecular biology, and medical 

science because protein function is strongly 

connected to protein structure [1]. However, due to 

the limitations of experimental techniques such as 

X-ray crystallography and nuclear magnetic 

resonance, which are both time-consuming and 

costly, determining protein structure remains a 

major challenge [2]. The lower cost of sequencing 

has resulted in a huge quantity of information being 

accumulated in sequence databanks. This 

information is completely deposited in universal 

archives, e.g. UniProt, the public protein 

knowledgebase (UniProtKB) [3], NCBI Gene Bank 

[4], and the EMBL Nucleotide Archive for gene 

sequences [5]. 

The UniProtKB database contains a vast number 

of protein sequences as well as complete 

descriptions [6]. As much annotation information as 

is reasonable is added in addition, the fundamental 

information needed for every UniProtKB entry 

(chiefly, amino acid arrangement, protein 

designation or description, taxonomical information, 

and citation info). To understand this data, the 

archived sequences should be carefully described 

with regard to their function and evolution 

characteristics or qualities. The biological 

complexity of organisms makes identifying the roles 

of genes and gene products a difficult task. 

However, there are a variety of efforts out there 

that aim to regularize the explanation of biological 
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sequence efficient characteristics by requiring the 

use of restricted expressions. Gene Ontology is the 

most exhaustive and conventional method of protein 

investigation (GO) [7]. GO uses a directed acyclic 

graph structure (DAG) [8] that certainly defines the 

functions from generic to specific in three 

classifications: molecular function, biological 

process, and cellular component [9]. 

Although the finding of these proteins’ special 

attributes is considered a critical phase forward in 

exploratory recognition, biological investigation of 

these proteins is both time-consuming and costly. 

This led to the development of several 

computational approaches based on similarity in 

order to predict unknown characteristics of these 

proteins depending upon similarity when referring to 

proteins that have been characterized by 

experimentation. Sequence alignment might be the 

uppermost method used (BLAST) [10, 11]. Protein 

sequence alignment is the technique of finding 

evolutionary or structurally related locations in a 

series of amino acid sequences. This approach is 

useful when there is a relationship in terms of the 

sequence’s recognizable evolutionary history. This 

is something that has to be observed and addressed 

[12]. 

Proteins are built up of biological units known as 

domains [13], which can fold and develop 

independently [14], and influence the protein's 

function. Multiple domains are found in more than 

80% of eukaryotic and 67% of prokaryotic proteins 

[15]. 

Each domain of a multi-domain protein performs 

a different function, which is typically linked. It's 

crucial to study the correlation among protein 

domains in order to figure out how domain 

groupings encode complicated functionalities. 

Therefore, another strategy is to identify 

evolutionarily conserved sequence segments (e.g., 

motifs and domains) and correlate these arranged 

segments with particular tasks [16-18].  

Many biological database systems are focused 

on the finding of purposeful domains and the 

classification of related protein sequences into 

categories.  The database systems generate 

functional annotations for domains and families, 

with some of the most often used domains in 

sequence/family databases are: Pfam [12, 19], 

PROSITE [20], HAMAP [21], SUPERFAMILY 

[22] and InterPro [23, 24]. All of the previous 

database systems are integrated into Inter-Pro, 

which also provides a thorough categorization of 

those proteins.  

What may be added to this is that a protein's 

function is a sole character arising from the 

involvement of all building blocks, rather than the 

sum of functions of separate domains [25]. As a 

result, the concept of domain 

architectures/arrangements (DA) was represented, 

which is defined as a protein's organizational 

characteristics in relation to the domains it contains. 

Domain material, linear command of domains in a 

protein arrangement, and recurrence of domains in 

proteins are examples of these characteristics. It's 

also useful to note that in DA-based techniques, the 

characteristics mentioned previously in this context 

are used to determine key commonalities between 

tried proteins [26]. 

In this paper, we proposed a model for 

predicting multi-domain protein function using a 

Fuzzy Convolutional Neural Network (FCNN). 

FCNN is used to extract and enrich the features, 

bringing the data into higher layers and retrieving 

important features. We also used the FCNN to 

capture long-range interdependencies between each 

residue in sequences. However, there is a 

disadvantage when using FCNN for sequence 

labelling tasks. The convolution and the pooling 

process of the FCNN will cause the sequence length 

to be reduced. Therefore, in this study, we 

implemented the Multilayer Shift-and-Stitch 

technique [27] so that the length of the sequences 

does not decrease after the convolution and pooling 

stages. 

