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Abstract: The severity of diabetic retinopathy can lead to blindness if undiagnosed and untreated. The presence of 

hard exudates is one of the diabetic retinopathy symptoms. Therefore, automatic segmentation of hard exudates can 

provide an important diagnosis for diabetic retinopathy. Due to the relatively small dimensions of the exudates and the 

availability of the optic disc that has similar color, the exudate segmentation is a challenge in itself. In this study, we 

propose a modification of the fully convolutional network model (FCN-8) by combining FCN-8 and shortcuts to 

improve the performance of FCN-8. Each shortcut consists of a convolutional layer and batch normalization to reduce 

input degradation. Prior to processing the hard exudates using a modified FCN-8, the optic disc was removed from the 

retinal image by detecting the area using Faster R-CNN based on the Alexnet architecture. For training and testing, we 

applied the IDRiD dataset to evaluate the performance of our proposed architecture. Experiments show that our 

proposed architecture provides accuracy, sensitivity, specificity of 98.18 %, 81.7%, and 98.37 % respectively. Our 

proposed method gives higher sensitivity compared to Autoencoder, U-Net, FCN-32, FCN-16, and FCN-8. 
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1. Introduction 

According to WHO, diabetes patients have 

reached 2.8 % of the entire world population in year 

2000. Diabetes patients will keep increasing to up to 

4.4 % in year 2030 [1]. Diabetes can cause various 

illness to its patients such as heart attack, stroke, 

glaucoma [2] and diabetic retinopathy [3]. Diabetic 

retinopathy is an illness caused by chronic diabetes. 

Diabetic retinopathy is suffered by many productive 

societies around the world [4, 5]. Diabetic 

retinopathy is characterized by vascular 

abnormalities in the retina [6, 7]. The severity of 

diabetic retinopathy is divided into two, namely non-

proliferative and proliferative diabetic retinopathy [8, 

9]. 

As diabetic retinopathy gets worse, the fatty 

blood vessels can rupture, causing hard exudates [10]. 

Hard exudates are yellowish in color and vary in size, 

and shape. Hard exudates can occur in the macula 

area, namely macular edema. Since hard exudates are 

an important factor for detecting diabetic retinopathy, 

the ability to segment hard exudates is very important 

for early detection and effective treatment of diabetic 

retinopathy. However, manual exudate segmentation 

using fundus images can take a long time and the 

results can be biased. Therefore, an automatic and 

accurate exudate segmentation is needed to reduce 

time consumed. 

Several methods have been proposed to detect 

hard exudates. Eadgahi et al. used morphology 

operations for pre-processing, erasing optic disc areas, 

and detecting exudates [11]. Qomariah et al. [10] 

proposed top hat morphology and automatic 

threshold to segment the exudate areas. Gupta et al. 

applied adaptive intensity thresholding selected 

based on first order statistics and local thresholding 

to detect exudates [12]. Liu et al. implemented 3 

stages to perform exudate segmentation, namely 

removing anatomic structures, exudate location and 

exudate segmentation. At the anatomic stage, a 

matched filter was applied to remove blood vessels 

and saliency to remove the optic disc. At the location 

stage, the random forest method is applied to 
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determine exudate and non-exudate locations, then 

the last stage is the exudate segmentation stage [13]. 

Although many previous methods have been 

proposed to segment exudates, many of the proposed 

methods were developed based solely on features 

such as size, color, texture, without taking into 

account the low contrast of the image. Low image 

contrast and variable exudate sizes make it difficult 

to get accurate exudate segmentation results. In 

addition, image variation makes it difficult for the 

model to determine the exact features of the exudate. 

Therefore, an efficient segmentation method is 

needed so that it can select features automatically and 

accurately and can automatically detect the location, 

size, and shape of the exudate lesion. 

In recent years, the state of the art convolutional 

neural network (CNN) [14, 15], is the method 

frequently used for medical imaging, due to its 

superior medical imaging segmentation capability 

[16, 17]. CNN uses low level and high level features 

to obtain information from the images automatically. 

