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Abstract: Breast cancer classification through Gene expression analysis is very challenging due to the large 

variations and missing values problem. However, the traditional normalization and missing value imputation (MVI) 

methods perform poorly in the occurrence of significant batch effects, heterogeneity, artefacts, and low resolution. 

Therefore, an efficient pre-processing technique is presented in this paper using Weighted Fuzzy Score (WFS) and 

Bayesian Independent Principal Component Analysis (BIPCA) for upholding the quality of the expression analysis. 

In this proposed WFS-BIPCA technique, the large variations are reduced through sustainable transformations by 

WFS. BIPCA impute replaces the missing expression values without degrading the quality, consistency, and 

coherence of the output results without repeating all microarray experiments. The proposed WFS-BIPCA technique 

is evaluated with different classifiers over breast cancer gene expression datasets from Mendeley Data. Results 

showed that WFS-BIPCA with Support Vector Machine (SVM) classifier achieved high accuracy of 92.36%, 

91.86%, 90.02% and 93.89% for BC-TCGA, GSE2034, GSE25066 and Simulation Datasets, respectively. Similarly, 

it achieved 91.66%,  96.15%, 89.32%, and 95.36% precision, 93.94%, 92.22%, 86.25%, and 97.48% recall, 92.79%, 

94.14%, 87.76%, and 96.41% f-measure values and low processing time of 1.98, 0.96, 3.56 and 0.55 seconds for 

BC-TCGA, GSE2034, GSE25066 and Simulation Datasets, respectively. 

Keywords: Gene expression analysis, Breast cancer, Normalization, Missing value imputation, Weighted fuzzy 

score, Bayesian independent principal component analysis. 

 

 

1. Introduction 

Microarray technology has developed into one 

of the most valuable tools in genetic and genome 

research studies [1]. Gene expression profiles 

produced using these tools are utilized in genetic 

analyses which are often collected from the gene 

clusters exhibiting variations or noises in specified 

expression values that include the gene cell status, 

growth stages, disease types, disease stages and 

response to certain interventions or diagnosis 

methods [2, 3]. After the collection process, the 

gathered data are mined for identifying the 

appropriate patterns of such variations relevant to 

the considered hypothesis under the specified time. 

Another major problem is the missing values in the 

gene expression data which has a similar negative 

impact on the downstream analysis [4]. Less than 

1% of missing values is often inconsequential to the 

overall analysis and 1-5% of missing values can be 

easily controlled. Since, 90% of the gene expression 

data contains at least one missing value, up to 10% 

of missing values in expression data can be the 

maximum tolerable limit [5]. However, some data 

suffers from more than the tolerable rate and hence 

the quality of analysis becomes questionable. It is 

practically not feasible to achieve effective analysis 

without suitable normalization and missing value 

imputation techniques for the gene expression data. 

The normalization techniques must be adequate 

to tackle all forms of noise and variations in the 

gene expression data [6]. The variations can occur 

due to various factors and processes. Firstly, the 
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process of segregation and quantification of the 

Ribonucleic Acid (RNA) from genes might cause 

inaccuracies in the final measurements due to noise-

related errors which are implied during the longer 

processing stages. Secondly, the changes in the 

experimental environment and settings including the 

system biases might lead to such variations in the 

gene expression data during the measurements in 

terms of batch effects [7]. Finally, the external 

factors including the manual errors also lead to 

variations in the gene expression measurements. All 

these factors must be considered by the 

normalization technique and it must provide 

effective recovery of meaningful biological 

information from the data without impacting non-

noisy elements as well as eradicating the variations. 

Similar to the variations, the missing value 

problem occurs due to artefacts in microarray, noise 

or variations, image corruption, insufficient 

resolution, logical errors, hybridizing botches, 

negative feedback intensity of the backgrounds, etc. 

The gene spot having negative background intensity 

is also termed as missing value since the value 

completely mismatches with the expected values. 

This missing value problem will lead to 

inconsequential or wrong measurements, negatively 

impact the feature selection and classification 

processes. The algorithms such as Support Vector 

Machines (SVM), Singular Value Decomposition 

(SVD) [8], principal component analysis (PCA) [9] 

and independent component analysis (ICA) have 

been greatly affected by the missing value problem 

when employed in gene expression analysis process. 

The imputation of these missing values is performed 

by gathering the probability of informative genes 

and it is vital in ensuring the quality of the gene 

analysis at a low cost. It will also help detect the 

genes of specified targets for a particular class. 

Hence the MVI is very important to reduce the 

repeated experiments in trial-and-error methods 

performed to determine probable values for these 

missing elements. 

