
Received:  October 23, 2021.     Revised: December 17, 2021.                                                                                           79 

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022           DOI: 10.22266/ijies2022.0430.08 

 

 
Improved SMOTE and Optimized Siamese Neural Networks for Class 

Imbalanced Heterogeneous Cross Project Defect Prediction 

 

Nataraj Kalaivani1*          Raman Beena2 

 
1Department of Computer Science, Kongunadu Arts and Science College, Coimbatore – 641029,Tamilnadu, India 

2Department of Information Technology, Sri Ramakrishna College of Arts and Science, 

Coimbatore – 641006, Tamilnadu, India 

* Corresponding author’s Email: kalaivhani@gmail.com 

 

 
Abstract: Heterogeneous Cross-Project Defect Prediction (HCPDP) predicts the defects by incorporating the project 

datasets with different distribution and metrics. However, the class imbalance problem and shallow feature learning of 

classifiers reduce the overall performance. This paper presents an HCPDP using Improved Synthetic Minority 

Oversampling Technique (ISMOTE) and hybrid deep learning classifier of Golden Eagle Optimized Siamese Neural 

Networks (GEO-SNN). Initially, Peters filter removes irrelevant instances in source-target dataset based on 

heterogeneous metrics. ISMOTE, enhanced through fuzzy mutual information based KNN attribute weights 

assignment, is applied solve the class imbalance problem. Features are scaled using Z-Score standardization and metric 

matching by Spearman's Rank Correlation (SRC). Finally, GEO-SNN, developed by SNN parameter optimization 

using GEO, performs deep semantic feature learning for defect prediction. Experiments using benchmark datasets 

showed that the proposed ISMOTE and GEO-SNN based HCPDP technique has provided 99% defect prediction 

accuracy and reduced processing time by 20%than the state-of-the-art methods. 

Keywords: Improved synthetic minority oversampling technique, Software defect prediction, Heterogeneous cross-

project defect prediction, Golden eagle optimization, Siamese neural networks, Peters filter. 

 

 

1. Introduction 

Software Defect Prediction (SDP) has become an 

integral part of the testing phase in the Software 

Development Life Cycle (SDLC) [1]. The huge size 

and high complexity in production issues limit the 

performance of the entire SDLC and create 

complexities in identifying software defects in the 

early stages of development. SDP methods can help 

in precisely identifying the modules which have 

higher tendencies to become defects. SDP can solve 

the energy constraint problem of the developers and 

limit SDLC periods so that the quality of software can 

be improved. SDP requires high knowledge of the 

historical data of the projects but has proved to 

provide highly accurate predictions. Data mining and 

machine learning algorithms [2] have been mostly 

utilized for SDP with common metrics such as 

complexity metrics (lines of code, Halstead metrics 

and McCabe metrics) [3], object-oriented metrics [4] 

and process metrics. Early prediction of the defects 

can be performed by SDP as within-project defect 

prediction (WPDP) [5]. However, the WPDP does 

not support new different projects or projects with 

limited or insufficient historical data. Unlike WPDP, 

Cross-Project Defect Prediction (CPDP) is an SDP 

that utilizes the existing historical data of the other 

projects to provide the prediction results of the given 

project [6]. Although some CPDP methods use 

heterogeneous source and target projects, they utilise 

only the common metrics among them. Therefore, the 

current CPDP methods are not adequate for 

heterogeneous projects with different metrics. 

Heterogeneous Cross-Project Defect Prediction 

(HCPDP) or simply Heterogeneous Defect Prediction 

(HDP) [7] is the heterogeneous type of SDP based on 

the principle of CPDP with the additional 

characteristic of independent nature on whether the 
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source and target projects have common metrics or 

not. Different metrics based multiple source projects 

is still challenging for HCPDP. Additionally, the 

class imbalance problem and the shallow feature 

learning of the machine learning classifiers are also 

greater challenges [8]. To overcome these issues, the 

proposed HCPDP method utilizes an improved 

sampling technique and a hybrid deep learning 

classifier for deep feature learning.  