Benzamin et al. [18] used 8 convolutional layers to 

do feature extraction and 3 fully connected layers to 

detect exudates. Xue et al. [19] suggested a network 

named deep membrane to detect exudates, 

microaneurysms and the optic disc. All suggested 

methods performed satisfactory lesion segmentation. 

However, the network proposed did not consider the 

features in the network. We concluded that 

continuing features from the previous layer can result 

in more accurate exudate segmentation. 

Segmentation results can help doctors to diagnose 

early. As many as 90 % of the patients can avoid 

blindness if diabetic retinopathy diagnosis is made 

early [20]. 

Image segmentation classifies each pixel in each 

image with ground truth. CNN can be used for image 

segmentation, especially for medical images using 

image patching as training to determine the class of 

each pixel [21]. Long et al. [22] proposed a Fully 

Convolutional Network (FCN), where FCN replaces 

a fully connected layer for classification with a 

convolutional layer. The FCN consists of FCN-32, 

FCN-16, and FCN-8. FCN-32 uses 32 pixel strides in 

the prediction layer, thus limiting the size of detail in 

the upsampled results. Using FCN-32 speeds up 

computing during training, but using FCN-32 for 

medical image segmentation has spatial resolution 

problems because the output is generated in one 

upsampling process [22]. The FCN-32 architecture is 

improved by combining the 2x upsampled prediction 

layer with the feature map from the fourth pooling 

layer to obtain a finer prediction layer and then 16x 

upsampling to get the FCN-16 architecture. Next, the 

finer prediction layer is upsampled 2x and combined 

with the feature map from the third pooling layer and 

followed by upsampling 8x to get the FCN-8 

architecture.  In addition to the development of the 

FCN itself, there is another architectural development 

to overcome the problem of spatial resolution in the 

prediction layer detail, namely the Autoencoder [23] 

and U network (U-Net) [24]. U-Net architecture is 

similar to Autoencoder, consisting of a contracting 

path and an expansive path. Contracting blocks 

perform feature extraction and reduce the size of an 

input image during training. Expansive blocks restore 

the image to its original size by using upsampling. 

The difference between Autoencoder and U-Net is 

that U-Net uses a skip connection to pass information 

from the contracting layer to the expansive layer, to 

help obtain spatial resolution information at the 

output layer [25]. 

In addition, there is an optic disc that was first 

removed because it has a similar intensity and color 

to the exudates [26]. Accurate optic disc detection is 

very important to obtain accurate exudate 

segmentation. Accurate optic disc detection can also 

help to diagnose eye diseases such as glaucoma and 

papilledema. Several methods for detecting optic disc 

have been carried out, because the optic disc is an 

important part of detecting diabetic retinopathy. 

Pathan et al. [27] proposed contour based method to 

detect the optic disc. Al-Bander et al. [28] proposed 

Multiscale sequential CNN to detect fovea and the 

optic disc. Karkuzhali et al. [29] proposed adaptive 

thresholding to detect the optic disc.  

CNN method can be used for object detection 

[30], region based convolutional neural networks (R-

CNN) is used to detect the optic disc because of the 

similarity of features with exudates, such as color and 

intensity values. The R-CNN detector creates an area 

on an object using the edge box algorithm [31]. The 

area of the object is cut from the image and resized. 

Next CNN performs a classification on the cut and 

resized area. [32, 33]. One-by-one image training 

requires long computation time, in order to solve this 

problem fast R-CNN [34] also uses edge boxes 

algorithm to obtain the proposal region. However, 

unlike R-CNN, fast R-CNN collects every CNN 

feature that matches the proposal region. Using edge 

box to detect the proposal region is still considered 

inefficient, so instead of using an external edge box 

there is a detection method that uses the region 

proposal network (RPN), namely faster R-CNN [35]. 

Faster R-CNN detector adds RPN to generate 

proposal regions directly on CNN so that it produces 

proposal regions faster and more in line with training 

data. 

Based on the considerations, detection and 

removal of the optic disc will be carried out first. We 
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use a combination of Faster R-CNN and Alexnet. 