Afterwards, we exploit the capability of FCNN 

to classify data with high dimensionality, as it is safe 

to increase the number of features that will be fed 

into the FCNN because the regularization parameter 

of FCNN will decide which of these features are 

impactful and which are not. The model managed to 

capture the relationship between each sequence’s 

residue and increase the data features, while the 

FCNN showed better performance when replacing 

the dense layer in classifying high dimensional data.  

The model processes the large feature map data 

generated by FCNN and predicts secondary protein 

structure labels for each position in the sequences. 

This research is an extended version of the authors’ 

thesis [26, 28, 29]. 

In this paper, we introduced specific 

contributions as follows: (1) A new architecture for 

predicting multi-domain protein function using a 

Fuzzy Convolutional Neural Network. (2) The 

model (MDPFP-FCNN,) managed to outperform 

FunFHMMer [28], InterPro2GO [29] and UniProt-

DAAC [26] in terms of accuracy and performance. 

(3) Our model was able to identify new functions of 

the protein and define its domain, which is a novel 

contribution according to critical assessment of 

functional annotation (CAFA) [30-33].  
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We organized this paper as follows: Chapter 1 

explains the problem of recognizing the functions of 

proteins in multi-domains. Chapter 2 shows the 

numbers of related studies. Chapter 3 explains the 

architecture proposed in this paper. Chapter 4 

explains the experimental environment. Chapter 5 

explains the Evaluation measures, Chapter 6 

explains the results of this research and discusses the 

findings. Chapter 7 shows the conclusion and 

possibilities for future work. 

2. Related works 

In FunFams, Rentzsch and Orengo (2013), 

employed domain families to predict the function of 

the whole protein. This approach combines 

sequence clustering with supervised cluster 

assessment, based on the available (GO) annotation 

data in the following phase. It organizes domain 

sequences into families based on the GO annotations 

of their parent proteins [34], We differ in our 

proposal in the methodology of the entire work, but 

we used some of the processes mentioned in the 

previous special study to address the annotation.  

Teng et al. (2014), introduced the SeekFun 

approach, which tries to predict protein function 

using a weighted mapping of domains and GO terms. 

They use resident domains of proteins and protein-

level GOA as cues to annotate proteins instead of 

utilizing the amino acid sequence directly [35]. Also, 

here we differ in our proposal in the methodology of 

the whole work because the previous study relied 

only on protein-level GOA as a cue to annotate 

proteins.  

Wang Et Al. (2018) incorporate a domain 

architecture inference method based on Bayesian 

statistics that assesses the likelihood of having a GO 

term and predicts protein functions in the form of 

Gene Ontology (GO) terms [36]. Here they used 

statistics as the mainstay of their prediction. 

In 2015, Piovesan et al. (2015) in INGA created 

a web server in INGA (29) to predict protein 

function using a mixture of three approaches: 

sequence similarity, domain architecture searches, 

and integrated protein-protein interaction network 

(PPI) data to provide general predictions for GO 

keywords using functional enrichment [37], Here 

they used more than one method in the prediction 

process, and the results were good, but the special 

factors in time and performance were bad, and this 

is what distinguishes us from them. We have studied 

and developed the performance and accuracy factors. 

Das et al. (2015) used FunFHMMer web server, 

which provided Gene Ontology (GO) annotations 

for query protein sequences based on the functional 

classification of the domain-based CATH-Gene3D 

resource, and the server also provided valuable 

information for the prediction of functional sites 

[28], We disagree with this study on the entire 

methodology because it is based on the functional 

classification of the domain-based CATH-Gene3D 

resource. 

Doğan, et al. (2016) used a novel approach 

(UniProt-DAAC) in the field of automatic functional 

annotation of protein sequences with the alignment 

and classification of domain architectures (DAs). (1) 

where they used DAs as the basis of a similarity 

measure between proteins to propagate GO 

annotation; (2) the employment of multi-label 

classification where each class represents a unique 

GO term, thus enabling the optimization of the 

parameters for each term independently and (3) they 

used InterPro as the domain resource in order to 

increase the coverage of domain annotation on the 

proteins [26]. We used the same special steps for 

protein sequencing and differed in the methodology. 

In SDN2GO, Cai et al., 2020 presented a deep-

learning-based integrated classification model that 

predicts protein functions. Convolutional neural 

networks are used to train and extract features from 

sequences, domains, and PPI networks, and then a 

weight classifier is used to combine these 

characteristics and provide exact GO expression 

predictions [38]. We disagreed with the algorithms 

used and the idea of basic research.   