The main notion is to construct a projective 

matrix between the heterogeneous source and target 

projects for converting the source project into the 

target project space for utilizing the deep learning 

classifier. Initially, the source and target project 

datasets are filtered using Peters filter together to 

select the relevant instances based on heterogeneous 

metrics of the source project after analysing the 

unlabeled modules in the target project. This reduces 

the negative impact of the irrelevant instances. Then 

the newly formed source project will be used for 

training and the feature extractions will be performed 

in the first stage. The noise removal is then performed 

and the class imbalance problem is overcome by the 

Improved Synthetic Minority Oversampling 

Technique (ISMOTE), which is developed by 

enhancing the underlying KNN classifier by defining 

the attribute weights by fuzzy mutual information. Z-

Score standardization is used as the feature scaling 

method to minimize the irrelevant features. Then the 

feature weight training is performed based on the 

position vectors and the distance metrics to highlight 

the important features. The metric matching phase is 

utilized through Spearman's Rank Correlation (SRC) 

technique to estimate this association between feature 

pairs to represent the highly correlated feature pairs 

based on the heterogeneous metric collection. Finally, 

the deep semantic feature learning and defect 

prediction are achieved using the hybrid deep 

learning classifier of Golden Eagle Optimized 

Siamese Neural Networks (GEO-SNN) in which the 

parameters of SNN are optimized using Golden Eagle 

Optimizer. The proposed GEO-SNN classifier 

effectively learns the deep semantic features with 

high accuracy and low complexity to ensure better 

prediction of the defects. Experiments are conducted 

over benchmark project data to evaluate the 

performance of the proposed method and compared it 

with existing HCPDP methods. 

The remainder of the article is organized as 

follows: Related works in Section 2, Methodology in 

Section 3 followed by the experimental results in 

Section 4 and conclusion and possible future 

directions in Section 5. 

 

2. Related works 

Recent years have seen an increasing number of 

studies being conducted for HCPDP. Still, attaining 

the perfect results in the HCPDP method is 

challenging due to the use of WPDP with different 

metrics. Kalaivani and Beena [9] presented an 

HCPDP method using Boosted Relief Feature Subset 

Selection (BRFSS) and Firefly Particle Swarm 

Multivariate Linear Regression (FFLYPSMVLR). 

This method used the BRFSS to handle different 

projects with heterogeneous feature sets through the 

mapping process and FFLYPSMVLR to provide the 

final optimal prediction. This method achieved high 

accuracy, precision and recall. Yet, the class 

imbalance problem still prevails. Jing et al. [10] 

introduced unified metric representation (UMR) and 

canonical correlation analysis (CCA)-based transfer 

learning for HDP. UMR was constructed for source 

company data and the target-company specific 

metrics based on which the CCA made the data 

distributions of source and target projects. However, 

this method does not resolve the class imbalance 

problem before applying transfer learning. Xu et al. 

[11] developed heterogeneous domain adaptation 

with dictionary learning for HDP. This method 

employed the domain adaptation method to insert the 

data from the two projects and then measured the 

difference between them using dictionary learning to 

predict the defects. Though it improved the F-

measure, Balance, and AUC, this method suffers 

from class imbalance problems and the randomness 

in selecting the entities. 

Li et al. [12] suggested a new cost-sensitive 

transfer kernel canonical correlation analysis 

(CTKCCA) for HDP with highly balanced data 

through different misclassification costs for defective 

and defect-free classes. This method reduced the 

class imbalance problem and increased the accuracy 

of defect prediction. Yet, this method has a higher 

storage space requirement for handling multi-source 

projects. Li et al. [13] developed an HDP model using 

two-stage ensemble learning of ensemble multi-

kernel domain adaptation (EMDA) and ensemble 

data sampling (EDS). This ensemble model utilized 

Ensemble Multiple Kernel Correlation Alignment 

(EMKCA) predictor to estimate the defects through 

multiple kernel learning and domain adaptation. This 

model achieved high AUC, F-measure and balance. 

However, this model has high complexity in terms of 

processing time.  Tong et al. [14] proposed a novel 

kernel spectral embedding transfer ensemble 

(KSETE) approach for HDP. This method solved the 

class-imbalance problem of the source data and 

identified the latent common feature space by 
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combining kernel spectral embedding, transfer 

learning, and ensemble learning. This method 

improved the AUC, G-measure and MCC values but 

has limitations in terms of processing time.  

Gong et al. [15] illustrated Conditional domain 

adversarial adaptation (CDAA) motivated by 

generative adversarial networks (GANs) for HDP. 

