
Received: October 23, 2021. Revised: December 14, 2021. 563

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.51

Extension of Deep Learning Based Feature Envy Detection for Misplaced Fields

and Methods

Malathi Jeevanantham1* Jabez Jones2

1Faculty of Computer Science and Engineering,

Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
2Department of Information Technology,

Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
* Corresponding author’s Email: mals_sakthiphd@yahoo.com

Abstract: Code smells (CS) are a severe symptom in software source code that leads to a serious problem in

software maintenance and evolution. Feature Envy (FE) is a type of CS that refers to methods that are misplaced in

the source code. Many tools like infusion, JDeodorant and JspIRIT have been used to identify the CS. The

conversion of source code measurements into predictions is based on manually constructed heuristics. But, manually

selecting good features and constructing optimal heuristics is a challenging issue. So, automatic detection of CS is

required. The Deep Learning (DL) methods play an important role in achieving the automatic detection of

FE(DLFED). The FE detection approach based on DL is intended to discover misplaced methods. The DL technique

automatically identifies the source code characteristics for FE identification as well as automatically improves the

difficult mapping structure between the features and their prediction. But, a DL-based automatic detection of CS

requires a significant number of features with labeled training datasets to provide better prediction results. Therefore,

an extension of the DL-based FE detection technique (EDLFED-FM) is proposed in this article to detect both

misplaced methods and fields. The semantic relationship between identifiers in the source code program is used to

extract the features of misplaced fields and methods. The new decomposition slice method is proposed to convert the

extracted features of misplaced methods and fields into the slicing vector composition. This sliced feature helps deep

learners understand the relationship between misplaced methods and fields. This automated method is capable of

producing labeled training data for DL techniques-based classifiers without the requirement for human intervention.

Finally, the experimental outcomes proved that precision rate of suggested method outperforms the JDeodorant and

DLFED methods by 14.49% and 10.29 % for free plane, 14.72 % and 12.2 % for Junit, and 21.84% and 14.68 % for

JExcelapi applications. Hence, it has been demonstrated that the predicted misplaced methods and fields are moved

to the refactoring class for positive testing of source code program with less training data.

Keywords: Code smell, Feature envy, Deep learning, Program source code, Slicing vector composition.

1. Introduction

CS is a fundamental violation of software

development principles, which will reduce the

quality of the code. The presence of CS does not

necessarily suggest that the software will not

function properly; nonetheless, it can decelerate

processing speed, raise the chance of failures and

errors, and render the program susceptible to defects

in the future. CS can lead to poor code quality and

thereby it increases the technical debt [1].

CS denotes a more serious problem, but as the

name implies, they can be detected or identified

quickly. The best odour is one that is easy to detect

but leads to a fascinating difficulty, such as classes

with data but no behaviour. Some tools [2] like

infusion, JDeodorant, PMD and JspIRIT may easily

detect CS.

Since CS has many software characteristics with

informal and subjective definitions, automatic

detection of CS is important to achieve without any

human need for refactoring operations in large

Received: October 23, 2021. Revised: December 14, 2021. 564

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.51

source code detection [3]. In recent times, Machine

Learning (ML) based smell detection approaches

have become an effective alternative because they

do not only have the means of judging as humans

but also, in the case of CS detection [4].

Furthermore, ML approaches may identify CS

detection as smelly or non-smelly variant results.

The issue emerges during the manual configuration

phase, resulting in unbalance [5]. So, the DL

techniques are the most effective method for

detecting the CS in large source code programs.

The DL methods for automatic CS detection can

be processed using some deep neural networks

(DNN) like CNN and RNN, demonstrating the

practical application of the DL model for detecting

smells without the need for extensive feature

engineering, which provides a source code in

tokenized form. However, the DL struggles with

detecting the text features and optimal heuristics in

large source code programs. So, the FE CS is

utilised in this DL approach for easy prediction of

features and heuristics for the refactoring class with

less training data [6].

In existing work, the FE detection technique

based on DL is intended to detect only the

misplaced methods in program code. Therefore, in

this paper, the DL based FE detection is extended to

find both misplaced methods and fields from source

code program. The detection of both misplaced

methods and fields of FE helps to eliminate deeper

problem in the running software programs. This

advanced DL technique will automatically choose

source code features for FE detection while also

improving the problematic mapping construction

between the features and their prediction. This

automated strategy will be capable of producing

labelled training data for DL techniques-based

classifiers without the use of human sources. The

features are extracted by analyzing the semantically

relationship between identifiers. Finally, the

improved decomposition slice method is developed

to transfer the extracted features into the slicing

vector composition. This sliced feature assists deep

learners in comprehending the connection between

misplaced methods and fields. The predicted

misplaced methods and fields are relocated to the

refactoring class for positive testing of source code

programs with less training data.

The rest of the manuscript is organized as

follows: Deep learning based code smell detection

techniques are explained in Section 2. The suggested

EDLFED-FM is explained in Section 3, followed by

a test experiment undertaken and reported in Section

4 and lastly, the study is concluded with its future

work in Section 5.

2. Literature survey

A tool called WekaNose was introduced [7] to

perform experiments using ML techniques to detect

smells from v-code. This method intentionally sets

the rules for obtaining the trained algorithms in

order to categorize an instance (method or class) as

affected or not by a CS. This tool helps to perform a

DL method for identifying a certain type of CS.

Then the correlations between CS and some specific

metrics were developed. Finally, the rules for rule-

based CS detectors were created to enhance the

detection of CS. However, the rules could minimize

the detection performance.

A Systematic Literature Review (SLR)

employing ML techniques for CS Detection was

created [8]. The four target CS prediction models

were developed using this method (i) specific CS

were considered, (ii) the ML method was used for

the setup, (iii) different types of evaluation strategies

were used, and (iv) the training strategies were used

to train and evaluate the ML techniques. A meta-

analysis of the ML models like decision trees and

random forests was also conducted. However, the

detection involves source code complexity.