To mitigate the performance degradation 

resulting from the expression data variations and 

missing values problems, previous studies suggested 

many pre-processing techniques. However, the sub-

par performances of those methods have increased 

the need for efficient normalization and MVI 

methods. This paper presents an efficient pre-

processing technique by proposing Weighted Fuzzy 

Score (WFS) and Bayesian Independent Principal 

Component Analysis (BIPCA). WFS based 

normalization uses weighted fuzzy scores to 

transform the gene expression data values without 

large variations. BIPCA based MVI is presented by 

combining the Bayesian theory with a hybrid 

analysis model of PCA and ICA to replace the 

missing values through the probability of 

informative genes. Evaluation of the proposed 

technique is performed using public gene expression 

datasets from Mendeley Data for breast cancer. The 

remainder of this article is structured as follows: 

related literature studies in Section 2, proposed pre-

processing technique in Section 3, their evaluations 

and results in Section 4 and conclusions in Section 5. 

2. Related works 

Recent studies have presented various 

techniques for pre-processing with effective 

normalization and imputation processes. Yasrebi 

[10] used Z-score normalization techniques in breast 

cancer gene data for assessing the survival rate and 

risks. This standard method achieved higher 

performance improvement with better similarity 

values. However, the standard z-score normalization 

has limitations of assuming a normal distribution 

leading to unequal and skewed origin gene lines. 

Zhao et al. [11] utilized Quantile normalization for 

perfectly normalizing gene-expression datasets. 

However, the quantile normalization has drawbacks 

of a large number of undetected genes due to 

inconsistent median across the gene cells. Belorkar 

and Wong [12] developed Gene Fuzzy Score (GFS) 

as a pre-processing transformation method for the 

normalization task. GFS used the fuzzy score 

derived from rank values of gene expression and has 

reduced the batch effects and also increases the 

interpretability of the transformed outcomes without 

any negative impact on the sample size variation. 

Tang et al. [13] developed Bayesian Normalization 

(bayNorm) for normalization of single-cell RNA-

sequencing data. This model preserved low false 

positive rates, but reduced AUC significantly. 

Borella et al. [14] proposed power-law Pareto 

distribution parameter estimate based normalization 

(PsiNorm). This model provided good trade-off 

between accuracy and scalability and also does not 

need a reference to normalize the new out-of-sample 

data. Though the performance is improved, there is a 

small increase in computational time. 

De Silva and Perera [15] developed 

Evolutionary k-nearest neighbor (E-KNN) 

imputation for missing value problems in gene 

expression data. This E-KNN impute is an improved 

model of KNN impute in which the genetic 

algorithm is used to select the similarity matrix and 

k-parameter of the KNN impute algorithm. This 

improved model has high efficiency in solving the 

datasets with higher missing rates. Wang et al. [16] 
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resolved the missing value problem using Elastic-net 

Regularized Local Least Squares imputation (E-

RLLSI) models of Least Squares imputation 

techniques. This technique provided highly accurate 

missing values imputation which is justified by the 

low RMSE values and the lesser time complexity. 

However, this technique has not considered global 

and local structural information in estimating the 

missing values. Zhu et al. [17] proposed an 

ensemble method of single imputation models for 

MVI. In this ensemble, bootstrapping is applied to 

predict the missing values with the predictions are 

weighted optimally using minimization of the cost 

function for reduced imputation error. This 

ensemble included multiple KNN related imputation 

models which provide higher imputation 

performance. Shahjaman et al. [18] developed 

robust iterative MVI approach called rMisbeta based 

on the minimum beta divergence method. This 

method reduced the misclassification error rate and 

computation time while also improved the accuracy, 

sensitivity and specificity. Dubey and Rasool [19] 

proposed an MVI approach considering the local 

similarity structure that predicts the missing data 

using similarity-based spectral clustering and 

weighted nearest neighbour (SSC-WNN). This 

method predicted the missing values accurately even 

when the dataset has varying dimensionality and 

characteristics. But the pattern of MVI based on 

neighbour similarity does not utilize the missing 

read counts. 

These literature methods are helpful in 

improving the breast cancer detection performance 

of the classifier models such as SVM, Naïve Bayes, 

Decision tree, Artificial Neural Networks (ANN) 

[20], Random Forests (RF) [21], Extreme Learning 

Machine (ELM) [22] and Deep learning 

Convolutional Neural Networks (CNN) [23]. 

From the literature studies, it is understood that 

the existing normalization methods suffer from the 

limitations of random assumptions and inconsistent 

threshold determinations. Likewise, the imputation 

methods have limitations of handling higher missing 

rates due to the reduced computation abilities. 

Considering these limitations, the proposed 

approach developed two models for normalization 

and MVI that perform better than the existing 

methods. 

3. Methodology 

The proposed pre-processing method has two 

major steps: WFS and BIPCA. The breast cancer 

gene expression datasets from Mendeley Data are 

used for evaluations. 

Table 1. Distribution of breast cancer gene expression 

datasets 

Datasets Number 

of genes 

Number of samples 

Total Class 1 Class 2 

BC-TCGA 17,814 590 61 529 

GSE2034 12,634 286 179 107 

GSE25066 12,634 492 100 392 

Simulation 

Data 

10,000 200 100 100 

3.1 Datasets 

Publically available breast cancer gene 

expressions are obtained from Mendeley Data [24] 

(www.data.mendeley.com/datasets/v3cc2p38hb/1).  