CDAA used a generator for transfer learning of 

source project to target space, one discriminator to 

transfer the source project and one classifier to 

correctly label and predict the defects. However, this 

model also does not consider the class imbalance 

problem. Yin et al. [16] developed an HCPDP 

method using multiple source projects based on 

transfer learning. In this method, multiple 

heterogeneous source projects were used for defect 

prediction based on the projective matrix for transfer 

learning. This method achieved high prediction 

accuracy and fewer false positives. Yet, this method 

has limitations in handling the class imbalance 

problem. 

Wang et al. [17] proposed a few-shot learning-

based balanced distribution adaptation (FSLBDA) 

approach for imbalanced HDP. This method removed 

the redundant metrics using extreme gradient 

boosting and then the data variation is reduced using 

balanced distribution adaptation. Finally, adaptive 

boosting based few-shot learning is used for 

prediction. Although this method achieved high AUC, 

G-mean and F-measure than the existing methods, 

this method has the limitation of high complexity due 

to complex architecture. Wu et al. [18] presented 

multi-source HCPDP using multi-source transfer 

learning and autoencoder (MSTL-AE). This method 

considered the negative effect of transfer learning and 

developed modified autoencoder based HCPDP to 

extract the intermediate features from the original 

datasets. The multi-source transfer learning 

algorithm reduced the negative impact and improved 

the prediction accuracy. However, this method also 

does not consider the class imbalance and the noise 

problem. Wang et al. [19] developed HDP using 

Federated Transfer Learning based on the knowledge 

distillation (FTLKD) approach. This approach used 

trained convolutional neural networks (CNN) to 

utilize knowledge distillation for detecting the 

different metrics of projects and improved the 

accuracy, AUC and G-mean. 

The vital points inferred from the literature are 

that the class imbalance problem is not effectively 

considered in many studies. The noise problem and 

the feature scaling problems are also briefly 

considered. The major point from the recent studies 

is that the deep learning methods can improve the 

feature learning process and increase the prediction 

accuracy without increasing the processing time or 

other complexities. Based on these observations, this 

proposed method developed an efficient HCPDP 

method using ISMOTE and GEO-SNN classifier. 

3. Methodology 

The proposed HCPDP method aims at resolving 

the error-prone limitations in noisy, unbalanced and 

different scaled features of the source and target 

projects’ datasets. Initially, the source and target 

projects are filtered and merged based on the relevant 

instances using the Peters filter. Then the features are 

extracted and the noise removal, class balancing, 

feature scaling and feature weight training tasks are 

performed. The metric matching phase is utilized 

through the SRC technique to determine the highly 

correlated feature pairs to feed the GEO-SNN 

classifier for accurate defect prediction. The 

proposed HCPDP model is illustrated in Fig. 1. 

3.1 Instance selection for the source project 

Peters filter is used to perform instance selection 

for the source project. Peters filter lets the instances 

in the training dataset (TDS) find their nearest Test 

instances [20]. These instances are selected for the 

final filtered training dataset. The Peters filter uses 

the k-nearest neighbor algorithm to select similar 

labeled modules in the source project from training 

instances, which are more similar to the unlabeled 

modules in the target project. Algorithm 1 shows the 

Peters filter based instance selection. 

 

Algorithm 1: Peters filter for instance selection 

Input: Source dataset T, target dataset U, TDS 

Output: New Source Dataset T’ 

While T’ not unique 

 For each module um in U do 

  For each module tm in T do 

   Distance (tm, um) 

  End for 

  Distance (TDS, Test) 

  Nearest modules of TDS selected 

  𝑇’ = 𝑇′ ∪ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 

 End for 

𝑇’ = 𝑢𝑛𝑖𝑞𝑢𝑒 (𝑇′) 

Return T’ 

End while 

3.2 Feature extraction and pre-processing 

First, the multiple quantifiable change features 

from the source data are extracted and they are 

divided into training and testing instances. Then the 

features are pre-processed using three steps:  
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Figure. 1 Overall process of proposed HCPDP methodology 

 

denoising, class imbalance processing and data 

standardization. For denoising, dynamic thresholding 

is used in which a dynamic threshold value is set and 

the data instances exceeding the threshold are filtered 

as noise. Then the class imbalance processing is 

performed using ISMOTE and data standardization 

by Z-score standardization.  