The CS detection was proposed [9] using ML

techniques like static code metrics and CS metrics in

the dataset. Initially, two classification models like

Bagging and Random Forest were used for

enchaining the performance for CS detection. Then,

the four approaches were developed. The first

approach was identifying all twenty-seven

characteristics in a data collection of CS. The

second strategy evaluated the databases with three

feature selection methods like 𝐹1, 𝐹2, 𝑎𝑛𝑑 𝐹3 was

employed for the datasets reduction. The third

approach utilizes the ensemble learning method in

conjunction with three aggregators as like first

approach. The fourth approach considers the

integrated dataset of the second stage with four

combinations. However, memory and time

constraints were high.

For detecting the CS [10] proposed a DL

structure with two specific models. In this method,

the DL structure was employed with two layers of

CNN and RNN as well as Auto Encoders to

modulate the performance to fine-tune the smell

detection performances of different CS. The

performance of the model was affected by adjusting

the learning hyper parameters. The DL investigation

on CS detection was transferred to analyze the

trained model for detecting smells in a programming

language, and it could also be used to detect on

other languages. However, CS detection tools

Received: October 23, 2021. Revised: December 14, 2021. 565

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.51

utilized in this structure either not available or not

matured.

A hybrid detection approach was presented [11]

using unsupervised and supervised algorithms to

detect four CSs. Initially, the dimensionality

reduction approach was conducted using a deep

auto-encoder for extracting the most significant

features. The ANN classifier learns to generate the

new data after the feature space has been decreased

with a minor reconstruction error. This technique

was tested using four datasets derived from a large

number of open source systems. Furthermore,

additional sorts of features were discovered using

fine-grained data, and this included the detection of

other forms of CS. However, this method does not

generalise to industrial projects.

A method based on DL was devised [12] to

detect two CS, such as Brain Class and Brain

Method. To generate complex patterns in the higher

layer, one of the DL architectures like the

Convolution Neural Networks-1D (CNN) model

was used in this method. The input was gathered

from open source Java software, and the program

code was then fed into a metrics analysis tool to

obtain the metrics required to identify the brain class

and brain function. Object-oriented metrics were

assessed to detect the presence of smells in software.

However, the approach necessitates a large number

of datasets in order to detect CS.

A semantic-based technique was introduced [13]

to detect code or bad smells in source code at

various levels of granularity. The abstract syntax

with variation Auto-encoder was created to

distinguish the three CSs of blob, FE, and long

method. Initially, the source code was parsed using

an Abstract Syntax Tree, and the resulting trees

were transformed into vector representations using a

transformation. Then, the variation auto-encoder

was employed to produce the deep representations

that incorporate the required semantic features.

Finally, the semantic features were fed into a

logistic regression to identify whether there was a

CS or not. However, this approach does not handle

other forms of class-level smells.

A new metric was introduced [14] to detect FE

CS, which may be eliminated by shifting the

specific method. This suggested metric detects FE

CS candidates using two methods, like similarity

between methods and the distance between the

method and the target class candidate. Then, the

identified FE observed CS was removed using the

removal technique. Following that, the source code

was rebuilt using the refactoring system without

affecting the system's behaviour. The tool

JCodeCanine was created as an eclipse plug-in to

evaluate the performance of new metrics. However,

the computational complexity was high.

A tool named FEED (Feature Envy Detector)

was developed [15] for identifying FE CS detection

based on data flow analysis. The data flow analysis

was used to create the DEF (definition) and Usage

(use) information in order to discover the variables

in each code statement. The FEED was utilized in

the data flow analysis to pinpoint a statement for the

actual problem for the FE. Furthermore, the FEED

assists novice programmers in avoiding FE smells

on large datasets. However, the procedure for using

this tool was slightly complicated.

A new method was proposed [16] to detect and

identify the CS called "Anti-pattern Detection and

Identification using Oblique Decision Tree

Evolution (ADIODE). To discover the imbalance

data in the CS, the ADIODE uses the input as a base

of anti-pattern instances with a collection of Oblique

Decision Trees (ODTs) utilizing an Evolutionary

Algorithm (EA). This method was utilized for four

primary features: (i) the use of oblique splitting

hyper-planes to discover the imbalanced data,

particularly small disjuncts. (ii) The data-driven

discretization approach is used to avoid an empty or

a normal sub-class that contains all occurrences. (iii)

AUC was regarded as a fitness function that was

used to evaluate both unbalanced and balanced data.

However, an imbalanced binary classification

problem occurs in the CS detection.

An automated approach was created [17] for

detecting bad code or monitoring code quality

during the development process. Initially, this tool

implementation uses a set of code, programming

design principles, synchronous threads, and cache

representation. This solution was built using the JFly

eclipse plug-in tool, which was linked to the IDE via

multiple extension points. The users' preferences

might be readily defined as a "bad smell" metrics

threshold. The JFly tool's performance resulted in

the detection of poor or CS. However, with low-spec

systems, performance and outcomes cannot be

assured.
CS detection tools like JDeodorant, inFusion,

PMD, and JSpIRIT were investigated [18].

MobileMedia and Health Watcher were used as

target systems to detect code smells such as God

Class, God Method, and FE detection. Calculating

the recall and precision of tools in recognizing the

CSs was used to determine the accuracy. When all

four CS detection tools were compared, JDeodorant

recognize the majority of the correct entities with

lower precision and a higher recall, which increased

the validation effort to capture the majority of the

affected entities. However, it was not possible to run

Received: October 23, 2021. Revised: December 14, 2021. 566

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.51

the tools during commit tasks, which resulted in low

performance.
A novel DL-Based FE Detection (DLFED) was

presented [19] to detect different sorts of CSs. In

this method, DNN and advanced DL methods were

utilised to automatically choose useful source code

features for CS detection and develop a complex

mapping between such features and binary

conversion predictions. This method would

automatically generate the labelled training data for

CS detection. This approach may be used to detect

CSs in four different categories: FE, long methods

(LM), Large classes (LS) and misplaced classes

(MC). It was first tested on open-source programs

that had smells introduced into them, then on the

original source code of open-source applications that

had not been changed. However, the generated

training data was of poor quality.