The main dataset contains four sub-datasets 

namely, BC-TCGA, GSE2034, GSE25066 and 

Simulation Data. BC-TCGA consists of 17,814 

genes and 590 samples (including 61 normal tissue 

samples and 529 breast cancer tissue samples). 

GSE2034 includes 12,634 genes and 286 breast 

cancer samples (including 107 recurrence tumor 

samples and 179 no recurrence samples). GSE25066 

has 492 breast cancer samples available (including 

100 pathologic complete response (PCR) samples 

and 392 residual diseases (RD) samples) and 12,634 

genes. Simulation Data includes 100 positive 

samples and 100 negative samples with 10,000 

features, and each feature in SData follows normal 

distributions: 𝑁(0, 0.1)  and 𝑁(0 ±  𝑟, 0.1)  for 

positive and negative samples, respectively, where 

𝑟 ∈  [−0.125, 0.125. The collected datasets contain 

independent pairs of micro-array expressions. Table 

1 shows the description of the evaluation datasets. 

All the datasets were split into training and testing 

samples in the ratio of 7:3, i.e. 70% training samples 

and 30% testing samples. 

3.2 Weighted fuzzy score based normalization 

The proposed WFS normalization process is 

developed by integrating the Minkowski Weighted 

Score Functions to the gene fuzzy score 

computation [25]. Minkowski Score is a natural 

generalization of the expected score functions. The 

weighted function of this score is used to assign a 

better score for the fuzzy values to migrate them 

farther from the negative fuzzy values.  

In WFS, the raw gene expression matrix of each 

gene expression profile is transformed based on the 

rank values of the genes within each microarray. As 

in GFS, this method uses two quantile thresholds 

namely 𝜃1  and 𝜃2  for assigning a fuzzy score to 

each gene. The genes with ranks below the 𝜃2 

threshold values are reduced to zero scores while the 

genes with values above the 𝜃1 threshold values are 

http://www.data.mendeley.com/datasets/v3cc2p38hb/1
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assigned a score of 1. The intermediate valued genes 

are assigned a score between 0 and 1 based on their 

rank. Let 𝑟(𝑔𝑖 , 𝑝𝑗)  denote the rank of gene 

expression of a gene 𝑔𝑖  inpatient 𝑝𝑗  and 𝑞(𝑝𝑗 , 𝜃) 

denote the rank corresponding to the upper quantile 

threshold 𝜃1  of gene expression inpatient 𝑝𝑗 . The 

fuzzy score 𝑠(𝑔𝑖, 𝑝𝑗) assigned to a gene 𝑔𝑖 in patient 

𝑝𝑗 can be computed as 

 

𝑠(𝑔𝑖 , 𝑝𝑗) =

{
 

 
1,         𝑖𝑓 𝑞(𝑝𝑗 , 𝜃1) < 𝑟(𝑔𝑖 , 𝑝𝑗)

𝑟(𝑔𝑖,𝑝𝑗)−𝑞(𝑝𝑗,𝜃2)

𝑞(𝑝𝑗,𝜃1)−𝑞(𝑝𝑗,𝜃2)
, 𝑖𝑓 𝑞(𝑝𝑗 , 𝜃1) > 𝑟(𝑔𝑖, 𝑝𝑗) ≥ 𝑞(𝑝𝑗 , 𝜃2)

0,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

(1) 

 

This equation denotes the fuzzy values assigned 

to the gene-based on the rank of the gene expression 

of a gene. However, as described above, this score 

function can also result in zero fuzzy values when 

the noise in the genes is very high. In such cases, the 

normalized values will be nearer to zero and do not 

offer much information on the classification of 

breast cancer genes. So to overcome this limitation, 

the Minkowski Weighted Score Function is added. 

Minkowski Score is computed as the expected score 

function of these fuzzy values. It is achieved by 

applying natural generalization. Let 𝐴 = 𝑠(𝑔𝐴, 𝑝𝐴) 
be a fuzzy value of a gene 𝑔𝐴 in patient 𝑝𝐴 and rank 

𝑟(𝑔𝐴, 𝑝𝐴) . The Minkowski Score function 𝛿𝐴  for 

this gene is given as 
 

𝛿𝐴 =
𝑡𝐴−𝑓𝐴+1

2
                           (2) 

 

𝑡𝐴 denote the membership grade of gene A while 

𝑓𝐴 denote the non-membership grade of gene A. 

