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Abstract: A reliable and sensitive technique for predicting quality of a plastic work-piece produced in injection 

molding process is essential help for practicing engineers. A system based on the process parameters that can estimate 

both two prime characteristics,  %volume shrinkage and warpage of work-piece before it produced is significantly 

beneficial. In this paper, a fast feed forward network, Hybrid Neural Network (HNN), is proposed to construct the 

predictive model for those two quality characteristics. The unique algorithm of HNN based on the optimization of the 

weights of each layer is changed to a linear problem by linearization of the sigmoid functions. As iteration procedure 

used in Backpropagation algorithm is eliminated, the network training time is significant reduced. With this fast 

convergence of using HNN, the intelligent predictive model for injection molding process that can learn online is 

possible for further study. To entitle the network to cater for various process parameter conditions, a knowledge base 

as training and testing data have to be generated on the experimental data in a comprehensive working range of a 

plastic injection molding process. Consequently, the experiments were performed in 256 conditions based on the 

combination of nine basic process parameters. The neural networks were trained and the architecture of networks was 

appropriately selected by benchmarking the Root Mean Square error (RMS). The results of the novel network, HNN, 

have shown the ability to accurately predict the percentage of volume shrinkage with the 1.02% and 4.87% error at 

training and testing stages, respectively and for warpage with the 3.76% and 2.47% error at training and testing stages, 

respectively. These accuracy results are similar to those of backpropagation neural network (BPNN), but HNN has 

shown the superior fast converging about 38.5% and 66.7% over than those of BPNN. 

Keywords: Backpropagation neural network, Hybrid neural network, Injection molding. 

 

 

1. Introduction 

It is commonly known that the poor quality of 

product is unacceptable in a competitive industrial 

world. The high quality of production usually comes 

from the good process control. However, since a lot 

of process parameters to be optimized in order to set 

the suitable production condition, it is one of 

complicated work. There is a need to establish an 

intelligent system to predict the product quality 

before it produced. In this work, a neural network 

approached is proposed to create a predictive model 

that could handle a variety of process parameters in a 

case of a plastic injection molding process and the 

percentage of volume shrinkage and warpage are key 

quality characteristics of work-piece. To establish 

knowledge bases for the predictive model to catering 

for various process setting, a number of experiments 

must be performed under the working conditions of 

nine major parameters of injection molding process. 

Such parameters are filling time, melt temperature, 

mold temperature, maximum injection pressure, 

Packing time, Maximum packing pressure profile 

value, cooling time, air temperature and eject 

temperature.  

To construct predictive neural network model, the 

backpropagation algorithm is one of the most 

powerful and popular algorithms of the neural 

network. It is used in many other disciplinary for the 

pattern recognition and modelling purpose, however 

according to the research carried out in [1] and [2] 
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report that the backpropagation neural network 

(BPNN) convergence rate is very poor due to local 

minima. In the work of liang et al. [3] also try to 

improve another disadvantage of BPNN which 

possibly be sensitive to noisy data and irregularity. 

Many efforts are worked out to modify BPNN in 

adjusting learning rate such as variable stepsize 

learning [4] and using dynamically optimal learning 

rate [5] to reduce training time. Moreover, a highly 

complicate mathematic technique in various studies 

such as a hybrid quantum [3] and TAO-robust 

Backpropagation learning [6] are added to improve 

the BPNN to robust the neural network output. Some 

studies suggest that using other fast algorithm or 

hybrid algorithm is also a better alternative to avoid a 

complicate of modify BPNN if the convergence time 

is primarily focus in the application. Then the aim of 

this study is that a new neural network, hybrid neural 

network (HNN) [7], has been proposed to be a 

predictive model for a plastic injection molding 

process with a fast training time. HNN is known not 

only for being fast in learning, but also for being 

superior in accurate modelling. A brief introduction 

of HNN is initially discussed, followed by the 

development of a knowledge base of in case of a 

plastic injection molding process. Therefore, the 

architectures of neural networks are optimized to 

yield the best results. The performance benchmarking 

of HNN is tested and compared with backpropagation 

neural network (BPNN) in this application in both 

accuracy of information and the speed of 

convergence time. 

