
Received:  September 20, 2021.     Revised: October 20, 2021.                                                                                        130 

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022           DOI: 10.22266/ijies2022.0228.13 

 

 
Microaneurysms Detection Using Grey Wolf Optimizer and Modified K-Nearest 

Neighbor for Early Diagnosis of Diabetic Retinopathy 

 

Manohar Pundikal1*          Mallikarjun Sayabanna Holi2 

 
1RNS Institute of Technology, India 

2University BDT College of Engineering, Davangere (A Constituent College of VTU, Belagavi), India 
* Corresponding author’s Email: manoharasp@gmail.com 

 

 
Abstract: In recent decades, Diabetic Retinopathy (DR) is a progressive eye disease that causes severe eye injuries if 

it is not detected and treated on time. Accurate microaneurysms detection is a vital step for early detection of DR, 

because it is the primary sign of disease. In this paper, a six-phase model is introduced for detecting microaneurysms 

from the fundus retinal images for early diagnosis of DR. Initially, lower light retinal image enhancement, image 

normalization, gradient weighting and shade correction are applied for improving the visibility level of fundus retinal 

images, which are acquired from the e-ophtha, and DiaRetDB1 datasets. Further, the hessian-based filter, and Otsu 

thresholding with the morphological operator are employed to eliminate blood vessel regions from the microaneurysms 

regions. Next, a grey wolf optimizer is used for predicting the correctness of the segmented microaneurysms regions. 

After segmentation, feature extraction: shape and Gray Level Co-occurrence Matrix (GLCM) features and 

classification: Modified K Nearest Neighbor (MKNN) are used to extract features from microaneurysms regions and 

to classify microaneurysms and non-microaneurysms regions. The simulation result showed that the proposed model 

achieved effective performance in microaneurysms detection compared to the existing models such as H-maxima-

multilevel thresholding-multilayer perceptron and statistical geometrical features. The proposed model achieved 

99.10% and 99.90% of accuracy on e-ophtha and DiaRetDB1 datasets, which are effective related to the existing 

models in microaneurysms detection. 

Keywords: Grey wolf optimizer, Hessian based filter, Modified K-nearest neighbor, Microaneurysms detection, Otsu 

thresholding with a morphological operator. 

 

 
 

1. Introduction 

Currently, DR is the most frequent cause of new 

blindness cases for age groups between 20 and 70 

years. DR is an eye complication that is caused due 

to diabetes mellitus, which further result in 

cardiovascular disease, diabetic neuropathy, diabetic 

nephropathy, and stroke [1, 2]. Diabetes mellitus is 

an epidemic, due to modern lifestyles (urbanization), 

longer lifespan, and social and environmental factors 

like lack of physical activity, diet and obesity [3, 4]. 

The screening is the best way for early detection of 

DR, where fundus image is commonly used for the 

assessment and detection of ocular diseases [5, 6]. 

Generally, retinal fundus images contain pathological 

features (exudates, and microaneurysms) and normal 

features (fovea, blood vessels, and optic disc) [7]. 

Among pathological features, microaneurysms are 

the 1st sign of the presence of proliferative DR. 

Recently, many research works are developed for 

recognizing microaneurysms from the fundus retinal 

images. The methodologies used for microaneurysms 

recognition are divided into 3 types like template 

matching-based methodologies, supervised 

classification and morphological image processing 

[8-10]. The most common problem in the existing 

methods is that the features for non- microaneurysms 

vary in a wide range, so the large training set 

consumes more processing time and leads to class 

imbalance problems. In this paper, an attempt has 

been done for detecting the microaneurysms regions 

from the fundus retinal images for early recognition 

of DR. The major contributions of this paper are 

listed below; 
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• Firstly, the fundus retinal images are acquired 

from the e-ophtha and DiaRetDB1 datasets, 

where the image denoising is accomplished by 

utilizing lower light retinal image enhancement, 

image normalization, gradient weighting, and 

shade correction. The image normalization and 

low light retinal image enhancement techniques 

are used to maintain the pixel values that 

significantly improves the visibility level of the 

collected retinal images. 

• Next, the pixel intensity variations in the green 

plane image background are eliminated from the 

enhanced images, where the resultant image is 

the “shade corrected” image. Though, the shade 

corrected image is obtained by subtracting the 

background image from the green image.  

• After pre-processing the images, blood vessel 

removal is accomplished by utilizing Otsu 

thresholding with a morphological operator and 

Hessian-based filter, where these methods 

segment and separate the overlapped 

microaneurysms and non-microaneurysms 

regions. 