To apply the Minkowski weighted score 

function, the non-decreasing property of the general 

Minkowski score function must be proved 

concerning the membership grade values. Let 𝐴 =
(𝑡𝐴, 𝑓𝐴) and 𝐵 = (𝑡𝐵, 𝑓𝐵) denote two fuzzy values of 

genes 𝑔𝐴  and 𝑔𝐵  respectively. The normalized 

Minkowski distance can be defined as 
 

𝐷𝑛(𝐴, 𝐵) = (
|𝑡𝐴−𝑡𝐵|

𝑛|𝑓𝐴−𝑓𝐵|
𝑛

2
)
1/𝑛

           (3) 

 

Applying the normalized Minkowski distance 

between A and transformed 𝐴 denoted as 𝐴∗,  
 

𝐷𝑛(𝐴, 𝐴
∗) = (

𝑡𝐴
𝑛+|1−𝑓𝐴|

𝑛

2
)
1/𝑛

= 𝑠𝑛(𝐴)       (4) 

 

when applying 𝑛 = 1,  

𝑠1(𝐴) =
𝑡𝐴−𝑓𝐴+1

2
= 𝛿𝐴                   (5) 

 

when 𝑛 ≥ 1, 

 

𝑠𝑛(𝐴) = 𝑠𝑛(𝑡𝐴, 𝑓𝐴) = (
𝑡𝐴
𝑛+|1−𝑓𝐴|

𝑛

2
)
1/𝑛

       (6) 

 

Applying partial derivative function of 𝑠𝑛(𝐴) , 

we get 

 

𝜕𝑠𝑛

𝜕𝑡𝐴
=

𝑡𝐴
𝑛−1

2𝑛
(
𝑡𝐴
𝑛+|1−𝑓𝐴|

𝑛

2
)

1−𝑛

𝑛
≥ 0             (7) 

 

This concludes that the Minkowski score 

function 𝑠𝑛(𝑡𝐴, 𝑓𝐴) is non-decreasing concerning 𝑡𝐴. 

Now applying the weights to the Minkowski 

score function, the generality is gained with 

effective preservation of the important gene 

properties. Minkowski weight function is given by 

 

𝑠𝑛
𝑤(𝐴) =

1

𝑛
((1 − 𝑤)𝑡𝐴

𝑛 +𝑤|1 − 𝑓𝐴|
𝑛)

1−𝑛

𝑛    (8) 

 

If 𝑛 = 1 , the Eq. (8) becomes Hamming 

weighted score function of the fuzzy score, i.e. 
 

𝑠1
𝑤(𝐴) = ((1 − 𝑤)𝑡𝐴 +𝑤|1 − 𝑓𝐴|)          (9) 

 

If 𝑛 = 2 , the Eq. (8) becomes Euclidean 

weighted score function of the fuzzy score, i.e. 
 

𝑠2
𝑤(𝐴) =

1

2
((1 − 𝑤)𝑡𝐴

2 +𝑤|1 − 𝑓𝐴|
2)
−1/2

  (10) 

 

To prove that this Minkowski weighted score 

function is suitable for the normalization process of 

WFS, the partial derivative is obtained to prove that 

it is non-decreasing with respect to 𝑡𝐴. 
 

𝑠𝑛
𝑤(𝐴) = 𝑠𝑛

𝑤(𝑡𝐴, 𝑓𝐴) 

=
1

𝑛
((1 − 𝑤)𝑡𝐴

𝑛 +𝑤|1 − 𝑓𝐴|
𝑛)

1−𝑛

𝑛        (11) 

 

Applying partial derivative, 
 

𝜕𝑠𝑛
𝑤

𝜕𝑡𝐴
 =

1

𝑛
(1 − 𝑤)𝑡𝐴

𝑛−1  

((1 − 𝑤)𝑡𝐴
𝑛 +𝑤|1 − 𝑓𝐴|

𝑛(𝑛−1))
1−𝑛

𝑛 ≥ 0  (12) 

 

This concludes that the proposed WFS using the 

Minkowski weighted fuzzy score function is 

effective in normalizing the gene expression profiles 

of breast cancer datasets. 
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3.3 BIPCA based imputation 

BIPCA impute is formed by integrating the 

Bayesian PCA and ICA methods. The integration of 

these algorithms solves the limitation of BPCA for 

extracting the irrelevant features and linear 

transformation leading to inappropriate imputation. 

Initially, the process is performed similarly to the 

BPCA imputation. Then the ICA is integrated to 

form the BIPCA impute. The BIPCA algorithm 

represents the D-dimensional gene expression 

vectors 𝑌  as a linear combination of 𝐾  with (𝐾 <
𝐷) principal axis vectors 𝛼𝑙 , (1 ≤ 𝑙 ≤ 𝐾) as 
 

𝑦 = ∑ 𝑥𝑙𝛼𝑙 + 𝜀
𝐾
𝑙=1                       (13) 

 

Here 𝑥𝑙  denotes the factor score, 𝛼𝑙  denote the 

principal vector and 𝜀  represent the residual error. 

