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Abstract: Cognitive radio technology has emerged as an operational substitute for increasing the number of users of 

broadband data services in various frequency bands. This article presents the results of an analysis of the effectiveness 

of the fusion rule for joint spectrum detection in cooperative spectrum sensing (CSS). The energy detectors-based 

feature vector is considered for ML training purpose. The paper proposes support vector machine (SVM) based 

modelling for training and testing in CR. Further Bayesian optimized SVM is proposed to claim higher detection rate.  

The proposed method yields 0.84 detection rate at 0.1 probability of false alarm. 
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1. Introduction 

The evolution of wireless technologies has 

increased more and more from one generation to the 

next. From cell phones from the first generation to the 

4th generation. The passage from one generation to 

another required higher speeds and increasingly 

sophisticated services, which implied a strong 

demand in terms of the electromagnetic spectrum 

which is the transmission medium. 

The transmission speed criterion being almost 

solved, several other parameters still posed a problem, 

such as the protection of data and information related 

to users, the securing of transmitted messages and the 

optimization of the use of frequency bands by users 

because there is a major blockage due to the shortage 

of spectrum [1]. 

For this last point, spectrum scarcity, researchers 

have noticed that a user is not connected 24 hours a 

day and while they are away, enormous potential in 

terms of connection time and speed is untapped. It 

will allow a frequency band to be owned by everyone, 

not just one user. A so-called primary subscriber can 

share his channel with another user, called secondary, 

when he no longer needs it. The primary user can then 

retrieve his channel at any time, forcing the 

secondary user to connect elsewhere. The connection 

to the network is thus optimized and all users are 

satisfied [2]. 

Cognitive radio also makes it possible to resolve 

the problem of the scarcity of spectrum and to 

guarantee a better quality of service to users. It 

consists of allowing mobile services to connect 

opportunistically to frequencies that are underutilized 

by other users [3]. 

Thanks to its techniques for learning and 

decision-making in its knowledge base, it assimilates 

information about its environment, making it an 

intelligent, dynamic and adaptive technology to the 

changes occurring in cognitive radio networks. 

Cognitive radio technology appears to be an 

operational substitute for increasing the number of 

users in various frequency ranges [4]. The idea 

targets to address spectrum deficits based on two 

fundamental characteristics: cognitive ability and 

ability to reconfigure. Cognitive ability signifies the 

capacity of a radio to know the environment in which 

it is functioning, to recognize spectral space that is 

not fully utilized or at specific intervals, and to 

communicate its reconfiguration information without 

disturbing the primary user. 

The last decades have seen a considerable  
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Figure. 1 Machine learning based architecture of 

cognitive radio 

 

increase in communication techniques. However, the 

improper use of frequency bands leads to a shortage 

of spectrum. Cognitive radio appeared to be a 

solution to this problem [5, 6]. It arranges two types 

of users: 

 

⚫ Primary User (PU): is the one who holds the 

spectrum license 

⚫ Secondary User (SU): is the user looking for 

a gap in the spectrum in order to be able to 

communicate. 

 

The use of cognitive radios provides for spectrum 

sensing, spectrum occupation information 

management and dynamic frequency sharing. The 

execution of these functions requires the 

implementation of software defined radios with 

adaptive characteristics, as suggested [7]. Cognitive 

radio is an intelligent SDR that can, after evaluating 

the radio frequency environment, record the detected 

information and associate it with its geographic 

region and other relevant technical data. The data 

obtained, duly processed, will allow decisions to be 

taken regarding spectrum occupation, the start and 

interruption of irradiation by secondary systems and 

changes in the configuration of transceivers and 

operating frequencies so that electromagnetic 

compatibility in the explored area is guaranteed [8]. 

In this article, we recommend a powerful 

machine learning-based spectrum detection 

algorithm that uses vectors of energy computation for 

training to distinguish between primary and 

secondary users. This detection class reliably reflects 

the action of the PU and the behaviour of the CR user 

in reaction to it. During the training phase, CR users 

make decisions at the local level. Local decisions take 

the form of quantification. The learning phase will be 

completed when enough data has been collected for 

the introductory lesson. The SVM algorithm is 

utilized during the classification phase and the 

detection class is determined during the testing phase. 

Further Bayesian optimized classifier is used to 

predict the class with higher accuracy. 