• Then, Grey Wolf Optimizer (GWO) is applied 

for predicting the correctness of segmented 

microaneurysms regions. After segmenting the 

microaneurysms regions, shape features and 

GLCM features are used for extracting the 

feature vectors from the microaneurysms 

regions and then MKNN classifier is applied for 

classifying both microaneurysms and non-

microaneurysms regions. In the experimental 

phase, the GWO-MKNN model is investigated 

in light of accuracy, sensitivity, specificity, error 

rate, False Omission Rate (FOR), and miss rate.  

 

This paper is structured as follows. In Section 2, 

some papers on the topic “microaneurysms detection” 

are reviewed. In Section 3, the GWO-MKNN model 

is briefly explained and experimental evaluation of 

GWO-MKNN model is discussed in Section 4. 

Conclusion of this research study is clearly stated in 

Section 5. 

2. Literature survey 

Mazlan [11] developed an automated framework 

for microaneurysms detection in retinal images. After 

collecting the images from the e-ophtha dataset, 

contrast enhancement was applied to improve the 

visibility of the images. Next, H-maxima and 

thresholding approaches were utilized to reduce the 

image intensity level to segment the microaneurysms 

regions. A total of fifteen features (color, shape, 

statistical moments, size, etc.) were employed to 

extract the features from the segmented regions. Then, 

the obtained feature values were fed to Support 

Vector Machine (SVM) and Multilayer Perceptron 

(MLP) to classify the images into three classes like 

background, blood vessels and microaneurysms. 

Experimental results showed that the presented 

framework obtained good performance in 

microaneurysms detection related to existing 

frameworks using specificity, accuracy, and 

sensitivity. The dimensionality issues will occur by 

utilizing more features that increase the complexity 

of the framework. Additionally, Veiga [12] utilized 

laws texture features to detect the microaneurysms 

from the e-ophtha dataset. In this literature study, the 

SVM classifier performs both object and pixel-based 

classification to diminish the false detections to 

classify the microaneurysms regions. Still, some false 

positives appear over thin vessels that degrades the 

performance of microaneurysms detection. 

Akram [13] presented a three-phase model for 

early recognition of microaneurysms. In the first 

phase, filter banks, morphological operations and 

contrast normalization were applied to improve the 

contrast and to segment the microaneurysms regions 

from the images. In the second phase, color features, 

grey level features, shape-based features and 

statistical features were utilized for extracting feature 

vectors from the segmented regions. In the final stage, 

a hybrid classifier; SVM with Gaussian mixture 

model was used to classify the non-microaneurysms 

and microaneurysms regions. Experimental results 

showed that the presented model attained effective 

performance in microaneurysms detection compared 

to the prior models in terms of specificity, positive 

predictive value, accuracy and sensitivity. In image 

processing applications, the SVM classifier is not 

appropriate for large datasets and also it does not 

perform well when the dataset has noise (overlapping 

of classes). Derwin [14] developed a framework for 

automatic microaneurysms detection. Initially, 

normalization, contrast enhancement and luminosity 

correction were done to improve the quality of retinal 

images. Next, a morphological closing operation was 

applied to segment the optical disc and 

microaneurysms regions. Further, a local 

neighborhood differential coherence pattern was used 

to extract the feature vectors and then Feed Forward 

Neural Network (FFNN) was employed to classify 

the non-microaneurysms and microaneurysms 

regions. This extensive experiment showed that the 

developed framework performed well in 

microaneurysms detection. The developed FFNN is a 

single-layer perceptron that only learns linearly 

separable patterns, which is not adaptable for 

multiclass classification. 



Received:  September 20, 2021.     Revised: October 20, 2021.                                                                                        132 

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022           DOI: 10.22266/ijies2022.0228.13 

 

Long [15] developed an improved enhancement 

function based on the eigenvalues of the Hessian 

matrix for retinal blood vessel and microaneurysms 

segmentation. Using shape property and connected 

component analysis, the blood vessels were removed 

from the microaneurysms regions. Next, the 

directional local contrast features were utilized for 

extracting feature vectors from the segmented 

microaneurysms regions. Finally, the deep learning 

classifier was used to classify the microaneurysms 

and non-microaneurysms regions. The major 

concerns in deep learning classifier are long training 

time and require higher computational resources 

(best graphics processing unit).  Manjaramkar, and 

Kokare, [16] presented a model to segment and detect 

the microaneurysms in color fundus retinal images. 

In this study, a set of features were developed based 

on the statistics of geometrical properties of 

connected regions that discriminate both non-lesion 

and lesion pixels. In this work, the presented model 

performance was evaluated on the DiaRetDB1 

dataset using accuracy, sensitivity and specificity. 