FunSite is a machine learning model that uses 

characteristics obtained from protein sequence and 

structure, as well as evolutionary data from CATH 

functional families, to identify catalytic, ligand-

binding, and protein–protein interaction functional 

sites (FunFams) [39], We used some of the 

evaluation methods used for this study. 

Finally, our work aimed to use a model of multi-

domain protein function prediction using a fuzzy 

convolutional neural network. The MDPFP-FCNN 

prediction approach can provide functional 

annotations for over 19 million UniProtKB and 

Ensembl domain sequences. It is critical to focus on 

this technique, which is designed to complement 

rather than replace traditional sequence-based 

strategies. 

We differ from all the studies mentioned above 

and also the ones mentioned in the introduction 

chapter in the methodology and the modernity of the 

dataset. We agree on some necessary processes in 

the processing of basic sequences, we expect great 

progress in the results through our model, especially 

after documenting the functions during the previous 

years. 
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3. Methods 

Fig. 1 illustrates the general framework design 

for multidomain protein function prediction using 

Fuzzy Convolutional Neural Network, with the 

suggested mechanism of action. 

3.1 Data representation  

The steps of schematic data representation will 

be explained below.  

1- Input Protein Sequence (Unknown): We enter 

the protein insertion sequence (unknown) without 

any prior knowledge of its length or preconditions.  

2- Domains Identification by Creation of 

Domain Architectures (DAs): The Multi-Domain-

Benchmark findings for UniProtKB proteins are 

used to build domain architectures (DAs). The 

Multi-Domain-Benchmark integrates protein 

attribute information from 25 distinct consortium 

member directories. This data is made up of 

sequence signatures that are responsible for the 

protein's specific characteristics. Manual curation is 

used to combine signatures from various member 

databases into unique entries in Multi-Domain-

Benchmark, where we have a particular clarification 

in Section 3.1 Dataset. 

3- Weighted domain architectures (DAs) 

matching: 50% of the mismatch value for gap 

openings and 50% of the gap opening value for gap 

extensions. 

4- Segmentation of domains: The rule of Multi-

Domain-Benchmark is used to segregate domains. 

3.2 Feature extraction 

5- Assignment of Domains to Gene Ontology 

(Go) Terms: Furthermore, this GO term prediction 

reference data mainly includes DAs designed for 

protein elements by UniProtKB-Swiss-Prot 

(v2020/12) as well as the related GO description (by 

trial validation codes) from the Uni-Prot-GOA 

record system [26]. Evidence codes that are 

generally categorized "experimental" in the GO 

system (codes: EXP, IDA, IPI, IMP, IGI, and IEP) 

are considered to be the greatest value and 

dependability. Annotations are enlarged to 

encompass all parents of items following the mining 

of the UniProt-GOA dataset, allowing root (top 

level) terms to be removed from all GO 

classifications [40]. 

 
Figure. 1 General framework architecture 

3.3 Training and fuzzy convolutional neural 

network: 

As described in Section 3.2 FCNN Architecture, 

some processes are represented below; training, 

Fuzzy Convolutional Neural Network, and test 

proteins.  

1- Extraction of Annotation using Fuzzy 

Convolutional Neural Network: This phase is 

critical because the protein's annotation is extracted 

since it comprises several items, the most significant 

of which are the processes and functions that will be 

predicted later. 

2- Calculation of Gene Ontology (Go) 

Assignment Confidence Scores: Nodes are arranged 

according to Confidence Scores. 

3- Classification and Protein Function 

Prediction: Following classifying each protein by 

domain, our model predicts protein activities 

depending on the relevant processes. 

3.4 Dataset  

As shown in the image below, we used Multi-

domain-Benchmark (MDB), a database suite 

comprising 412 curated multi-domain queries and 

227,512 target sequences, representing at least 5108 

species and 1123 phylogenetically diverse protein 

categories, as well as their relevance interpretation 

and domain placement [1]. 
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Figure. 2 Domain architecture (DA) 

 

Most significantly, Multi-Domain-Benchmark is 

regarded as a comprehensive evaluation suite for 

genetic databases of search algorithms. It's from 

RefProtDom v1.2 [41], which is based on Pfam [42]. 

Furthermore, Multi-Domain-Benchmark is designed 

to offer a comprehensive evaluation of genomic 

databases while searching for query sequences that 

comprise several domains. Please keep in mind that 

benchmarks have target databases related to multi-

domains [41], and the Multi-domain-Benchmark is 

considered as the only benchmark known to the 

authors containing at least 100's of query sequences 

with multi-domains. 

