
Received: October 23, 2021. Revised: December 17, 2021. 79

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022 DOI: 10.22266/ijies2022.0430.08

Improved SMOTE and Optimized Siamese Neural Networks for Class

Imbalanced Heterogeneous Cross Project Defect Prediction

Nataraj Kalaivani1* Raman Beena2

1Department of Computer Science, Kongunadu Arts and Science College, Coimbatore – 641029,Tamilnadu, India

2Department of Information Technology, Sri Ramakrishna College of Arts and Science,

Coimbatore – 641006, Tamilnadu, India

* Corresponding author’s Email: kalaivhani@gmail.com

Abstract: Heterogeneous Cross-Project Defect Prediction (HCPDP) predicts the defects by incorporating the project

datasets with different distribution and metrics. However, the class imbalance problem and shallow feature learning of

classifiers reduce the overall performance. This paper presents an HCPDP using Improved Synthetic Minority

Oversampling Technique (ISMOTE) and hybrid deep learning classifier of Golden Eagle Optimized Siamese Neural

Networks (GEO-SNN). Initially, Peters filter removes irrelevant instances in source-target dataset based on

heterogeneous metrics. ISMOTE, enhanced through fuzzy mutual information based KNN attribute weights

assignment, is applied solve the class imbalance problem. Features are scaled using Z-Score standardization and metric

matching by Spearman's Rank Correlation (SRC). Finally, GEO-SNN, developed by SNN parameter optimization

using GEO, performs deep semantic feature learning for defect prediction. Experiments using benchmark datasets

showed that the proposed ISMOTE and GEO-SNN based HCPDP technique has provided 99% defect prediction

accuracy and reduced processing time by 20%than the state-of-the-art methods.

Keywords: Improved synthetic minority oversampling technique, Software defect prediction, Heterogeneous cross-

project defect prediction, Golden eagle optimization, Siamese neural networks, Peters filter.

1. Introduction

Software Defect Prediction (SDP) has become an

integral part of the testing phase in the Software

Development Life Cycle (SDLC) [1]. The huge size

and high complexity in production issues limit the

performance of the entire SDLC and create

complexities in identifying software defects in the

early stages of development. SDP methods can help

in precisely identifying the modules which have

higher tendencies to become defects. SDP can solve

the energy constraint problem of the developers and

limit SDLC periods so that the quality of software can

be improved. SDP requires high knowledge of the

historical data of the projects but has proved to

provide highly accurate predictions. Data mining and

machine learning algorithms [2] have been mostly

utilized for SDP with common metrics such as

complexity metrics (lines of code, Halstead metrics

and McCabe metrics) [3], object-oriented metrics [4]

and process metrics. Early prediction of the defects

can be performed by SDP as within-project defect

prediction (WPDP) [5]. However, the WPDP does

not support new different projects or projects with

limited or insufficient historical data. Unlike WPDP,

Cross-Project Defect Prediction (CPDP) is an SDP

that utilizes the existing historical data of the other

projects to provide the prediction results of the given

project [6]. Although some CPDP methods use

heterogeneous source and target projects, they utilise

only the common metrics among them. Therefore, the

current CPDP methods are not adequate for

heterogeneous projects with different metrics.

Heterogeneous Cross-Project Defect Prediction

(HCPDP) or simply Heterogeneous Defect Prediction

(HDP) [7] is the heterogeneous type of SDP based on

the principle of CPDP with the additional

characteristic of independent nature on whether the

Received: October 23, 2021. Revised: December 17, 2021. 80

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022 DOI: 10.22266/ijies2022.0430.08

source and target projects have common metrics or

not. Different metrics based multiple source projects

is still challenging for HCPDP. Additionally, the

class imbalance problem and the shallow feature

learning of the machine learning classifiers are also

greater challenges [8]. To overcome these issues, the

proposed HCPDP method utilizes an improved

sampling technique and a hybrid deep learning

classifier for deep feature learning.

The main notion is to construct a projective

matrix between the heterogeneous source and target

projects for converting the source project into the

target project space for utilizing the deep learning

classifier. Initially, the source and target project

datasets are filtered using Peters filter together to

select the relevant instances based on heterogeneous

metrics of the source project after analysing the

unlabeled modules in the target project. This reduces

the negative impact of the irrelevant instances. Then

the newly formed source project will be used for

training and the feature extractions will be performed

in the first stage. The noise removal is then performed

and the class imbalance problem is overcome by the

Improved Synthetic Minority Oversampling

Technique (ISMOTE), which is developed by

enhancing the underlying KNN classifier by defining

the attribute weights by fuzzy mutual information. Z-

Score standardization is used as the feature scaling

method to minimize the irrelevant features. Then the

feature weight training is performed based on the

position vectors and the distance metrics to highlight

the important features. The metric matching phase is

utilized through Spearman's Rank Correlation (SRC)

technique to estimate this association between feature

pairs to represent the highly correlated feature pairs

based on the heterogeneous metric collection. Finally,

the deep semantic feature learning and defect

prediction are achieved using the hybrid deep

learning classifier of Golden Eagle Optimized

Siamese Neural Networks (GEO-SNN) in which the

parameters of SNN are optimized using Golden Eagle

Optimizer. The proposed GEO-SNN classifier

effectively learns the deep semantic features with

high accuracy and low complexity to ensure better

prediction of the defects. Experiments are conducted

over benchmark project data to evaluate the

performance of the proposed method and compared it

with existing HCPDP methods.