Both noise problems and non-uniform illumination 

are ineffectively tackled by the developed model that 

degrades the classification performance.  

Putra [17] used morphology contrast enhancement 

technique, homomorphic method and contrast limited 

adaptive histogram equalization technique for image 

resizing and cropping. The pre-processed image was 

given as the input to deep learning techniques such as 

ResNet101, GoogLeNet, ResNet50 and ResNet18 for 

feature extraction. Then, feature selection was carried 

out by reliefF and principle component analysis, and 

then classification was performed using naïve Bayes 

classifier with SVM. Qomariah [18] developed a new 

deep learning framework which modifies UNet using 

residual unit with modified identity mapping in order 

to perform microaneurysm segmentation. Here, the 

identity map modification using convolutional layers 

and batch normalization were used to extract feature 

vectors and then the Residuals in UNet was employed 

for feature degradation and classification. As seen in 

the resulting phase, the computational complexity of 

the developed models was comparably high related to 

the existing deep learning techniques. To highlight 

the above-stated concerns, the GWO-MKNN model 

was proposed to improve microaneurysms detection 

performance. 

3. Methodology 

In microaneurysms detection, the proposed GWO-

MKNN model includes six phases; image collection: 

e-ophtha, and DiaRetDB1, image pre-processing:  

 

 
Figure. 1 Work flow of proposed GWO-MKNN model 

 

normalization, gradient weighting, low light image 

enhancement, and shade correction, blood vessel 

removal: Otsu thresholding with morphological 

operator and hessian based filter, optimization: 

GWO, feature extraction: GLCM and shape 

features, and classification: MKNN. The workflow 

of the proposed GWO-MKNN model is graphically 

depicted in Fig. 1. 

3.1 Image acquisition and pre-processing 

In this research study, e-ophtha and DiaRetDB1 

datasets are used to analyse the proposed GWO-

MKNN model performance. The e-ophtha dataset 

includes 2 sub-datasets such as e-ophtha 

microaneurysms and e-ophtha exudates. Here, e-

ophtha microaneurysms dataset is undertaken for 

microaneurysms detection that contains 148 

microaneurysms images and 233 normal images [19]. 

In e-ophtha dataset, the fundus retinal images are 

collected from 4 image resolutions, which are ranges 

from 1440 × 960  to 2544 × 1696 pixels with 450 

field view. Additionally, the DiaRetDB1 dataset 

comprises 89 color fundus retinal images in that 5 

images belong to normal signs and the remaining 84 

fundus images belong to microaneurysms patients. In 
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(a)                              (b) 

Figure. 2 Sample collected fundus retinal images: (a) e-

ophtha dataset and (b) DiaRetDB1 dataset 

 

     
            (a)                   (b)                (c)                 (d) 

Figure. 3 Pre-processed images: (a) normalized image, 

(b) low light enhancement image, (c) gradient weighting 

image and (d) shade corrected image 

 

this dataset, the images are captured using 500 field 

view camera by varying the image settings [20]. The 

sample collected images of e-ophtha and DiaRetDB1 

datasets are graphically depicted in Fig. 2. 

After collecting the fundus retinal images from e-

ophtha and DiaRetDB1 datasets, image 

normalization is used to vary the pixel intensity 

values of the images which help to improve the 

visibility level of the collected images. Image 

normalization is mathematically represented in the 

Eq. (1), where 𝐼 is indicated as original fundus retinal 

images, 𝐼𝑁 is denoted as normalized fundus retinal 

images, and 𝑀𝑖𝑛  and 𝑀𝑎𝑥  is represented as 

minimum and maximum pixel intensity value that 

ranges from 0 to 255. 

 

𝐼𝑁 = (𝐼 − 𝑀𝑖𝑛) ×
𝑛𝑒𝑤𝑀𝑎𝑥−𝑛𝑒𝑤𝑀𝑖𝑛

𝑀𝑎𝑥−𝑀𝑖𝑛
+ 𝑛𝑒𝑤𝑀𝑖𝑛  (1) 

 

Then, gradient weighting and low light 

enhancement techniques are applied to improve the 

contrast and brightness of the normalized image 𝐼𝑁, 

where these techniques help to extract the hidden 

details [21]. In shade correction, the enhanced image 

𝐼𝐸  is filtered (mask =35 × 35) to obtain the 

background image to correct the non-uniform 

illumination of the green channel retinal fundus 

image [22]. Then, the background image is subtracted 

from the filtered image, where the resultant image is 

the dark image “shade corrected image 𝐼𝐷 ”, so it is 

easy to view any structures. The sample pre-

processed image is graphically depicted in Fig. 3.  

