
Received:  October 23, 2021.     Revised: December 14, 2021.                                                                                        563 

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022           DOI: 10.22266/ijies2022.0228.51 

 

 
Extension of Deep Learning Based Feature Envy Detection for Misplaced Fields 

and Methods 

 

Malathi Jeevanantham1*          Jabez Jones2 

 
1Faculty of Computer Science and Engineering, 

Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India 
2Department of Information Technology, 

Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India 
* Corresponding author’s Email: mals_sakthiphd@yahoo.com 

 

 
Abstract: Code smells (CS) are a severe symptom in software source code that leads to a serious problem in 

software maintenance and evolution. Feature Envy (FE) is a type of CS that refers to methods that are misplaced in 

the source code. Many tools like infusion, JDeodorant and JspIRIT have been used to identify the CS. The 

conversion of source code measurements into predictions is based on manually constructed heuristics. But, manually 

selecting good features and constructing optimal heuristics is a challenging issue. So, automatic detection of CS is 

required. The Deep Learning (DL) methods play an important role in achieving the automatic detection of 

FE(DLFED). The FE detection approach based on DL is intended to discover misplaced methods. The DL technique 

automatically identifies the source code characteristics for FE identification as well as automatically improves the 

difficult mapping structure between the features and their prediction. But, a DL-based automatic detection of CS 

requires a significant number of features with labeled training datasets to provide better prediction results. Therefore, 

an extension of the DL-based FE detection technique (EDLFED-FM) is proposed in this article to detect both 

misplaced methods and fields. The semantic relationship between identifiers in the source code program is used to 

extract the features of misplaced fields and methods. The new decomposition slice method is proposed to convert the 

extracted features of misplaced methods and fields into the slicing vector composition. This sliced feature helps deep 

learners understand the relationship between misplaced methods and fields. This automated method is capable of 

producing labeled training data for DL techniques-based classifiers without the requirement for human intervention. 

Finally, the experimental outcomes proved that  precision rate of  suggested method outperforms the JDeodorant and 

DLFED methods by 14.49% and 10.29 % for free plane, 14.72 % and 12.2 % for Junit, and 21.84% and 14.68 % for 

JExcelapi applications. Hence, it has been demonstrated that the predicted misplaced methods and fields are moved 

to the refactoring class for positive testing of source code program with less training data. 

Keywords: Code smell, Feature envy, Deep learning, Program source code, Slicing vector composition. 

 

 

1. Introduction 

CS is a fundamental violation of software 

development principles, which will reduce the 

quality of the code. The presence of CS does not 

necessarily suggest that the software will not 

function properly; nonetheless, it can decelerate 

processing speed, raise the chance of failures and 

errors, and render the program susceptible to defects 

in the future. CS can lead to poor code quality and 

thereby it increases the technical debt [1].  

CS denotes a more serious problem, but as the 

name implies, they can be detected or identified 

quickly. The best odour is one that is easy to detect 

but leads to a fascinating difficulty, such as classes 

with data but no behaviour. Some tools [2] like 

infusion, JDeodorant, PMD and JspIRIT may easily 

detect CS. 

Since CS has many software characteristics with 

informal and subjective definitions, automatic 

detection of CS is important to achieve without any 

human need for refactoring operations in large 
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source code detection [3]. In recent times, Machine 

Learning (ML) based smell detection approaches 

have become an effective alternative because they 

do not only have the means of judging as humans 

but also, in the case of CS detection [4]. 

Furthermore, ML approaches may identify CS 

detection as smelly or non-smelly variant results. 

The issue emerges during the manual configuration 

phase, resulting in unbalance [5]. So, the DL 

techniques are the most effective method for 

detecting the CS in large source code programs. 

The DL methods for automatic CS detection can 

be processed using some deep neural networks 

(DNN) like CNN and RNN, demonstrating the 

practical application of the DL model for detecting 

smells without the need for extensive feature 

engineering, which provides a source code in 

tokenized form. However, the DL struggles with 

detecting the text features and optimal heuristics in 

large source code programs. So, the FE CS is 

utilised in this DL approach for easy prediction of 

features and heuristics for the refactoring class with 

less training data [6]. 

In existing work, the FE detection technique 

based on DL is intended to detect only the 

misplaced methods in program code. Therefore, in 

this paper, the DL based FE detection is extended to 

find both misplaced methods and fields from source 

code program. The detection of both misplaced 

methods and fields of FE helps to eliminate deeper 

problem in the running software programs. This 

advanced DL technique will automatically choose 

source code features for FE detection while also 

improving the problematic mapping construction 

between the features and their prediction. This 

automated strategy will be capable of producing 

labelled training data for DL techniques-based 

classifiers without the use of human sources. The 

features are extracted by analyzing the semantically 

relationship between identifiers. Finally, the 

improved decomposition slice method is developed 

to transfer the extracted features into the slicing 

vector composition. This sliced feature assists deep 

learners in comprehending the connection between 

misplaced methods and fields. The predicted 

misplaced methods and fields are relocated to the 

refactoring class for positive testing of source code 

programs with less training data. 

The rest of the manuscript is organized as 

follows: Deep learning based code smell detection 

techniques are explained in Section 2. The suggested 

EDLFED-FM is explained in Section 3, followed by 

a test experiment undertaken and reported in Section 

4 and lastly, the study is concluded with its future 

work in Section 5. 

2. Literature survey 

A tool called WekaNose was introduced [7] to 

perform experiments using ML techniques to detect 

smells from v-code. This method intentionally sets 

the rules for obtaining the trained algorithms in 

order to categorize an instance (method or class) as 

affected or not by a CS. This tool helps to perform a 

DL method for identifying a certain type of CS. 