3.2.1. Class imbalance processing 

Class imbalance is a very common problem in 

most defect prediction methods. Analysing many 

software project modules, the distribution of the 

defects is in the Pareto principle, i.e. 80% non-defects 

and 20% defects. This means the number of defects 

is relatively very less than the non-defects which 

might result in poor prediction results. To overcome 

the problem, the ISMOTE is used.  

ISMOTE is an improved sampling technique 

where the underlying KNN imputes used for class 

enhancement are modified defining the KNN 

attribute weights by fuzzy mutual information. 

ISMOTE performs the tasks as in SMOTE [21] by 

computing the information gain of every attribute and 

the weighted mutual information. Then the value of k 

clusters in KNN is defined and the training set is 

divided into k clusters. The Euclidean distance is 

computed between the training and testing samples. 

Finally, majority voting is applied to determine the 

class probability and the class labels. The fuzzy 

mutual information is computed for two attributes X 

and Y as 

 

𝐹𝑀𝐼(𝑋; 𝑌) = 𝐹𝐻(𝑋) + 𝐹𝐻(𝑌) − 𝐹𝐻(𝑋, 𝑌)     (1) 

 

Here 𝐹𝑀𝐼(𝑋; 𝑌)  denotes the fuzzy mutual 

information of the attributes X and Y; 𝐹𝐻(𝑋) and 

𝐹𝐻(𝑌)  denotes the fuzzy entropy of X and Y, 

respectively and 𝐹𝐻(𝑋, 𝑌) denotes the fuzzy entropy 

of 𝑋, 𝑌 [22].  

 

𝐹𝐻(𝑋) = −𝑃𝑋 log 𝑃𝑋; 𝐹𝐻(𝑌) = −𝑃𝑌 log 𝑃𝑌   (2) 
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Where, X and Y are attributes and PX and PY are 

the fuzzy equivalent of the joint probability of 

training samples of a class with attributes X and Y, 

given as 

 

𝑃𝑋 =
∑ 𝜇(𝑥𝑖𝑘)𝑘

𝑁𝑃
; 𝑃𝑌 =

∑ 𝜇(𝑦𝑗𝑘)𝑘

𝑁𝑃
             (3) 

 

Here, 𝑁𝑃  denotes the number of probabilities, 

𝜇(𝑥𝑖𝑘)  and 𝜇(𝑦𝑗𝑘)  denotes fuzzy membership 

functions of k-th vector in i-th class of X and Y 

attributes. 

3.2.2. Z-score standardization 

The distribution of the extracted defect change 

feature values is not in the same order of magnitude. 

If the original feature values are used for defect 

prediction, the function of the higher values will be 

emphasized, and the function of the lower values is 

relatively destabilized. Therefore, to ensure the 

reliability of the result, z-score standardization is 

used [23]. For each value 𝑓𝑖  of 𝑓  features, the 

normalized value 𝑧𝑖 can be computed as 

 

𝑧𝑖 =
𝑓𝑖−𝑚𝑒𝑎𝑛 (𝑓)

𝑣𝑎𝑟 (𝑓)
                          (4) 

 

Here 𝑚𝑒𝑎𝑛 (𝑓)  denotes the mean and 𝑣𝑎𝑟 (𝑓) 

denotes the variance of 𝑓 features. 

3.2.3. Feature weight training 

Each dimensional feature has a different effect on 

defect prediction and hence the vital features must be 

identified and different weights must be assigned. 

The weight values are assigned from 0 to 1 where 0 

means that the features have no importance and the 

closer the weight value is to 1, the feature is more 

important. 𝑤𝑖  is a control gate weight vector 

automatically trained by an adaptive trainable 

function, and is computed as a Sigmoid nonlinear 

activation function to obtain the final weighted vector 

to distinguish the vital features. The distinguishing 

rate 𝑟′ of feature-weights is given as 

 

𝑟′ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑤𝑖) ∗ 𝑟                     (5) 

 

Here 𝑤𝑖  is the weights of features and 𝑟 denote 

the initial weight difference rate. 