The above methods detects FE only based on

misplaced methods, but not considered misplaced

fields. The feature of fields can be utilized in DL to

improve the effectiveness of FE detection. This

paper proposes slicing vector to extract the features

of fields. The following section describe how DL

method detects FE by utilizing both misplaced

methods and misplaced fields

3. Proposed methodology

In this section, the DL based FE CS is

constructed to detect the misplaced methods and

fields from the FE-CS of a particular program code.

The enhanced slicing method is proposed in this

method for better understanding of misplaced

methods and fields. Also, the refactoring software

leads to identify the misplaced methods and fields in

the structured source code program.

3.1 Smell detection using DL approach

A DL based FE detection [19] utilized features

extracted for misplaced methods. The same Deep

learning structure is utilized in this paper. However,

the various categories of features used in DL

structure means, the performance can be improved.

A vast amount of labeled training data also required

to construct complex DL classifiers for detecting

CSs. So the DL based FE detection is extended for

utilizing features of both misplaced methods and

fields at various locations of a program. The training

data set is constructed from various applications

which can be utilized for identifying CSs for any

applications. A sampling and training processes are

repeated 𝑛 times, resulting in 𝑛 classifiers. By

training several classifiers and voting on the final

decisions, the bootstrap aggregating technique [19]

is utilized to increase the robustness and accuracy of

the CS identification system.

3.2 DL-based FE detection for misplaced

methods and fields

3.2.1. Feature extraction for training data

The training data for FE detection is derived

from source applications. A dataset should be

constructed within a certain class to detect

misplaced methods and fields by examining the

semantic connection between their identifiers,

because meaningful identifiers can reveal the

responsibilities and actions of the associated entities.

In this method, the misplaced method 𝑚 and field 𝑓

are relocated from their enclosing class 𝑒𝑐 to a

target (another) class 𝑡𝑐 using both structural and

textual information as code metrics. After that select

the features for FE CS. The input training data is a

quintuple as

𝑖𝑛𝑝𝑢𝑡(𝑚, 𝑓) =

< 𝑛𝑎𝑚𝑒(𝑚), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐), 𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐),
𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐);

𝑛𝑎𝑚𝑒(𝑓), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐), 𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐),
𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐); > (1)

Where, 𝑛𝑎𝑚𝑒 (𝑒) is an identifier for the method

name and field name of software entity 𝑒, method

under investigation 𝑚, field under examination 𝑓 ,

𝑒𝑐 enclosing class of 𝑚 and 𝑓, and probable target

class 𝑡𝑐. 𝐷𝑖𝑠𝑡(𝑚, 𝑐) and 𝑑𝑖𝑠𝑡(𝑓, 𝑐) are the distances

given by class 𝑐 between method 𝑚 and field

𝑓. However, there is an automatic semantical

relationship contained in method and class names,

such as 𝑛𝑎𝑚𝑒(𝑚), 𝑛𝑎𝑚𝑒(𝑓), 𝑛𝑎𝑚𝑒(𝑒𝑐), and

𝑛𝑎𝑚𝑒 (𝑡𝑐). The feature information gathered is

coupled with the names of the methods and fields, as

well as the names of its enclosing class and

prospective target class. Usually, a method and field

should be defined within the class that will handle

the method and field's behavior.

3.2.2. Textual feature extraction

The semantics embedded system is completely

exploited in natural languages for text feature

extraction, employing certain modern technologies

such as DL, which is more beneficial for extracting

the text from training input for text feature

extraction.

For text feature extraction, the semantics

embedded system is fully exploited in natural

languages to employ some advanced technologies

like DL, which is more useful for extracting the text

Received: October 23, 2021. Revised: December 14, 2021. 567

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.51

from training input for text feature extraction. It is

also difficult to quantify the relationship between

textual and numerical characteristics as code metrics

with handcrafted algorithms. The words in

identifiers are converted into similar length

numerical vectors before being fed into neural

networks as natural language identifiers. The

conversion is accomplished using the well-known

word2vector function. Word2vector is a powerful

method for learning high-quality distributed vector

representations with precise syntactic and semantic

word links. Word2vector is basically a neural

network that predicts words that are adjacent to it,

i.e., words that come before and after it. This

network has been developed to modify words into

numerical vectors using the hidden layer, which is a

function of the training process.

A series of words is partitioned according to

capital letters and underscores for a certain identifier,

such as method and field name or class name, and

each word is transformed into a fixed-length

numeric vector: vector:

𝑛𝑎𝑚𝑒(𝑒) = < 𝑤1, 𝑤2, . . . , 𝑤𝑘 > (2)

= < 𝑉 (𝑤1), 𝑉 (𝑤2), . . . , 𝑉 (𝑤𝑘) > (3)

The 𝑛𝑎𝑚𝑒 (𝑒) identifies the software entity 𝑒 ,

and < 𝑤1, 𝑤2, . . . , 𝑤𝑘 > is termed as a word

sequence. With 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐𝑡𝑜𝑟 , 𝑉 (𝑤𝑖) transforms

word (𝑤𝑖) into a defined-length numerical vector.

The length of the word sequence for each identifier

is limited to five for simplifying the neural network

function. For example, if the identification includes

more than five terms, just the top five are extracted.

If it comprises fewer than five words, a special

character with a vector of zeros will be appended to

the sequence.

3.2.3. Slice vector feature extraction

DL is utilized to capture the structural

information of slice profiles using slicing vectors.

This is a critical step in detecting CS. A slice

profile's slicing vector is a point in space with

uniform dimensions. This is comparable to

Deckard's [20] approach's characteristic vector. A

characteristic vector is a numerical representation of

a subtree. The dimensions of a characteristic vector

are determined by the total number of distinct types

of full binary trees necessary to approximate a

certain tree. Deckard generates vectors by traversing

the parse tree backwards. Then, it is enlarged in

a variety of ways because each slicing vector has a

fixed size given by the number of slicing fields

generated using srcClone [21]. So, there is no need

to traverse a tree to generate these vectors, nor is it

necessary to compute the values in the vectors'

dimensions. Table 1 displays the Slicing Vectors for

the Slice Profiles' techniques and field levels (SPs).