2. A briefs note of artificial neural network 

2.1 Basic of backpropagation (BPNN) 

All The standard back propagation network [8-

10] comprises three layers of processing elements, 

fully feed-forward connected shown in Fig. 1. With 

the sigmoid on the hidden layer, only the basic 

equations are: 

 

          𝑦𝑘 = ∑ 𝑣𝑘𝑗𝑧𝑗
𝐻
𝑗=1                          (1) 

 

                       𝑧𝑗 =
1

1+𝑒𝑥𝑝(−𝑛𝑒𝑡)
                       (2) 

 

                   𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑗𝑖𝑥𝑖
𝑁
𝑖=1                        (3) 

 

The Least Mean Square error  

 

         𝐸 =
1

2
∑ (𝑦𝑘 − 𝑡𝑘)

2𝑀
𝑘=1                (4) 
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Figure. 1 A feed forward neural network with  

one hidden layer 
 

where, netj = weighted sum of inputs to neuron j. 

                 tk     = target value for neuron k 

     xi     = input of neuron i in input layer 

     yk    = output value for neuron k  
           zi     = output of neuron j in hidden layer 

    wji = weight connecting input neuron i  

                             to hidden layer neuron j 

     Vkj  = weight connecting hidden neuron j  

                             to output layer neuron k.       

 

All the data are scaled between 0..1 but it can be 

scaled between -1..1 to standardize all the inputs with 

various dimensions. The weights Wji and Vkj are 

assigned random numbers in the range -1..1, and a 

random pair of input / output vectors are picked from 

the training set. The input vector is fed through the 

network to get an output vector (feed-forward 

process); this is then compared with the output vector 

and an error is found. 

This error is then passed back through the neural 

network (back propagation process) to modify the 

weights using the following equations 

 

              𝑣𝑘𝑗
𝑛𝑒𝑤 = 𝑣𝑘𝑗

𝑜𝑙𝑑 + 𝛥𝑣𝑘𝑗                          (5) 

 

       𝑤𝑗𝑖
𝑛𝑒𝑤 = 𝑤𝑗𝑖

𝑜𝑙𝑑 + 𝛥𝑤𝑗𝑖                          (6) 

 

The gradient descent optimization technique is 

used to calculate the change in each weight. This is 

then repeated by picking another random pair of input 

/ output vectors and continuing until the error is at a 

minimum. 

2.2 A brief of hybrid neural network (HNN) 

The basic architecture of an HNN is the same as 

BPNN, as shown in Fig. 1. It consists of an input layer, 
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one or more hidden layers and an output layer. All 

input nodes are connected to all hidden neurons 

through weighted connections, Wji, and all hidden 

neurons are connected to all output neurons through 

weighted connections, Vkj. 

The basic idea of HNN learning algorithm is to 

combine iterative and direct weight optimization 

methods. Based on this concept, the training time is 

improved and local minima can be avoided [11]. The 

network is trained by initialling small random 

weights and then the weights are iteratively adjusted 

by using Backpropagation algorithm with some 

initial iteration for training performance 

enhancement. Then the direct weight optimization 

method based on Optimization Layer by Layer 

algorithm [12] is used to finalize weights with a fast 

converging rate. The fast convergence is resulted 

from that the optimization of weights in each layer is 

reduced to a linear problem and the weights in each 

layer are modified dependent on each other, but 

separately from all other layers.  

This HNN algorithm can be applied to any 

number of layers. However, the vast majority of 

practical problems are rarely necessary to use more 

than one hidden layer [13]. Thus, only the algorithm 

of network with one hidden layer to reduce the 

complexity and speed of computing is presented as 

followings. 

 

Training algorithm of HNN with one hidden layer 

Step 1 Initialize weights  

 - Set all weights (Wji,Vkj)  to small random  

          values    

 - Set weight factor µ=0.0001,  

Step 2 Weight adjustment by using Backpropagation  

           algorithm 

 - Set the number of initial iterations 

 - All weights (Wji,Vkj) are iteratively modified     

           according to the number of initial iterations    

Step 3 Optimization of output-hidden layer weights  

 - The gradient of cost function with respect to 

           V is calculated to derive the optimal weight 

           V for all training patterns. Thus, 

 

            𝑉𝑗𝑘 =  𝐴−1. 𝑏                                    (7) 

       

 where the A and b matrix are given by: 

      A(j,j1) =   matrix [aj,j1] ; ajj1 = ∑p[zj zj1]:  j,j1=0..H 

      b(j,k)  =  matrix [bj,k] ; bjk  = ∑p[tk zj]   :  k   = 1..N 

  p      =  number of training patterns 

  tk     =   target output of output neuron k  

Step 4 Optimization of the input-hidden layer weights 

 - Transform non-linear part into linear   

           problem. Then the linearized weights in each  

           output layer node can be calculated as follow:  

 

       𝑉𝑙𝑖𝑛𝑘𝑗 =  ∑ [𝑓′(𝑛𝑒𝑡𝑗) 𝑉𝑘𝑗]𝑗
                (8) 

 

    where f’(net) is derivative of the sigmoidal  

                   function  

  - Calculate weight correction term (ΔWopt) for  

            all training patterns. 