Based on our understanding, faster R-CNN produces 

a proposal region that is faster and in accordance with 

the optic disc object. Alexnet architecture is used to 

derive relevant features from the optic disc. To obtain 

area from exudate, we propose architectural 

modification of FCN-8 by adding modified identity 

mapping as skip connection or shortcut and dice loss 

function to overcome unbalance pixels between 

exudates and background. The advantage of using the 

FCN-8 architecture with shortcuts is to obtain 

effective features simultaneously. Shortcuts can 

continue features in the previous convolution process 

so as to reduce computation time during training and 

improve segmentation performance. The proposed 

shortcut consists of one convolutional layer and batch 

normalization. Our proposed architecture consisting 

of a combination of FCN-8 and shortcuts, with a dice 

loss minimization function, will be compared with 

state-of-the-art deep learning methods. 

This paper is structured as follows. The 

introduction, objective, and related work are 

described in section 1. Section 2 provides material 

and a proposed methodology for optic disc removal 

and exudate segmentation. Section 3 describes the 

experiments and analyzes the segmentation results. 

Section 4 provides conclusion and future work. 

2. Material and methodology 

This study conducted exudate segmentation using 

the Indian diabetic retinopathy image dataset 

(IDRID) dataset. The detection and removal of the 

optic disc was carried out first because of the  

 
Table 1. Alexnet architecture. 

Name Filter / 

Channel 

Stride / 

Padding 

Output 

Input - / 3 - 227 × 227
× 3 

Conv 11 × 11 / 

96 

4 / 0 55 × 55
× 96 

Conv 5 × 5 / 256 1 / 2 27 × 27
× 256 

Conv 3 × 3 / 384 1 / 1 13 × 13
× 384 

Conv 3 × 3 / 384 1 / 1 13 × 13
× 384 

Conv 3 × 3 / 256 1 / 1 13 × 13
× 256 

FC6 - / 4096 - 1 × 1
× 4096 

FC7 - / 4096 - 1 × 1
× 4096 

FC8 - / 2 - 1 × 1 × 2 

Softmax - - 1 × 1 × 2 

similarity of the intensity values between the optic 

disc and exudates. The stages in this research are 

detection and erasing of the optic disc using faster R-

CNN and Alexnet, enhancement, cropping, patching, 

training using FCN-8 modification, and testing. The 

flow chart of this research is shown in Fig. 1. 

2.1 Dataset 

IDRID dataset is obtained from eye clinic in 

Nanded, India. IDRID dataset consists of 3 sub parts 

namely disease grading, segmentation and 

localization [5] [36]. In the segmentation section, 

IDRID is divided into training and testing images, 

each with 54 images and 27 images with ground truth. 

Each ground truth has been validated by two retinal 

specialists, and created manually by graduate 

students using the ascis software. The image was 

taken using a Kowa VX-10a digital fundus camera 

with 50 FOV with the size of 4288 x 2848. 

2.2 Optic disc removing 

Detection and erasing of the optic disc is carried 

out due to the similarity of color and intensity values 

with exudates. Optic disc detection was carried out 

using faster R-CNN [37] and Alexnet [38] 

architecture. 

2.2.1. Alexnet architecture 

Proposed by Alex Krizhevsky et al [38]. Alexnet 

has 5 convolution layers for feature extraction, 3 

pooling layers for downsampling and 3 fully 

connected layers. The Alexnet architecture on the last 

layer, which is fully connected, divides classes into 

two, namely optic disc and non-optic disc. Alexnet 

has 2 dropout layers for regularization, which can 

reduce overfitting. Alexnet won the 2012 imagenet 

large scale visual recognition (ILSVRC) challenge 

with an error rate of up to 15.3 % [39]. Detail about 

Alexnet is shown in Table 1. 

2.2.2. Faster R-CNN 

Ren et al. [37] suggested faster R-CNN with two 

stages, namely extraction and training region using a 

region proposal network (RPN) and classification 

based on the features obtained. Faster R-CNN 

network training uses RPN, which was originally 

obtained from fast R-CNN and has been updated. 