For a particular field slice profile, the slicing

vector is represented as 𝑠𝑣 has the following

dimensions:

𝑠𝑣(𝑣) =

⟨|𝐷𝑒𝑓 |, |𝑈𝑠𝑒 |, |𝐷𝑓𝑙𝑠|, |𝑃𝑡𝑟𝑠|, |𝐶𝑚𝑒𝑑𝑠|⟩ (4)

𝐷𝑒𝑓- distinguish between fields (variable) that

have the same name but have distinct scopes.

𝑈𝑠𝑒 - list of lines in which a field is used

𝐷𝑓𝑙𝑠 - Fields that are data dependent on the

slicing variable

𝑃𝑡𝑟𝑠 – refers list of slicing variables

𝐶𝑚𝑒𝑑𝑠 - a list of methods that have been called

with the slicing variable

The size of a slicing field is shown by each

dimension. The |𝐷𝑒 𝑓 | dimension, for example,

specifies the number of code lines on which an

identifier is defined or redefined. If two code parts

are smelled, their vectors will be highly similar.

Intuitively, even if a smell modifies a small portion

of the original copy, their slicing vectors will not

alter significantly. This is the only required variable

information that remains after this encoding stage.

As a result, the code structure and other information

(such as field names) would be lost.

Table 1. The slicing vectors for methods and fields levels for the slice profile

Methods

Fields Slicing Vectors(𝑠𝑣𝑠) Function-Level

𝑠𝑢𝑚𝑃𝑟𝑜𝑑

i ⟨2, 3, 2, 0, 0⟩

⟨6, 4, 2, 0, 1, 4⟩

prod ⟨2, 1, 0, 0, 1⟩
sum ⟨2, 1, 0, 0, 1⟩

n ⟨1, 1, 0, 0, 0⟩

𝑠𝑢𝑚𝑃𝑟𝑜𝑑_𝐸

i ⟨2, 3, 2, 0, 0⟩

⟨7,4,2,0,1,4⟩ prod ⟨2, 1, 0, 0, 1⟩
sum ⟨2, 1, 0, 0, 1⟩

n ⟨1, 1, 0, 0, 0⟩

Received: October 23, 2021. Revised: December 14, 2021. 568

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.51

At the field level, the 𝑠𝑣 for each field in

procedure 𝑠𝑢𝑚𝑃𝑟𝑜𝑑 is similar to the corresponding

𝑠𝑣 for the same fields in functions 𝑠𝑢𝑚𝑃𝑟𝑜𝑑 𝐸.
This is the only required variable information that

remains after this encoding stage. As a result, the

code structure and other information (such as field

names) would be lost. At the field level, the 𝑠𝑣 for

each field in procedure 𝑠𝑢𝑚𝑃𝑟𝑜𝑑 is similar to the

corresponding 𝑠𝑣 for the same fields in functions

𝑠𝑢𝑚𝑃𝑟𝑜𝑑 𝐸.
Therefore, the decreased slice profiles are

constructed into a collection of vectors. A

comparison of 𝑛 slicing vectors, where 𝑛 denotes

the number of fields. 𝑆𝑢𝑚𝑃𝑟𝑜𝑑 and

𝑠𝑢𝑚𝑃𝑟𝑜𝑑 𝐸 have slicing vectors of ⟨6, 4, 2, 0, 1, 4⟩
and ⟨7, 4, 2, 0, 1, 4⟩ respectively. Each approach has

the same number of fields. Given a system

dictionary, the single pass technique is used to

generate vectors for its slice profiles. This algorithm

will demonstrates how to construct vectors for the

cut contour's three levels of granularity. 𝑠𝑟𝑐𝐶𝑙𝑜𝑛𝑒

yields the collection 𝐺, which contains all 𝑠𝑣𝑠 of the

system.

3.2.4. Algorithm for slicing vectors generation

Input: 𝒮𝔇: system dictionary

Output: 𝒢: slicing vectors set

/∗ 𝑠𝑣(𝑣), 𝑠𝑣(𝑚), 𝑠𝑣(𝑓) generation */

1. begin

2. 𝓕 ←− Set of files in 𝒮𝔇

3. 𝓜 ←− Set of methods for each file

4. 𝓥 ←− Obtain field set for each method

5. 𝑓𝑜𝑟 ∀𝑠𝑝(𝑓) ∈ ℱ 𝑑𝑜
6. 𝑓𝑜𝑟 ∀𝑠𝑝(𝑚) ∈ ℳ 𝑑𝑜

7. 𝑓𝑜𝑟 ∀𝑠𝑝(𝑣) ∈ 𝒱 𝑑𝑜

8. 𝑠𝑣(𝑣) ← ⟨|𝐷𝑒 𝑓 |, . . . , |𝐶 𝑚𝑒𝑑𝑠|⟩
9. 𝑠𝑣(𝑚) ← ⟨|𝐷𝑒 𝑓 |, . . . , |𝐶 𝑚𝑒𝑑𝑠|, |𝑉 |⟩
10. 𝑠𝑣(𝑓) ← ⟨|𝐷𝑒 𝑓 |, . . . , |𝐶 𝑚𝑒𝑑𝑠|, |𝒱 |, |ℳ |⟩
11. 𝐺 ← 𝐺 ∪ (𝑠𝑣(𝑓), 𝑠𝑣(𝑚), 𝑠𝑣(𝑣))

3.3 Fusioning of feature vector for training data

DL techniques are used to identify CS by

providing the training datasets. At first, well-known

and high-quality open-source applications are

downloaded. Second, a labelled training sample is

created for each method m and field f from such

application which are illustrated below:

1. Move method refactoring has been used to train

method 𝑚 and field 𝑓 to be transferable to other

classes. The Eclipse 𝐽𝐷𝑇 𝐴𝑃𝐼𝑠 are used in the

training as it considers parameters and fields

accessible in 𝑚 to be potential references to

target classes, and such classes are referred to as

prospective target classes (𝑝𝑡𝑐) for 𝑚. If 𝑝𝑡𝑐 is

null, the method 𝑚 may be relocated. It can also

be applied to any of the 𝑝𝑡c classes.