3.2 Blood vessel removal 

After pre-processing the fundus retinal images, 

shade corrected image 𝐼𝐷 is fed to a hessian-based 

filter and Otsu thresholding with a morphological 

operator to remove blood vessels from the 

microaneurysms regions. The hessian-based filter 

works based on the Hessian matrix, where the 

eigenvalues and eigenvectors of the hessian matrix 

are related to vascular intensity and direction. In 

shade corrected image 𝐼𝐷, the hessian matrix (2 × 2 

matrix) is calculated using 2nd order derivative 

which is mathematically defined in Eq. (2). 

 

𝐻 = [

𝜕2𝐼𝐷

𝜕𝑥2

𝜕2𝐼𝐷

𝜕𝑥𝜕𝑦

𝜕2𝐼𝐷

𝜕𝑦𝜕𝑥

𝜕2𝐼𝐷

𝜕𝑦2

]                                         (2) 

 

Here, the eigenvalues of 𝐻 is represented as 

𝜆1 and 𝜆2  and eigenvectors of 𝐻 is denoted as 𝑒1 

and 𝑒2. The 2nd order derivative of shade corrected 

retinal image  𝐼𝐷  at a point  (𝑥, 𝑦)  is defined as a 

convolution with Gaussian filter derivative 𝐺  at 

scale 𝜌 that is defined in the Eqs. (3) and (4). 

 

𝐻(𝑥, 𝜌) = 𝜌2𝐼𝐷(𝑥) ×
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐺(𝑥, 𝜌), 𝑖, 𝑗 =   1, 2  

(3) 

 

Where, 

 

𝐺(𝑥, 𝜌) =
1

2𝜋𝜌2 exp (−
𝑥2+𝑦2

2𝜌2 )                       (4) 

 

Where, 𝐺(𝑥, 𝜌) is represented as Gaussian 

convolution kernel, |𝜆1| ≤ |𝜆2|  is denoted as 

elongated vascular structures and 𝜆2 < 0  is 

represented as bright vascular structures on a dark 

background.  The enhancement of fundus retinal 

image vascular structure is performed based on the 

analysis of magnitudes and signs of Eigenvalues. The 

enhancement filter function 𝜗 at a particular scale 𝜌 

is mathematically defined in Eq. (5). 

 

              𝜗(𝜌) =
0 𝜆2 > 0

1 − exp (
−S2

2κ2) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (5) 

 

Where 𝑆 = √𝜆1
2 + 𝜆2

2  denoted as structure-ness 

of the image, and 𝜅 controls the sensitivity of S. The 

filter response of 𝐹(𝑥)  at dissimilar scales 𝜌  is 

obtained by maximizing the filter function 𝜗, which 

is mentioned in Eq. (6). 
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              (a)                                (b) 

   
                        (c)                             (d) 

Figure. 4 Segmented images: (a) Hessian based filter, (b) 

Otsu thresholding, (c) morphological operator, and (d) 

GWO algorithm 

 

𝐹(𝑥) = 𝑚𝑎𝑥 {𝜗[𝐸𝑖𝑔𝑒𝑛(𝐻(𝑥, 𝜌))]},  𝜌min ≤ 𝜌 ≤

𝜌𝑚𝑎𝑥                (6) 

 

The output of Hessian based filter 𝐹(𝑥) is given 

as the input to Otsu thresholding approach to identify 

the maximum separability of microaneurysms and 

non-microaneurysms regions. The Otsu thresholding 

approach divides the filtered image  𝐹(𝑥)  into two 

regions such as light 𝐹0 and dark region 𝐹1 that are 

mathematically defined in the Eqs. (7) and (8). 

 

𝐹0 = {0,1, … . , 𝑡}                  (7) 

 

𝐹1 = {𝑡, 𝑡 + 1, … . , 𝑙 − 1, 𝑙}                              (8) 

 

Where,  𝑡  is stated as a threshold value. By 

reducing the weighted group variance l, optimal 

threshold value 𝑡 is identified, where the weight is 

represented by the probability of individual groups 

𝑝(𝑖) that is determined by using Eq. (9). 

 

𝑝(𝑖) =
𝑛𝑢𝑚𝑏𝑒𝑟 {(𝑟,𝑐)|𝑖𝑚𝑎𝑔𝑒(𝑟,𝑐)=𝑖}

(𝑅,𝐶)
               (9) 

 

Where, 𝑐  is represented as a column of fundus 

retinal image, 𝑟 is indicated as a row of fundus retinal 

image, 𝑅 and 𝐶 are stated as a number of rows and 

columns of fundus retinal images. The weight 𝑤𝑏(𝑡), 

mean  𝜇𝑏(𝑡) , and variance 𝜎𝑏
2(𝑡)  of the class  𝐹0  is 

calculated using Eq. (10). 