This paper proposes the machine learning 

technique using SVM and the average energy 

received in the current discovery slot for the training 

and testing as a feature vectors. Further SVM 

hyperparameters are tuned with Bayesian 

optimization to perform better classification accuracy. 

The purpose of this article is to conduct a 

comparative exploration of the behaviour of fusion 

rules for joint detection of spectra using computer 

simulations. Part II introduces the role of machine 

learning in cognitive radio networks. Part III contains 

a system model for the proposed methodology as well 

as a Bayesian optimized SVM classification. The 

simulation and its results are described in Section IV. 

Part V concludes this article. 

2. Machine learning in cognitive radio 

2.1 Definition 

Machine learning (ML) refers to the design, 

analysis and application of techniques that allow 

machines to move through processes and actions, 

complex or even impractical, learning using more 

traditional algorithms [9]. 

 

⚫ Objective: To automatically extract and use 

the information present in a dataset. 

2.2 Machine learning based architecture of 

cognitive radio 

The dynamic spectrum access capabilities of 

cognitive radios are maximized by the utilization of 

machine learning as shown in Fig. 1. 

 

⚫ Reasoning Engine: It utilizes the knowledge 

base to choose the best course of action. 

⚫ Learning Engine: It accomplishes 

knowledge management based on 

observable information (e.g., channel error 

rate, channel state information). 

⚫ Knowledge Base: maintains system status 

and available actions. It contains two data 

structures: 

 

An inference rule is utilized to signify the 

environment state. 

Actions that can be taken to change the state so 

that the goals of the framework can be reached. 
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Figure. 2 Flow chart of energy detection 

3. Proposed methodology 

3.1 System model with energy detection 

The first step for better communication through 

cognitive radio is the detection of free frequency 

bands. The presence of a signal will subsequently be 

characterized by 𝐻1 and the absence will be by 𝐻0. 

 

𝐻0: 𝑦(𝑡) = 𝑏(𝑡)                            (1) 

 

𝐻1: 𝑦(𝑡) = 𝑥(𝑡) + 𝑏(𝑡)               (2) 

 
Where, 𝑦(𝑡) is the received signal 

𝑥(𝑡): Primary signal and 𝑏(𝑡): Noise 

The statistical test of method will then be 

calculated compared to a threshold ξ predefined for 

each type in order to determine whether there is the 

absence or presence of a signal. If: 𝑇 ≥ 𝜉  then the 

primary signal is present, otherwise it is absent. 

Energy measurement, also known as a "radiometer", 

is a blind and incoherent measurement method [10] 

irrespective of the previous information of the signal.  

Its statistical test will be as follows: 

 

𝑇𝐸𝐷 =
1

𝑇
∫ 𝑦(𝑡)2𝑑𝑡

𝑇

𝑜

                        (3) 

 

Where: y(t) is the received signal, the probabilities 

of false alarm and detection in a Gaussian channel are 

as follows: 

 

𝑃𝑑,𝐸𝐷 = 𝑄𝑁(√2𝑇𝐵𝜌, √𝜉)                 (4) 

 

𝑃𝑓𝑎,𝐸𝐷 = 𝛤 (𝑇𝐵,
𝜉

2
)                         (5) 

 

Where: T  is the period and Γ(. )  is the Gamma 

function, B is the bandwidth and ρ is the signal to 

noise ratio 

If the noise level is greater than that of the signal 

then its performance is degraded, and is not optimal 

for noisy signals [11]. 

3.2 Cooperative spectrum sensing model  

There is always a need of a control channel 

among the centralized exchange, adjacent secondary 

users and CR for both the centralized and distributed 

techniques. The bandwidth of this control channel is 

capable of limiting the amount of transmitted data. If 

all users report their decisions to the synthesis centre 

or relay them to neighbours, effective detection can 

lead to congestion of the control channel. 

Moreover, two cases are found on the basis of the 

data pass through the control channel. First, the uk 

decision bits sent by the secondary user are stored in 

the fusion centre. The second case is a situation where 

a CR sends its decision to the appropriate focal point 

or CR for channel status. 

Distributed and centralized schemes use two 

different rules for the primary user state and for the 

channels. Each of these is discussed in the next 

sections. For this, a scenario was deliberated with a 

secondary cognitive user K, recognizing the presence 

of the primary user. N samples of the received signal 

are independently collected by each of those users. 

3.2.1. Hard decision 

In a complex decision-making structure, a 

specific CR decides on the presence of a primary user. 