2. Assume that method 𝑚 can be relocated to a set

of classes denoted by 𝑝𝑡𝑐 = {𝑡𝑐1, 𝑡𝑐2, . . . , 𝑡𝑐𝑘}.

If 𝑝𝑡𝑐 is empty, the function is denied and

moved on to the next. Otherwise, proceed to the

following step to generate labelled training data.

3. A fifty-fifty chance of obtaining positive

training data with FE or negative training data

without FE is determined at random.

4. The negative data is generated in the following

manner. First, a potential target class 𝑡𝑐𝑖 is

chosen at random from 𝑝𝑡𝑐. Second, Find the

method-field distance 𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐),
𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐 𝑖), 𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐), and 𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐𝑖 ,)

where 𝑒𝑐 the enclosing class of is 𝑚 and

𝑓. Third, create the negative item (𝑛𝑔𝐼𝑡𝑒𝑚)

and add it to the training data set.

𝑛𝑔𝐼𝑡𝑒𝑚 = < 𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡 > (5)

𝑖𝑛𝑝𝑢𝑡 =
< 𝑛𝑎𝑚𝑒(𝑚), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐),

𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐𝑖);
 𝑛𝑎𝑚𝑒(𝑓), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐),

𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐𝑖), 𝑠𝑣(𝑓), 𝑠𝑣(𝑚), 𝑠𝑣(𝑣) > (6)

𝑜𝑢𝑡𝑝𝑢𝑡 = 0 (7)

5. The following is the generation of a positive

item. First, choose a probable target class 𝑡𝑐𝑖 at

random from𝑝𝑡𝑐. Second, using Eclipse 𝐴𝑃𝐼𝑠,

relocate 𝑚 and 𝑓 from their enclosing class 𝑒𝑐

to 𝑡𝑐𝑖 . Third, a positive item with the input is

formed.

6. The following is how the positive term is

formed. First, choose a probable target class 𝑡𝑐𝑖

at random from 𝑝𝑡𝑐 . Then, using the Eclipse

API, to move 𝑚 and 𝑓 from the surrounding

class 𝑒𝑐 to 𝑡𝑐𝑖 . Third, a positive item is

generated using a positive input.

< 𝑛𝑎𝑚𝑒(𝑚), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐),
𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐𝑖) (8)

< 𝑛𝑎𝑚𝑒(𝑓), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐),
𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐𝑖) 𝑠𝑣(𝑓), 𝑠𝑣(𝑚), 𝑠𝑣(𝑣)) > (9)

𝑜𝑢𝑡𝑝𝑢𝑡 = 1 (10)

The distances are determined specifically once

the method and field have been moved.

Received: October 23, 2021. Revised: December 14, 2021. 569

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.51

3.4 Fusioning the feature vector for testing data

As like fusioning the features vector for training

data, the same procedure is followed for the testing

data which is generated for each of the potential

classes in feature vector. The method 𝑚 and field

𝑓 might be relocated to a collection of classes

denoted by 𝑝𝑡𝑐 = {𝑡𝑐1 , 𝑡𝑐2 , . . . , 𝑡𝑐𝑘 }. If 𝑝𝑡𝑐 is

empty, it means that the method 𝑚 and field 𝑓 were

unable to be conveyed, or that the method was

refused and the procedure proceeded to the next

stage. Otherwise, move to the following step to

generate labeled training data. With or without FE,

randomly generated positive or negative testing

results will be generated.

The following is how the negative testing data is

constructed. The distance of method and field

𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐), 𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐𝑖) , 𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐), and

𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐𝑖) are used to compute the random

potential target class 𝑡𝑐 i from 𝑝𝑡𝑐, where ec is the

enclosing class of 𝑚 and 𝑓 . Third, construct the

negative item (𝑛𝑔𝐼𝑡𝑒𝑚) and add it to the testing

data set. The distance of method and field

𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐), 𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐and 𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐𝑖)

are used to compute the random potential target

class 𝑡𝑐𝑖 from 𝑝𝑡𝑐, where 𝑒𝑐 is the enclosing class of

𝑚 and 𝑓 . Third, construct the negative item

(𝑛𝑔𝐼𝑡𝑒𝑚) and add it to the testing data set.

𝑛𝑔𝐼𝑡𝑒𝑚 = < 𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡 > (11)

𝑖𝑛𝑝𝑢𝑡 =
< 𝑛𝑎𝑚𝑒(𝑚), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐),

𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐𝑖);
 𝑛𝑎𝑚𝑒(𝑓), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐),

𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐𝑖), 𝑠𝑣(𝑓), 𝑠𝑣(𝑚), 𝑠𝑣(𝑣) > (12)

𝑜𝑢𝑡𝑝𝑢𝑡 = 0 𝑓𝑜𝑟 (13)

The following is how the positive term is formed.

First, choose a probable target class 𝑡𝑐𝑖 at random

from 𝑝𝑡𝑐 . Second, use Eclipse 7𝐴𝑃𝐼𝑠 to move 𝑚

and 𝑓 from their parent class 𝑒𝑐 to 𝑡𝑐𝑖 . Third, a

positive item is created whose input is

< 𝑛𝑎𝑚𝑒(𝑚), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐),
𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐𝑖) (14)

<𝑛𝑎𝑚𝑒(𝑓), 𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐𝑖), 𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐),
𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐𝑖), 𝑠𝑣(𝑓), 𝑠𝑣(𝑚), 𝑠𝑣(𝑣) > (15)

𝑜𝑢𝑡𝑝𝑢𝑡 = 1 (16)

The distances are calculated specifically once

the technique and field have been relocated. Where

𝑒𝑐 is the method 𝑚 specifying the class and field 𝑓

to be used as input to the learnt deep NN.

3.5 Classification of FE

The structure of a deep NN-based classifier for

FE CS detection is provided for the classification

process. The classifier input is divided into two

types as textual and numerical. The textual input

consists of a word sequence formed by

concatenating the names of the method and field, the

enclosing class, and the names of possible

destination classes. It is next to process by an

embedding layer, which converts the text

description into a numerical vector. These numerical

vectors are then fed into a CNN. After that, the text

description is passed via an embedding layer, which

turns it to a numerical vector. After that, the

numerical vectors are inputted into a CNN.