 

   ∆𝑊𝑜𝑝𝑡 =  𝐴𝑢−1. 𝑏𝑢                         (9) 

      

where Au =  matrix [a(ij,hm)] ; 

    bu  =  vector[b(j,i)] 

    a(ji,hm) : for (j ≠ h)  = ∑p ∑k[(Vlinkjxi)(Vlinkhxm)]    

              : for (j = h)  = ∑p ∑k(Vlinkjxi)(Vlinkhxm)  

                                      + µ/H* abs(Vkj)f’ (netj) xi xm  

                   bji =  ∑p ∑k[(tk – yk) Vlinkj xi] 

           H  =  no. of neurons in hidden layer  

 - Calculate weight test (Wtest) 

 

                𝑊𝑡𝑒𝑠𝑡 = 𝑊𝑜𝑙𝑑 + ∆𝑊𝑜𝑝𝑡                (10) 

 

Step 5 Update of the input-hidden layer weights                

 - Base on  Wtest, the new RMS error is calculated 

   If (New RMS > RMS) then go back to Step 3 

             and increase µ (µ   =   µ*1.2) 

   Else   update weights  

 

             𝑊𝑛𝑒𝑤 = 𝑊𝑡𝑒𝑠𝑡 {𝑊𝑜𝑙𝑑 + ∆𝑊𝑜𝑝𝑡}   (11) 

     

        and decrease µ (µ=µ*0.9)  

for next iteration 

Step 6 Do step 3 - 5 until test stop condition is true.  

           - (RMS error < target or End of number of  

              iterations) 

2.3 A brief of a plastic injection molding process  

A case study conducted in this place is injection 

molding process by using injection molding 

simulation software. Basically, the injection molding 

processes in Fig. 2 are separated into four steps: 1) 

Plasticizing the resin, 2) Injecting the resin, 3) 

Cooling the part and 4) Ejecting the part. At the 

beginning state, the melting process is started by  

rotating and retracting a screw  in order to transform  

plastic resin into ready liquid phase, which is then 

injected into the molding.  The injection molding is 

hold for a while in the packing process to maintain 

pressure to compensate for shrinkage of the setting 

plastic. When the temperature of work-piece is 

reduced to meet the eject temperature by the cooling 

process, the unload process is started to free work-

piece. [14].  
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(a) 

 
(b) 

Figure. 2 System model: (a) injecting and (b) ejecting the 

part 

 
Table 1. Input process parameters and settings 

Inputs 
Level Units 

Low (-) High (+)  

1. Filling time  2 3 sec. 

2. Melt temperature  215 230 °C 

3. Mold temperature 35 60 °C 

4. Maximum  

    injection pressure  

50 80 % 

5. Packing time  4 6 sec. 

6. Maximum packing  

    pressure profile  

    value  

30 50 % 

7. Cooling time 12 14 sec. 

8. Air temperature 15 40 °C 

9. Eject temperature 50 99 °C 

3 A development of a knowledge base for 

HNN training 

The experiments are carried out to create a data 

base, which came from the work of our research 

group. A numerical set of process parameters as 

network inputs and both of %volume shrinkage and 

warpage (displacement) as  network outputs are 

generated. Such nine process parameters are 1) 

Filling time, 2) Melt temperature, 3) Mold 

temperature, 4) Maximum injection pressure , 5) 

Packing time  6) Maximum packing profile value, 7)  

Cooling time, 8) Air temperature, and 9) Eject 

temperature. Based on the principle of 2-level 

 

 

(a) 

 
(b) 

Figure. 3 Characteristic of: (a) volume shrinkage and (b) 

warpage 

 

 

factorial design, the detail conditions of each 

parameter are demonstrated in Table 1. 