RPN consists of two networks, the first using 

Alexnet and the second consisting of a convolutional 

layer for feature extraction, regression box 

convolution, and smooth box regression output layer. 

RPN training aims to minimize the total loss function. 

Total loss function as in Eq. (1). 
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Figure. 1 Proposed method design 

 

𝐿 =
1

𝑛𝑐
�̂�𝑐 + 𝜆

1

𝑛𝑟𝑒𝑔
�̂�𝑟𝑒𝑔, (1) 

 

where 𝑛𝑐  is the size of mini-batch, 𝑛𝑟𝑒𝑔  is the 

number of anchor location, 𝜆  balancing parameter 

notation. �̂�𝑐  function is a loss in the classification 

stage, consisting of object class and non-object class, 

with the Eq. (2). 

 

�̂�𝑐 = ∑ 𝐿𝑐
𝑀
𝑘 (𝑟𝑘, 𝑟𝑘

∗), (2) 

 

where 𝑟𝑘 is the prediction probability of k-th anchor 

in the mini batch, 𝑟𝑘
∗ the ground truth of the anchor. 

Loss regulation function �̂�𝑟𝑒𝑔  is a function that 

calculates the value of the object's limiting box object, 

namely ground truth  𝑡𝑘 with limiting box prediction 

𝑡𝑘
∗ . The regularization function is written as in Eq. (3). 

 

�̂�𝑟𝑒𝑔 = ∑ 𝑟𝑘
∗𝑀

𝑘 𝑅(𝑡𝑘 − 𝑡𝑘
∗) (3) 

2.3 Enhancement 

Enhancement is used to increase the contrast of 

the image. Enhancement on training and testing 

images uses contrast limited adaptive histogram 

equalization (CLAHE) by applying it to each red, 

green, and blue (RGB) channels and then returning it 

to the RGB image. 

2.4 Patching 

Before entering the patching stage, the cropping 

stage is done to reduce the background area. 

Cropping used the size of 2848 x 3420, to get the 

overall retinal area. 

Deep learning architecture is a learning method 

that requires a lot of training images. Therefore, the 

use of patching can maintain the quality of the image. 

This is essential because exudates lesions vary in size 

and spreads in the image. The use of patching can 

also increase the amount of training data, so that the 

architecture learning is more relevant. Patching used 

the size of 256 x 256, because that size is enough to 

detect exudates. The patching image is shown in Fig. 

2. 

2.5 Proposed architecture 

2.5.1. FCN 

In semantic segmentation, to get good results, it 

is very important to use low level details when 

maintaining high level semantic segmentation 

information. Training using deep learning is also very 

difficult, especially when the amount of training data 

is very limited and the computation time is quite long 

 

  
Figure. 1 Exudate patching 
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when the network architecture is too deep. One way 

is to apply augmentation data extensively as 

previously applied to the FCN architecture [22]. FCN 

restores the image to full size simultaneously during 

upsampling, this makes the FCN architecture 

effective and fast in the training process. 

2.5.2. Shortcut/Identity mapping 

Deeper network architecture will affect the 

performance of the network architecture. But getting 

deeper into a network architecture can lead to feature 

degradation. To overcome this problem, Kaiming et 

al., proposed an identity mapping or shortcut to 

overcome the problem of feature degradation, when 

features pass through the convolution layer. Shortcut 

layers can propagate directly from one unit to another. 

Shortcuts achieve fast error reduction and with lowest 

training during training [40]. Shortcut is also 

sufficient to address feature degradation issue [41]. 

Shortcuts are used in conjunction with unit residuals, 

with each unit being derived in Eqs. (4) and (5). 

 

𝑦𝑙 = ℎ(𝑥𝑙) + ℱ(𝑥𝑙𝑊𝑙), (4) 

 

𝑥𝑙+1 = 𝑅(𝑦𝑙). (5) 

 

Shortcut function and residual function are 

denoted as ℎ(𝑥𝑙) and ℱ(. ). WIth 𝑥𝑙 and 𝑥𝑙+1 each as 

input and output in the layer 𝑙  unit. Activation 

function is defined as  𝑅(𝑦𝑙). Plain FCN-8 consists of 

a stack of convolution and relu layers followed by 

maxpooling. The FCN-8 modification uses a shortcut 

consisting of a convolution layer stack and a 

normalization batch shown in Fig. 3. 