Then the correlations between CS and some specific 

metrics were developed. Finally, the rules for rule-

based CS detectors were created to enhance the 

detection of CS. However, the rules could minimize 

the detection performance. 

A Systematic Literature Review (SLR) 

employing ML techniques for CS Detection was 

created [8]. The four target CS prediction models 

were developed using this method (i) specific CS 

were considered, (ii) the ML method was used for 

the setup, (iii) different types of evaluation strategies 

were used, and (iv) the training strategies were used 

to train and evaluate the ML techniques. A meta-

analysis of the ML models like decision trees and 

random forests was also conducted. However, the 

detection involves source code complexity. 

The CS detection was proposed [9] using ML 

techniques like static code metrics and CS metrics in 

the dataset. Initially, two classification models like 

Bagging and Random Forest were used for 

enchaining the performance for CS detection. Then, 

the four approaches were developed. The first 

approach was identifying all twenty-seven 

characteristics in a data collection of CS. The 

second strategy evaluated the databases with three 

feature selection methods like 𝐹1, 𝐹2, 𝑎𝑛𝑑  𝐹3  was 

employed for the datasets reduction. The third 

approach utilizes the ensemble learning method in 

conjunction with three aggregators as like first 

approach. The fourth approach considers the 

integrated dataset of the second stage with four 

combinations. However, memory and time 

constraints were high. 

For detecting the CS [10] proposed a DL 

structure with two specific models. In this method, 

the DL structure was employed with two layers of 

CNN and RNN as well as Auto Encoders to 

modulate the performance to fine-tune the smell 

detection performances of different CS. The 

performance of the model was affected by adjusting 

the learning hyper parameters. The DL investigation 

on CS detection was transferred to analyze the 

trained model for detecting smells in a programming 

language, and it could also be used to detect on 

other languages. However, CS detection tools 
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utilized in this structure either not available or not 

matured. 

A hybrid detection approach was presented [11] 

using unsupervised and supervised algorithms to 

detect four CSs. Initially, the dimensionality 

reduction approach was conducted using a deep 

auto-encoder for extracting the most significant 

features. The ANN classifier learns to generate the 

new data after the feature space has been decreased 

with a minor reconstruction error. This technique 

was tested using four datasets derived from a large 

number of open source systems. Furthermore, 

additional sorts of features were discovered using 

fine-grained data, and this included the detection of 

other forms of CS. However, this method does not 

generalise to industrial projects. 

A method based on DL was devised [12] to 

detect two CS, such as Brain Class and Brain 

Method. To generate complex patterns in the higher 

layer, one of the DL architectures like the 

Convolution Neural Networks-1D (CNN) model 

was used in this method. The input was gathered 

from open source Java software, and the program 

code was then fed into a metrics analysis tool to 

obtain the metrics required to identify the brain class 

and brain function. Object-oriented metrics were 

assessed to detect the presence of smells in software. 

However, the approach necessitates a large number 

of datasets in order to detect CS. 

A semantic-based technique was introduced [13] 

to detect code or bad smells in source code at 

various levels of granularity. The abstract syntax 

with variation Auto-encoder was created to 

distinguish the three CSs of blob, FE, and long 

method. Initially, the source code was parsed using 

an Abstract Syntax Tree, and the resulting trees 

were transformed into vector representations using a 

transformation. Then, the variation auto-encoder 

was employed to produce the deep representations 

that incorporate the required semantic features. 

Finally, the semantic features were fed into a 

logistic regression to identify whether there was a 

CS or not. However, this approach does not handle 

other forms of class-level smells. 

A new metric was introduced [14] to detect FE 

CS, which may be eliminated by shifting the 

specific method. This suggested metric detects FE 

CS candidates using two methods, like similarity 

between methods and the distance between the 

method and the target class candidate. Then, the 

identified FE observed CS was removed using the 

removal technique. Following that, the source code 

was rebuilt using the refactoring system without 

affecting the system's behaviour. The tool 

JCodeCanine was created as an eclipse plug-in to 

evaluate the performance of new metrics. However, 

the computational complexity was high. 

A tool named FEED (Feature Envy Detector) 

was developed [15] for identifying FE CS detection 

based on data flow analysis. The data flow analysis 

was used to create the DEF (definition) and Usage 

(use) information in order to discover the variables 

in each code statement. The FEED was utilized in 

the data flow analysis to pinpoint a statement for the 

actual problem for the FE. Furthermore, the FEED 

assists novice programmers in avoiding FE smells 

on large datasets. However, the procedure for using 

this tool was slightly complicated. 

A new method was proposed [16] to detect and 

identify the CS called "Anti-pattern Detection and 

Identification using Oblique Decision Tree 

Evolution (ADIODE). To discover the imbalance 

data in the CS, the ADIODE uses the input as a base 

of anti-pattern instances with a collection of Oblique 

Decision Trees (ODTs) utilizing an Evolutionary 

Algorithm (EA). This method was utilized for four 

primary features: (i) the use of oblique splitting 

hyper-planes to discover the imbalanced data, 

particularly small disjuncts. (ii) The data-driven 

discretization approach is used to avoid an empty or 

a normal sub-class that contains all occurrences. (iii) 

AUC was regarded as a fitness function that was 

used to evaluate both unbalanced and balanced data. 

However, an imbalanced binary classification 

problem occurs in the CS detection. 

An automated approach was created [17] for 

detecting bad code or monitoring code quality 

during the development process. Initially, this tool 

implementation uses a set of code, programming 

design principles, synchronous threads, and cache 

representation. This solution was built using the JFly 

eclipse plug-in tool, which was linked to the IDE via 

multiple extension points. The users' preferences 

might be readily defined as a "bad smell" metrics 

threshold. The JFly tool's performance resulted in 

the detection of poor or CS. However, with low-spec 

systems, performance and outcomes cannot be 

assured.  
CS detection tools like JDeodorant, inFusion, 

PMD, and JSpIRIT were investigated [18]. 