 

𝑤𝑏(𝑡) = ∑ 𝑝(𝑖),
𝑡

𝑖=1
 𝜇𝑏(𝑡) =

∑ 𝑖 × 𝑝(𝑖)𝑡
𝑖=1

𝑤𝑏(𝑡)
, 

 𝜎𝑏
2(𝑡) =        

∑ (𝑖−𝜇𝑏(𝑡))2×𝑝(𝑖)𝑡
𝑖=1

𝑤𝑏(𝑡)
                      (10) 

Similarly, weight  𝑤𝑓(𝑡) , mean  𝜇𝑓(𝑡) , and 

variance 𝜎𝑓
2(𝑡) of the class 𝐹1 is computed using the 

Eq. (11). 

 

 𝑤𝑓(𝑡) = ∑ 𝑝(𝑖)𝑙
𝑖=𝑡+1 ,  𝜇𝑓(𝑡) = 

∑ 𝑖×𝑝(𝑖)𝑙
𝑖=𝑡+1

𝑤𝑓(𝑡)
, 𝜎𝑓

2(𝑡) =
∑ (𝑖−𝜇𝑓(𝑡))2×𝑝(𝑖)𝑙

𝑖=𝑡+1

𝑤𝑓(𝑡)
      (11) 

 

Finally, the optimal threshold value 𝑡 is achieved 

with minimum within-class variance 𝜎𝑤
2  as indicated 

in Eq. (12).  

 

𝜎𝑤
2 = 𝑤𝑏(𝑡) × 𝜎𝑏

2(𝑡) + 𝑤𝑓(𝑡) × 𝜎𝑓
2(𝑡)    (12) 

 

Then, the morphological transforms related to 

blood vessel size and shape distribution are applied 

to re-size the shape and size of microaneurysms and 

non microaneurysms regions. The resized retinal 

fundus images are fed to the GWO algorithm to 

predict the correctness of the segmented 

microaneurysms regions. Generally, GWO algorithm 

work based on three steps like en-circling, hunting, 

and attacking the prey. Assume, 3 best solutions 

𝛼, 𝛽, and 𝛿 to model the hierarchy of wolves. Initially, 

the grey wolves are en-circled utilizing the Eqs. (13) 

and (14). 

 

𝐷 = |𝑀. 𝑋𝑝𝑟𝑒𝑦(𝑇) − 𝑋𝑤𝑜𝑙𝑓(𝑇)|             (13) 

 

 𝑋𝑤𝑜𝑙𝑓(𝑇 + 1) = 𝑋𝑝𝑟𝑒𝑦(𝑇) − 𝐴. 𝐷              (14) 

 

Where, 𝑋𝑤𝑜𝑙𝑓 is represented as grey wolf position, 

𝑋𝑝𝑟𝑒𝑦  is indicated as prey position,  𝑇  is stated as 

current iteration, 𝐴 and 𝑀  are stated as coefficient 

vectors that are computed using the Eqs. (15) and (16). 

 

𝐴 = 2�⃗�. 𝑟1 − �⃗�               (15) 

 

𝑀 = 2𝑟2                   (16) 

 

Where, �⃗� is minimized from 2 to 0 throughout 

iterations and 𝑟1 and 𝑟2 are stated as random values 

that range between 0 to 1. The 3 best solutions 

of  𝛼, 𝛽, and 𝛿  are achieved to imitate the hunting 

behavior of grey wolves. The residual search agent: 

omega updates the location based on Eqs. (17), (18) 

and (19). The vessel enhanced and segmented images 

are stated in Fig. 4. 

 

𝐷𝛼 = |𝑀1. 𝑋𝛼 − 𝑋|, 𝐷𝛽 = |𝑀2. 𝑋𝛽 − 𝑋|, 𝐷𝛿 = 

|𝑀3. 𝑋𝛿 − 𝑋|                                 (17) 
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𝑋1 = 𝑋𝛼 − 𝐴1. 𝐷𝛼, 𝑋2 = 𝑋𝛽 − 𝐴2. 𝐷𝛽 , 𝑋3 = 

𝑋𝛿 − 𝐴3. 𝐷𝛿                        (18) 

 

𝑋(𝑇 + 1) =
�⃗⃗�1+�⃗⃗�2+�⃗⃗�3

3
                          (19) 