The remainder of the article is organized as

follows: Related works in Section 2, Methodology in

Section 3 followed by the experimental results in

Section 4 and conclusion and possible future

directions in Section 5.

2. Related works

Recent years have seen an increasing number of

studies being conducted for HCPDP. Still, attaining

the perfect results in the HCPDP method is

challenging due to the use of WPDP with different

metrics. Kalaivani and Beena [9] presented an

HCPDP method using Boosted Relief Feature Subset

Selection (BRFSS) and Firefly Particle Swarm

Multivariate Linear Regression (FFLYPSMVLR).

This method used the BRFSS to handle different

projects with heterogeneous feature sets through the

mapping process and FFLYPSMVLR to provide the

final optimal prediction. This method achieved high

accuracy, precision and recall. Yet, the class

imbalance problem still prevails. Jing et al. [10]

introduced unified metric representation (UMR) and

canonical correlation analysis (CCA)-based transfer

learning for HDP. UMR was constructed for source

company data and the target-company specific

metrics based on which the CCA made the data

distributions of source and target projects. However,

this method does not resolve the class imbalance

problem before applying transfer learning. Xu et al.

[11] developed heterogeneous domain adaptation

with dictionary learning for HDP. This method

employed the domain adaptation method to insert the

data from the two projects and then measured the

difference between them using dictionary learning to

predict the defects. Though it improved the F-

measure, Balance, and AUC, this method suffers

from class imbalance problems and the randomness

in selecting the entities.

Li et al. [12] suggested a new cost-sensitive

transfer kernel canonical correlation analysis

(CTKCCA) for HDP with highly balanced data

through different misclassification costs for defective

and defect-free classes. This method reduced the

class imbalance problem and increased the accuracy

of defect prediction. Yet, this method has a higher

storage space requirement for handling multi-source

projects. Li et al. [13] developed an HDP model using

two-stage ensemble learning of ensemble multi-

kernel domain adaptation (EMDA) and ensemble

data sampling (EDS). This ensemble model utilized

Ensemble Multiple Kernel Correlation Alignment

(EMKCA) predictor to estimate the defects through

multiple kernel learning and domain adaptation. This

model achieved high AUC, F-measure and balance.

However, this model has high complexity in terms of

processing time. Tong et al. [14] proposed a novel

kernel spectral embedding transfer ensemble

(KSETE) approach for HDP. This method solved the

class-imbalance problem of the source data and

identified the latent common feature space by

Received: October 23, 2021. Revised: December 17, 2021. 81

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022 DOI: 10.22266/ijies2022.0430.08

combining kernel spectral embedding, transfer

learning, and ensemble learning. This method

improved the AUC, G-measure and MCC values but

has limitations in terms of processing time.

Gong et al. [15] illustrated Conditional domain

adversarial adaptation (CDAA) motivated by

generative adversarial networks (GANs) for HDP.

CDAA used a generator for transfer learning of

source project to target space, one discriminator to

transfer the source project and one classifier to

correctly label and predict the defects. However, this

model also does not consider the class imbalance

problem. Yin et al. [16] developed an HCPDP

method using multiple source projects based on

transfer learning. In this method, multiple

heterogeneous source projects were used for defect

prediction based on the projective matrix for transfer

learning. This method achieved high prediction

accuracy and fewer false positives. Yet, this method

has limitations in handling the class imbalance

problem.

Wang et al. [17] proposed a few-shot learning-

based balanced distribution adaptation (FSLBDA)

approach for imbalanced HDP. This method removed

the redundant metrics using extreme gradient

boosting and then the data variation is reduced using

balanced distribution adaptation. Finally, adaptive

boosting based few-shot learning is used for

prediction. Although this method achieved high AUC,

G-mean and F-measure than the existing methods,

this method has the limitation of high complexity due

to complex architecture. Wu et al. [18] presented

multi-source HCPDP using multi-source transfer

learning and autoencoder (MSTL-AE). This method

considered the negative effect of transfer learning and

developed modified autoencoder based HCPDP to

extract the intermediate features from the original

datasets. The multi-source transfer learning

algorithm reduced the negative impact and improved

the prediction accuracy. However, this method also

does not consider the class imbalance and the noise

problem. Wang et al. [19] developed HDP using

Federated Transfer Learning based on the knowledge

distillation (FTLKD) approach. This approach used

trained convolutional neural networks (CNN) to

utilize knowledge distillation for detecting the

different metrics of projects and improved the

accuracy, AUC and G-mean.

The vital points inferred from the literature are

that the class imbalance problem is not effectively

considered in many studies. The noise problem and

the feature scaling problems are also briefly

considered. The major point from the recent studies

is that the deep learning methods can improve the

feature learning process and increase the prediction

accuracy without increasing the processing time or

other complexities. Based on these observations, this

proposed method developed an efficient HCPDP

method using ISMOTE and GEO-SNN classifier.