MobileMedia and Health Watcher were used as 

target systems to detect code smells such as God 

Class, God Method, and FE detection. Calculating 

the recall and precision of tools in recognizing the 

CSs was used to determine the accuracy. When all 

four CS detection tools were compared, JDeodorant 

recognize the majority of the correct entities with 

lower precision and a higher recall, which increased 

the validation effort to capture the majority of the 

affected entities. However, it was not possible to run 
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the tools during commit tasks, which resulted in low 

performance. 
A novel DL-Based FE Detection (DLFED) was 

presented [19] to detect different sorts of CSs. In 

this method, DNN and advanced DL methods were 

utilised to automatically choose useful source code 

features for CS detection and develop a complex 

mapping between such features and binary 

conversion predictions. This method would 

automatically generate the labelled training data for 

CS detection. This approach may be used to detect 

CSs in four different categories: FE, long methods 

(LM), Large classes (LS) and misplaced classes 

(MC). It was first tested on open-source programs 

that had smells introduced into them, then on the 

original source code of open-source applications that 

had not been changed. However, the generated 

training data was of poor quality. 

The above methods detects FE only based on 

misplaced methods, but not considered misplaced 

fields. The feature of fields  can be utilized in DL  to 

improve the  effectiveness of  FE detection. This 

paper proposes slicing vector to extract the features 

of fields. The following section describe how DL 

method detects FE by utilizing both misplaced 

methods and misplaced fields  

3. Proposed methodology  

In this section, the DL based FE CS is 

constructed to detect the misplaced methods and 

fields from the FE-CS of a particular program code. 

The enhanced slicing method is proposed in this 

method for better understanding of misplaced 

methods and fields. Also, the refactoring software 

leads to identify the misplaced methods and fields in 

the structured source code program. 

3.1 Smell detection using DL approach 

A DL based FE detection [19] utilized features 

extracted for misplaced methods. The same Deep 

learning structure is utilized in this paper. However, 

the various categories of features used in DL 

structure means, the performance can be improved. 

A vast amount of labeled training data also required 

to construct complex DL classifiers for detecting 

CSs. So the DL based FE detection is extended for 

utilizing features of both misplaced methods and 

fields at various locations of a program. The training 

data set is constructed from various applications 

which can be utilized for identifying CSs for any 

applications. A sampling and training processes are 

repeated 𝑛  times, resulting in 𝑛  classifiers. By 

training several classifiers and voting on the final 

decisions, the bootstrap aggregating technique [19] 

is utilized to increase the robustness and accuracy of 

the CS identification system. 

3.2 DL-based FE detection for misplaced 

methods and fields 

3.2.1. Feature extraction for training data 

The training data for FE detection is derived 

from source applications. A dataset should be 

constructed within a certain class to detect 

misplaced methods and fields by examining the 

semantic connection between their identifiers, 

because meaningful identifiers can reveal the 

responsibilities and actions of the associated entities. 

In this method, the misplaced method 𝑚 and field 𝑓 

are relocated from their enclosing class 𝑒𝑐  to a 

target (another) class 𝑡𝑐  using both structural and 

textual information as code metrics. After that select 

the features for FE CS. The input training data is a 

quintuple as 

 

𝑖𝑛𝑝𝑢𝑡(𝑚, 𝑓) = 

<  𝑛𝑎𝑚𝑒(𝑚), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐), 𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐),
𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐); 

𝑛𝑎𝑚𝑒(𝑓), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐), 𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐),
𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐); >                      (1) 

 

Where, 𝑛𝑎𝑚𝑒 (𝑒) is an identifier for the method 

name and field name of software entity 𝑒, method 

under investigation 𝑚,  field under examination 𝑓 , 

𝑒𝑐 enclosing class of 𝑚 and 𝑓, and probable target 

class  𝑡𝑐. 𝐷𝑖𝑠𝑡(𝑚, 𝑐) and 𝑑𝑖𝑠𝑡(𝑓, 𝑐) are the distances 

given by class 𝑐 between method 𝑚  and field 

𝑓. However, there is an automatic semantical 

relationship contained in method and class names, 

such as 𝑛𝑎𝑚𝑒(𝑚),  𝑛𝑎𝑚𝑒(𝑓),  𝑛𝑎𝑚𝑒(𝑒𝑐),  and 

𝑛𝑎𝑚𝑒 (𝑡𝑐).  The feature information gathered is 

coupled with the names of the methods and fields, as 

well as the names of its enclosing class and 

prospective target class. Usually, a method and field 

should be defined within the class that will handle 

the method and field's behavior. 

3.2.2. Textual feature extraction 

The semantics embedded system is completely 

exploited in natural languages for text feature 

extraction, employing certain modern technologies 

such as DL, which is more beneficial for extracting 

the text from training input for text feature 

extraction. 

For text feature extraction, the semantics 

embedded system is fully exploited in natural 

languages to employ some advanced technologies 

like DL, which is more useful for extracting the text 
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from training input for text feature extraction. It is 

also difficult to quantify the relationship between 

textual and numerical characteristics as code metrics 

with handcrafted algorithms. The words in 

identifiers are converted into similar length 

numerical vectors before being fed into neural 

networks as natural language identifiers. The 

conversion is accomplished using the well-known 

word2vector function. Word2vector is a powerful 

method for learning high-quality distributed vector 

representations with precise syntactic and semantic 

word links. Word2vector is basically a neural 

network that predicts words that are adjacent to it, 

i.e., words that come before and after it. This 

network has been developed to modify words into 

numerical vectors using the hidden layer, which is a 

function of the training process. 