3.3 Feature extraction and classification 

After the segmentation of microaneurysms and 

non microaneurysms regions, feature extraction is 

accomplished using GLCM features and shape 

features. GLCM and shape features are high-level 

descriptors, which are used to extract the features 

from microaneurysms and non microaneurysms 

regions to differentiate microaneurysms region from 

other regions. By using the high-level feature 

descriptors, the semantic space between the extracted 

feature subsets are reduced which leads to better 

disease classification. In this research, 3 shape 

features (perimeter, eccentricity, and orientation) and 

21 GLCM features (autocorrelation, homogeneity, 

cluster prominence, energy, difference entropy, sum 

of squares, cluster shade, sum variance, contrast, 

maximum probability, correlation, inverse difference, 

variance, dissimilarity, entropy, inverse difference 

normalized, information measure of correlation, 

difference variance, inverse difference moment 

normalized, sum entropy and sum average) are 

employed to extract the feature vectors [23]. 

Then, the extracted feature vectors are fed to the 

MKNN to classify both microaneurysms and non 

microaneurysms candidate. In the conventional KNN 

classifier, the testing and training process completely 

depends on the k nearest neighbor. Recently, many 

distance measures are used to compute the distance 

between testing and training samples [24]. In that, 

Euclidean distance is used in the KNN classifier to 

calculate the distance between training and testing 

samples. The formula of Euclidean distance measure 

is mathematically defined in Eq. (20). 

 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √∑ (𝑞𝑖 − 𝑝𝑖)2𝑁
𝑖=1    (20) 

 

Where N is represented as a number of samples, 

𝑝𝑖  and 𝑞𝑖 are stated as training and testing samples. 

The MKNN is inspired from the conventional KNN 

classifier, where the main objective of MKNN is to 

classify the images based on the most frequency tags 

in the set of neighbor tags. The MKNN classifier is 

also named as weighted KNN, where the query label 

is approximated by weighting the neighbors of the 

query. This process calculates the frequencies of the 

similar labelled neighbors to the total number of 

neighbors. The steps involved in MKNN are listed 

below. 

 

• Compute the number of nearest neighbors (k 

value). 

• Compute the distance between testing and 

training samples. 

• Sort the distance and identify the nearest 

neighbors based on 𝑘𝑡ℎ  minimum distance 

and by weighting the neighbors of the query. 

• Sort the categories of nearest neighbors. 

• Utilize the simple majority of nearest 

neighbor’s categories as the prediction value 

of new data. 

4. Experimental results and discussion 

The proposed GWO-MKNN model was 

simulated by MATLAB (2019a) environment on a 

computer with processor: Intel i7 core, operating 

system: windows 10, hard disk: 4 TB, and RAM: 16 

GB. The proposed GWO-MKNN model performance 

was compared with the existing models such as H-

maxima-multilevel thresholding-MLP [11], 

statistical geometrical features [16], and Modified 

Residuals UNet (MResUNet) [18] to validate its 

efficiency. In this work, the proposed GWO-MKNN 

model performance was investigated in light of 

accuracy, sensitivity, specificity, error rate, FOR and 

miss rate that are mathematically defined in the Eqs. 

(21-26).  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100                (21) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                         (22) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100                         (23) 

 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = 100 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦                 (24) 

 

𝐹𝑂𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑁
× 100                       (25) 

 

𝑀𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
× 100              (26) 

 

Where, 𝑇𝑁 is represented as true negatives, 𝑇𝑃  is 

stated as true positives, 𝐹𝑁  is represented as false 

negatives and 𝐹𝑃 is stated as false positives. 

4.1 Quantitative performance on e-ophtha dataset 

In this section, e-ophtha dataset is used to validate 

the proposed GWO-MKNN model performance in 

light of accuracy, sensitivity, specificity, error-rate, 
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Table 1. Performance evaluation of GWO-MKNN model on e-ophtha dataset in light of specificity, accuracy, and 

sensitivity 

e-ophtha dataset 

Optimization Classifier Accuracy (%) Sensitivity (%) Specificity (%) 

Without GWO 

Decision tree 92.99 94.21 87.99 

Neural network 92 92.13 85 

Random forest 94.95 91.42 91.24 

MKNN 97 98.82 98 

With GWO 

Decision tree 96.43 94.75 97.12 

Neural network 74.32 98.10 73.67 

Random forest 98.46 65.23 98.34 

MKNN 99.10 98.92 99.01 

 

 
Figure. 5 Graphical comparisons of GWO-MKNN model on e-ophtha dataset in terms of sensitivity, specificity and 

accuracy 

 