3. Methodology

The proposed HCPDP method aims at resolving

the error-prone limitations in noisy, unbalanced and

different scaled features of the source and target

projects’ datasets. Initially, the source and target

projects are filtered and merged based on the relevant

instances using the Peters filter. Then the features are

extracted and the noise removal, class balancing,

feature scaling and feature weight training tasks are

performed. The metric matching phase is utilized

through the SRC technique to determine the highly

correlated feature pairs to feed the GEO-SNN

classifier for accurate defect prediction. The

proposed HCPDP model is illustrated in Fig. 1.

3.1 Instance selection for the source project

Peters filter is used to perform instance selection

for the source project. Peters filter lets the instances

in the training dataset (TDS) find their nearest Test

instances [20]. These instances are selected for the

final filtered training dataset. The Peters filter uses

the k-nearest neighbor algorithm to select similar

labeled modules in the source project from training

instances, which are more similar to the unlabeled

modules in the target project. Algorithm 1 shows the

Peters filter based instance selection.

Algorithm 1: Peters filter for instance selection

Input: Source dataset T, target dataset U, TDS

Output: New Source Dataset T’

While T’ not unique

 For each module um in U do

 For each module tm in T do

 Distance (tm, um)

 End for

 Distance (TDS, Test)

 Nearest modules of TDS selected

 𝑇’ = 𝑇′ ∪ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

 End for

𝑇’ = 𝑢𝑛𝑖𝑞𝑢𝑒 (𝑇′)

Return T’

End while

3.2 Feature extraction and pre-processing

First, the multiple quantifiable change features

from the source data are extracted and they are

divided into training and testing instances. Then the

features are pre-processed using three steps:

Received: October 23, 2021. Revised: December 17, 2021. 82

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022 DOI: 10.22266/ijies2022.0430.08

Figure. 1 Overall process of proposed HCPDP methodology

denoising, class imbalance processing and data

standardization. For denoising, dynamic thresholding

is used in which a dynamic threshold value is set and

the data instances exceeding the threshold are filtered

as noise. Then the class imbalance processing is

performed using ISMOTE and data standardization

by Z-score standardization.

3.2.1. Class imbalance processing

Class imbalance is a very common problem in

most defect prediction methods. Analysing many

software project modules, the distribution of the

defects is in the Pareto principle, i.e. 80% non-defects

and 20% defects. This means the number of defects

is relatively very less than the non-defects which

might result in poor prediction results. To overcome

the problem, the ISMOTE is used.

ISMOTE is an improved sampling technique

where the underlying KNN imputes used for class

enhancement are modified defining the KNN

attribute weights by fuzzy mutual information.

ISMOTE performs the tasks as in SMOTE [21] by

computing the information gain of every attribute and

the weighted mutual information. Then the value of k

clusters in KNN is defined and the training set is

divided into k clusters. The Euclidean distance is

computed between the training and testing samples.

Finally, majority voting is applied to determine the

class probability and the class labels. The fuzzy

mutual information is computed for two attributes X

and Y as

𝐹𝑀𝐼(𝑋; 𝑌) = 𝐹𝐻(𝑋) + 𝐹𝐻(𝑌) − 𝐹𝐻(𝑋, 𝑌) (1)

Here 𝐹𝑀𝐼(𝑋; 𝑌) denotes the fuzzy mutual

information of the attributes X and Y; 𝐹𝐻(𝑋) and

𝐹𝐻(𝑌) denotes the fuzzy entropy of X and Y,

respectively and 𝐹𝐻(𝑋, 𝑌) denotes the fuzzy entropy

of 𝑋, 𝑌 [22].

𝐹𝐻(𝑋) = −𝑃𝑋 log 𝑃𝑋; 𝐹𝐻(𝑌) = −𝑃𝑌 log 𝑃𝑌 (2)

Target

Dataset

Source

Dataset

Peters Filtering

New Source

Dataset

Noise removal

Feature Extraction

Improved SMOTE

Z-Score Standardization

Feature Pre-processing

Metric matching

phase
GEO-SNN

Classifier

Training Stage

Target

Dataset

Testing Stage

Performance Evaluation

Received: October 23, 2021. Revised: December 17, 2021. 83

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022 DOI: 10.22266/ijies2022.0430.08

Where, X and Y are attributes and PX and PY are

the fuzzy equivalent of the joint probability of

training samples of a class with attributes X and Y,

given as

𝑃𝑋 =
∑ 𝜇(𝑥𝑖𝑘)𝑘

𝑁𝑃
; 𝑃𝑌 =

∑ 𝜇(𝑦𝑗𝑘)𝑘

𝑁𝑃
 (3)

Here, 𝑁𝑃 denotes the number of probabilities,

𝜇(𝑥𝑖𝑘) and 𝜇(𝑦𝑗𝑘) denotes fuzzy membership

functions of k-th vector in i-th class of X and Y

attributes.

3.2.2. Z-score standardization

The distribution of the extracted defect change

feature values is not in the same order of magnitude.