Furthermore, we employ protein sequences from 

UniProtKB/Swiss-Prot (Reviewed) (v2020/12) 

along with their empirically validated GO 

annotations to show that the study results have 

potential use for protein function estimation[40]. We 

also employ the UniProtKB/TrEMBL(Unreviewed) 

(v2020/12) approach to offer functional predictions 

for protein entries in the database [43-45]. 

In the GO system, the evidence codes EXP, IDA, 

IPI, IMP, IGI, and IEP are regarded as having the 

highest quality and reliability. Following the mining 

of the UniProt-GOA dataset, comments are enlarged 

to cover all roots of characters found, leaving all GO 

classifications without root (top level) terms [40]. 

3.5 FCNN architecture 

A number of aspects and points, such as the 

matrix value, the input, the fuzzication layer, and so 

on, may help us grasp this science. Extensive 

practice broadens your comprehension. Perfect 

practice makes perfect. 

It is worth noting that input has been embedded 

by imbedding the layer to the matrix's real value. 

The fuzzication layer then transforms the input 

matrix into the fuzzy domain. This is an essential 

consideration to make. As a result, the fuzzy 

representation has been twisted in the fuzzy 

convolutional layers, which function as filters to 

extract high-level features from the data. Following 

the passage of the fuzzy convolutional phase, the 

recovered feature set is transformed into what is 

known as a crisp value by the defuzzication layer. 

Finally, the layer with a complete connection serves 

as an output classification for FCNN. 

3.6 FCNN embedding level 

FCNN assigns a score to each label. This is a 

critical point; in order for you to be able to use it, 

the model accepts input as a sequence and then 

passes it through the layers of the model. 

Furthermore, at each layer, features from higher 

levels have been collected and transmitted to the 

subsequent layer. The model then extracts 

characteristics from the word's vector level to the 

domain's level, which is an important step[2]. 

Please bear in mind that, owing to appropriate 

arithmetic using FCNN, characters in the domain 

should be shown as quantitative data as well. The 

embedding of the sequence level was the first stage 

in mapping each character in the sequence to a d-

dimensional vector, thus each sequence would be 

converted into a matrix of size md, where m is the 

length (number of characters in the sequence) and d 

is the dimension of the embedded vector. The 

lengths of the sequences in the dataset are 

considered to vary. To make things easier, we pad 

unique characters at the end of sequences for the 

same length in all sequences. That is a critical 

element to consider. 

Relating to each sequence that does consist of M 

characters, the  (𝑤1, 𝑤2, … , 𝑤𝑚, … , 𝑤𝑀) , the 𝑤𝑀 

characters in sequence is going to be pretty fairly 

transformed into a vector 𝑢𝑚 = 𝑢1, 𝑢2, … , 𝑢𝐷 . We 

have static size V dictionary, then, we use 

implanting matrix 𝐷 ∈ 𝑅(𝑑×|𝑉|) . We get mapping of  

𝑤𝑀 to the vector u by using the Eq. (1). 

 

𝑢𝑚 = 𝐷𝑣𝑚                            (1) 

 

Where 𝑣𝑚 is vector dimension |𝑉|   that has a 

value of 1 in the index 𝑤  and 0 in remaining 

positions. 𝑤 is regarded to be the index of character 

𝑤𝑚  in dictionary V. First and foremost, matrix D 

has been randomly initiated, after that, its values 

have been considered to be trained during training of 

model. This also should be noted as well.  
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Figure. 3 FCNN architecture 

 
3.6.1. FCNN classifier level 

Each element in the input matrix X  has been 

allocated a range of linguistic depending on 

membership functions following the embedding of 

each input into matrix X. The fuzzification function 

returns a grade that represents the membership of an 

input node in a fuzzy collection. The fuzzy groups �̃� 

in Eq. (2) have been given by Eq. (3), which is 

calculated by using the maxproduct operation. What 

is more, they also have the possibilities of the input 

as well as the output data relating to pre-defined 

reference of the fuzzy numbers 𝑀�̃� 𝑖𝑗  in the 

universe of discourse. That is clearly noted as you 

deal with that.  

 

�̌� = 𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑥𝑖𝑗|𝑐𝑥𝑖𝑗)             (2) 

 

Where i, j is regarded to be guides of element x 

in the input matrix X, as well as the center of the 

input the function of the fuzzy membership 𝑐𝑥 . 