The outputs for neural network are %volume 

shrinkage and warpage or total displacement of a 

plastic work-piece. This volume shrinkage is 

measured in percentage (%) by using a formula in Eq. 

(12). And the characteristic of this response is shown 

in Fig. 3 (a). Another key output, total displacement 

is measured in millimetres (mm.) by using a formula 

in Eq. (13) with the characteristic of this response as 

illustrated in Fig. 3 (b). 

 

%𝑉𝑜𝑙𝑢𝑚𝑒 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒   

       =  
𝑆𝑖𝑧𝑒 𝑜𝑓 𝑚𝑜𝑙𝑑 𝑐𝑎𝑣𝑖𝑡𝑦−𝑠𝑖𝑧𝑒 𝑜𝑓 𝑤𝑜𝑟𝑘𝑝𝑖𝑒𝑐𝑒

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑚𝑜𝑙𝑑 𝑐𝑎𝑣𝑖𝑡𝑦
%      (12) 

 

𝑊𝑎𝑟𝑝𝑎𝑔𝑒 (𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑚𝑚. ) 
         =  𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓𝑚𝑜𝑙𝑑 𝑐𝑎𝑣𝑖𝑡𝑦 

    −𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛  𝑜𝑓 𝑤𝑜𝑟𝑘𝑝𝑖𝑒𝑐𝑒           (13) 

 

The computer program is applied to analyze the 

injection molding process for finding the best value 

of work-piece design and both outputs, %volume 

shrinkage and  warpage, as shown in Fig. 4.  
After the experimentations in simulation of 

injection molding process, 256 data patterns for 

training and testing a neural network were created. 

Twenty percent of all data is separated as testing data. 

Thus, 204 data patterns were used as training data to 

build the model and the remaining 52 data patterns 

were used as extensive testing data to validate the 

model.  
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(a) 

 
(b) 

Figure 4 Measurement of: (a) %volume shrinkage  

and (b) warpage 

4 Results and discussion  

4.1 A selection of HNN architectures 

The optimization of the neural networks is done 

by systematically training and testing the networks 

with varied parameter settings. As a benchmark, the 

root mean square (RMS) error of the test data set is 

recorded and compared. The RMS error easily 

combines the results from all the test data patterns 

into one number without any cancellation of negative 

and positive errors. The formula of RMS [15] is given 

by 

  𝑅𝑀𝑆 𝑒𝑟𝑟𝑜𝑟 = √
∑  (target - output)2

no. of data
         (14) 

 

In HNN, the number of neurons in the hidden 

layer has to be optimized. Therefore, HNN with one 

hidden layer containing two to nine neurons was 

tested. The maximum number of iterations is limited  

 

 
Figure. 5 RMS error of HNN and BPNN with number of 

hidden neurons for % volume shrinkage 

 

 
Figure. 6 RMS error of HNN and BPNN with number of 

hidden neurons for warpage 

 

to ten iterations in order to keep the advantage of 

HNN in fast computing time. The results have shown 

the trend of RMS errors of training and testing data 

as illustrated in the Fig. 5 and Fig. 6.  

Hence, the HNN (9-7-1) with seven hidden 

neurons giving the lowest RMS in the study 

for %volume shrinkage prediction model was chosen 

and the RMS error of testing data for such a 

configuration was 4.87%, while HNN (9-3-1) with 

three hidden neurons was chosen for warpage 

prediction model with the lowest RMS of 2.47%. For 

backpropagation neural network (BPNN), since it is 

a well-established neural network, the detailed 

algorithm is not discussed in this work, but 

appropriate references are provided in [16-18]. The 

lowest RMS error of 5.01% and 2.41% was obtained 

for %volume shrinkage and warpage when using the 

BPNN (9-8-1) and BPNN (9-6-1), respectively.  
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Figure. 7 Actual vs HNN and BPNN predicted of %volume shrinkage and warpage for testing data 

 
Table 2. A Comparative result of HNN and BPNN 

 % Volume Shrinkage Warpage 

Method % RMS Error No. of 

Iterations 

Computing 

Time 

(sec.) 

%RMS Error No. of 

iterations 

Computing 

Time 

(sec.) 
 Training Testing Training Testing 

HNN 1.02% 4.87% 7 0.16 3.76% 2.47% 6 0.05 

BPNN 1.42% 5.01% 437 0.26 3.79% 2.41% 106 0.15 

 

4.2 HNN model for %volume shrinkage and 

warpage prediction 

For prediction, nine inputs were used. The inputs 

are filling time, melt temperature, mold temperature, 

maximum injection pressure, packing time, 

maximum packing profile value, cooling time, air 

temperature, and eject temperature and the output 

were volume shrinkage in percentage and warpage in 

millimetre. The direct comparison between the actual 

outputs from the experiment and outputs from 

prediction of testing data is presented in Fig. 7.  