If the original feature values are used for defect

prediction, the function of the higher values will be

emphasized, and the function of the lower values is

relatively destabilized. Therefore, to ensure the

reliability of the result, z-score standardization is

used [23]. For each value 𝑓𝑖 of 𝑓 features, the

normalized value 𝑧𝑖 can be computed as

𝑧𝑖 =
𝑓𝑖−𝑚𝑒𝑎𝑛 (𝑓)

𝑣𝑎𝑟 (𝑓)
 (4)

Here 𝑚𝑒𝑎𝑛 (𝑓) denotes the mean and 𝑣𝑎𝑟 (𝑓)

denotes the variance of 𝑓 features.

3.2.3. Feature weight training

Each dimensional feature has a different effect on

defect prediction and hence the vital features must be

identified and different weights must be assigned.

The weight values are assigned from 0 to 1 where 0

means that the features have no importance and the

closer the weight value is to 1, the feature is more

important. 𝑤𝑖 is a control gate weight vector

automatically trained by an adaptive trainable

function, and is computed as a Sigmoid nonlinear

activation function to obtain the final weighted vector

to distinguish the vital features. The distinguishing

rate 𝑟′ of feature-weights is given as

𝑟′ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑤𝑖) ∗ 𝑟 (5)

Here 𝑤𝑖 is the weights of features and 𝑟 denote

the initial weight difference rate.

3.3 Metric matching phase

The metric matching phase is performed to

provide a common ground between the

heterogeneous metrics of the source and target

projects. To compute the correlation, Spearman's

Rank Correlation is used. SRC is computed for the

two metrics 𝑎 and 𝑏 as

𝜌 = 1 −
6 ∑ 𝑚𝑑𝑖

2

𝑛(𝑛2−1)
 (6)

Here 𝜌 denote the SRC measure, 𝑚𝑑𝑖 denotes the

difference between the ranks of each metric 𝑎and 𝑏,

and n denote the number of instances.

3.4 GEO-SNN

The proposed GEO-SNN is a hybrid model using

the SNN [24] and GEO algorithms [25]. The SNN is

similar to the CNN and it includes an embedding

layer (EL), convolutional layer (CL) and a pooling

layer (PL), and two fully connected layers (FCL). It

is made of two single neural network architectures

combined with the GEO algorithm. The loss

objectives of the SNN are alternatively computed

using the predicted and true classes. The focal loss

function is predominantly utilized for this purpose.

The SNN is a typical few-shot learning model that

included two single neural networks whose inputs are

two instances. The output is computed by comparing

the output layers of the first FCL layers of the single

networks. It is estimated by applying the FCL on the

difference of the two samples to estimate their

similarity and using a cross-entropy loss on the

similarity. Fig. 2 shows the architecture of the

proposed GEO-SNN.

The proposed hybrid SNN is training the single

architectures separately and adapting them as the top

and bottom classes, respectively. The hybrid SNN

has three technical attributes namely multi-task

architecture, class-specific similarity and sampling

process. Initially, the single network is trained and

then used to initialize the SNN. After initialization,

the SNN is trained separately as it might forget the

knowledge obtained by the single networks. If the

number of training instances is large, the instance

pairs will be squared and become huge in numbers.

SNN will not be feasible to train such huge instances

and hence the training set is reduced to a sample

subset. This might infuse the over-fitting problem in

SNN.

To overcome this problem, the multi-task

architecture is based on the Single SNN. The loss

function is given as

ℒ = 𝜆𝑆ℒ𝑆 + 𝜆𝑚1ℒ𝑚1 + 𝜆𝑚2ℒ𝑚2 (7)

Here ℒ𝑆 denotes the loss of SNN. ℒ𝑚denotes the

loss of two single networks and 𝜆 denotes the

network constraint. When there is no loss of

Received: October 23, 2021. Revised: December 17, 2021. 84

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022 DOI: 10.22266/ijies2022.0430.08

Figure. 2 Architecture of GEO-SNN

generality, 𝜆𝑆 = 𝜆𝑚1 = 𝜆𝑚2 = 1 . ℒ𝑚1 and ℒ𝑚2 are

equal for the similar pair of instances while ℒ𝑚1 and

ℒ𝑚2 are unequal for dissimilar instances. The single

network is considered as the constraint to avoid

forgetting and over-fitting the SNN.

SNN has only single similarity output which is

limited for estimating the similarity between a large

number of individual classes and multiple classes.

When an instance has multiple classes and each class

has a separate representation vector, it becomes

difficult for the SNN to learn all instances to obtain

the single similarity output.in this case, the class-

specific similarity is used in the SNN architecture to

obtain the informative features in the similarity

outputs. For two input instances 𝑑𝑖, 𝑑𝑗 with a class 𝑞,

the class-specific similarity is estimated as

ℎ = |𝑑𝑖 − 𝑑𝑗| ∘ ℎ𝑞 (8)

Here ℎ𝑞 = 𝜎(
𝑤.𝑝𝑞+𝑏

√𝑄
) . 𝜎 is the ReLU activation

function and ∘ is the element-wise multiplication, w

and b are the weight and bias, 𝑝𝑞 is the class constant

and 𝑄 is the set of all class labels.