For the two CNN layers, the following

parameters are specified as filters = 128, kernel size

= 1, and activation = 𝑡𝑎𝑛ℎ. CNNs can be utilised for

a variety of tasks. First, major breakthroughs in

CNN have recently been made, allowing CNN to be

more successful in terms of improving ML capacity

and flexibility. A strong CNN layer aids in learning

the deep semantic association between IDs when it

comes to finding them. Second, CNN is well-suited

to parallel processing on new powerful GPUs, which

greatly reduces training time. A flatten layer is

applied to CNN output, which lowers the input to a

one-dimensional vector.

The numerical inputs (𝑚, 𝑒𝑐), 𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐𝑖), and

𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐), dist(f,tc i) are fed directly into another

CNN, and the output is routed to a flatten layer. This

CNN is set up in the same manner as the one

described in the preceding paragraph. This CNN is

replaced by various types of neural network layers,

however the replacement has no effect on

performance.

The merge layer eventually combines the textual

and numerical inputs after concatenating a list of

inputs such as the previously mentioned textual and

numerical inputs. The dense and output layers

combine the textual and numerical inputs to provide

a single prediction output, implying that the method

𝑚 and field 𝑓 should be moved to the target class 𝑡𝑐.

The loss function in this case is binary cross entropy.

The aforementioned classification technique is

used to explore the following methods 𝑚 and fields

𝑓 to forecast whether it is smelly or not. First, its

potential target classes are identified using Eclipse

JDT as 𝑝𝑡𝑐 = 𝑡𝑐1, 𝑡𝑐2, … … 𝑡𝑐𝑘 . If 𝑝𝑡𝑐 is null, it

Received: October 23, 2021. Revised: December 14, 2021. 570

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.51

Figure. 1 The classifier detection for FE

signifies that the method and field could not be

moved, which is not a good thing. If all of these data

are anticipated to be negative (non-smelly), then the

supplied method 𝑚 and field 𝑓 are unrelated to FE;

otherwise, smelly is related to FE. Fig. 1 depicts the

FE classifier detection.

3.6 Recommendation of refactoring solutions

The FE predicts that the misplaced methods 𝑚 and

fields 𝑓 are stinky and that they should be moved

using move method refactorings. If only one (noted

as 𝑗) of the testing items prepared for 𝑚 and 𝑓 is

expected to be positive, 𝑚 and 𝑓 should be assigned

to the target class (𝑡𝑐𝑗)) associated with the positive

testing data input 𝑗. If more than one testing data is

expected to be positive, the method 𝑚 and field 𝑓

must be shifted to the class 𝑡𝑐𝑖 associated with the

highest output (noted as input 𝑖). Despite the fact

that the neural network is trained as a binary

classifier with the goal of reducing misclassification

rather than mean squared error, the neural network's

output is a decimal range from 0 to 1. The neural

network evaluates the prediction as affirmative if

and only if the output exceeds certain thresholds.

Figure. 2 Overall performances for detecting FE CS in the

source code program

Fig. 2 represents the overall performance for

detecting FE CS in the source code program.

4. Result and discussion

In this section, the performance of Extended DL

Based FE Detection for Misplaced Fields and

Methods (EDLFED-FM) is compared to that of

existing FE approaches such as JDeodorant [18] and

DL Based FE Detection (DLFED) [19], which is

validated in terms of precision, recall, F1, MCC, and

AUC using different applications such as Free plane

Junit JExcelapi. For the experimental analysis, the

training dataset for DL-based FE detection is

compiled from well-known and high-quality open-

source application. Then, each misplaced method

𝑚 and field 𝑓 is collected from such applications to

produce the labeled training sample for better

software refactoring entities to detect the FE CS. For

the evaluation, the performance metrics and the

comparison table for proposed and existing methods

for defining the better performance in FE on

different application like Free plane, Junit and

JExcelapi. is defined as follows.

Generation of training data and testing data

using deep learning methods

Training the deep learning classifier to detect

the FE CS

Selecting the features of misplaced methods

and fields in FE

Training and classifying the data for FE

Detection using DNN

FE code smell is detected in the source code

Finally, the software is restored using

refactoring solution

Source code

EMBEDDING

CNN

FLATTERN

𝑛𝑎𝑚𝑒(𝑚), 𝑛𝑎𝑚𝑒 (𝑓),

𝑛𝑎𝑚𝑒(𝑒𝑐), 𝑛𝑎𝑚𝑒(𝑡𝑐)

CNN

FLATTERN

𝑑𝑖𝑠𝑡(𝑚, 𝑒𝑐) 𝑑𝑖𝑠𝑡(𝑓, 𝑒𝑐),

𝑑𝑖𝑠𝑡(𝑚, 𝑡𝑐) 𝑑𝑖𝑠𝑡(𝑓, 𝑡𝑐),

𝑠𝑣(𝑓), 𝑠𝑣(𝑚), 𝑠𝑣(𝑣)

MERGE

DENSE

OUTPUT

SLICING

Received: October 23, 2021. Revised: December 14, 2021. 571

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.51

Table 2. Compared values of presented and existing

methods on precision values for FE-CS detection

Applications JDeodorant

[18]

DLFED

[19]

EDLFED-

FM

Free plane 34.91 36.24 39.97

Junit 48.90 50.00 56.10

JExcelapi 32.04 34.04 39.04

Figure. 3 Comparsion of presented and existing methods

on precision values for FE-CS detection

4.1 Precision

The precision is used to determine a classifier's

ability to forecast only the misplaced methods and

fields from the FE CS in a given dataset. It is

expressed as the percentage of accurately detected

FE CS results at TP and FP rates, or the proportion

of actual positives to detected CS.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)
 (17)

From the above Table 2 and Fig. 3, it is analyzed

that the proposed EDLFED-FM is 14.49%, 10.29%

for the given free plane, 14.72%, 12.2% for the

given junit, 21.84%, 14.68% for the given JExcelapi

applications which is resulted to be greater than that

of existing JDeodorant and DLFED method. It is

due to the DL model which augments the training

data in difficult cases and highly focused on the

misclassified code smells. Hence, it has been

demonstrated that the proposed strategy will

outperform all other existing methods for detection

FE-CS in terms of precision.