3.3 Metric matching phase 

The metric matching phase is performed to 

provide a common ground between the 

heterogeneous metrics of the source and target 

projects. To compute the correlation, Spearman's 

Rank Correlation is used. SRC is computed for the 

two metrics 𝑎 and 𝑏 as 

 

𝜌 = 1 −
6 ∑ 𝑚𝑑𝑖

2

𝑛(𝑛2−1)
                         (6) 

 

Here 𝜌 denote the SRC measure, 𝑚𝑑𝑖 denotes the 

difference between the ranks of each metric 𝑎and 𝑏, 

and n denote the number of instances. 

3.4 GEO-SNN 

The proposed GEO-SNN is a hybrid model using 

the SNN [24] and GEO algorithms [25]. The SNN is 

similar to the CNN and it includes an embedding 

layer (EL), convolutional layer (CL) and a pooling 

layer (PL), and two fully connected layers (FCL). It 

is made of two single neural network architectures 

combined with the GEO algorithm. The loss 

objectives of the SNN are alternatively computed 

using the predicted and true classes. The focal loss 

function is predominantly utilized for this purpose. 

The SNN is a typical few-shot learning model that 

included two single neural networks whose inputs are 

two instances. The output is computed by comparing 

the output layers of the first FCL layers of the single 

networks. It is estimated by applying the FCL on the 

difference of the two samples to estimate their 

similarity and using a cross-entropy loss on the 

similarity. Fig. 2 shows the architecture of the 

proposed GEO-SNN. 

The proposed hybrid SNN is training the single 

architectures separately and adapting them as the top 

and bottom classes, respectively. The hybrid SNN 

has three technical attributes namely multi-task 

architecture, class-specific similarity and sampling 

process. Initially, the single network is trained and 

then used to initialize the SNN. After initialization, 

the SNN is trained separately as it might forget the 

knowledge obtained by the single networks. If the 

number of training instances is large, the instance 

pairs will be squared and become huge in numbers. 

SNN will not be feasible to train such huge instances 

and hence the training set is reduced to a sample 

subset. This might infuse the over-fitting problem in 

SNN. 

To overcome this problem, the multi-task 

architecture is based on the Single SNN. The loss 

function is given as 

 

ℒ = 𝜆𝑆ℒ𝑆 + 𝜆𝑚1ℒ𝑚1 + 𝜆𝑚2ℒ𝑚2            (7) 

 

Here ℒ𝑆 denotes the loss of SNN. ℒ𝑚denotes the 

loss of two single networks and 𝜆  denotes the 

network constraint. When there is no loss of  
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Figure. 2 Architecture of GEO-SNN 

 

generality, 𝜆𝑆 = 𝜆𝑚1 = 𝜆𝑚2 = 1 . ℒ𝑚1 and ℒ𝑚2  are 

equal for the similar pair of instances while ℒ𝑚1 and 

ℒ𝑚2 are unequal for dissimilar instances. The single 

network is considered as the constraint to avoid 

forgetting and over-fitting the SNN. 

SNN has only single similarity output which is 

limited for estimating the similarity between a large 

number of individual classes and multiple classes. 

When an instance has multiple classes and each class 

has a separate representation vector, it becomes 

difficult for the SNN to learn all instances to obtain 

the single similarity output.in this case, the class-

specific similarity is used in the SNN architecture to 

obtain the informative features in the similarity 

outputs. For two input instances 𝑑𝑖, 𝑑𝑗 with a class 𝑞, 

the class-specific similarity is estimated as 

 

ℎ = |𝑑𝑖 − 𝑑𝑗| ∘ ℎ𝑞                       (8) 

 

Here ℎ𝑞 = 𝜎(
𝑤.𝑝𝑞+𝑏

√𝑄
) . 𝜎 is the ReLU activation 

function and ∘ is the element-wise multiplication, w 

and b are the weight and bias, 𝑝𝑞 is the class constant 

and 𝑄 is the set of all class labels. 

The class-specific sampling process is also 

applied to the training data features by the randomly 

selected similar pairs ((𝑑𝑖, 𝑞)(𝑑𝑗 , 𝑞)) and dissimilar 

pairs ((𝑑𝑖 , 𝑞𝑖)(𝑑𝑗 , 𝑞𝑗))  with the ratio of 1:1. The 

specific sampling process will generate one triplet 

(𝑑𝑖 , 𝑑𝑗, 𝑞) for training and generates, triplet instances 

with the ratio of similar and dissimilar pairs are thus 

1:2. 