 

𝑥𝑖𝑗 = 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑥𝑖𝑗|𝑀�̃� 𝑖𝑗) 

 

= 𝑚𝑎𝑥𝑥∈𝑋 (𝑀�̃� 𝑖𝑗𝛿(𝑥 − 𝑥𝑖𝑗))             (3) 

 

Where 𝛿(𝑥 − 𝑥𝑖𝑗) is considered to be the 

Kronecker delta function.  

Please note that each layer of the fuzzy 

convolution tends to have 3 processing phases, 

specifically the phase of the fuzzy convolution, 

nonlinearity phases, as well as pooling phase as well. 

The phase of the fuzzy convolutional has been a 

process of applying the filters of the fuzzy 

convolution to the initial 2D data, as appears in Eq. 

(4) in which fuzzy convolutional filters  𝑊𝜇  have 

been calculated as Eq. (6), with W is original 

convolution filter as well. This is also something 

very important to be referred to.  

 

𝑥𝑖𝑗 = ∑ ∑ 𝑊𝜇𝑥(𝑖+𝑎)(𝑗+𝑏)  
𝑑−1
𝑏=0

𝑚−1
𝑎=0          (4) 

 

𝑊𝜇 = 𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑊)                (5) 

 

Furthermore, Eq. (6) is completely considered to 

be a non-linear transformation of a fuzzy 

convolution phase output. After the feature 

extraction phase, the last step is considered to be 

another operation named or known as pooling (for 

example, Max Pooling), which is a summary 

statistic of adjacent outcomes. This phase tends to 

bring about support to representation, which is 

defined as a matter that is invariant to input 

translation, as well as the size of the input for next 

layer of the fuzzy convolution that may lowered in 

some way. Please keep that in mind. 

 

𝑦𝑖𝑗 = 𝜎(𝑥𝑖𝑗)                        (6) 

 

where σ (.) is regarded as convolution layer 

initiation function. 

Furthermore, the layer that has a full connection 

to the FCNN that is already acting as a classifier 

with the input characteristics that are crisp value 
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𝑧𝑖   gained as well from deffuzzification procedure, 

with the method of gravity center in Eq. (7), where 

𝐶𝑦  is medium of the function of defuzzification 

membership. �̂� 𝑖  is output of classifier as well as 

𝑊𝑓𝑐 is weight matrix of the layer of the full 

connection. 

 

𝑧𝑖 = 𝑑𝑒𝑓𝑢𝑧𝑧(𝑥𝑖) =
∑ 𝐶𝑦𝑥𝑖

∑ 𝑥𝑖
                (7) 

 

�̂� 𝑖  =  𝑊𝑓𝑐 𝑧𝑖                         (8) 

3.6.2. FCNN training  

Cross entropy is a loss function that is entirely 

utilized to measure yield error, as shown in Eq. (9), 

where , 𝑦 ̂ is the target, y is the output of the 

classifier, and N is the number of samples. This is 

really useful in understanding. 

 

𝐸 = −
1

𝑁
 ∑ [𝑁

𝑛=1 𝑦𝑛 log(�̂� 𝑛  ) + (1 − 𝑦𝑛)  

log(1 − �̂� 𝑛  )]  (9) 
 

Furthermore, the model parameters have been 

trained by having conventional back-propagation of 

the learning algorithm with the loss function of the 

cross entropy as well.  

The weight update appears in Eq. (10). 

 

𝑊𝑓𝑐 (𝑘 + 1) = 𝑊𝑓𝑐 (𝑘) − 𝛼𝑓𝑐
𝜕𝐸

𝜕𝑊𝑓𝑐 
         (10) 

 

Moreover, the centers 𝐶𝑦(𝑘) of the functions of 

the defuzzification membership have been 

restructured in Eq. (11), where 𝑎𝑐𝑦  represents the 

knowledge rate of updating center, 𝑦𝑘+1 and �̂� 𝑘+1   

are, the output target as well as actual output of the 

model as well. Please take that into account. That is 

extremely important.  