A comparative result of the RMS error of both 

prediction models are calculated and summarized in 

Table 2. For %volume shrinkage, it can be seen that 

HNN can predict with a 4.87% error in testing stage 

and BPNN can predict with 5.01% error, while the 

computing time of HNN is 0.16 sec. which is faster 

than that (0.26 sec) of BPNN by 38.5%. Likewise, the 

result of warpage, it shows that HNN can predict with 

a 2.47% error in testing stage and BPNN can predict 

with 2.41% error, while the computing time of HNN 

is 0.05 sec. which is much faster than that (0.15 sec) 

of BPNN by 66.7%. It should be noted that a 

reduction of training time of HNN results from the a 
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few iterations needed for convergence, but the 

backpropagation algorithm relies on a number of 

iteration process to reach the appropriate weights. 

HNN is clearly showing the similar predictive 

capability to the established BPNN, but superior 

faster computing time. Besides, due to learning 

algorithm of HNN adjust weights in each layer based 

upon linear problem calculation, this make HNN can 

be converged in the less computing time. It is noted 

that the accuracy and fast computing of HNN 

reassure a pragmatic use of an intelligent model for 

predicting a quality of plastic work-piece to help the 

practitioners for excellent process control work. 

5 Conclusion 

The need for reliable prediction of quality of 

plastic work-piece in an injection molding process is 

presented. It has been shown that a number of process 

parameters are required together with for the 

injection molding performance prediction. In this 

work, the fast learning neural network is a hybrid 

artificial neural network (HNN), whose architecture 

is a multi-layer feed forward neural network. 

Basically, the fast convergence is resulted from the 

optimization of weights in each layer is reduced to a 

linear problem and the weights in each layer are 

modified dependent on each other, but separately 

from all other layers including the initial weights 

generated based on Backpropagation algorithm. 

Experiments were carried out over a range of plastic 

injection molding process conditions to measure 

the %volume shrinkage and warpage of a work-piece 

produced. A range of conditions covering 256 

process conditions were selected as a training and test 

data sets. The HNN algorithm and also BPNN have 

trained well with excellent quantitative accuracy with 

about or less than 5% average percentage deviation 

to the experimental values in training stage. The 

networks have been tested with 52 different process 

conditions and showed high predictive capability. 

The average RMS errors of predicted %volume 

shrinkage and warpage are 4.87% and 2.47%, 

respectively, while training times of HNN for both 

predictions are faster than those of BPNN by 38.5% 

and 66.7%. It should be noted that the HNN can 

perform well in this case in term of providing similar 

predictive capability, but much better fast training 

time.  

For future work, the development of the 

intelligent system that can updated instantly and 

efficiently by on-line neural network is on focus, then 

the input process parameters of the injection molding 

processes can be studied in order to be eliminated the 

least contribution inputs. This reduces the size of 

neural network architecture, which potentially 

increases fast convergence time to make possible on-

line learning neural network. 

Conflicts of interest  

The authors declare no conflict of interest.  

Author contributions  

In this work, conceptualization, methodology, 

validation, formal analysis, investigation, resources, 

data curation, writing-original draft preparation, 

writing-review and editing, visualization, and 

funding acquisition  have been done by the 1 st author. 

The supervision and project administration have been 

done by the 2 nd author.  

Acknowledgments 

The work is supported by King Mongkut’s 

Institute of Technology Ladkrabang [Grant Number 

2564-02-01-018]. 

References 

[1] G. Marco and A. Tesi, “On the Problem of Local 

Minima in Backpropagation”, IEEE 

Transactions on Pattern Analysis and Machine 

Intelligence, Vol. 14, No. 1, pp. 76-86, 1992. 

[2] R. Salamon and J. L. V. Hemmen, “Accelerating 

Backpropagation through Dynamic Self-

Adaptation”, Neural Networks, Vol. 9, No. 4, pp. 

589-601, 1996. 

[3] Y. Liang, W. Peng, Z. Zheng, O. Silven and G. 