Bit 1 specifies that the primary user is utilizing the 

channel spectrum and therefore the CR cannot use it. 

The spectrum is available at 0 bit and radio can be 

used it. 

 

⚫ Majority Rule: It is the most famous rule 

where you have several N users sending 

decisions about detecting the status of the 

local link to the center of the union via the 

information bits u_k, and then decisions 

about linear combinations of different 

Start 

Initialization of parameters as “Number of Samples, 

noise variance & probability of false alarm” 

Energy computation of received PU signal (T) 

Threshold Energy computation (𝛾) 

T >𝛾 

Primary signal is 

Absent (H0) 
Primary signal is 

Present (H1) 

Stop 

T F 
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decisions are made by each secondary user, 

the decision rules are presented in Eq. (6). 

 

𝐷 = ∑ 𝑢𝑘

𝐾

𝑘=1

                              (6) 

 

If D ≥ M, the fusion center selects H1which 

shows that the transmitter channel is enable, elseD <
𝑀choosesH0. 

The majority rule is an exceptional instance 

of vote counting rule, where M =
K

2
. 

Each secondary user has a false alarm and 

detection probability, which are shown for each user 

in Eqs. (7) and (8), respectively. 

 

𝑄𝐹𝐴 = 𝑃(𝐷 ≥ 𝑀) = ∏ (𝑃𝐹𝐴,𝑖)
𝑖
(1 − 𝑃𝐹𝐴,𝑖)

𝑁−𝑖𝑁

𝑖=1
 

  (7) 

 

𝑄𝐷 = 𝑃(𝐷 ≥ 𝑀) = ∏ (𝑃𝐷,𝑖)
𝑖
(1 − 𝑃𝐷,𝑖)

𝑁−𝑖𝑁

𝑖=1
 

       (8) 

 

Two new rules can be derived from the 

combination rules that are presented below. 

 

⚫ AND Rule: The decision bits of each 

secondary user is the fundamental basis of 

this rule. These bits are associated with the 

channel status. The fusion center selects 

hypothesis H_1 if all users k = N detect the 

signal, i.e. decision bit of the primary user is 

u_k=1 in the frequency band of interest 

selected for all users, otherwise if the 

decision bit is with the primary user equals 

u_k=0, and the chosen hypothesis is H_0. 

The probabilities were measured by 

utilization of Eqs. (9) and (10) for the 

probability of detection and the probability 

of a false alarm, respectively. 

 

𝑄𝐷 = ∏ 𝑃𝐷,𝑛

𝑁

𝑛=1
                   (9) 

 

𝑄𝐹𝐴 = ∏ 𝑃𝐹𝐴,𝑛

𝑁

𝑛=1
                   (10) 

 

If the probabilities are the same for all users, then 

the probability of detection and the probability of a 

false alarm can be determined as indicated in Eqs. (11) 

and (12). 

 

𝑄𝐷 = (𝑃𝐷)𝑁                              (11) 

𝑄𝐹𝐴 = (𝑃𝐹𝐴)𝑁                           (12) 

 

⚫ OR Rule: This rule is effective if at least one 

subscriber station identifies the occurrence 

of a PU signal in the desired band. The 

probabilities of false alarms and false alarms 

were determined by Eqs. (13) and (14), 

respectively. 

 

𝑄𝐹𝐴 = 1 − ∏ (1 − 𝑃𝐹𝐴,𝑛)
𝑁

𝑛=1
                  (13) 

 

𝑄𝐷 = 1 − ∏ (1 − 𝑃𝐷,𝑛)
𝑁

𝑛=1
                        (14) 

 

If the user probabilities are equal, we have: 

 

𝑄𝐹𝐴 = 1 − (1 − 𝑃𝐹𝐴)𝑁                        (15) 

 

𝑄𝐷 = 1 − (1 − 𝑃𝐷)𝑁                           (16) 

3.2.2. Soft decision 

The secondary user submits the results of the 

statistical test uk to the FC deprived of executing any 

previous analysis or procedure. The information 

established at the FC is handled and equated with the 

limit values set by the secondary user, which allows 

decisions on the absence or presence of activity of the 

primary user. 

With regard to the procedures accomplished on 

the information in the smelter, the exists two types of 

soft decision techniques discussed below. 

 

⚫ Selection Combining (SC): In this method, 

highest SNR branch is selected by the fusion 

centre. As shown in Eq. (17), where γ_k is 

the SNR for each leg and γ_SC is the 

selected SNR. 