 

 
Figure. 2 Building blocks of modified FCN-8 and 

shortcut: (a) plain FCN-8 and (b) modified FCN-8 and 

shortcut 

 

2.5.3. Modified FCN  

FCN-8 has a simple architectural structure thus 

speeding up the computational process during 

training. Shortcuts combine low-level and high-level 

networks that function to forward information so that 

there is no feature degradation to achieve good 

performance. The proposal to combine FCN-8 and 

shortcuts can have two simultaneous advantages to 

improve architectural performance in semantic 

segmentation. Shortcuts are used in conjunction with 

FCN-8 units, with each unit being derived in Eqs. (6) 

and (7). 

 

𝑦𝑙 = 𝑓𝑙({𝑥𝑙, 𝑤𝑙}) + ℎ𝑙(𝑥𝑙 , 𝑤𝑙), (6) 

 

𝑥𝑙+1 = 𝑀𝑥(𝑦𝑙), (7) 

 

The input and output of the encoder block are 

denoted by 𝑥𝑙 and 𝑥𝑙+1, 𝑤𝑙 and 𝑓𝑙(. ) are weights and 

functions in plain FCN-8. Shortcuts and max pooling 

functions are denoted by  ℎ𝑙(. ) and 𝑀𝑥(𝑦𝑙). 
The modified architecture of FCN-8 and set 

shortcut uses 3 levels for exudates segmentation. The 

first level is the encoder level, which consists of plain 

FCN-8 and shortcuts for feature extraction. The 

second level is a bridge to connect the encoder and 

upsampling. The third level is an upsampling block 

that functions to restore the image to its original size. 

Upsampling has 3 blocks in which the first and 

second blocks use size 2 stride and the third block 

uses size 8 stride. Size 8 stride used in the third block 

serves to improve the level of smoothness and detail 

in the output. Convolution details in each block are 

shown in Table 2 and the proposed modified FCN-8 

architecture shown in Fig. 4. 

2.6 Dice loss 

The unbalanced pixel comparison between 

exudate and background causes the use of cross 

entropy alone to be insufficient. Cross entropy is not 

able handle segmentation that has class imbalance, 

because the probability calculated by cross entropy is 

taken from the major class. In this study, the major 

class is the background and the minor class is the hard 

exudates. Instead of using the Cross entropy loss 

function that has been used in several previous 

proposed methods [42, 43], this study uses the dice 

loss function to deal with the imbalance between 

exudate and background. Dice loss is widely used in 

medical images [44] due to its ability to recognize 

minor object classes. The formula for the dice loss is 

explained in Eq. (8). 

 

 
(a)  

 
(b)  
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Table 2. Detail convolution layer in modified FCN-8 