The principal vectors are attained by calculating the 

eigenvalues and eigenvectors of the covariance 

matrix of the dataset Y. As there are missing values 

in the original matrix Y, the principal vectors are 

divided into two fragments as 𝛼 = (𝛼𝑜𝑏𝑠, 𝛼𝑚𝑖𝑠𝑠) , 

corresponding to the observed value and missing 

value, respectively. Factor scores 𝑥 =
(𝑥1, 𝑥2, … , 𝑥𝑘) are achieved by reducing the residual 

error of the practical value. 
 

𝜀 = ‖𝑦𝑜𝑏𝑠 − 𝛼𝑜𝑏𝑠𝑥‖
2
                    (14) 

 

As the factor scores 𝑥 and residual error 𝜀 follow 

normal distributions, BIPCA utilizes probabilistic 

PCA to estimate the parameters 𝛼 . Along with 𝛼 , 

the values of eigenvalues 𝜇  and eigenvectors 𝜏  are 

obtained simultaneously to form the parameter set 

𝛾 = {𝛼, 𝜇, 𝜏}. The missing values can be estimated 

from this parameter set, but limitations of PCA 

linear transformation leads to inappropriate 

imputation and convergence to local optima. To 

solve these problems, the ICA is integrated which 

reflect the internal structure of the gene expression 

data to reduce noise and missing values.  

The standard BPCA used second-order statistics 

which led to the inappropriate imputation and hence 

the BPICA uses higher-order statistics to recover the 

statistically independent signal from the 

observations of an unknown linear mixture.  

Let 𝑋(𝑛 ×𝑚)  denote the centred data matrix 

formed by principal components and 𝐶(𝑛 × 𝑚) be 

the matrix containing the independent components. 

BIPCA problem is reduced by using 𝐺(𝑛 × 𝑛) 
 

𝑋 = 𝐺𝐶                               (15) 
 

The mixing matrix 𝐺  designates how the 

independent components of 𝐶 are linearly joined to 

build X. It can be rewritten as 
 

𝐺 = 𝑈𝑋                              (16) 
 

Here 𝑈(𝑛 × 𝑛)  denotes the reverse mixing 

matrix that describes the inverse process of mixing 

the independent components. In training BIPCA, it 

is very useful to whiten the data matrix X, i.e., to 

obtain 𝐶𝑜𝑣(𝑋)  =  𝐼 . Therefore, 𝐶𝑜𝑣(𝐺𝐶)  =  𝐼  and 

𝐺𝐺𝑇 = 𝐶𝐶𝑇 = 𝐼 where 𝐼 denote the unit matrix. The 

orthogonality of the matrix also allows some 

parameters to be assessed. If we can rewrite the 

standard PCA matrix, then  
 

𝐿𝑇 = 𝐷−1𝑂𝑇𝑋𝑇                       (17) 
 

Here L is a 𝑛 ×𝑚  matrix whose columns are 

uncorrelated, O is an 𝑛 × 𝑛 orthogonal matrix, and 

D is a 𝑛 × 𝑛 diagonal matrix. Since the columns of 

O are orthonormal, the rows of 𝐿𝑇 are uncorrelated 

and have zero mean. To complete the whitening step, 

we can multiply 𝐿𝑇 by √𝑛 − 1, so that the rows of 

𝐿𝑇  have unit variance. The independent principal 

components obtained in this stage are estimated as 
 

𝐺 = 𝑈𝐿                              (18) 
 

Eq. (14) can be solved easily in BIPCA to find 

the missing values. By utilizing the 𝐺  and factor 

scores 𝑥 and 𝛼𝑚𝑖𝑠𝑠, the missing part of the dataset is 

predicted when there is an ideal error i.e. no residual 

error occurred. 
 

𝑦𝑚𝑖𝑠𝑠 = 𝛼𝑚𝑖𝑠𝑠𝑥. 𝐺                    (19) 
 

These relevant variables should have important 

weights in the loading vectors while other irrelevant 

or noisy variables should have very small weights. 

In this manner, the missing values are imputed. 

3.4 Feature selection and classification 

For feature selection or gene selection, the 

standard approach of mutual information is used. It 

computes the mutual dependence rate between the 

two features and the features with higher mutual 

information scores are used in classification. The 

SVM classifier is one of the most common and 

effective classifiers for categorizing the breast 

cancer gene expression profiles. Multi-class SVM is 

used in this study since the performance accuracy of 

this algorithm is significantly higher than the other 

methods. 
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4. Results and discussion 

The proposed WFS-BIPCA pre-processing 

method is evaluated over the breast cancer datasets 

obtained from the Mendeley data repository [24]. 

The data descriptions are provided in section 3.1. 

The evaluations are conducted using the MATLAB 

tool (R2016b version 9.1). The evaluations are 

conducted in three stages. First, the WFS is 

implemented and compared with existing methods. 

Secondly, the BIPCA impute method is 

implemented and evaluated. Finally, the impact of 

the proposed pre-processing method on the classifier 

performance is evaluated. 