 

𝛾𝑆𝐶 = max(𝛾1, 𝛾2, … , 𝛾𝐾)                (17) 

 

For an AWGN channel, the probabilities of false 

alarms and detection are deliberated in Eqs. (18) and 

(19), respectively. 

 

𝑄𝐹𝐴,𝑆𝐶 =
Γ(𝑚,

𝜆

2
)

Γ(𝑚)
                    (18) 

 

𝑄𝐷,𝑆𝐶 = 𝑄𝑚(√2𝛾𝑆𝐶 , √𝜆)                 (19) 

 

Where Qm(. , . ) is the general Marcum function, 

Γ(. )  and Γ(. , . )  are the comprehensive and 

inadequate Gamma function, λ  is user-defined 
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threshold value. m is the product of time and 

bandwidth, m = TW. 

 

⚫ Maximum Ratio Combining (MRC): In such 

type of rule, each estimated power or signal 

energy received by each secondary user is 

weighted byw_k=γ_k/(1+γ_k )  where γ_kis 

the SNR of each user. Consequently, 

cognitive radios with higher SNR receive 

more weight. At the fusion center, an 

arrangement of weights and user energies 

was accomplished to achieve a statistical test 

used with respect to the detection thresholds 

presented for this combination in Eq. (20) 

and in reference [12]. 

 

𝐸𝑀𝑅𝐶 = ∑ 𝑤𝑘𝐸𝑘

𝐾

𝑘=1

                           (20) 

 

The detection probability and probability of false 

positives for MRC are shown in Eqs. (21) and (22). 

 

𝑄𝐷,𝑀𝑅𝐶 = 𝑄𝑚(√2𝛾𝑀𝑅𝐶 , √𝜆)                   (21) 

 

𝑄𝐹𝐴,𝑀𝑅𝐶 =
Γ(𝑚𝐾,

𝜆

2
)

Γ(𝑚)
                            (22) 

 

The signal-to-noise ratio of this technique is 

given by Eq. (23). 

 

𝛾𝑀𝑅𝐶 = ∑ 𝛾𝑘

𝐾

𝑘=1

                                  (23) 

3.3 Hayesian optimized support vector machine 

based proposed machine learning model for css  

This spectrum detection system aims to increase 

the capability of detection for PUs in various 

environments to improve the detection of spectral 

holes. The initial objective provides security of 

primary user’s data from destructive interference and 

is a key constraint defined by IEEE 802.21, a 

standard for accessing white space in TV. The second 

goal is to leverage the frequency access capabilities 

and permit CR users to transmit data. 

For the ith user CR in the wth  detection interval, 

channel availability is determined based on the 

energy vector Ri
w. To properly coordinate PU 

activities, it is necessary to study the PU behaviour. 

Therefore, the energy vector in our case is similar to 

the resource vector in the machine learning 

environment. 

To build a classifier, i.e. to divide the existing 

acquisition rate into occupied channel (H1) or 

available channel (H0) classes, a learning step is 

required. Each CR user provisions an energy vector 

of W dimension, where W is the duration of the 

training phase. The segment arrangement is utilized 

during the learning phase; one slot has a transmission 

phase and a detection phase. During the training 

phase, there is a slot W. During the classification 

phase, these vectors are placed in the classifier, where 

the existing acquisition rate is matched with the 

earlier deposited acquisition rate to choose between 

H0 and H1. 

In this work, the CR user first learns the 

behaviour of the PU by comparing the resulting 

quantized energy vector, called the detection rate, 

with the correct state of the PU. 

The fusion centre determines the consistent 

arrangement of local user decisions and ACK, which 

determines the actual prominence of the PU. There 

are diversified roles of CR users in the classification 

phase and the training phase. During the training 

phase, detection reports are allocated to detection 

classes based on the equivalent CR user behaviour 

and authentic PU action. During the classification 

step, the detection report is categorized into one of 

the detection classes utilizing the SVM. For accurate 

calculations, an additional optimal Bayesian 

classifier is used. 

3.3.1. Training phase 

At this stage, the functional environment is 

captured by measuring the behaviour of CR users in 

relation to the development of PU activities. The ith 

user CR generates discovery reports, makes local 

decisions based on the average energy received in the 

current discovery slot, sends local decisions to the FC, 

and based on the results of the FC and ACK status, 

reports from discovery to discovery. This section 

details these steps. 