Name Level Convolutional 

Layer 

Stride Filter / Channel Output 

Input - - - - 256 × 256 × 3 

Encoder Plain FCN-8 first block Conv1-1 1 3 × 3 / 64 454 × 454 × 64 

Conv1-2 1 3 × 3 / 64 454 × 454 × 64 

Conv2-1 1 3 × 3 / 128 227×227×128 

Conv2-2 1 3 × 3 / 128 227×227×128 

Conv3-1 1 3 × 3 / 256 113×113×256 

Conv3-2 1 3 × 3 / 256 113×113×256 

Conv3-3 1 3 × 3 / 256 113×113×256 

Shortcut first block Conv1-1 1 3 × 3 / 64 454×454×64 

Conv1-2 2 3 × 3 / 128 227×227×128 

Conv1-3 2 3 × 3 / 256 113×113×256 

Plain FCN-8 second block Conv4-1 1 3 × 3 / 512 56×56×512 

Conv4-2 1 3 × 3 / 512 56×56×512 

Conv4-3 1 3 × 3 / 512 56×56×512 

Convscore 1 1 1 × 1 / 2 56×56×2 

Shortcut second block Conv2-1 1 3 × 3 / 512 56×56×512 

Plain FCN-8 third block Conv5-1 1 3 × 3 / 512 28×28×512 

Conv5-2 1 3 × 3 / 512 28×28×512 

Conv5-3 1 3 × 3 / 512 28×28×512 

Convscore 2 1 1 × 1 / 2 28×28×2 

Shortcut third block Conv3-1 1 3 × 3 / 512 28×28×512 

Bridge Bridge block ConvFC6 1 7 × 7 / 4096 8×8×4096 

ConvFC7 1 1 × 1 / 4096 8×8×4096 

Convscore 3 1 1 × 1 / 2 8×8×2 

Upsampling Upsampling first block De-Conv 1 2 4 × 4 / 2 18×18×2 

Upsampling first block De-Conv 2 2 4 × 4 / 2 38×38×2 

Upsampling first block De-Conv 3 8 16 × 16 / 2 312×312×2 

Output - - - - 256×256×2 

 

𝐿𝑜𝑠𝑠 = 1 −
2𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
= 1 −

2∑ 𝑝𝑖𝑔𝑖
𝑁
𝑖

∑ 𝑝𝑖
2𝑁

𝑖 +∑ 𝑔𝑖
2𝑁

𝑖

, (8) 

 

where 𝑇𝑃  is the true positive value, 𝐹𝑁  is false 

negative, and 𝐹𝑃 shows the false positive value. N 

denotes the total number of pixels in the ground truth 

or predicted mask, 𝑝𝑖 is the i-th pixel value from the 

binary segmentation mask, 𝑝𝑖 ∈ [0,1], and 𝑔𝑖  is the 

𝑖-th pixel value from the ground truth binary mask. 

Dice loss equation can be derived by the 𝑗-th pixel 

from the prediction. With the gradient resulted in Eq. 

(9). 

 

𝜕𝐷

𝜕𝑝𝑗
= 2 [

𝑔𝑗(∑ 𝑝𝑖
2+∑ 𝑔𝑖

2𝑁
𝑖

𝑁
𝑖 )−2𝑝𝑗(∑ 𝑝𝑖𝑔𝑖

𝑁
𝑖 )

(∑ 𝑝𝑖
2𝑁

𝑖 +∑ 𝑔𝑖
2𝑁

𝑖 )
2 ]. (9) 

 

Using dice loss does not require weighting to 

balance the exudate and background pixels. 

3 Experiments and analysis 

To evaluate the performance of the proposed 

method, experiments using the IDRID dataset were 

conducted and compared with several methods. 

The first step was to remove the area from the 

optic disc because of the similar intensity between the 

exudates and the background. Faster R-CNN and 

Alexnet architecture were used for detection of optic 

disc area. Faster R-CNN consists of pre-trained CNN 

and RPN.  

The training images consist of 100 images taken 

from the disease grading data in the IDRID dataset. 

The results of the faster R-CNN model were then 

tested on training images and testing on sub-data 

segmentation. The combination of Faster R-CNN and 

Alexnet detected optic disc by generating bounding 
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Figure. 3 Proposed modified FCN-8 and shortcut 

 

box and score of confidence on the area of the optic 

disc. The optic disc was removed by using a circle 

area inside the box obtained from Faster RCNN. The 

result from detecting and removing optic disc is 

shown in Fig. 5. 

The combination of faster RCNN and Alexnet 

can detect all optic discs in the data. The amount of 

training and testing data for the optic disc 

segmentation consists of 45 and 27 images, 

respectively, which will be used as training and 

testing data for exudate segmentation. CLAHE was 

used for image enhancement to increase contrast 

 

 
(a)  

 
(b)  

Figure. 4 Visualization optic disc removing: (a) a result 

from Faster RCNN and (b) a result after removing OD 

 

value for training and testing data. Next, the image 

was cropped only for the retinal area to reduce the 

background area and resized to 3584 × 3072. To 

increase the number of training images used during 

modified FCN-8 training, images were patched to a 

size of 256 × 256. The input training images were 

divided into 90% train set and 10 % validation set. 