4.1 Evaluation of normalization methods 

The proposed WFS method is evaluated and 

compared with existing z-score normalization [10], 

quantile normalization [11], GFS [12], bayNorm 

[13] and PsiNorm [14]. The comparisons are made 

in terms of the Silhouette score and p-value. Table 2 

shows the obtained results for WFS and other 

normalization methods over the testing datasets. 

From the results obtained in Table 2, it is 

concluded that the proposed WFS has better 

performance than the implemented existing methods. 

For all four parts of the breast cancer dataset, the 

proposed WFS achieved higher values of the 

Silhouette score and p-value. 

In the proposed model, the priors calculated 

within each individual, but across batches. This 

strategy allows for maintaining differences between 

individuals while minimizing batch effects. To 

quantify the result, a ratio is defined between the 

number of genes detected between each pair of 
 

Table 2. Comparison of normalization methods 

Silhouette score 

Method BC-

TCGA 

GSE 

2034 

GSE 

25066 

Simulatio

n Data 

z-score 0.721 0.63 0.75 0.82 

quantile 0.735 0.62 0.7665 0.836 

GFS 0.811 0.75 0.812 0.845 

bayNorm 0.813 0.825 0.8334 0.8588 

PsiNorm 0.8082 0.79 0.8051 0.8367 

WFS 0.8765 0.89 0.886 0.8755 

p-value 

Method BC-

TCGA 

GSE 

2034 

GSE 

25066 

Simulatio

n Data 

z-score 0.685 0.6100 0.689 0.6671 

quantile 0.6675 0.6545 0.670 0.6921 

GFS 0.7241 0.7234 0.7354 0.7345 

bayNorm 0.7667 0.7410 0.7575 0.7456 

PsiNorm 0.7533 0.7352 0.7441 0.7367 

WFS 0.7907 0.7592 0.7963 0.750 

 

 
Figure. 1 Silhouette score of normalization methods 

 

 
Figure. 2 P-values of normalization methods 

 

batches within the same individual and the total 

number of genes. WFS also maintained differences 

between individuals. Efficient normalization and 

batch effect correction is expected to minimize false 

positive rate while maximizing accuracy values. 

Using WFS with the classifier has outperformed 

other methods in terms of correcting batch effects 

while maintaining meaningful biological 

information identified by the significant increase in 

the Silhouette score and p-value. 

Fig. 1 and 2 illustrate the silhouette score and p-

value of the normalization methods. From Figure 1, 

it can be inferred that the proposed WFS 

normalization has achieved 6.83%, 6.35%, 6.5%, 

14.15% and 15.55% higher silhouette scores than 

PsiNorm, bayNorm, GFS, Quantile and Z-score 

methods respectively, for the BC-TCGA dataset. 

Similarly, it has achieved 10%, 6.5%, 14%, 27% 

and 26% higher values for GSE2034 data, 8.09%, 

5.26%, 7.4%, 12% and 13.6% higher values for 

GSE25066 data and 3.88%, 1.67%, 3.05%, 3.95% 

and 5.55% higher silhouette scores for the 

simulation data, respectively than the existing 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

BC-TCGA GSE GSE Simulation
Data

Si
lh

o
u

e
tt

e
 s

co
re

Datasets

z-score quantile GFS

bayNorm PsiNorm WFS

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

BC-TCGA GSE2034 GSE25066 Simulation
Data

p
-v

al
u

e

Datasets

z-score quantile GFS

bayNorm PsiNorm WFS



Received:  December 18, 2021.     Revised: February 14, 2022.                                                                                         86 

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022           DOI: 10.22266/ijies2022.0630.08 

 

PsiNorm, bayNorm, GFS, Quantile and Z-score 

methods. Likewise, in terms of p-value, the 

proposed WFS normalization has achieved 3.74%, 

2.4%, 6.34%, 12.32% and 20.57% higher p-value 

than PsiNorm, bayNorm, GFS, Quantile and Z-score 

methods for the BC-TCGA dataset. It has also 

achieved 2.4%, 1.82%, 3.6%, 10.47% and 14.92% 

higher p-value for GSE2034 data, 5.22%, 3.88%, 

6.09%, 12.63% and 10.7% higher p-value for 

GSE25066 data and 1.33%, 0.44%, 1.55%, 5.79% 

and 8.29% higher p-value for the simulation data, 

respectively than the existing PsiNorm, bayNorm, 

GFS, Quantile and Z-score methods. This 

improvement is attributed to the use of Minkowski 

weight scores for the gene fuzzy functions. 

4.2 Evaluation of MVI methods 

The proposed BIPCA impute method is 

evaluated and compared with existing E-KNN [15], 

E-RLLS [16], Ensemble imputation [17], rMisbeta 

[18] and SSC-WNN [19]. The missing data is 

maintained at high amount of 40% to 50%. The 

comparisons are made in terms of Pearson 

Correlation and p-value. Table 3 shows the obtained 

results for BIPCA and other imputation methods 

over the testing sets of the datasets. 