Alternatively, the energy received in the 

wth detection interval in the ith user's CR is 

represented as follows: 

 

𝑌𝑖,𝑤 =
∑ 𝑋𝑘 , 𝑤, 𝑖𝑛

𝑘=1

𝑛
                       (24) 

3.3.2. Classification phase 

The optimization of discrete and continuous 

variables provides the enhancement in rating and 

flexibility with problems to deal with several types of 

data. The SVM is a statistical system based 

classification method. Though, it has some negative  
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Table 1. Simulation parameters 

Parameters Value 

Bandwidth w = 5 MHz 

Sampling Frequency fs = 10 MHz 

Noise Power Spectral 

Density 
η0 =

−152 dBm/Hz 

PU active probability p(H1) = 0.= 0.5 

PU transmission power 0.1 mW 

SU1 → PU distance 500 m 

SU2 → PU distance 750 m 

SU3 → PU distance 1000 m 
 

 
Figure 3. Received energy level 

 

 
Figure. 4 Spectrum sensing subbands at 30 SNR under 

AWGN channel 

 

aspects of choosing and configuring inputs. The 

parameters of SVM are optimized by detecting the 

deviations in constant value. This process causes the 

information removal that decreased the classification 

accuracy. 

The proposed algorithm is related to two-

parameter SVM optimization. Parameters: i) weight, 

C; and ii) fundamental functions. Weights are a trade-

off between misclassifying some elements and 

classifying others correctly when the kernel is 

utilized to add SVM parameters and choose input 

properties. Here, the SVM parameters are optimized 

by Bayesian Optimization [13]. 

3.3.3. Bayesian optimized-SVM algorithm 

Input: initialize input for C, γ, k solution 

Output: best value for C and γ for higher 

classification accuracy  

Begin  

For kloop 

Execute SVM model for  k solutions  

T = Sort (S1, …,Sk)  

while classification accuracy ≠ 100% do 

forj = 1 to nloop 

find C and  

call SVM model to evaluate newly generated 

solutions  

end 

T = Best (Sort S1, …Sk + m), k) 

end 

End 

Where, 𝑘 is the size of the solution file, 𝑚 is the 

number of models utilized to produce the solution, 𝑞 

is the algorithm parameter for controlling the 

variation of the search procedure, 𝐶 is the smoothing 

or uniform stock parameter, γ is the width parameter 

also known as the margin or kernel function 

parameter. 

4. Simulation results 

The above figure shows the corresponding 

channel status and energy level at receiver on three 

subbands. 

Fig. 5 shows the ROC curve graph of energy 

detection technique with Pd  vs. Pfa  at various SNR 

values (SNR =-5dB, SNR=-10dB, SNR=-15dB & 

SNR = -20dB), For Noise variance = 0.2, No. of 

Samples = 500.  

In Fig. 5, the probability of detection Pd  is 

plotted under 𝐻1  against the probability of false 

alarm Pfa under 𝐻0 where Pfa changes from 0.01 to 

the desired value of 0.1. The values Pd  for various 

values of Pfa  over varying SNR levels are 

represented in Table 2. From Table 2, it is clear that 

the probability of detection at the -5dB SNR level is 

nearly 0.185 to 0.393 greater than the Pd  at -10dB 

SNR level at different points. As the values of Pd at 

SNR level, -15dB and -20dB are approximately the 

same but approximately 0.193 to 0.420 smaller than 

SNR level is -5.  
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Figure. 5 ROC for Pd vs. Pfaat varying SNR values in 

energy detection technique 

 
Table 2. Analysis of ROC for Pd vs. Pfaat varying SNR 

values in energy detection technique 

Probability 

of false 

alarm (𝑷𝒇𝒂) 

Probability of Detection (𝑷𝒅) 

SNR = 

-5 

SNR = 

-10 

SNR = 

-15 

SNR = 

-20 

0.0100 0.2082 0.0224 0.0152 0.0152 

0.0200 0.2898 0.0370 0.0304 0.0266 

0.0300 0.3244 0.0520 0.0360 0.0364 

0.0400 0.3830 0.0642 0.0496 0.0448 

0.0500 0.4114 0.0766 0.0590 0.0586 

0.0600 0.4462 0.0912 0.0744 0.0660 

0.0700 0.4602 0.1024 0.0774 0.0772 

0.0800 0.4878 0.1108 0.0856 0.0866 

0.0900 0.5070 0.1210 0.0984 0.0920 

0.1000 0.5254 0.1318 0.1052 0.1020 

 

 
Figure. 6 Objective function model 

 

So from the ROC curve in Fig. 5, it is clear that 

the probability of detection is higher at the -5dB SNR 

level when compared with various SNR levels  

 

 
Figure. 7 Min. objective vs. number of function 

evaluations 

 
Table 3. Simulation parameters for machine learning 

Parameters Value 

M 104 Samples. 