The class-specific sampling process is also

applied to the training data features by the randomly

selected similar pairs ((𝑑𝑖, 𝑞)(𝑑𝑗 , 𝑞)) and dissimilar

pairs ((𝑑𝑖 , 𝑞𝑖)(𝑑𝑗 , 𝑞𝑗)) with the ratio of 1:1. The

specific sampling process will generate one triplet

(𝑑𝑖 , 𝑑𝑗, 𝑞) for training and generates, triplet instances

with the ratio of similar and dissimilar pairs are thus

1:2.

GEO is applied at this stage to optimally tune the

parameters. The EL, CL, PL, FCL and activation

functions are optimally tuned using the GEO. GEO is

based on the hunting behaviour of the golden eagles

in tuning speed at different hunting stages [25]. It

includes two tasks of golden eagles for searching the

prey and attacking the prey. The golden eagles will

cruise around the search space and determine which

prey to be attacked since there are many organisms in

the search space. GEO is based on the spiral motion

of the golden eagles. The population is initialized as

𝑓 ∈ {1,2, … , 𝑃𝑜𝑝𝑠𝑖𝑧𝑒}. In each iteration, the golden

eagle must select and attack only one prey. It is

formulated as the attack vector.

𝐴𝑖 = �⃗�𝑓
∗ − �⃗�𝑖 (9)

Here 𝐴𝑖 denotes the attack vector of the eagle, �⃗�𝑓
∗

denote the best location of the prey found by the eagle

f and �⃗�𝑖 denote the current position of the eagle.

The cruise vector 𝐶𝑖 is calculated based on the

attack vector and it is used for the exploration process.

The element of 𝐶𝑖 is given as

𝑐𝑘 =
𝑑−∑ 𝑎𝑗𝑗,𝑗≠𝑘

𝑎𝑘
 (10)

Here 𝑐𝑘 denotes the 𝑘-th element of the

destination point 𝐶 of the eagle, 𝑎𝑗 denote the 𝑗-th

Input 1

Embedding

CL

ReLU/PL
Concat

Linear

1

Input 2

Embedding

CL

ReLU/PL
Concat

Linear

2

Single Linear 2

Single Linear 1

Difference
SNN

Linear

Input class

Class -specific

Output class

Output class

Output

Similarity

Sigmoid

X1

X2

Received: October 23, 2021. Revised: December 17, 2021. 85

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022 DOI: 10.22266/ijies2022.0430.08

element of the attack vector 𝐴𝑖 , 𝑑 symbolizes the

dimension of the search space, 𝑎𝑘 denotes the k-th

element of the attack vector 𝐴𝑖 , and k denotes the

index of the fixed variable.

Based on the attack and cruise vectors, the step

vector is formulated for each eagle at iteration 𝑡.

∆𝑥𝑖 = 𝑟1𝑝𝑎
𝐴𝑖

‖𝐴𝑖‖
+ 𝑟2𝑝𝑐

𝐶𝑖

‖𝐶𝑖‖
 (11)

Here 𝑟1 and 𝑟2 are the random vectors in the

interval [0,1] and 𝑝𝑎 and 𝑝𝑐 denotes the attack

coefficient and cruise coefficient in 𝑡 iterations,

respectively. ‖𝐴𝑖‖ and ‖𝐶𝑖‖ denotes the Euclidean

norm of the attack and cruise vectors, respectively.

The position of the golden eagles in iteration 𝑡 +
1 are computed as adding the step vector in iteration

𝑡 to the positions in iteration 𝑡 . This will be the

position update equation

𝑥𝑡+1 = 𝑥𝑡 + ∆𝑥𝑖
𝑡 (12)

If the fitness of the new position of the golden

eagle 𝑖 is better than the position in its memory, the

memory of this eagle is updated with the new position.

Or else, the memory remains the same and the eagle

will move to the next location. Based on this

algorithm, the weights and the bias of SNN are tuned

and thus the optimal values are set for the hyper-

parameters. The fitness function is replaced by that of

SNN as 𝑓(𝑦) = 𝑓(𝛿, 𝜂) . This fitness function is

related to the EL, CL, Pl, FCL and activation function

of the SNN for the two networks. While many

configurations for the GEO-SNN are found by the

tuning process, GEO selects the configuration with a

minimum error rate. The process of GEO for SNN is

presented as follows.

Algorithm 2: GEO for tuning SNN parameters

Population Initialization of golden eagles (𝑃)

Set Iteration = 0

Initialize the GEO parameters

Map the SNN parameters to GEO solution search

Calculate the fitness and select the best search agent

Initialize the population memory

For each golden eagle𝑖 = 1 𝑡𝑜 𝑛 do

Randomly select �⃗�𝑖as the initial solution

Calculate the attack vector

If the attack vector length ≠ 0

 Calculate the cruise vector

 Calculate the step vector

Update the position of search agents

Update the GEO parameters

Adjust the out-of-boundary eagle

Compute fitness

Update the best solution

Increment Iteration by 1

Until maximum iteration

End if

End for

Return the best solution �⃗�𝑓
∗ from population memory

End

The top configuration obtained for SNN using

GEO is shown in Table 1. The error rate obtained for

this configuration is 12.2. For optimal structure, the

GEO-SNN required 3 layers of FCL and one layer

each for EL and CL. This configuration enables the

learning of deep spatial features by SNN for multi-

source projects. The input dimension is (1, 256, 24)

where 1 denotes the channel of input data, 256 denote

the number of data, and 24 denote the time steps to

process them.