GEO is applied at this stage to optimally tune the 

parameters. The EL, CL, PL, FCL and activation 

functions are optimally tuned using the GEO. GEO is 

based on the hunting behaviour of the golden eagles 

in tuning speed at different hunting stages [25]. It 

includes two tasks of golden eagles for searching the 

prey and attacking the prey. The golden eagles will 

cruise around the search space and determine which 

prey to be attacked since there are many organisms in 

the search space. GEO is based on the spiral motion 

of the golden eagles. The population is initialized as 

𝑓 ∈ {1,2, … , 𝑃𝑜𝑝𝑠𝑖𝑧𝑒}. In each iteration, the golden 

eagle must select and attack only one prey. It is 

formulated as the attack vector. 

 

𝐴𝑖 = �⃗�𝑓
∗ − �⃗�𝑖                         (9) 

 

Here 𝐴𝑖 denotes the attack vector of the eagle, �⃗�𝑓
∗ 

denote the best location of the prey found by the eagle 

f and �⃗�𝑖 denote the current position of the eagle. 

The cruise vector 𝐶𝑖  is calculated based on the 

attack vector and it is used for the exploration process. 

The element of 𝐶𝑖 is given as 

 

𝑐𝑘 =
𝑑−∑ 𝑎𝑗𝑗,𝑗≠𝑘

𝑎𝑘
                     (10) 

 

Here 𝑐𝑘  denotes the 𝑘-th element of the 

destination point 𝐶 of the eagle, 𝑎𝑗  denote the 𝑗-th 
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element of the attack vector 𝐴𝑖 , 𝑑  symbolizes the 

dimension of the search space, 𝑎𝑘  denotes the k-th 

element of the attack vector 𝐴𝑖 , and k denotes the 

index of the fixed variable. 

Based on the attack and cruise vectors, the step 

vector is formulated for each eagle at iteration 𝑡. 

 

∆𝑥𝑖 = 𝑟1𝑝𝑎
𝐴𝑖

‖𝐴𝑖‖
+ 𝑟2𝑝𝑐

𝐶𝑖

‖𝐶𝑖‖
               (11) 

 

Here 𝑟1  and 𝑟2  are the random vectors in the 

interval [0,1]  and 𝑝𝑎  and 𝑝𝑐  denotes the attack 

coefficient and cruise coefficient in 𝑡  iterations, 

respectively. ‖𝐴𝑖‖ and ‖𝐶𝑖‖  denotes the Euclidean 

norm of the attack and cruise vectors, respectively. 

The position of the golden eagles in iteration 𝑡 +
1 are computed as adding the step vector in iteration 

𝑡  to the positions in iteration 𝑡 . This will be the 

position update equation 

 

𝑥𝑡+1 = 𝑥𝑡 + ∆𝑥𝑖
𝑡                      (12) 

 

If the fitness of the new position of the golden 

eagle 𝑖 is better than the position in its memory, the 

memory of this eagle is updated with the new position. 

Or else, the memory remains the same and the eagle 

will move to the next location. Based on this 

algorithm, the weights and the bias of SNN are tuned 

and thus the optimal values are set for the hyper-

parameters. The fitness function is replaced by that of 

SNN as 𝑓(𝑦) = 𝑓(𝛿, 𝜂) . This fitness function is 

related to the EL, CL, Pl, FCL and activation function 

of the SNN for the two networks. While many 

configurations for the GEO-SNN are found by the 

tuning process, GEO selects the configuration with a 

minimum error rate. The process of GEO for SNN is 

presented as follows. 

 

Algorithm 2: GEO for tuning SNN parameters 

Population Initialization of golden eagles (𝑃) 

Set Iteration = 0 

Initialize the GEO parameters 

Map the SNN parameters to GEO solution search 

Calculate the fitness and select the best search agent 

Initialize the population memory 

For each golden eagle𝑖 = 1 𝑡𝑜 𝑛 do 

Randomly select �⃗�𝑖as the initial solution 

Calculate the attack vector 

If the attack vector length ≠ 0 

  Calculate the cruise vector 

  Calculate the step vector 

Update the position of search agents 

Update the GEO parameters 

Adjust the out-of-boundary eagle 

Compute fitness 

Update the best solution 

Increment Iteration by 1 

Until maximum iteration 

End if 

End for 

Return the best solution �⃗�𝑓
∗ from population memory 

End 

 

The top configuration obtained for SNN using 

GEO is shown in Table 1. The error rate obtained for 

this configuration is 12.2. For optimal structure, the 

GEO-SNN required 3 layers of FCL and one layer 

each for EL and CL. This configuration enables the 

learning of deep spatial features by SNN for multi-

source projects. The input dimension is (1, 256, 24) 

where 1 denotes the channel of input data, 256 denote 

the number of data, and 24 denote the time steps to 

process them. 