FOR, and miss-rate. The e-ophtha dataset consists of 

233 images with no lesion and 148 images with 

microaneurysms in that 80% of images are used for 

training and 20% of images are used for testing. In 

this section, the proposed GWO-MKNN model is 

investigated with dissimilar existing classification 

techniques (decision tree, neural network, and 

random forest) and without using GWO. By 

inspecting table 1, the proposed GWO-MKNN model 

achieved a maximum classification accuracy of 

99.10%, sensitivity of 98.92%, and specificity of 

99.01%. The graphical depiction of the GWO-

MKNN model on e-ophtha dataset in light of 

specificity, accuracy, and sensitivity is represented in 

Fig. 5.  

Correspondingly in Table 2, the proposed GWO-

MKNN model is investigated in terms of error-rate, 

miss-rate and FOR. By inspecting Table 2, the 

proposed GWO-MKNN model attained minimum 

error rate of 0.90%, miss rate of 3.74%, and FOR of 

0.02%, which are better related to the existing 

classifiers (decision tree, neural network, and random 

forest) and without using GWO. Hence, the random 

forest and decision tree classifiers consume more 

time for training the data, because these classifiers 

generate a lot of trees and decides based on vote 

majority. The collected fundus retinal images are 

linear data, where the neural network is a non-linear 

classifier, so it showed limited performance in 

microaneurysms recognition. The graphical 

comparison of the GWO-MKNN model on e-ophtha 

dataset in terms of miss-rate, error-rate, and FOR is 

indicated in Fig. 6. 

4.2 Quantitative performance on DiaRetDB1 

dataset 

Here, DiaRetDB1 dataset is used to validate the 

proposed GWO-MKNN model performance. The 

DiaRetDB1 dataset consists of 89 retinal fundus 

images (5 normal images and 84 microaneurysms 

images) in that 80% of the images are used for model 

training and 20% of the images are used for model 

testing. By inspecting Table 3, the proposed GWO-

MKNN model achieved a maximum accuracy of 

99.90%, a sensitivity of 99.03%, and specificity of 

99.21%, which are better when compared to the 

existing classifiers (decision tree, neural network, 

and random forest) and without using GWO. The 

MKNN classifier without GWO achieved 98.95% of 

classification accuracy, where the proposed GWO- 

MKNN model almost showed a 0.95% improvement 
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Table 2. Performance evaluation of GWO-MKNN model on e-ophtha dataset in terms of miss-rate, error-rate, and FOR 

e-ophtha dataset 

Optimization Classifier Error rate (%) Miss rate (%) FOR (%) 

Without GWO 

Decision tree 7.01 10.28 0.21 

Neural network 8 11.27 0.05 

Random forest 5.05 8.58 0.04 

MKNN 3 4.18 0.03 

With GWO 

Decision tree 3.57 5.25 0.14 

Neural Network 25.68 4.80 0.11 

Random forest 1.54 34.77 0.11 

MKNN 0.90 3.74 0.02 

 

 
Figure. 6 Graphical comparison of GWO-MKNN model on e-ophtha dataset in terms of miss-rate, error-rate, and FOR 

 
Table 3. Performance evaluation of GWO-MKNN model on DiaRetDB1dataset in light of sensitivity, specificity and 

accuracy 

DiaRetDB1 dataset 

Optimization Classifier Accuracy (%) Sensitivity (%) Specificity (%) 

Without GWO 

Decision tree 97.75 81.95 98.91 

Neural network 84.62 97.13 84.51 

Random forest 97.63 72.79 97.87 

MKNN 98.95 94.08 98.26 

With GWO 

Decision tree 97.98 96.40 98.99 

Neural network 68.76 98.39 67.98 

Random forest 98.50 67.62 98.31 

MKNN 99.90 99.03 99.21 

 

in classification accuracy. Related to the existing 

classifiers (decision tree, neural network, and random 

forest), the MKNN classifier works well in higher 

dimensional data and easy to implement for multi-

class issues. The graphical depiction of the GWO-

MKNN model on DiaRetDB1dataset in light of 

sensitivity, specificity and accuracy is stated in Fig. 

7.  