4.2 Recall

Recall can be used to assess a model's ability to

identify each of the feature vectors of interest in a

set of data. It is expressed as the ratio of accurately

detected CS results at TP and FN rates, or the

proportion of observed positive CS.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑆𝑚𝑒𝑙𝑙𝑠
 (18)

Table 3. Compared values of presented and existing

methods of recall values for FE-CS detection

Application

s

JDeodorant

[18]

DLFED

[19]

EDLFED

-FM

Free plane 12.63 94.14 95.21

Junit 24.53 82.22 87.43

JExcelapi 27.69 88.89 90.91

Figure. 4 Comparsion of presented and existing methods

on recall values for FE-CS detection

From the above Table 3 and Fig. 4, it is analyzed

that the proposed EDLFED-FM is 65.38%, 1.13%

for the given free plane, 25.64%, 6.33% for the

given junit, 10.82%, 2.27% for the given JExcelapi

applications which is resulted to be greater than that

of existing JDeodorant and DLFED method. The

proposed EDLFED-FM provides the ratio of

accurately classified FE-CS that emerged out to the

total number of classified FE-CS. Hence, it has been

demonstrated that the proposed strategy will

outperform all other existing methods for detection

FE-CS in terms of recall values.

4.3 F1-score

The approximate detection of FE CS is

calculated using the harmonic average values of

precision and recall.

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (19)

From the above Table 4 and Fig. 5, it is analyzed

that the proposed EDLFED-FM is 19.73%, 5.38%

for the given free plane, 88.16%, 6.33% for the

given Junit, 30.68%, 10.16% for the given JExcelapi

applications which is resulted to be greater than that

of existing JDeodorant and DLFED method. It is

due to the slicing decomposition algorithm which

eventually distributes the FE-CS to the training

phase resulting in the exact FE-CS results. Hence, it

has been demonstrated that the proposed strategy

will outperform all other existing methods for

detection FE-CS in terms of F1- score values.

0
10
20
30
40
50
60

Applications

Precision

JDeodorant

DLFED

EDLFED-FM
0

20

40

60

80

100

Applications

Recall

JDeodorant

DLFED

EDLFED-FM

Received: October 23, 2021. Revised: December 14, 2021. 572

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.51

Table 4. Compared values of presented and existing

methods on F1-score values for FE-CS detection

Applications JDeodorant

[18]

DLFED

[19]

EDLFED-

FM

Free plane 18.55 52.33 55.15

Junit 35.14 62.18 66.12

JExcelapi 13.33 49.23 54.23

Figure. 5 Comparsion of presented and existing methods

on F1-score values for FE-CS detection

4.4 Matthews correlation coefficient (MCC)

The MCC is a more dependable statistical rate

that yields a high score only if the FE CS detection

performed well in all four confusion matrix

categories (TP, FN, TN, and FP), according to the

number of positive and negative items in the dataset.

The suggested destination for misplaced

methods/fields is valid if and only if it promotes the

method/fields to be relocated to its surrounding

class/package before moving it. The MCC for CS

detection is computed as

Table 5. Compared values of presented and existing

methods on MCC values for FE-CS detection

Applications JDeodorant

[18]

DLFED

[19]

EDLFED-

FM

Free plane 7.41 36.69 39.61

Junit 27.55 46.02 49.02

JExcelapi 13.45 39.54 43.44

Figure. 6 Comparsion of presented and existing methods

on MCC values for FE-CS detection

𝑀𝐶𝐶 =

𝑇 𝑃 × 𝑇 𝑁 − 𝐹 𝑃 × 𝐹 𝑁

√(𝑇 𝑃 + 𝐹 𝑃)(𝑇 𝑃 + 𝐹 𝑁)(𝑇 𝑁 + 𝐹 𝑃)(𝑇 𝑁 + 𝐹 𝑁)
 (20)

From the below Table 5 and Fig. 6, it is analyzed

that the proposed EDLFED-FM is 43.45%, 7.96%

for the given free plane, 77.93%, 6.52% for the

given junit, 22.97%, 9.86% for the given JExcelapi

applications which is resulted to be greater than that

of existing JDeodorant and DLFED method. It is

only due to the high resulted classification, if the

prediction correctly classified a high percentage of

negative code smell instances and a high percentage

of positive code smell instances, with any class

balance or imbalance. Hence, it has been

demonstrated that the proposed strategy will

outperform all other existing methods for detection

FE-CS in terms of MCC values.

4.5 Area under curve (AUC)

The AUC is the measure of the ability of a

classifier to distinguish between the misplaced

methods and field from FE CS. The higher value of

AUC provides the efficient detection of the FE CS

as positive and negative results.

From the below Table 6 and Fig. 7, it is analyzed

that the proposed EDLFED-FM is 78.77%, 4.71%

for the given free plane, 97.13%, 4.32% for the

given junit, 51.86%, 3.36% for the given JExcelapi

applications which is resulted to be greater than that

of existing JDeodorant and DLFED method. The

above result has higher AUC which provides the

better code smell classification system and

Table 6. Compared values of presented and existing

methods on AUC values for FE-CS detection

Applications JDeodorant

[18]

DLFED

[19]

EDLFED-

FM

Free plane 48.67 83.10 87.01

Junit 45.36 85.72 89.42

JExcelapi 61.24 89.98 93.00

Figure. 7 Comparsion of presented and existing methods

on AUC values for FE-CS detection

0

20

40

60

80

Applications

F1-score

JDeodorant

DLFED

EDLFED-FM

0

20

40

60

Applications

MCC

JDeodorant

DLFED

EDLFED-FM

0

20

40

60

80

100

Applications

AUC

JDeodorant

DLFED

EDLFED-FM

Received: October 23, 2021. Revised: December 14, 2021. 573

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.51

efficiently distinguishes the positive and negative

classes in between. Hence, it has been demonstrated

that the proposed strategy will outperform all other

existing methods for detection FE-CS in terms of

AUC values.