A series of words is partitioned according to 

capital letters and underscores for a certain identifier, 

such as method and field name or class name, and 

each word is transformed into a fixed-length 

numeric vector: vector: 

 

𝑛𝑎𝑚𝑒(𝑒) = <  𝑤1, 𝑤2, . . . , 𝑤𝑘 >           (2) 

 

= < 𝑉 (𝑤1), 𝑉 (𝑤2), . . . , 𝑉 (𝑤𝑘) >          (3) 

 

The 𝑛𝑎𝑚𝑒 (𝑒)  identifies the software entity 𝑒 , 

and <  𝑤1, 𝑤2, . . . , 𝑤𝑘 > is termed as a word 

sequence. With 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐𝑡𝑜𝑟 , 𝑉 (𝑤𝑖) transforms 

word   (𝑤𝑖) into a defined-length numerical  vector. 

The length of the word sequence for each identifier 

is limited to five for simplifying the neural network 

function. For example, if the identification includes 

more than five terms, just the top five are extracted. 

If it comprises fewer than five words, a special 

character with a vector of zeros will be appended to 

the sequence. 

3.2.3. Slice vector feature extraction 

DL is utilized to capture the structural 

information of slice profiles using slicing vectors. 

This is a critical step in detecting CS. A slice 

profile's slicing vector is a point in space with 

uniform dimensions. This is comparable to 

Deckard's [20] approach's characteristic vector. A 

characteristic vector is a numerical representation of 

a subtree. The dimensions of a characteristic vector 

are determined by the total number of distinct types  

of full binary trees necessary to approximate a 

certain tree. Deckard generates vectors by traversing  

the parse tree backwards. Then, it is enlarged in 

a variety of ways because each slicing vector has a 

fixed size given by the number of slicing fields 

generated using srcClone [21]. So, there is no need 

to traverse a tree to generate these vectors, nor is it 

necessary to compute the values in the vectors' 

dimensions. Table 1 displays the Slicing Vectors for 

the Slice Profiles' techniques and field levels (SPs). 

For a particular field slice profile, the slicing 

vector is represented as 𝑠𝑣  has the following 

dimensions: 

 

𝑠𝑣(𝑣) = 

⟨|𝐷𝑒𝑓 |, |𝑈𝑠𝑒 |, |𝐷𝑓𝑙𝑠|, |𝑃𝑡𝑟𝑠|, |𝐶𝑚𝑒𝑑𝑠|⟩       (4) 

 

𝐷𝑒𝑓- distinguish between fields (variable) that 

have the same name but have distinct scopes. 

𝑈𝑠𝑒 - list of lines in which a field is used 

𝐷𝑓𝑙𝑠  - Fields that are data dependent on the 

slicing variable  

𝑃𝑡𝑟𝑠 – refers list of slicing variables  

𝐶𝑚𝑒𝑑𝑠 - a list of methods that have been called 

with the slicing variable 

The size of a slicing field is shown by each 

dimension. The |𝐷𝑒 𝑓 |  dimension, for example, 

specifies the number of code lines on which an 

identifier is defined or redefined. If two code parts 

are smelled, their vectors will be highly similar. 

Intuitively, even if a smell modifies a small portion 

of the original copy, their slicing vectors will not 

alter significantly. This is the only required variable 

information that remains after this encoding stage. 

As a result, the code structure and other information 

(such as field names) would be lost.  

 

Table 1. The slicing vectors for methods and fields levels for the slice profile 

Methods 

 

Fields Slicing Vectors(𝑠𝑣𝑠) Function-Level 

 

 

𝑠𝑢𝑚𝑃𝑟𝑜𝑑 

i ⟨2, 3, 2, 0, 0⟩  

⟨6, 4, 2, 0, 1, 4⟩ 
 

prod ⟨2, 1, 0, 0, 1⟩ 
sum ⟨2, 1, 0, 0, 1⟩ 

n ⟨1, 1, 0, 0, 0⟩ 
 

𝑠𝑢𝑚𝑃𝑟𝑜𝑑_𝐸 

i ⟨2, 3, 2, 0, 0⟩  

⟨7,4,2,0,1,4⟩ prod ⟨2, 1, 0, 0, 1⟩ 
sum ⟨2, 1, 0, 0, 1⟩ 

n ⟨1, 1, 0, 0, 0⟩ 
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At the field level, the 𝑠𝑣  for each field in 

procedure 𝑠𝑢𝑚𝑃𝑟𝑜𝑑 is similar to the corresponding 

𝑠𝑣  for the same fields in functions 𝑠𝑢𝑚𝑃𝑟𝑜𝑑 𝐸. 
This is the only required variable information that 

remains after this encoding stage. As a result, the 

code structure and other information (such as field 

names) would be lost. At the field level, the 𝑠𝑣 for 

each field in procedure 𝑠𝑢𝑚𝑃𝑟𝑜𝑑 is similar to the 

corresponding 𝑠𝑣  for the same fields in functions 

𝑠𝑢𝑚𝑃𝑟𝑜𝑑 𝐸. 
Therefore, the decreased slice profiles are 

constructed into a collection of vectors. A 

comparison of 𝑛  slicing vectors, where 𝑛  denotes 

the number of fields. 𝑆𝑢𝑚𝑃𝑟𝑜𝑑  and 

𝑠𝑢𝑚𝑃𝑟𝑜𝑑 𝐸 have slicing vectors of ⟨6, 4, 2, 0, 1, 4⟩ 
and ⟨7, 4, 2, 0, 1, 4⟩ respectively. Each approach has 

the same number of fields. Given a system 

dictionary, the single pass technique is used to 

generate vectors for its slice profiles. This algorithm 

will demonstrates how to construct vectors for the 

cut contour's three levels of granularity. 𝑠𝑟𝑐𝐶𝑙𝑜𝑛𝑒 

yields the collection 𝐺, which contains all 𝑠𝑣𝑠 of the 

system.  