From the results obtained in Table 3, it is 

concluded that the proposed BIPCA impute method 

has achieved better performance than the 

implemented existing methods. For all four parts of 

the breast cancer dataset, the proposed BIPCA 

achieved higher values of Pearson correlation and p-

value. 

The reason behind it is that as the number of 

components decreases, the participation of relevant 
 

Table 3. Comparison of MVI methods 

Pearson Correlation 

Method BC-

TCGA 

GSE 

2034 

GSE 

25066 

Simulati

on Data 

E-KNN 0.8324 0.8018 0.7345 0.8100 

E-RLLSI  0.8865 0.8032 0.7656 0.8356 

Ensemble  0.8942 0.8675 0.7754 0.8543 

rMisbeta 0.8885 0.8950 0.7816 0.8675 

SSC-WNN 0.8976 0.8992 0.7934 0.8699 

BIPCA 0.9012 0.9147 0.812 0.8813 

p-value 

Method BC-

TCGA 

GSE 

2034 

GSE 

25066 

Simulati

on Data 

E-KNN  0.6545 0.6311 0.6012 0.6574 

E-RLLSI  0.7011 0.6275 0.6363 0.7123 

Ensemble  0.7329 0.6854 0.6901 0.7767 

rMisbeta 0.7654 0.7232 0.7116 0.7876 

SSC-WNN 0.7704 0.7210 0.7194 0.7914 

BIPCA 0.7765 0.7354 0.7325 0.7961 

 
Figure. 3 Pearson correlation of MVI methods 

 

 
Figure. 4 P-values of MVI methods 

 

and irrelevant genes also decreased, causing the 

prediction accuracy to be increased. The proposed 

technique’s performance cannot be worst even if the 

number of components is kept high since the 

weighted function criterion does not allow the 

irrelevant gene to be considered in the imputation 

process. 

Fig. 3 and 4 illustrate the Pearson correlation 

and p-value of the MVI methods. From Fig. 3, it can 

be inferred that the proposed BIPCA impute has 

achieved 0.36%, 1.27%, 0.7%, 1.47% and 6.88% 

higher Pearson correlation than SSC-WNN, 

rMisbeta, Ensemble, RLLS and E-KNN impute 

methods for the BC-TCGA dataset. Similarly, it has 

achieved 1.55%, 1.97%, 4.72%, 11.15% and 11.29% 

higher values for GSE2034 data, 1.78%, 2.96%, 

3.6%, 4.58% and 7.67% higher values for 

GSE25066 data and 1.14%, 1.38%, 2.7%, 4.57% 

and 7.13% higher Pearson correlation for the 

simulation data, respectively than the existing SSC-

WNN, rMisbeta, Ensemble, RLLS and E-KNN 

impute methods. Likewise, in terms of p-value, the 

proposed BIPCA impute has achieved 0.61%, 

1.11%, 4.36%, 7.54% and 12.2% higher p-value 

than SSC-WNN, rMisbeta, Ensemble, RLLS and E-
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KNN impute methods for the BC-TCGA dataset. It 

has also achieved 1.44%, 1.22%, 5%, 10.79% and 

10.43% higher p-value for GSE2034 data, 1.31%, 

2.09%, 4.24%, 9.62% and 13.13% higher p-value 

for GSE25066 data and 0.47%, 0.85%, 2%, 8.38% 

and 13.87% higher p-value for the simulation data, 

respectively than the existing SSC-WNN, rMisbeta, 

Ensemble, RLLS and E-KNN impute methods. This 

better performance of the proposed BIPCA method 

is because of the use of benefits from Bayesian 

models of PCA and ICA in the same model for the 

prediction of missing values. 

4.3 Evaluation of the classification methods 

The proposed WFS-BIPCA pre-processing 

method is implemented with mutual information 

feature selection and Multi-class SVM classifier. To 

evaluate the overall performance achieved by the 

proposed method, the classifier performance is 

evaluated and compared with existing classifier 

models of ANN [20], RF [21], Parallel feature 

selection based ELM (PFS-ELM) [22] and CNN 

[23]. The comparisons are made in terms of 

accuracy, precision, recall, f-measure and processing 

time. Table 4 shows the obtained results for the 

classifier methods over the testing sets of the 

datasets when utilizing the proposed WFS-BIPCA 

method. 

Among the classifiers, SVM with proposed 

WFS-BIPCA has achieved 0.57%, 2.01%, 2.37%, 

and 1.29% higher accuracy than the CNN, PFS-

ELM, RF and ANN classifier methods for the BC-

TCGA dataset. Similarly, it has achieved 1.95%, 

7.68%, 8.5% and 4.19% higher accuracy for 

GSE2034 data, 0.52%, 2.35%, 1.14% and 0.8% 

higher accuracy for GSE25066 data and 1.22%, 

3.75%, 3.23% and 2.47% higher accuracy for the 

simulation data, respectively than the CNN, PFS-

ELM, RF and ANN classifier methods. Likewise, in 

terms of precision, recall, and f-measure, the 

proposed WFS-BIPCA increased the performance of 

the SVM classifier by 1% to 20% than the CNN, 

PFS-ELM, RF and ANN classifier methods. 