Zhao, “A Hybrid Quantum-Classical Neural 

Network with Deep Residual Learning”, Neural 

Networks, Vol. 143, pp. 133-147, 2021. 

[4] G. D. Magoulas, M. N. Vrahatis, and G. S. 

Androulakis, “ Effective Backpropagation 

Training with Variable Stepsize”, Neural 

Networks, Vol. 10, No. 1, pp. 69-82, 1997. 

[5] X. Yu and G. Chen, “Efficient Backpropagation 

Learning Using Optimal Learning Rate”, Neural 

Networks, Vol. 10. No. 1, pp. 517-527, 1997. 

[6] A. V. P. Espinoza, J. B. O. Mere, F. J. M. D. 

Pison, and A. G. Marcos, “ TAO-rubust 

Backpropagation Learning Algorithm”, Neural 

Networks, Vol. 18, pp. 191-204, 2005. 

[7] V. Karri and T. Kiatcharoenpol, “A Monitoring 

System of Drill Wear States Using a Hybrid 

Neural Network”, Materials Science Forum, 

Vol. 471-472, pp. 697-701, 2004.  
[8] W. K. Yap and V. Karri, “Emissions Predictive 

Modelling by Investigating Various Neural 

Network Models”, Expert Systems with 



Received:  December 17, 2021.     Revised: January 26, 2022.                                                                                         378 

International Journal of Intelligent Engineering and Systems, Vol.15, No.2, 2022           DOI: 10.22266/ijies2022.0430.34 

 

Applications, Vol. 39, No. 3, pp. 2421-2426, 

2012.  
[9] A. M. Hemeida, S. A. Hassan, A. A. Mohamed, 

S. Alkhalaf, M. M. Mahmoud, T. Senjyu, and A. 

B. E. Din, “Nature-inspired Algorithms for 

Feed-forward Neural Network Classifiers: A 

Survey of One Decade of Research”, Ain Shams 

Engineering Journal, Vol. 11, No. 3, pp. 659-

675, 2020.  
[10] P. Lanillos, D. Oliva, A. Philippsen, Y. 

Yamashita, Y. Nagai, and G. Cheng, “A Review 

on Neural Network Models of Schizophrenia 

and Autism Spectrum Disorder”, Neural 

Networks, Vol. 122, pp. 338-363, 2020.  
[11] B. Verma, “Fast Training of Multilayer 

Perceptrons”, IEEE Transactions on Neural 

Networks, Vol. 8, No. 6, pp. 1314-1320, 1997. 

[12] S. Ergezinger and E. Thomsen, “An Accelerated 

Learning Algorithm for Multilayer Perceptrons: 

Optimisation Layer by Layer”, IEEE 

Transactions on Neural Networks, Vol. 6, No. 1, 

pp. 31-42, 1995. 

[13] M. Caudill and C. Butler, Understanding Neural 

Networks - Computer Explorations, Vol. 1 Basic 

Networks, MIT Press, Cambridge, 1992.  
[14] T. Kiatcharoenpol and T. Vichiraprasert, 

“Application of Taguchi Method and Shainin 

DOE Compared to Classical DOE in Plastic 

Injection Molding Process”, International 

Journal of Intelligent Engineering and Systems, 

Vol. 12, No. 3, pp. 11-19, 2019, doi: 

10.22266/ijies2019.0630.02. 

[15] Fachrurrazi, S. Husin, Munirwansyah, and 

Husaini, “The Subcontractor Selection Practice 

using ANN-Multilayer”, International Journal 

of Technology, Vol. 8, No. 4, pp. 761–772, 2017. 

[16] A. Dhini, I. Surjandari, M. Riefqi, and M. A. 

Puspasari, “Forecasting Analysis of Consumer 

Goods Demand using Neural Networks and 

ARIMA”, International Journal of Technology, 

Vol. 6, No. 5, pp. 872-880, 2015.  
[17] A. Ghatak and P. S. Robi, “Prediction of Creep 

Curve of HP40Nb Steel using Artificial Neural 

Network”, Neural Computing and Applications, 

Vol. 30, No. 9, pp. 2953-2964, 2018.  
[18] M. Alas and S. I. A. Ali, “Prediction of the High-

Temperature Performance of a Geopolymer 

Modified Asphalt Binder using Artificial Neural 

Networks”, International Journal of Technology, 

Vol. 10, No. 2, pp. 417-427, 2019. 

 