3.2.4. Algorithm for slicing vectors generation 

Input: 𝒮𝔇: system dictionary 

Output: 𝒢: slicing vectors set 

/∗  𝑠𝑣(𝑣), 𝑠𝑣(𝑚), 𝑠𝑣(𝑓 ) generation */ 

1. begin 

2. 𝓕 ←− Set of files in 𝒮𝔇 

3. 𝓜 ←− Set of methods for each file 

4. 𝓥 ←− Obtain field set for each method        

5. 𝑓𝑜𝑟 ∀𝑠𝑝(𝑓 )  ∈ ℱ  𝑑𝑜 
6. 𝑓𝑜𝑟 ∀𝑠𝑝(𝑚)  ∈   ℳ 𝑑𝑜 

7. 𝑓𝑜𝑟 ∀𝑠𝑝(𝑣)  ∈  𝒱 𝑑𝑜 

8. 𝑠𝑣(𝑣)  ←  ⟨|𝐷𝑒 𝑓 |, . . . , |𝐶 𝑚𝑒𝑑𝑠|⟩ 
9. 𝑠𝑣(𝑚)  ←  ⟨|𝐷𝑒 𝑓 |, . . . , |𝐶 𝑚𝑒𝑑𝑠|, |𝑉 |⟩ 
10. 𝑠𝑣(𝑓 )  ←  ⟨|𝐷𝑒 𝑓 |, . . . , |𝐶 𝑚𝑒𝑑𝑠|, |𝒱 |, |ℳ |⟩ 
11. 𝐺 ←  𝐺 ∪  (𝑠𝑣(𝑓 ), 𝑠𝑣(𝑚), 𝑠𝑣(𝑣)) 

3.3 Fusioning of feature vector for training data 

DL techniques are used to identify CS by 

providing the training datasets. At first, well-known 

and high-quality open-source applications are 

downloaded. Second, a labelled training sample is 

created for each method m and field f from such 

application which are illustrated below: 

1. Move method refactoring has been used to train 

method 𝑚 and field 𝑓 to be transferable to other 

classes. The Eclipse 𝐽𝐷𝑇 𝐴𝑃𝐼𝑠 are used in the 

training as it considers parameters and fields 

accessible in 𝑚  to be potential references to 

target classes, and such classes are referred to as 

prospective target classes (𝑝𝑡𝑐) for 𝑚. If 𝑝𝑡𝑐 is 

null, the method 𝑚 may be relocated. It can also 

be applied to any of the 𝑝𝑡c classes. 

2. Assume that method 𝑚 can be relocated to a set 

of classes denoted by 𝑝𝑡𝑐 = {𝑡𝑐1, 𝑡𝑐2, . . . , 𝑡𝑐𝑘}.  

If 𝑝𝑡𝑐  is empty, the function is denied and 

moved on to the next. Otherwise, proceed to the 

following step to generate labelled training data. 

3. A fifty-fifty chance of obtaining positive 

training data with FE or negative training data 

without FE is determined at random. 

4. The negative data is generated in the following 

manner. First, a potential target class   𝑡𝑐𝑖  is 

chosen at random from 𝑝𝑡𝑐.  Second, Find the 

method-field distance 𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐), 
𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐 𝑖),  𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐),  and 𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐𝑖 , ) 

where 𝑒𝑐  the enclosing class of is 𝑚  and 

𝑓. Third, create  the negative item (𝑛𝑔𝐼𝑡𝑒𝑚) 

and add it to the training data set. 

 

𝑛𝑔𝐼𝑡𝑒𝑚 = <  𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡 >         (5) 

𝑖𝑛𝑝𝑢𝑡 =  
<  𝑛𝑎𝑚𝑒(𝑚), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐),

𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐𝑖); 
 𝑛𝑎𝑚𝑒(𝑓), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐), 

𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐𝑖), 𝑠𝑣(𝑓 ), 𝑠𝑣(𝑚), 𝑠𝑣(𝑣)  >          (6) 

 

𝑜𝑢𝑡𝑝𝑢𝑡 =  0                            (7) 

 

5. The following is the generation of a positive 

item. First, choose a probable target class 𝑡𝑐𝑖 at 

random from𝑝𝑡𝑐. Second, using Eclipse 𝐴𝑃𝐼𝑠, 

relocate 𝑚  and 𝑓  from their enclosing class 𝑒𝑐 

to  𝑡𝑐𝑖 . Third, a positive item with the input is 

formed. 

6. The following is how the positive term is 

formed. First, choose a probable target class 𝑡𝑐𝑖 

at random from 𝑝𝑡𝑐 . Then, using the Eclipse 

API, to move 𝑚 and 𝑓  from the surrounding 

class 𝑒𝑐  to  𝑡𝑐𝑖 . Third, a positive item is 

generated using a positive input. 