The networks are formed using this configuration.

The single network is trained separately and the SNN

is initialized using the single network. In the next

stage, the trained features are used to classify the test

data. Based on the similarity, the instance pairs are

formed and the majority voting based approach is

used for classifying the instances. Once the classifier

results of the single SNN are obtained, they are

merged based on a threshold which is determined by

the number of instances in a class.

4. Results and discussion

The performance of the proposed HCPDP

method using ISMOTE and GEO-SNN is deployed

and evaluated using MATLAB software. The

experimental results are obtained over six benchmark

datasets of five project groups [26] described in Table

2 for evaluation.

The performance metrics namely accuracy,

precision, recall, f-measure, specificity and

Table 1. Optimal configuration obtained for GEO-SNN

Layer Name Parameter Dimension

0 Input - (1, 256,

24)

1 EL

Activation

(ReLU)

(16, 3, 3)

-

(16, 256,

24)

-

2 Convolution

Pooling

Activation

(ReLU)

(64, 3, 3)

(2, 2)

-

(64, 64, 6)

(64, 32, 3)

-

3 Flatten - (1536,)

4 FCL 278 (278,)

5 FCL 278 (278,)

Received: October 23, 2021. Revised: December 17, 2021. 86

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022 DOI: 10.22266/ijies2022.0430.08

Table 2. Benchmark evaluation project datasets

Group Dataset No of instances No of metrics Prediction attribute

AEEEM EQ 324 61 class

MORPH Velocity-1.4 196 20 class

SOFTLAB Ar1 121 29 function

NASA
CM1 344 37 function

PC2 1585 36 function

ReLink Apache 194 26 file

Table 3. Performance over NASA group CM1 and SOFTLAB group Ar1

Methods Accuracy

(%)

Precision

(%)

Recall

(%)

F-measure

(%)

Specificity (%) Processing

time (s)

BRFSS [9] 95.68 93.2 94.7 96.67 92.56 127.56

CTKCCA [12] 92.16 95.11 93.67 91.39 89.43 154.28

KSETE [14] 95.67 91.56 91.67 95.67 90.9 110.65

CDAA [15] 95.5 90.17 92.38 96.44 92.14 116.37

FSLBDA [17] 90.89 88.97 89.34 91.56 84.63 126.55

MSTL-AE [18] 92.77 90.32 93.69 92.86 90.17 120.2

FTLKD-CNN [19] 94.5 92.18 91.66 95.22 88.67 115.21

GEO-SNN 98.76 96.87 97.86 98.75 94.56 103.6

Table 4. Performance over NASA group PC2 and RELINK group Apache

Methods Accuracy

(%)

Precision

(%)

Recall

(%)

F-measure

(%)

Specificity

(%)

Processing time

(s)

BRFSS [9] 95.07 92.83 94.29 93.67 90.17 196.75

CTKCCA [12] 90.35 91.5 92.76 94.81 91.34 220.15

KSETE [14] 94.68 92.67 92.65 91.10 93.56 203.56

CDAA [15] 94.78 91.44 91.88 90.75 95.77 211.78

FSLBDA [17] 88.67 85.25 87.5 91.67 87.9 231.9

MSTL-AE [18] 92.15 92.44 93.19 94.36 91.05 226.5

FTLKD-CNN [19] 93.97 91.48 93.98 94.58 92.16 213.29

GEO-SNN 98.99 96.62 99.75 98.13 95.82 186.75

Table 5. Performance over AEEM group EQ and MORPH group Velocity-1.4

Methods Accuracy

(%)

Precision

(%)

Recall

(%)

F-measure

(%)

Specificity

(%)

Processing time

(s)

BRFSS [9] 96.35 94.16 95.08 94.67 90.45 61.23

CTKCCA [12] 90.16 92.5 92.67 90.66 91.45 56.89

KSETE [14] 88.98 85.42 88.76 92.45 90.76 78.67

CDAA [15] 87.67 87.34 87.71 95.69 88,14 64.55

FSLBDA [17] 89.98 86.76 89.15 89.1 88.33 76.11

MSTL-AE [18] 92.45 90.23 91.4 91.73 92.89 70.9

FTLKD-CNN [19] 96.56 93.65 95.61 95.55 92.56 64.23

GEO-SNN 99.23 98.47 98.67 99.11 97.45 49.5

processing time are evaluated. The state-of-the-art

methods of BRFSS [9], CTKCCA [12], KSETE [14],

CDAA [15], FSLBDA [17], MSTL-AE [18] and

FTLKD-CNN [19] are also implemented in the same

simulation setting to compare their performance with

the proposed method denoted as GEO-SNN. For

comparison, the NASA Group dataset CM1 (source)

and SOFTLAB group dataset Ar1 (target) are

grouped as heterogeneous projects. Similarly, ASA

group dataset PC2 (source) and RELINK group

dataset Apache (target), and the AEEM group dataset

EQ (source) and MORPH group dataset Velocity-1.4

(target) are also grouped as heterogeneous projects.