M 2;  Number of Primary users (PU) 

N 2; Number of Secondary users (SU) 

Omega 30;  Number of samples 

Sigma 2;  Noise power 

Iter 1000; Learning cycle 

R 1000; Number of iteration 

Training Size 100; Size of training set 

Beta 2; Threshold of detection 

𝐾𝑠 

2;  Number of subbands (Assume 

every SU takes one subband when 

channel is available) 

 

 
Figure. 8 ROC curves for the different techniques training 

with 100 training sample 

 

(Example; -10dB, -15dB, and -20dB) which verifies 

the better performance at higher SNR using energy  
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Table 4. Comparison of proposed with existing method 

Methods 

Probability 

of Detection 

(𝑷𝒅) 

Probability 

of False 

Alarm (𝑷𝒇𝒂) 

Proposed 

Bayesian-

optimized SVM 

0.84 0.1 

Hossain et al. [13] 0.7 0.1 

Ma et al. [14] 0.5 0.1 

Tavares et al. [15] 0.8 0.1 

 

detection technique. 

To estimate the performance of the previous 

model in deriving the channel state, we performed a 

Monte Carlo simulation with a 5 × 104 

implementation, with the scenario shown in Fig. 8, 

with PU and 3 SU and parameters in Table 1 at 

additive Rayleigh fading channel. We compared the 

optimized SVM Bayesian method with traditional 

AND, OR, and MRC analysis methods. For 

optimized Bayesian SVM, we consider linear and 

Gaussian kernel functions. 

Through graphical examination, we can see the 

superior performance limit determined by the MRC 

method, followed by a Bayesian optimized SVM 

with a linear kernel. In addition to the cooperative 

method, we have a graph of the ROC curve obtained 

by determining the individual energies in each SU. 

Due to the difference in distance from the PU, the 

resulting average signal-to-noise ratios are 2 dB, 9 dB 

and 14 dB. This difference can be seen from the 

channel recognition characteristics shown by each 

SU. 

The proposed work explores the potential of 

cooperative spectrum sensing (CSS) based on 

machine learning in classification speed, training 

time, and classification performance. This is further 

improved by Bayesian optimized SVM. 

Authors of [11] mainly focuses on, two-

dimensional distance vector which is transformed by 

an m-dimensional energy vector permitting to the 

distance extent between vectors. Furthermore, KNN 

is applied to perform the classification. The authors 

of [11] majorly focus on probability vector and 

distance vector as feature vectors, but in the case of 

poor signal and less users the proposed features don’t 

perform well as compare to energy detector-based 

method. Authors of [14] proposed Cognitive radio 

performance Fuzzy logic and naïve Bayes classifier. 

The above method is implemented in VANET 

platform and achieve detection is 0.5 at probability of 

false alarm is set at 0.1. Authors of [15] considered 

centralized cooperative spectrum sensing (CCSS) 

methods for cognitive radio networks using energy 

detector method. The paper proposes SVM based 

modelling and achieve 0.80 probability of detection, 

whereas proposed method yields 0.84 detection rate 

at same reference. 

5. Conclusion 

Cognitive radio technology appears to be an 

operational substitute for increasing the number of 

users in various frequency bands. The idea aims to 

address spectrum deficits based on two fundamental 

characteristics: cognitive ability and ability to 

reconfigure. Cognitive ability refers to the capacity of 

a radio to know the environment in which it is 

operating, to recognize spectral space that is not fully 

utilized or at specific intervals, and to communicate 

its reconfiguration information  

Without disturbing the primary user utilized 

spectrum. Detectors HARD types (with rules AND, 

OR) and SOFT types (SVM and Bayesian optimized-

SVM) were evaluated in scenarios in which SU had 

different SNR values, that are a direct consequence 

of the SU position regarding the PU, whose position 

is unknown most of the time. As a future work, we 

can execute deep learning network for cooperative 

cognitive radio spectrum and non-cooperative 

methods for cooperative cognitive radio spectrum. 
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