 

< 𝑛𝑎𝑚𝑒(𝑚), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐), 
𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐𝑖)                          (8) 

 

< 𝑛𝑎𝑚𝑒(𝑓), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐), 
𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐𝑖) 𝑠𝑣(𝑓 ), 𝑠𝑣(𝑚), 𝑠𝑣(𝑣)) >        (9) 

 

𝑜𝑢𝑡𝑝𝑢𝑡 =  1                          (10) 

 

The distances are determined specifically once 

the method and field have been moved.  
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3.4 Fusioning the feature vector for testing data 

As like fusioning the features vector for training 

data, the same procedure is followed for the testing 

data which is generated for each of the potential 

classes in feature vector. The method 𝑚  and field 

𝑓 might be relocated to a collection of classes 

denoted by 𝑝𝑡𝑐  = {𝑡𝑐1 , 𝑡𝑐2 , . . . , 𝑡𝑐𝑘 }. If 𝑝𝑡𝑐  is 

empty, it means that the method 𝑚 and field 𝑓 were 

unable to be conveyed, or that the method was 

refused and the procedure proceeded to the next 

stage. Otherwise, move to the following step to 

generate labeled training data. With or without FE, 

randomly generated positive or negative testing 

results will be generated. 

The following is how the negative testing data is 

constructed. The distance of method and field 

𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐),  𝑑𝑖𝑠𝑡(𝑚,   𝑡𝑐𝑖) ,  𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐), and 

𝑑𝑖𝑠𝑡(𝑓,   𝑡𝑐𝑖)  are used to compute the random 

potential target class 𝑡𝑐 i from 𝑝𝑡𝑐, where ec is the 

enclosing class of 𝑚  and  𝑓 . Third, construct the 

negative item (𝑛𝑔𝐼𝑡𝑒𝑚)  and add it to the testing 

data set. The distance of method and field 

𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐), 𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐and 𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐𝑖) 

are used to compute the random potential target 

class 𝑡𝑐𝑖 from 𝑝𝑡𝑐, where 𝑒𝑐 is the enclosing class of 

𝑚  and  𝑓 . Third, construct the negative item 

(𝑛𝑔𝐼𝑡𝑒𝑚) and add it to the testing data set. 

 

𝑛𝑔𝐼𝑡𝑒𝑚 = <  𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡 >         (11) 

 

𝑖𝑛𝑝𝑢𝑡 =  
<  𝑛𝑎𝑚𝑒(𝑚), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐),

𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐𝑖); 
 𝑛𝑎𝑚𝑒(𝑓), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐), 

𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐𝑖), 𝑠𝑣(𝑓 ), 𝑠𝑣(𝑚), 𝑠𝑣(𝑣) >       (12) 

 

𝑜𝑢𝑡𝑝𝑢𝑡 =  0  𝑓𝑜𝑟                        (13) 

 

The following is how the positive term is formed. 

First, choose a probable target class 𝑡𝑐𝑖  at random 

from 𝑝𝑡𝑐 . Second, use Eclipse 7𝐴𝑃𝐼𝑠  to move 𝑚 

and 𝑓 from their parent class 𝑒𝑐 to 𝑡𝑐𝑖 . Third, a 

positive item is created whose input is 

 

< 𝑛𝑎𝑚𝑒(𝑚), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐), 
𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐𝑖)                           (14) 

 

<𝑛𝑎𝑚𝑒(𝑓), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐), 
𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐𝑖), 𝑠𝑣(𝑓 ), 𝑠𝑣(𝑚), 𝑠𝑣(𝑣)  >     (15) 

 

𝑜𝑢𝑡𝑝𝑢𝑡 =  1                        (16) 

 

The distances are calculated specifically once 

the technique and field have been relocated. Where 

𝑒𝑐 is the method 𝑚 specifying the class and field 𝑓 

to be used as input to the learnt deep NN. 

3.5 Classification of FE 

The structure of a deep NN-based classifier for 

FE CS detection is provided for the classification 

process. The classifier input is divided into two 

types as textual and numerical. The textual input 

consists of a word sequence formed by 

concatenating the names of the method and field, the 

enclosing class, and the names of possible 

destination classes. It is next to process by an 

embedding layer, which converts the text 

description into a numerical vector. These numerical 

vectors are then fed into a CNN. After that, the text 

description is passed via an embedding layer, which 

turns it to a numerical vector. After that, the 

numerical vectors are inputted into a CNN. 

For the two CNN layers, the following 

parameters are specified as filters = 128, kernel size 

= 1, and activation = 𝑡𝑎𝑛ℎ. CNNs can be utilised for 

a variety of tasks. First, major breakthroughs in 

CNN have recently been made, allowing CNN to be 

more successful in terms of improving ML capacity 

and flexibility. A strong CNN layer aids in learning 

the deep semantic association between IDs when it 

comes to finding them. Second, CNN is well-suited 

to parallel processing on new powerful GPUs, which 

greatly reduces training time. A flatten layer is 

applied to CNN output, which lowers the input to a 

one-dimensional vector.  

The numerical inputs (𝑚, 𝑒𝑐), 𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐𝑖), and 

𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐), dist(f,tc i) are fed directly into another 

CNN, and the output is routed to a flatten layer. This 

CNN is set up in the same manner as the one 

described in the preceding paragraph. This CNN is 

replaced by various types of neural network layers, 

however the replacement has no effect on 

performance. 

The merge layer eventually combines the textual 

and numerical inputs after concatenating a list of 

inputs such as the previously mentioned textual and 

numerical inputs. The dense and output layers 

combine the textual and numerical inputs to provide 

a single prediction output, implying that the method 

𝑚 and field 𝑓 should be moved to the target class 𝑡𝑐. 

The loss function in this case is binary cross entropy.  