Table 3 shows the performance comparison of

NASA Group dataset CM1 and SOFTLAB group

dataset Ar1.Table 4 shows the performance

comparison of NASA group dataset PC2 and

RELINK group dataset Apache. Table 5 shows the

performance comparison of AEEM group dataset EQ

and MORPH group dataset Velocity-1.4.

The results in Table 3 show that the proposed

GEO-SNN method has conveniently outperformed

Received: October 23, 2021. Revised: December 17, 2021. 87

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022 DOI: 10.22266/ijies2022.0430.08

the other methods with high values of accuracy,

precision, recall, f-measure, and specificity and less

processing time. The GEO-SNN has approximately

3%, 6%, 3%, 3%, 8%, 6% and 4% high accuracy than

BRFSS [9], CTKCCA [12], KSETE [14], CDAA

[15], FSLBDA [17], MSTL-AE [18] and FTLKD-

CNN [19], respectively. The use of effective class

imbalance processing and deep feature learning with

parameter tuned SNN has been the major reason for

this improvement.
The results in Table 4 show that the proposed

GEO-SNN method has conveniently outperformed

the other methods. GEO-SNN has approximately 3%,

8%, 4%, 4%, 10%, 6% and 5% high accuracy than

BRFSS [9], CTKCCA [12], KSETE [14], CDAA

[15], FSLBDA [17], MSTL-AE [18] and FTLKD-

CNN [19], respectively. The proposed GEO-SNN

has provided better defect prediction with

heterogeneous metrics very effectively.
The results in Table 5 show that the proposed

GEO-SNN method has conveniently outperformed

the other methods for the AEEM group source dataset

EQ and MORPH group target dataset Velocity-1.4.

GEO-SNN has approximately 3%, 9%, 11%, 12%,

10%, 7% and 3% high accuracy than BRFSS [9],

CTKCCA [12], KSETE [14], CDAA [15], FSLBDA

[17], MSTL-AE [18] and FTLKD-CNN [19],

respectively. This performance improvement can be

attributed to the parameter tuned deep learning model

of SNN using the advanced GEO optimization.

5. Conclusion

This paper presented an efficient HCPDP method

using ISMOTE and GEO-SNN classifier. This

proposed method resolved the class imbalance

problem by using the ISMOTE with modified KNN

using fuzzy mutual information. Z-score

standardization and metric matching using the SRC

measure improves the optimal feature selection.

Finally, the GEO-SNN classifier used these features

to classify the test data into the defect and non-defect

modules. Experimental results showed that GEO-

SNN has approximately 3%, 4-9%, 3-11%, 3-12%, 8-

10%, 6-7% and 3-5% high accuracy than BRFSS [9],

CTKCCA [12], KSETE [14], CDAA [15], FSLBDA

[17], MSTL-AE [18] and FTLKD-CNN [19],

respectively. In future, more company projects

datasets will be used as multi-source datasets to

detect the defects. Additionally, the possibility of

integrating more heterogeneous metrics will be

investigated.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

This work is a contribution of the authors:

“Conceptualization, N. Kalaivani and R. Beena;

methodology, N. Kalaivani; software, N. Kalaivani;

validation, N. Kalaivani and R. Beena; formal

analysis, N. Kalaivani; writing—original draft

preparation, N. Kalaivani; writing—review and

editing, N. Kalaivani and R. Beena.

References

[1] S. Lessmann, B. Baesens, C. Mues, and S.

Pietsch, “Benchmarking classification models

for software defect prediction: A proposed

framework and novel findings”, IEEE

Transactions on Software Engineering, Vol. 34,

No. 4, pp. 485-496, 2008.

[2] V. U. B. Challagulla, F. B. Bastani, I. L. Yen,

and R. A. Paul, “Empirical assessment of

machine learning based software defect

prediction techniques”, International Journal on

Artificial Intelligence Tools, Vol. 17, No. 02, pp.

389-400, 2008.

[3] R. S. Wahono and N. Suryana, “Combining

particle swarm optimization based feature

selection and bagging technique for software

defect prediction”, International Journal of

Software Engineering and Its Applications, Vol.

7, No. 5, pp. 153-166, 2012.

[4] M. Jureczko and D. Spinellis, “Using object-

oriented design metrics to predict software

defects”, Models and Methods of System

Dependability.

OficynaWydawniczaPolitechnikiWrocławskiej,

pp. 69-81, 2010.

[5] S. D. Palma, D. D. Nucci, F. Palomba, and D. A.

Tamburri, “Within-project defect prediction of

infrastructure-as-code using product and process

metrics”, IEEE Transactions on Software

Engineering, Early Access, pp. 1-12, 2021.

[6] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang,

“An investigation on the feasibility of cross-

project defect prediction”, Automated Software

Engineering, Vol. 19, No. 2, pp. 167-199, 2012.

[7] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan,

“Heterogeneous defect prediction”, IEEE

Transactions on Software Engineering, Vol. 44,

No. 9, pp. 874-896, 2017.