 

𝐶𝑦(𝑘 + 1) = 𝐶𝑦(𝑘) + 𝑎𝑐𝑦∇𝑐𝑦            (11) 

 

Additionally, center value 𝐶𝑤 as well as variance 

σ of the function of the fuzzification category of 

convolution phases weight have been certainly 

estimated by using Eqs. (12) to (15) with the 

learning rate 𝛼𝐶 𝑤 

 

𝐶𝑤(𝑘 + 1) = 𝐶𝑤(𝑘) +  𝛼𝐶 𝑤 ∇𝑊 𝜇 
          (12) 

 

And 

 

𝜎𝐶𝑤
(𝑘 + 1) = 𝜎𝐶𝑤

(𝑘) + 𝜎𝐶𝑤
∇𝑊 𝜇 

           (13) 

 

Where,  

 

𝛿𝑘 = (𝑊𝜇𝑘)
𝑇𝛿𝑘

(3)
𝑓′(𝑥𝑘)              (14) 

 

∇𝑊 𝜇𝑘 
= ∑ 𝑦𝑖𝑗 ×  𝑟𝑜𝑡180( 𝛿𝑘)         (15) 

 

Eqs. (16) and (17) may be used to update the 

mean and variance of the fuzzification association 

function of the layer, where 𝛼𝐶𝑥  is the learning rate 

of the fuzzification layer as well. Concentrate on 

this issue as well, as it is critical that it be discovered. 

 

𝐶𝑥(𝑘 + 1) = 𝐶𝑥(𝑘) +  𝛼𝐶𝑥 ∇𝐶 𝑥        (16) 

 

𝜎𝐶𝑥
(𝑘 + 1) = 𝜎𝐶𝑥

(𝑘) + 𝜎𝐶𝑥
∇𝐶 𝑥        (17) 

3.6.3. Algorithm 

The experimental test of FCNN with back 

propagation in the method may be regarded fairly 

simple. With regard to the testing data with feature 

set X and target y, we can simply apply the mini-

batch training procedure to achieve the finest FCNN 

and CNN parameters ever [2]. 

Please keep in mind that the hyperparameters 

such as learning rates, dropout rates, batch size, and 

training epoch have all been empirically chosen. 

That is a critical issue. Please pay attention to it 

since knowing a lot about such hyperparameters is 

really useful. 

4. Experimental environment  

We tested our idea in a real-world setting, using 

a cloud server with the following specifications: - 

• CPU: (64 core) 

• RAM: 512 GB 

• GPUs: NVIDIA Pascal X )8GB  (4×  

5. Evaluation measures 

We employ two metrics to assess the 

effectiveness of our model: F max (protein centric 

maximum) and AUC (area under the curve) (area 

under the precision-recall curve). These two 

measures are employed in  the CAFA challenge [3-

6]. We calculate the 𝐹𝑚𝑎𝑥 measure using the standard 

formulas provided by CAFA: 

 

𝐹𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑡 {
2.𝐴𝑣𝑔𝑃𝑟(𝑡).𝐴𝑣𝑔𝑅𝑐(𝑡)

𝐴𝑣𝑔𝑃𝑟(𝑡)+𝐴𝑣𝑔𝑅𝑐(𝑡)
}         (18) 

 

Where 𝑃𝑟(𝑡) , 𝑅𝑐(𝑡)  are the precision and the 

recall of the threshold t ∈ [0, 1]. 𝐴𝑣𝑔𝑃𝑟(𝑡)  is 

average precision over the proteins where at least 
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one GO term is predicted. They are calculated using 

the following formulas: 

 

𝐴𝑣𝑔𝑃𝑟(𝑡) =  
1

𝑚(𝑡)
. ∑ 𝑝𝑟𝑖(𝑡)

𝑚(𝑡)
𝑖=1            (19) 

 

𝐴𝑣𝑔𝑅𝑐(𝑡) =
1

𝑛
. ∑ 𝑟𝑐𝑖(𝑡)𝑛

𝑖=1                (20) 

 

Such that m(t): the total number of proteins, n: 

the number of proteins in the target data test set. 

𝑝𝑟𝑖(𝑡) , 𝑟𝑐𝑖(𝑡)  are the precision and recall of 

some protein i using threshold t, they are calculated 

as follows: 

 

𝑝𝑟𝑖(𝑡) =
∑ 𝐼(𝑓∈𝑃𝑖(𝑡)˄𝑓∈𝑇𝑖)𝑓

∑ 𝐼𝑓 (𝑓∈𝑃𝑖(𝑡))
                 (21) 

 

𝑟𝑐𝑖(𝑡) =
∑ 𝐼(𝑓∈𝑃𝑖(𝑡)˄𝑓∈𝑇𝑖)𝑓

∑ 𝐼(𝑓∈𝑇𝑖)𝑓
                 (22) 

 

For the second measure, we calculate precision, 

recall, accuracy, and Matthew’s correlation 

coefficient (MCC) for model of the Go using the 

following formulas: 

 

(𝑇𝑃𝑅) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                 (23) 

 
(𝑇𝑃𝑅) HYPERLINK https://en.wikipedia.org/ 

wiki/Precision_and_recall\ 
l RecallοPrecision and recallRecall 

=
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                (24) 

 

(𝐹𝑃𝑅) 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
        (25) 

 

(𝐴𝐶𝐶)𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
           (26) 

 

Such that TP: the number of true positives, FN: 

the number of false negatives, FP: the number of 

false positives, and TN: the number of true 

negatives. 