The aforementioned classification technique is 

used to explore the following methods 𝑚 and fields 

𝑓 to forecast whether it is smelly or not. First, its 

potential target classes are identified using Eclipse 

JDT as   𝑝𝑡𝑐 = 𝑡𝑐1, 𝑡𝑐2, … … 𝑡𝑐𝑘 . If 𝑝𝑡𝑐 is null, it  
 



Received:  October 23, 2021.     Revised: December 14, 2021.                                                                                         570 

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022           DOI: 10.22266/ijies2022.0228.51 

 

 
 

Figure. 1 The classifier detection for FE 

 

signifies that the method and field could not be 

moved, which is not a good thing. If all of these data 

are anticipated to be negative (non-smelly), then the 

supplied method 𝑚 and field 𝑓 are unrelated to FE; 

otherwise, smelly is related to FE. Fig. 1 depicts the 

FE classifier detection.  

3.6 Recommendation of refactoring solutions 

The FE predicts that the misplaced methods 𝑚 and 

fields 𝑓 are stinky and that they should be moved 

using move method refactorings. If only one (noted 

as 𝑗) of the testing items prepared for 𝑚  and 𝑓  is 

expected to be positive, 𝑚 and 𝑓 should be assigned 

to the target class (𝑡𝑐𝑗)) associated with the positive 

testing data input 𝑗. If more than one testing data is 

expected to be positive, the method 𝑚 and field 𝑓 

must be shifted to the class 𝑡𝑐𝑖  associated with the 

highest output (noted as input 𝑖). Despite the fact 

that the neural network is trained as a binary 

classifier with the goal of reducing misclassification 

rather than mean squared error, the neural network's 

output is a decimal range from 0 to 1. The neural 

network evaluates the prediction as affirmative if 

and only if the output exceeds certain thresholds. 

 

 
 

Figure. 2 Overall performances for detecting FE CS in the 

source code program 

 

Fig. 2 represents the overall performance for 

detecting FE CS in the source code program. 

4. Result and discussion 

In this section, the performance of Extended DL 

Based FE Detection for Misplaced Fields and 

Methods (EDLFED-FM) is compared to that of 

existing FE approaches such as JDeodorant [18] and 

DL Based FE Detection (DLFED) [19], which is 

validated in terms of precision, recall, F1, MCC, and 

AUC using different applications such as Free plane 

Junit JExcelapi. For the experimental analysis, the 

training dataset for DL-based FE detection is 

compiled from well-known and high-quality open-

source application. Then, each misplaced method 

𝑚 and field 𝑓 is collected from such applications to 

produce the labeled training sample for better 

software refactoring entities to detect the FE CS. For 

the evaluation, the performance metrics and the 

comparison table for proposed and existing methods 

for defining the better performance in FE on 

different application like Free plane, Junit and 

JExcelapi. is defined as follows. 
 

 

Generation of training data and testing data 

using deep learning methods 

Training the deep learning classifier to detect 

the FE CS 

Selecting the features of misplaced methods 

and fields in FE 

Training and classifying the data for FE 

Detection using DNN 

FE code smell is detected in the source code 

Finally, the software is restored using 

refactoring solution 

Source code 

EMBEDDING 

CNN 

FLATTERN 

𝑛𝑎𝑚𝑒(𝑚), 𝑛𝑎𝑚𝑒 (𝑓), 

𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐) 

CNN 

FLATTERN 

𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐) 𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐),  

𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐) 𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐), 

𝑠𝑣(𝑓 ), 𝑠𝑣(𝑚), 𝑠𝑣(𝑣) 

 

MERGE 

DENSE 

OUTPUT 

SLICING 
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Table 2. Compared values of presented and existing 

methods on precision values for FE-CS detection 

Applications JDeodorant 

[18] 

DLFED 

[19] 

EDLFED-

FM 

Free plane 34.91  36.24  39.97  

Junit 48.90  50.00  56.10  

JExcelapi 32.04  34.04  39.04  

 

 
Figure. 3 Comparsion of presented and existing methods 

on precision values for FE-CS detection 

4.1 Precision 

The precision is used to determine a classifier's 

ability to forecast only the misplaced methods and 

fields from the FE CS in a given dataset. It is 

expressed as the percentage of accurately detected 

FE CS results at TP and FP rates, or the proportion 

of actual positives to detected CS. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)
 (17) 

 

From the above Table 2 and Fig. 3, it is analyzed 

that the proposed EDLFED-FM is 14.49%, 10.29% 

for the given free plane, 14.72%, 12.2% for the 

given junit, 21.84%, 14.68% for the given JExcelapi 

applications which is resulted to be greater than that 

of existing JDeodorant and DLFED method. It is 

due to the DL model which augments the training 

data in difficult cases and highly focused on the 

misclassified code smells. Hence, it has been 

demonstrated that the proposed strategy will 

outperform all other existing methods for detection 

FE-CS in terms of precision. 

4.2 Recall 

Recall can be used to assess a model's ability to 

identify each of the feature vectors of interest in a 

set of data. It is expressed as the ratio of accurately 

detected CS results at TP and FN rates, or the 

proportion of observed positive CS. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑆𝑚𝑒𝑙𝑙𝑠  
                (18) 

Table 3. Compared values of presented and existing 

methods of recall values for FE-CS detection 

Application

s 

JDeodorant 

[18] 

DLFED 

[19] 

EDLFED

-FM 

Free plane 12.63 94.14 95.21 

Junit 24.53 82.22 87.43 

JExcelapi 27.69 88.89 90.91 

 

 
Figure. 4 Comparsion of presented and existing methods 

on recall values for FE-CS detection 

 

From the above Table 3 and Fig. 4, it is analyzed 

that the proposed EDLFED-FM is 65.38%, 1.13% 

for the given free plane, 25.64%, 6.33% for the 

given junit, 10.82%, 2.27% for the given JExcelapi 

applications which is resulted to be greater than that 

of existing JDeodorant and DLFED method. The 

proposed EDLFED-FM provides the ratio of 

accurately classified FE-CS that emerged out to the 

total number of classified FE-CS. Hence, it has been 

demonstrated that the proposed strategy will 

outperform all other existing methods for detection 

FE-CS in terms of recall values. 