[8] X. Chen, Y. Mu, K. Liu, Z. Cui, and C. Ni,

“Revisiting heterogeneous defect prediction

methods: How far are we?”, Information and

Software Technology, Vol. 130, p. 106441, 2021.

[9] N. Kalaivani and R. Beena, “Boosted Relief

Feature Subset Selection and Heterogeneous

Cross Project Defect Prediction using Firefly

Received: October 23, 2021. Revised: December 17, 2021. 88

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022 DOI: 10.22266/ijies2022.0430.08

Particle Swarm Optimization”, International

Journal of Recent Technology and Engineering,

Vol. 8, No. 5, pp. 2605-2613, 2020.

[10] X. Jing, F. Wu, X. Dong, F. Qi, and B. Xu,

“Heterogeneous cross-company defect

prediction by unified metric representation and

CCA-based transfer learning”, In: Proc. of the

2015 10th Joint Meeting on Foundations of

Software Engineering, pp. 496-507, 2015.

[11] Z. Xu, P. Yuan, T. Zhang, Y. Tang, S. Li, and Z.

Xia, “HDA: Cross-project defect prediction via

heterogeneous domain adaptation with

dictionary learning”, IEEE Access, Vol. 6, No. 1,

pp. 57597-57613, 2018.

[12] Z. Li, X. Y. Jing, F. Wu, X. Zhu, B. Xu, and S.

Ying, “Cost-sensitive transfer kernel canonical

correlation analysis for heterogeneous defect

prediction”, Automated Software Engineering,

Vol. 25, No. 2, pp. 201-245, 2018.

[13] Z. Li, X. Y. Jing, X. Zhu, H. Zhang, B. Xu, and

S. Ying, “Heterogeneous defect prediction with

two-stage ensemble learning”, Automated

Software Engineering, Vol. 26, No. 3, pp. 599-

651, 2019.

[14] H. Tong, B. Liu, and S. Wang, “Kernel spectral

embedding transfer ensemble for heterogeneous

defect prediction”, IEEE Transactions on

Software Engineering, Vol. 47, No. 9, pp. 1886-

1906, 2019.

[15] L. Gong, S. Jiang, and L. Jiang, “Conditional

domain adversarial adaptation for heterogeneous

defect prediction”, IEEE Access, Vol. 8, No. 1,

pp. 150738-150749, 2020.

[16] X. Yin, L. Liu, H. Liu, and Q. Wu,

“Heterogeneous cross-project defect prediction

with multiple source projects based on transfer

learning”, Mathematical Biosciences and

Engineering, Vol. 17, No. 2, pp. 1020-1040,

2020.

[17] A. Wang, Y. Zhang, H. Wu, K. Jiang, and M.

Wang, “Few-shot learning based balanced

distribution adaptation for heterogeneous defect

prediction”, IEEE Access, Vol. 8, No. 1, pp.

32989-33001, 2020.

[18] J. Wu, Y. Wu, N. Niu, and M. Zhou, “MHCPDP:

multi-source heterogeneous cross-project defect

prediction via multi-source transfer learning and

autoencoder”, Software Quality Journal, Vol. 29,

No. 2, pp. 1-26, 2021.

[19] A. Wang, Y. Zhang, and Y. Yan,

“Heterogeneous Defect Prediction Based on

Federated Transfer Learning via Knowledge

Distillation”, IEEE Access, Vol. 9, No. 1, pp.

29530-29540, 2021.

[20] F. Peters, T. Menzies, and A. Marcus, “Better

cross company defect prediction”, In: Proc. of

2013 10th Working Conference on Mining

Software Repositories, IEEE, pp. 409-418, 2013.

[21] A. Fernández, S. Garcia, F. Herrera, and N. V.

Chawla, “SMOTE for learning from imbalanced

data: progress and challenges, marking the 15-

year anniversary”, Journal of Artificial

Intelligence Research, Vol. 61, No. 1, pp. 863-

905, 2018.

[22] N. Hoque, H. A. Ahmed, D. K. Bhattacharyya,

and J. K. Kalita, “A fuzzy mutual information-

based feature selection method for

classification”, Fuzzy Information and

Engineering, Vol. 8, No. 3, pp. 355-384, 2016.

[23] C. Cheadle, M. P. Vawter, W. J. Freed, and K.

G. Becker, “Analysis of microarray data using Z

score transformation”, The Journal of Molecular

Diagnostics, Vol. 5, No. 2, pp. 73-81, 2003.

[24] D. Chicco, “Siamese neural networks: An

overview”, Artificial Neural Networks, In: Proc.

of Cartwright H. (eds) Artificial Neural

Networks. Methods in Molecular Biology, Vol.

2190, No. 1, pp. 73-94, 2021.

[25] A. M. Balani, M. D. Nayeri, A. Azar, and M. T.

Yazdi, “Golden eagle optimizer: A nature-

inspired metaheuristic algorithm”, Computers

and Industrial Engineering, Vol. 152, No. 1, pp.

107050-107061, 2021.

[26] S. Herbold, A.Trautsch, and J. Grabowski, “A

comparative study to benchmark cross-project

defect prediction approaches”, IEEE

Transactions on Software Engineering, Vol. 44,

No. 9, pp. 811-833, 2017.