The networks are formed using this configuration. 

The single network is trained separately and the SNN 

is initialized using the single network. In the next 

stage, the trained features are used to classify the test 

data. Based on the similarity, the instance pairs are 

formed and the majority voting based approach is 

used for classifying the instances. Once the classifier 

results of the single SNN are obtained, they are 

merged based on a threshold which is determined by 

the number of instances in a class. 

4. Results and discussion 

The performance of the proposed HCPDP 

method using ISMOTE and GEO-SNN is deployed 

and evaluated using MATLAB software. The 

experimental results are obtained over six benchmark 

datasets of five project groups [26] described in Table 

2 for evaluation. 

The performance metrics namely accuracy, 

precision, recall, f-measure, specificity and 

 
Table 1. Optimal configuration obtained for GEO-SNN 

Layer Name Parameter Dimension 

0 Input - (1, 256, 

24) 

1 EL 

Activation 

(ReLU) 

(16, 3, 3) 

- 

(16, 256, 

24) 

- 

2 Convolution 

Pooling 

Activation 

(ReLU) 

(64, 3, 3) 

(2, 2) 

- 

(64, 64, 6) 

(64, 32, 3) 

- 

3 Flatten - (1536, ) 

4 FCL 278 (278, ) 

5 FCL 278 (278, ) 
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Table 2. Benchmark evaluation project datasets 

Group Dataset No of instances No of metrics Prediction attribute 

AEEEM EQ 324 61 class 

MORPH Velocity-1.4 196 20 class 

SOFTLAB Ar1 121 29 function 

NASA 
CM1 344 37 function 

PC2 1585 36 function 

ReLink Apache 194 26 file 

 
Table 3. Performance over NASA group CM1 and SOFTLAB group Ar1 

Methods Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 

Specificity (%) Processing 

time (s) 

BRFSS [9] 95.68 93.2 94.7 96.67 92.56 127.56 

CTKCCA [12] 92.16 95.11 93.67 91.39 89.43 154.28 

KSETE [14] 95.67 91.56 91.67 95.67 90.9 110.65 

CDAA [15] 95.5 90.17 92.38 96.44 92.14 116.37 

FSLBDA [17] 90.89 88.97 89.34 91.56 84.63 126.55 

MSTL-AE [18] 92.77 90.32 93.69 92.86 90.17 120.2 

FTLKD-CNN [19] 94.5 92.18 91.66 95.22 88.67 115.21 

GEO-SNN 98.76 96.87 97.86 98.75 94.56 103.6 

 
Table 4. Performance over NASA group PC2 and RELINK group Apache 

Methods Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 

Specificity 

(%) 

Processing time 

(s) 

BRFSS [9] 95.07 92.83 94.29 93.67 90.17 196.75 

CTKCCA [12] 90.35 91.5 92.76 94.81 91.34 220.15 

KSETE [14] 94.68 92.67 92.65 91.10 93.56 203.56 

CDAA [15] 94.78 91.44 91.88 90.75 95.77 211.78 

FSLBDA [17] 88.67 85.25 87.5 91.67 87.9 231.9 

MSTL-AE [18] 92.15 92.44 93.19 94.36 91.05 226.5 

FTLKD-CNN [19] 93.97 91.48 93.98 94.58 92.16 213.29 

GEO-SNN 98.99 96.62 99.75 98.13 95.82 186.75 

 
Table 5. Performance over AEEM group EQ and MORPH group Velocity-1.4 

Methods Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 

Specificity 

(%) 

Processing time 

(s) 