In terms of processing time, the SVM classifier 

models with the proposed WFS-BIPCA has 

achieved 0.34, 0.14, 0.67, and 0.9 seconds lesser 

time than the CNN, PFS-ELM, RF and ANN 

classifier methods for the BC-TCGA dataset. It has 

reduced the processing time by 0.46, 0.25, 0.49 and 

0.78 seconds for GSE2034 data, 0.6, 0.42, 0.55 and 

1.0 seconds for GSE25066 data and 0.175, 0.137, 

0.104 and 0.066 seconds for the simulation data, 

respectively than the CNN, PFS-ELM, RF and ANN 

classifier methods. 

Table 4. Performance improvement of Classifier results 

using proposed WFS-BIPCA method 
Method BC-

TCGA 

GSE 

2034 

GSE 

25066 

Simulation 

Data 

Accuracy (%) 

ANN 92.17 87.67 89.22 91.42 

RF 91.09 83.36 88.88 90.66 

PFS-ELM 91.45 84.18 87.67 90.14 

CNN 92.89 89.91 89.50 92.67 

SVM 93.46 91.86 90.02 93.89 

Precision (%) 

ANN 87.75 94.56 86.50 94.93 

RF 83.36 89.89 84 94.87 

PFS-ELM 85.12 92.35 85.67 94.81 

CNN 89.39 95.27 87.70 95.08 

SVM 91.66 96.15 89.32 95.36 

Recall (%) 

ANN 92.05 91.80 85.92 96.67 

RF 91.7 91.91 85.87 96.34 

PFS-ELM 91.88 90.16 85.99 95.82 

CNN 92.89 91.92 86.18 96.99 

SVM 93.94 92.22 86.25 97.48 

F-measure (%) 

ANN 89.85 93.16 86.21 95.79 

RF 87.33 90.89 84.92 95.60 

PFS-ELM 88.37 91.24 85.83 95.31 

CNN 91.11 93.57 86.93 96.03 

SVM 92.79 94.14 87.76 96.41 

Processing time (seconds) 

ANN 2.88 1.74 4.56 0.616 

RF 2.65 1.45 4.11 0.654 

PFS-ELM 2.12 1.21 3.98 0.687 

CNN 2.32 1.40 4.16 0.725 

SVM 1.98 0.96 3.56 0.55 

 

From the results obtained in Table 4, it is 

concluded that the proposed WFS-BIPCA method 

has achieved better performance for the classifiers. 

For all four parts of the breast cancer dataset, the 

SVM classifier with mutual information (MI) gene 

selection and the proposed WFS-BIPCA achieved 

higher values of accuracy, precision, recall, and f-

measure and low processing time. This better 

performance of the MI gene selection and SVM 

classifier is because of the use of effective pre-

processing methods in the form of WFS-BIPCA. 

This experimental study shows that the 

importance of data normalization for improving data 

quality and subsequently the performance of 

machine learning classifiers has been improved with 

the utilization of WFS normalization. Also, BIPCA 

imputation with the tested methods improves 

classification accuracy when compared to 

classification without imputation. Although the 

results show that there is no universally best 

imputation method, BIPCA imputation is shown to 
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give the best results for all the compared classifiers 

with SVM classifier outperforming for datasets with 

high amount (i.e., 40% and 50%) of missing data. 

5. Conclusion 

This paper was aimed at developing an efficient 

pre-processing approach. Two main stages of pre-

processing are performed using hybrid techniques. 

First, the data normalization is performed using 

WFS normalization. This approach is an improved 

fuzzification process in which the weight parameters 

are included in the gene fuzzy score. This approach 

is intended to reduce the skewness and reduce the 

outlier gene data. Secondly, the missing value 

problem is handled by employing BIPCA. This MVI 

method employs the hybrid of independent 

component analysis and Bayesian principal 

component analysis to estimate the missing gene 

value. This proposed pre-processing approach is 

evaluated by implementing them with Mutual 

Information based gene selection and standard SVM 

based classification. Evaluations on Mendeley data 

for breast cancer detection showed that the proposed 

model achieved better performance with increased 

silhouette scores by 1-15%, Pearson correlation 1-

12%, p-values 1-14%, accuracy by 0.5-9%, 

precision by 0.2-7%, recall by 0.1-3% and f-measure 

by 0.2-4% while also reducing the processing time 

by 0.06 to 1.0 seconds than the existing methods.  In 

future, the performance of gene expression analysis 

for breast cancer classification can be improved by 

developing advanced gene selection and 

classification models. Likewise, the impacts of 

environmental factors and rare gene variations can 

also be investigated for improving the quality of 

gene expression profiles. 
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