In Table 4, the proposed GWO-MKNN model 

performance is investigated using miss rate, error rate, 

and FOR. In the DiaRetDB1 dataset, the GWO-

MKNN model achieved a minimum error rate of 

0.10%, a miss rate of 1.27% and FOR of 0.01%. In 

this research study, optimization plays a crucial role 

in microaneurysms recognition, where GWO 

significantly selects the microaneurysms regions 

from the non-microaneurysms regions. The graphical 

comparison of GWO-MKNN model on 

DiaRetDB1dataset in terms of miss-rate, error-rate, 

and FOR is denoted in Fig. 8. 
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Figure. 7 Graphical comparison of GWO-MKNN model on DiaRetDB1 dataset in light of sensitivity, accuracy, and 

specificity 

 

Table 4. Performance evaluation of GWO-MKNN model on DiaRetDB1dataset in terms of miss rate, error rate, and FOR 

DiaRetDB1 dataset 

Optimization Classifier Error rate (%) Miss rate (%) FOR (%) 

Without GWO 

Decision tree 2.25 18.05 0.16 

Neural network 15.38 2.87 0.09 

Random forest 2.37 27.21 0.24 

MKNN 1.05 5.92 0.05 

With GWO 

Decision tree 2.02 3.60 0.10 

Neural network 31.24 1.61 0.43 

Random forest 1.50 32.38 0.85 

MKNN 0.10 1.27 0.01 

 

 
Figure. 8 Graphical comparison of GWO-MKNN model on DiaRetDB1 dataset in terms of miss-rate, error-rate, and 

FOR 

 

4.3 Comparative performance 

Comparative performance between the proposed 

and the existing models is given in table 5. Mazlan 

[11] introduced a framework for microaneurysms 

detection in the fundus retinal images. At first, 

contrast enhancement was used for improving the 

visibility level of the collected images. Then, H-

maxima and multilevel thresholding methodologies 

were utilized to decrease the image intensity level and 

to segment the microaneurysms regions. Around 15 

features (major axis length, aspect ratio, eccentricity, 

mean, perimeter, variance, minor axis length, 

standard deviation, area, entropy, circularity, etc.) 

were employed for extracting the features from the 

segmented microaneurysms regions. The obtained 

feature vectors were fed to SVM and MLP to classify 

the retinal images into three classes like background, 

blood vessels and microaneurysms. In this 

experimental section, the developed framework 

attained 92.28% of accuracy on e-ophtha dataset. 

Manjaramkar, and Kokare, [16] developed a new  
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Table 5. Comparative performance between the proposed 

and existing models 

Methodology Dataset Accuracy 

(%) 

H-maxima-multilevel 

thresholding-MLP [11] 

e-ophtha 92.28 

Statistical geometrical 

features [16] 

DiaRetDB1 84.15 

MResUNet [18] DiaRetDB1 99.87 

GWO-MKNN model 
e-ophtha 99.10 

DiaRetDB1 99.90 

 

model to detect the microaneurysms in fundus retinal 

images. In this literature, a set of features were 

developed based on the statistics of geometrical 

properties of connected regions for discriminating 

non-lesion and lesion pixels. In this work, the 

presented model performance was evaluated on the 

DiaRetDB1 dataset that obtained 84.15% of accuracy. 

Similarly, Qomariah [18] implemented a Modified 

Residuals UNet (MResUNet) model for an effective 

microaneurysms classification. As seen in the 

resulting phase, the developed MResUNet model 

obtained 99.87% of accuracy on DiaRetDB1 dataset. 

Compared to these existing studies, the GWO-

MKNN model achieved 99.10% and 99.90% of 

classification accuracy on e-ophtha and DiaRetDB1 

datasets that showed better improvement in 

microaneurysms detection. 

5. Conclusion 

In this research paper, the GWO-MKNN model is 

developed for detecting microaneurysms regions 

from the fundus images for early detection of DR. 

The main objective of this work is to propose proper 

segmentation and classification methodologies for 

microaneurysms detection. After enhancing the 

quality of raw retinal images, hessian-based filter and 

Otsu thresholding with the morphological operator 

are used to segment and separate the microaneurysms 

regions and non- microaneurysms regions. For 

predicting the correctness of microaneurysms regions, 

the GWO algorithm is applied in this research. Then, 

the feature vectors are extracted from 

microaneurysms regions using GLCM and shape 

features, where the obtained feature vectors are fed to 

MKNN to classify both microaneurysms and non-

microaneurysms regions. Related to the existing 

models (H-maxima-multilevel thresholding-MLP 

and statistical geometrical features), the GWO-

MKNN model achieved good performance in 

microaneurysms detection in light of classification 

accuracy. The GWO-MKNN model achieved 

99.10% and 99.90% of classification accuracy on 

both e-ophtha and DiaRetDB1 datasets that are better 

related to the prior models. As a future extension, a 

clustering-based segmentation algorithm is added in 

GWO-MKNN model to further improve the 

performance of microaneurysms detection. 
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