5. Conclusion

In an dynamic development environment,

developers contribute by offering refactoring

possibilities in the source code to reduce unwanted

smells. The CS indicates that there are issues with

the system's underlying structure (code), which may

be fixed by restructuring the code (refactoring). The

basis method used for removing the CS in program

is manually supervising every lines of code in the

software package. However, the manual inspection

does not achieve the better result in removing the

CS. This research work focuses on automatic

detection of CS detection using DL technique for

improving the quality of the software. By using the

enhanced decomposition slice method the misplaced

methods and fields are identified together in

proposed FE-CS detection method. As a result, the

proposed method EDLFED-FM achieves higher

precision than existing methods JDeodorant and

DLFED method that is 14.49%, 10.29% for free

plane, 14.72%, 12.2% for junit, 21.84%, 14.68 % for

JExcelapi applications. The higher precision rate

leads to the program performing efficiently with less

training data. In future, it will be interesting to apply

the proposed approach to detect additional

categories of code smells like large classes,

misplaced classes, lazy class and data clumps.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

The paper conceptualization, methodology,

software, validation, formal analysis, investigation,

resources, data curation, writing—original draft

preparation, writing—review and editing,

visualization, have been done by 1st author. The

supervision and project administration have been

done by 2nd author.

References

[1] U. A. Mannan, I. Ahmed, R. A. M. Almurshed,

D. Dig, and C. Jensen, “Understanding code

smells in android applications”, In: Proc. of

IEEE/ACM International Conference on

Mobile Software Engineering and Systems, pp.

225-236, 2016.

[2] X. Liu and C. Zhang, “The detection of code

smell on software development: a mapping

study”, In: Proc. of 5th International

Conference on Machinery, Materials and

Computing Technology, Atlantis Press, pp.

5560-575, 2017.

[3] F. A. Fontana, P. Braione, and M. “Automatic

detection of bad smells in code: an

experimental assessment”, Journal of Object

Technology, Vol. 11, No. 2, pp. 5-11, 2012.

[4] D. D. Nucci, F. Palomba, D. A. Tamburri, A.

Serebrenik, and A. D. Lucia, “Detecting code

smells using machine learning techniques: are

we there yet?”, In: Proc. of IEEE 25th

International Conference on Software Analysis,

Evolution and Reengineering, pp. 612-621,

2018.

[5] G. Sibula and I. S. Gerr, “Finding software

design disabilities with relational association

rule mining”, Knowledge and Information

Systems, Vol. 42, No. 3, pp. 545-577, 2015.

[6] H. Liu, Z. Xu, and Y. Zou, “Deep learning

based feature envy detection”, In: Proc. of the

33rd ACM/IEEE International Conference on

Automated Software Engineering, pp. 385-396,

2018.

[7] U. Azadi, F. A. Fontana, and M. Zanoni,

“Poster: machine learning based code smell

detection through WekaNose”, In: Proc. of

IEEE/ACM 40th International Conference on

Software Engineering: Companion Proceedings,

pp. 288-289, 2018.

[8] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang,

“Machine learning techniques for code smell

detection: a systematic literature review and

meta-analysis”, Information and Software

Technology, Vol. 108, pp. 115-138, 2019.

[9] I. Kaur and A. Kaur, “A novel four-way

approach designed with ensemble feature

selection for code smell detection”, IEEE

Access, Vol. 9, pp. 8695-8707, 2021.

[10] T. Sharma, V. Efstathiou, P. Louridas, and D.

Spinellis, “Code smell detection by deep direct-

learning and transfer-learning”, Journal of

Systems and Software, Vol. 176, p. 110936,

2021.

[11] M. H. Kacem and N. Bouassida, “A hybrid

approach to detect code smells using deep

learning”, In: Proc. of ENASE, pp. 137-146,

2018.

[12] A. K. Das, S. Yadav, and S. Dhal, “Detecting

code smells using deep learning”, In: Proc. of

TENCON IEEE Region 10 Conference, pp.

2081-2086, 2019.

Received: October 23, 2021. Revised: December 14, 2021. 574

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022 DOI: 10.22266/ijies2022.0228.51

[13] M. H. Kacem and N. Bouassida, “Deep

representation learning for code smells

detection using variational auto-encoder”, In:

Proc. of International Joint Conference on

Neural Networks, pp. 1-8, 2019.

[14] K. Nongpong, “Feature envy factor: a metric

for automatic feature envy detection”, In: Proc.

of IEEE 7th International Conference on

Knowledge and Smart Technology, pp. 7-12,

2015.

[15] W. K. Chen, C. H. Liu, and B. H. Li, “A feature

envy detection method based on dataflow

analysis”, In: Proc. of IEEE 42nd Annual

Computer Software and Applications

Conference, Vol. 2, pp. 14-19, 2018.

[16] S. Boutaib, S. Bechikh, F. Palomba, M. Elarbi,

Makhlouf, and L. B. Said, “Code smell

detection and identification in imbalanced

environments”, Expert Systems with

Applications, Vol. 166, p. 114076, 2021.

[17] M. Hammad and A. Labadi, “Automatic

detection of bad smells from code changes”,

International Review on Computers and

Software, Vol. 11, pp. 1016-1027, 2016.

[18] T. Paiva, A. Damasceno, E. Figueiredo, and C.

S. Anna, “On the evaluation of code smells and

detection tools”, Journal of Software

Engineering Research and Development, Vol. 5,

No. 1, pp. 1-28, 2017.

[19] H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, and L.

Zhang, “Deep learning based code smell

detection”, IEEE Transactions on Software

Engineering, 2019.

[20] H. W. Alomari and M. Stephan, “srcClone:

detecting code clones via decompositional

slicing”, In: Proc. of the 28th International

Conference on Program Comprehension, pp.

274-284, 2020.

[21] L. Jiang, G. Misherghi, Z. Su, and S. Glondu,

“Deckard: scalable and accurate tree-based

detection of code clones”, In: Proc. of IEEE

29th International Conference on Software

Engineering, pp. 96-105, 2007.