Matthew’s correlation coefficient (MCC) is 

calculated as follows: 

 

𝑀𝐶𝐶 =
𝑇𝑃.𝑇𝑁−𝐹𝑃.𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
      (27) 

6. Results and discussions 

Proteins are macromolecules with a complicated 

structure that comprise amino acid building blocks 

and play an important function in the survival of our 

cells [7]. Knowing the precise structure of a protein 

is critical for understanding its activities and role in 

biological processes. Protein activities are, in fact, 

closely connected to their structure [8]. The 

discovery of X-ray crystallography revealed the 

three-dimensional structure of protein [9]. 

Furthermore, because the number of protein 

sequences is continually rising, the great majority of 

proteins can only be annotated computationally. In 

this study, a Fuzzy Convolutional Neural Network 

to create a model for predicting multi-domain 

protein function is used. Protein function estimate 

utilizing a Convolutional Neural Network (CNN) 

based on gene ontology on a nearly explored data 

set with small size proteins. They are looking for 

connections between protein properties and activity 

[10]. We attempted to maximize the model's 

potencies in this study by fine-tuning, increasing the 

size of the features, and replacing the thick layers. 

For GO annotation of the full database, the 

method is applied to about 220 million protein items 

in UniProtKB/TrEMBL. These findings show that 

the method is both beneficial and successful, 

allowing for the discovery of efficient multi-domain 

protein interactions. For all UniProtKB records, 

DAs are now created and saved in the UniProt 

domain architecture database with each release. 

Furthermore, DAs have undoubtedly been created 

for all UniProtKB entries at each release and 

preserved in the UniProt Domain Architecture 

Database. 

Table No. 1 shows statistics for the DA 

generation process in relation to the 

UniProtKB/Swiss-Prot and UniProtKB/TrEMBL 

databases (v2020 12). As indicated in Table No. 1, 

DAs have been utilized to cover 96% of 

UniProtKB/Swiss-Prot entries and 76% of 

UniProtKB/TrEMBL entries. According to Table 

No. 1, the number of unique DAs produced in 

UniProtKB/Swiss-Prot accounts for 86 percent of 

the total number of entries with domain discoveries. 

The rate for the UniProtKB/TrEMBL is just 15%, 

which is most likely owing to a higher level of 

redundant matter in the UniProtKB/TrEMBL 

compared to the UniProtKB/Swiss-Prot. This is 

regarded as one of the most critical issues that we 

should be aware of. 

MDPFP-FCNN, FunFHMMer [11], 

InterPro2GO [12], and UniProt-DAAC [13] are all 

compared and contrasted in Table 2. In terms of 

performance and accuracy, as well as the ability to 

anticipate greater rates, our MDPFP-FCNN 

approach beat the other research. In comparison to 

the other research, the findings in Table 2 

demonstrate that our model has a strong capacity to 

create a significant number of unique entries, unique 

GO words, and GO terms predicted by each system. 

Furthermore, our model identified the number of  
 

about:blank
about:blank
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Table 1. DAs generation statistics on the UniProtKB Dataset 

Dataset UniProtKB Swiss-Prot (2020-12) TrEMBL (v2020-12) 

No. of input protein entries: 565254 219174961 

No. of entries with InterPro domain hits: 

(Family and domain databases) 

546292       166656803 

No. of unique DAs generated: 16478 7942841 

 
Table 2. Comparison of statistics and performance between MDPFP-FCNN, FunFHMMer, InterPro2GO and DAAC  

MDPFP-

FCNN 
 

InterPro2GO 

[12] 

FunFHMMer 

[11] 

UniProt-DAAC 

[13] 

Total no. of mappings 18631 6382 22462 25626 

No. of unique entries 9481 2927 7951 8248 

No. of unique GO terms 791 1411 658 778 

No. of GO terms predicted by each 

system 

698 1188 489 555 

(No. of shared terms: 218) 

No. of mapped GO term relations 

with the other system 

547 in relation 

143 

independent 

760 in relation 

651 

independent 

667 in relation 

159 independent 

625 in relation 

153 independent 

 

 
Figure. 3 Rate of Specificity of the mapped GO terms compared to other system 

 

mapped GO word relationships with the other 

system and shown superior understanding of GO 

terms when compared to the other research. 