BRFSS [9] 96.35 94.16 95.08 94.67 90.45 61.23 

CTKCCA [12] 90.16 92.5 92.67 90.66 91.45 56.89 

KSETE [14] 88.98 85.42 88.76 92.45 90.76 78.67 

CDAA [15] 87.67 87.34 87.71 95.69 88,14 64.55 

FSLBDA [17] 89.98 86.76 89.15 89.1 88.33 76.11 

MSTL-AE [18] 92.45 90.23 91.4 91.73 92.89 70.9 

FTLKD-CNN [19] 96.56 93.65 95.61 95.55 92.56 64.23 

GEO-SNN 99.23 98.47 98.67 99.11 97.45 49.5 

 

processing time are evaluated. The state-of-the-art 

methods of BRFSS [9], CTKCCA [12], KSETE [14], 

CDAA [15], FSLBDA [17], MSTL-AE [18] and 

FTLKD-CNN [19] are also implemented in the same 

simulation setting to compare their performance with 

the proposed method denoted as GEO-SNN. For 

comparison, the NASA Group dataset CM1 (source) 

and SOFTLAB group dataset Ar1 (target) are 

grouped as heterogeneous projects. Similarly, ASA 

group dataset PC2 (source) and RELINK group 

dataset Apache (target), and the AEEM group dataset 

EQ (source) and MORPH group dataset Velocity-1.4 

(target) are also grouped as heterogeneous projects. 

Table 3 shows the performance comparison of 

NASA Group dataset CM1 and SOFTLAB group 

dataset Ar1.Table 4 shows the performance 

comparison of NASA group dataset PC2 and 

RELINK group dataset Apache. Table 5 shows the 

performance comparison of AEEM group dataset EQ 

and MORPH group dataset Velocity-1.4. 

The results in Table 3 show that the proposed 

GEO-SNN method has conveniently outperformed 
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the other methods with high values of accuracy, 

precision, recall, f-measure, and specificity and less 

processing time. The GEO-SNN has approximately 

3%, 6%, 3%, 3%, 8%, 6% and 4% high accuracy than 

BRFSS [9], CTKCCA [12], KSETE [14], CDAA 

[15], FSLBDA [17], MSTL-AE [18] and FTLKD-

CNN [19], respectively. The use of effective class 

imbalance processing and deep feature learning with 

parameter tuned SNN has been the major reason for 

this improvement. 
The results in Table 4 show that the proposed 

GEO-SNN method has conveniently outperformed 

the other methods. GEO-SNN has approximately 3%, 

8%, 4%, 4%, 10%, 6% and 5% high accuracy than 

BRFSS [9], CTKCCA [12], KSETE [14], CDAA 

[15], FSLBDA [17], MSTL-AE [18] and FTLKD-

CNN [19], respectively. The proposed GEO-SNN 

has provided better defect prediction with 

heterogeneous metrics very effectively. 
The results in Table 5 show that the proposed 

GEO-SNN method has conveniently outperformed 

the other methods for the AEEM group source dataset 

EQ and MORPH group target dataset Velocity-1.4. 

GEO-SNN has approximately 3%, 9%, 11%, 12%, 

10%, 7% and 3% high accuracy than BRFSS [9], 

CTKCCA [12], KSETE [14], CDAA [15], FSLBDA 

[17], MSTL-AE [18] and FTLKD-CNN [19], 

respectively. This performance improvement can be 

attributed to the parameter tuned deep learning model 

of SNN using the advanced GEO optimization. 

5. Conclusion 

This paper presented an efficient HCPDP method 

using ISMOTE and GEO-SNN classifier. This 

proposed method resolved the class imbalance 

problem by using the ISMOTE with modified KNN 

using fuzzy mutual information. Z-score 

standardization and metric matching using the SRC 

measure improves the optimal feature selection. 

Finally, the GEO-SNN classifier used these features 

to classify the test data into the defect and non-defect 

modules. Experimental results showed that GEO-

SNN has approximately 3%, 4-9%, 3-11%, 3-12%, 8-

10%, 6-7% and 3-5% high accuracy than BRFSS [9], 

CTKCCA [12], KSETE [14], CDAA [15], FSLBDA 

[17], MSTL-AE [18] and FTLKD-CNN [19], 

respectively. In future, more company projects 

datasets will be used as multi-source datasets to 

detect the defects. Additionally, the possibility of 

integrating more heterogeneous metrics will be 

investigated. 
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