3.1 Parameter and setting 

The modified FNC-8 architecture has several 

parameters. The architectural parameters use the 

stochastic gradient descent with momentum (SGDM) 

algorithm, with a learning rate of 0.05 and 

regularization 0.0001, mini batch size of 1, verbose 

frequency of 20, gradient threshold of 0.05 and 

maximum epoch of 50. The momentum size used is 

0.9, the training data is divided into 90% train and 

10 % as validation. All networks used for comparison 

with the proposed method used the same parameters. 
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For each testing image, after enhancing using 

CLAHE, cropping was done only on the retina area 

to reduce the background area. 

3.2 Evaluation metrics 

In this study, three measurements were used, 

namely sensitivity, specificity, and accuracy to 

measure the performance of the proposed 

architecture. Evaluation metrics are used to 

determine the success of detection of exudates lesion 

and background. Sensitivity (SE), specificity (SPE), 

and accuracy (AC) are measured based on a 

confusion matrix containing true positive (TP), true 

negative (TN), false positive (FP), and false negative 

(FN). The calculations of the three metrics are given 

in Eqs. (10), (11), and (12). 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (10) 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (11) 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (12) 

3.3 Comparison with baseline network 

In this section, we evaluate the performance of 

the proposed architecture in comparison with the 

baseline network. Baseline architectures include 

autoencoder, U-Net, and FCN. The FCNs used are 

FCN types 32, 16 and 8. All methods are described 

below. 

Autoencoder [23] introduces an encoder and 

decoder to segment binary images. There are 4 

encoder blocks, 1 bridge block and 4 decoder blocks. 

The block encoder is for downsampling and feature 

extraction, whereas the bridge is to connect the block 

encoder and decoder. The decoder block is used to 

restore the image back to its original size. 

Autoencoder can also be applied to visual geometry 

group (VGG) by removing the fully connected layer 

for classification and replacing it with decoder blocks 

to restore the image to its original size and pixel 

classification layer is to classify object and 

background pixels. 

U-Net [24] consists of encoder, bridge, and 

decoder blocks. The difference between autoencoder 

and U-Net is that there is a skip connection layer 

block that transmits information directly from the 

encoder block to the decoder, so that the decoder 

block is richer in information and helps to restore 

complete spatial information from the encoder block. 

FCN [22] uses the convolution layer to perform 

downsampling and passes information to the 

upsampling layer. The upsampling layer on FCN type 

32 immediately returns the image at the same size so 

that it can speed up the computational process during 

training, but it reduces the detail in the object 

detection process. Therefore, 32 pixel stride can limit 

the size and detail in the upsampling of the output. To 

overcome this problem, The FCN-32 architecture is 

enhanced by adding the 2x upsampled prediction 

layer with the output of fourth pooling layer to get a 

finer prediction layer and then 16x upsampling to 

obtain the FCN-16 architecture. Furthermore, the 

finer prediction layer is upsampled 2x and added with 

output of the third pooling layer, and followed by 

upsampling 8x to obtain the FCN-8 architecture. 

Table 3 shows the comparison of the experiments 

using measurements of sensitivity, specificity and 

accuracy. The sensitivity result of the proposed 

method is 81.7 % higher than all the methods. The 

highest specificity value was obtained using the VGG 

autoencoder method of 99.99 % and the highest 

accuracy was obtained using the autoencoder method 

of 98.93 %, but our proposed method is still not too 

far away in terms of specificity and accuracy, 

reaching 98.87 % and 98.13 % respectively compared 

to the VGG autoencoder method. The sensitivity 

value, which reached 81.7 %, indicates that the 

proposed architecture can detect exudates lesion well. 