4.3 F1-score 

The approximate detection of FE CS is 

calculated using the harmonic average values of 

precision and recall.  

 

𝐹1 = 2 ×   
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 
               (19) 

 

From the above Table 4 and Fig. 5, it is analyzed 

that the proposed EDLFED-FM is 19.73%, 5.38% 

for the given free plane, 88.16%, 6.33% for the 

given Junit, 30.68%, 10.16% for the given JExcelapi 

applications which is resulted to be greater than that 

of existing JDeodorant and DLFED method. It is 

due to the slicing decomposition algorithm which 

eventually distributes the FE-CS to the training 

phase resulting in the exact FE-CS results. Hence, it 

has been demonstrated that the proposed strategy 

will outperform all other existing methods for 

detection FE-CS in terms of F1- score values.  
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Table 4. Compared values of presented and existing 

methods on F1-score values for FE-CS detection 

Applications JDeodorant 

[18] 

DLFED 

[19] 

EDLFED-

FM 

Free plane 18.55 52.33 55.15 

Junit 35.14 62.18 66.12 

JExcelapi 13.33 49.23 54.23 

 

 
Figure. 5 Comparsion of presented and existing methods 

on F1-score values for FE-CS detection 

4.4 Matthews correlation coefficient (MCC) 

The MCC is a more dependable statistical rate 

that yields a high score only if the FE CS detection 

performed well in all four confusion matrix 

categories (TP, FN, TN, and FP), according to the 

number of positive and negative items in the dataset. 

The suggested destination for misplaced 

methods/fields is valid if and only if it promotes the 

method/fields to be relocated to its surrounding 

class/package before moving it. The MCC for CS 

detection is computed as 

 
Table 5. Compared values of presented and existing 

methods on MCC values for FE-CS detection 

Applications JDeodorant 

[18] 

DLFED 

[19] 

EDLFED-

FM 

Free plane 7.41 36.69 39.61 

Junit 27.55 46.02 49.02 

JExcelapi 13.45 39.54 43.44 

 

 
Figure. 6 Comparsion of presented and existing methods 

on MCC values for FE-CS detection 

 

𝑀𝐶𝐶 = 

 
𝑇 𝑃 × 𝑇 𝑁 − 𝐹 𝑃 × 𝐹 𝑁 

√(𝑇 𝑃 + 𝐹 𝑃)(𝑇 𝑃 + 𝐹 𝑁)(𝑇 𝑁 + 𝐹 𝑃)(𝑇 𝑁 + 𝐹 𝑁)
      (20) 

 

From the below Table 5 and Fig. 6, it is analyzed 

that the proposed EDLFED-FM is 43.45%, 7.96% 

for the given free plane, 77.93%, 6.52% for the 

given junit, 22.97%, 9.86% for the given JExcelapi 

applications which is resulted to be greater than that 

of existing JDeodorant and DLFED method. It is 

only due to the high resulted classification, if the 

prediction correctly classified a high percentage of 

negative code smell instances and a high percentage 

of positive code smell instances, with any class 

balance or imbalance. Hence, it has been 

demonstrated that the proposed strategy will 

outperform all other existing methods for detection 

FE-CS in terms of MCC values. 

4.5 Area under curve (AUC) 

The AUC is the measure of the ability of a 

classifier to distinguish between the misplaced 

methods and field from FE CS. The higher value of 

AUC provides the efficient detection of the FE CS 

as positive and negative results. 

From the below Table 6 and Fig. 7, it is analyzed 

that the proposed EDLFED-FM is 78.77%, 4.71% 

for the given free plane, 97.13%, 4.32% for the 

given junit, 51.86%, 3.36% for the given JExcelapi 

applications which is resulted to be greater than that 

of existing JDeodorant and DLFED method. The 

above result has higher AUC which provides the 

better code smell classification system and 

 
Table 6. Compared values of presented and existing 

methods on AUC values for FE-CS detection 

Applications JDeodorant 

[18] 

DLFED 

[19] 

EDLFED-

FM 

Free plane 48.67 83.10 87.01 

Junit 45.36 85.72 89.42 

JExcelapi 61.24 89.98 93.00 

 

 
Figure. 7 Comparsion of presented and existing methods 

on AUC values for FE-CS detection 
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efficiently distinguishes the positive and negative 

classes in between. Hence, it has been demonstrated 

that the proposed strategy will outperform all other 

existing methods for detection FE-CS in terms of 

AUC values. 

5. Conclusion  

In an dynamic development environment, 

developers contribute by offering refactoring 

possibilities in the source code to reduce unwanted 

smells. The CS indicates that there are issues with 

the system's underlying structure (code), which may 

be fixed by restructuring the code (refactoring). The 

basis method used for removing the CS in program 

is manually supervising every lines of code in the 

software package. However, the manual inspection 

does not achieve the better result in removing the 

CS. This research work focuses on automatic 

detection of CS detection using DL technique for 

improving the quality of the software. By using the 

enhanced decomposition slice method the misplaced 

methods and fields are identified together in 

proposed FE-CS detection method. As a result, the 

proposed method EDLFED-FM achieves higher 

precision than existing methods JDeodorant and 

DLFED method that is 14.49%, 10.29% for free 

plane, 14.72%, 12.2% for junit, 21.84%, 14.68 % for 

JExcelapi applications. The higher precision rate 

leads to the program performing efficiently with less 

training data. In future, it will be interesting to apply 

the proposed approach to detect additional 

categories of code smells like large classes, 

misplaced classes, lazy class and data clumps. 
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