The findings also revealed that the study’s 

model has an 83% specificity of the mapped GO 

keywords when compared to another system (see 

Fig. 4). 

We also compared the Accuracy, F-score, Recall, 

Precision, and FPR (fall-out) ratios. As 

demonstrated in Table 3, our MDPFP-FCNN model 

outperformed multi-domain protein functions in 

prediction accuracy. The study model's accuracy and 

performance were substantially higher than 95.02%. 

Fig. 6 shows a few examples of results for 

character count, domain count, execution time, and 

accuracy. Prediction execution time increases as the 

number of characters and domains in the provided 

sequence grows, according to the findings we 

obtained.  

The performance based on the standard 

execution time and the CPU usage rate are examined 

in the study. The findings revealed that increasing 

the sequence's domain count resulted in an increase 

in the prediction's execution time, as shown in Fig. 

6.  

It was concluded from comparisons with prior 

studies that when the number of proteins increases 
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in the next years, there would be a new problem in 

finding and forecasting functions, due to the insane 

rise in the connections between proteins and 

functions. 

Therefore, the relationship between the size of 

the sequence and the time it takes for our model to 

predict jobs and the percentage of accuracy in 

identifying them are measured. Accordingly, a 

significant relationship with the increase in the size 

of the sequence and also the increase in the number 

of ontology terms over time, the results change. 

We evaluated and compared our work against 

the CAFA challenge of Standardization of 

Evaluation Standards. 

 

 
Table 3. Accuracy and performance comparison between MDPFP-FCNN, FunFHMMer, InterPro2GO, and UniProt-

DAAC 

 Accuracy 

(%) 

F-score Recall Precision FPR (fall-out) 

MDPFP-FCNN 95.02% 0.921 0.887 0.962 4.04 × 10−4 

InterPro2GO [12] 75.32% 0.675 0.615 0.909 1.98 × 10−5 

FunFHMMer [11] 85.14% 0.861 0.854 0.901 4.19 × 10−5 

UniProt-DAAC [13] 90.45% 0.874 0.843 0.919 4.57 × 10−4 

 
 

 
Figure. 4 Accuracy and performance comparison between MDPFP-FCNN, FunFHMMer, InterPro2GO and UniProt-

DAAC 

 

 
Figure. 5 Sample illustrate domains count and execution time (ms) and, Accuracy of some investigated sequences 
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7. Conclusion 

MDPFP-FCNN is a highly unique technique in 

the field of automated function identification of 

protein sequences using alignment and DA 

classification, which we present in this study. This 

strategy differs from traditional approaches in the 

following three ways: To begin, Domain 

Architectures (DAs) were used as the foundation 

for a very similar point of measure amongst 

proteins in order to propagate GO annotation as 

well; Second, using a multi-label categorization 

where each class tends to reflect a specific GO 

term, allowing for parameter optimization of each 

term separately as well as overall. Finally, 

employing the Multi-domain Benchmark (MDB) 

as a domain resource to expand protein domain 

annotation coverage (more points have been 

clarified in supplemental information). We used a 

model for predicting multi-domain protein 

function using a Fuzzy Convolutional Neural 

Network. In this research, we have a novel hybrid 

CNN and Fuzzy for sequence labelling, 

specifically to predict the function of the protein. 

MDPFP-FCNN has enabled the connection of 

Domain Architectures (DAs) with operational 

terms (each represented by a distinct category) as 

well as the rapid annotation of non-annotated 

proteins with similar architectures. Using multi-

label categorization allows the protein (as well as 

its DA) to belong to several classes and functional 

annotations. That is, in fact, a significant point. 

Setting up distinct classifiers for each GO term 

also allows for the selection of different 

parameters for each class. As a result, we may 

optimize the Domain Architecture (DA) of similar 

points criteria for each class. We should integrate 

the MDPFP-FCNN technique into UniProt's 

automatic annotation production pipeline so that 

we can get enrichment for UniProtKB/automatic 

TrEMBL's annotation function as well. We intend 

to use the technique to predict additional kinds of 

annotations, including recommended protein 

names, subcellular locations, keywords, comments, 

and features. Finally, our hybrid model managed 

to outperform recent previous studies in terms of 

accuracy (95.02%) and performance on the 

UniProtKB dataset, and it showed significant 

improvements in the execution time spent in the 

prediction process. It's crucial to keep your 

attention on this strategy. Further study will be 

needed. 
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