Fig. 6 shows the results of exudate segmentation 

from Autoencoder, VGG autoencoder, U-Net, FCN-

32, FCN-16, FCN-8, and the proposed method. It can 

be seen that the proposed method shows a better 

exudate detection rate with less noise compared to 

FCN-32, FCN-16, and FCN-8, as indicated by the 

blue box that has less area. The proposed method also 

detects the exudates area better than autoencoder, 

VGG autoencoder and U-Net, as indicated by the 

yellow box. The FCN-32, FCN-16, and FCN-8 

methods were also able to detect the exudate area 

well, but the resulting segmentation results tend to be 

rounded, as indicated by the yellow box. 

This study also presents a performance 

 
Table 2. The evaluation of the baseline networks.  

Method Performance (%) 

AC SE SPE 

AutoEncoder 98.93 19.14 99.98 

VGGAutoEncoder 98.90 19.88 99.99 

U-Net 97.11 75.99 97.50 

FCN-32 98.52 68.25 98.86 

FCN-16 98.08 76.96 98.32 

FCN-8 98.90 75.26 99.14 

Proposed Method 98.18 81.67 98.37 
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Figure. 6 Comparison of maximum, minimum, and average of sensitivity in different architecture on IDRID dataset 
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(b)  

 
(c)  

 
(d)  
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Figure. 5 Exudate segmentation results: (a) input image, (b) corresponding ground truth, (c) FCN-8, (d) FCN-16, (e) 

FCN-32, (f) U-Net, (g) AutoEncoder, (h) VGGAutoEncoder, and (i) proposed method 
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comparison chart based on descriptive statistics, such 

as the maximum, minimum, and average values of 

sensitivity values. It can be seen in Fig. 7 that the 

proposed method has a fairly high maximum value 

compared to other architectures. The minimum value 

of the proposed method is lower than the FCN-16 

architecture, however the maximum and average 

value of the proposed method is still higher than all 

architectures. The proposed method is superior to all 

architectures. This means that the proposed method 

can maintain its performance to detect exudates, as 

can be seen from the high average sensitivity value of 

81.7 %. 

3.4 Comparison with existing method 

The test results were compared with several state 

of the art methods to perform binary segmentation on 

exudates lesion. The state of the art methods are 

briefly described as follows. 

Benzamin et al [18] used 8 convolutional layers 

to perform down sampling and feature extraction, 3 

layers fully connected with the last layer to perform 

pixel hard exudate classification. 

Xue et al [19] used a convolutional network 

called a dynamic membrane system with a hybrid 

structure. The hybrid structure consists of dynamic 

and communication channels between cells. 

Table 4 shows the results of the comparison of the 

proposed method of segmentation of exudates lesion 

with two state of the art methods on the IDRID 

dataset. The results of the performance comparison 

are measured using 3 measurements, namely 

sensitivity, specificity, and accuracy. Compare to the 

Benzamin et al. [18] method and the Xue et al. [19] 

method, the sensitivity result of the proposed method 

reached the highest value of 81.7 %. While the 

highest value of specificity and accuracy was 

obtained by the method proposed by Xue et al. 99.6 % 

and 99.2 % respectively, our proposed method is not 

too far off for the measurement of specificity and 

accuracy compared Xue et al. method, which are 

98.2 % and 98.4 %, respectively. 

4 Conclusion 

In this study, we proposed a modification of 

FCN-8 by adding a shortcut in the form of a modified  

 
Table 3. The evaluation of the existing method.  

Method Performance (%) 

AC SE SPE 

Benzamin et al.[18] 96.6 41.4 98.3 

Xue et al. [19] 99.2 77.9 99.6 

Proposed method 98.2 81.7 98.4 

identity mapping to continue features in semantic 

segmentation. We also proposed faster R-CNN using 

Alexnet network to detect optical disc area. The 

experimental results using the IDRID dataset show 

that our proposed method achieved a competitive 

performance compared to the state of the art methods, 

with the sensitivity value of 81.7 %. 

For further research, we plan to develop a diabetic 

retinopathy classification system based on features 

extracted from the developed semantic segmentation 

model for blood vessels, microaneurysms, 

hemorrhages, and exudates, in order to obtain an 

integrated system of segmentation and classification 

of diabetic retinopathy lesions. 
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