
Received:  December 24, 2021.     Revised: March 7, 2022.                                                                                             242 

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022           DOI: 10.22266/ijies2022.0630.21 

 

 
Adaptive Grasshopper Optimization Algorithm for Multi-Objective Dynamic 

Optimal Power Flow in Renewable Energy Integrated Microgrid   

 

P. Sobha Rani1*          M. S. Giridhar1          K. Radha Rani2          Varaprasad Janamala3 

 
1Lakireddy Bali Reddy College of Engineering (Autonomous), Jawaharlal Nehru Technological University 

Kakinada (JNTUK), Kakinada, East Godavari, Andhra Pradesh, India 
2R.V.R & J.C. College of Engineering, Chowdavaram, Guntur, Andhra Pradesh, India 

3School of Engineering and Technology, CHRIST (Deemed to be University), Bangalore, Karnataka, India 

* Corresponding author’s Email: sobhareveru@gmail.com 

 

 
Abstract: Global warming has prompted several governments to adopt more sustainable policies in all areas. 

Incorporating renewable energy sources (RES) and adopting electric vehicles (EVs) are examples of such practises. 

Today's electrical distribution networks (EDNs) are becoming more reliable microgrids (MG) that can operate grid-

connected or self-healing. As a result, the fluctuating nature of RES and EVs has raised numerous technical and 

economic concerns. This research proposes a novel multi-objective dynamic optimum power flow (OPF) addressing 

total load dispatch cost minimization and network security margin maximisation for various load profiles. A 

composite load model is proposed considering residential, industrial, commercial, EVs, agricultural loads. The 

proposed optimization issue is tackled using an adaptive grasshopper optimization algorithm (AGOA), a meta-

heuristic grasshopper optimization technique with adaptive control parameter (AGOA). A modified IEEE 33-bus 

benchmark test system with PV units and reactive power compensation devices is used for simulation over 24-hour 

horizon. The suggested AGOA's computing efficiency is compared for two scenarios. By combining good 

exploration and exploitation features with adaptive regulating variables, the AGOA outperformed in terms of global 

optima. Also, the techno-economics of MG operation and control are improved significantly. In scenario 1, the 

network is configured in a radial topology, with average operational costs, distribution losses, voltage variation, and 

transmission loadability of 1117.72 $/h, 82.4803 kW, 0.0058 p.u., and 0.7910 p.u., respectively, over a 24-hour 

period. In scenario 2, the network is run as a meshed network, with network performance of 1113.36 $/h, 43.15 kW, 

0.0019 p.u., and 0.8524 p.u., respectively. This suggests that switching from radial to meshed configuration can 

result in lower losses, a better voltage profile, and increased loadability, as well as the applicability of the suggested 

methodology for managing uncertainty in modern EDNs.                     

Keywords: Optimal power flow, Adaptive grasshopper optimization, Photovoltaic generation, Composite load 

modelling, Enhanced IEEE 33-bus benchmark test system.  

 

 

1. Introduction 

Traditionally, the preventive and corrective 

measures for ensuring the secure and reliable 

operation in power systems are highly in conflict 

with economic goals and environmental aspects. On 

the other side, the planning and decision-making 

stages need to develop for economic goals as well as 

currently inclined towards environmental aspects 

concerning global warming across the world. In 

order to surpass these barriers, optimization 

becomes one of the essential tools in modern power 

system operation and control.  

In a general framework for economic operation, 

unit commitment (UC), economic load dispatch 

(ELD) and optimal power flow (OPF) are more 

popular and major optimization problems [1]. Most 

importantly, these three problems are also related to 

each other in a complicated way. In an UC problem, 

the solution aims to determine least cost scheduling 

of generating units to meet timely varying load 

patterns considering spinning reserve (SR) 
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requirements [2]. In recent times, minimization of 

greenhouse gas (GHG) emission has also become 

one of the major objective functions in the UC 

problem with various operational constraints such as 

power demand, spinning reserve, generation real and 

reactive power limits, ramping rate limits and 

minimum up and down time limits etc [3].  

The solution of the ELD problem aims to 

minimize the operating cost of running generating 

units, which are scheduled at the UC problem stage 

by determining real power outputs for a specific 

load demand. Predefined transmission losses are 

also handled in this problem. The generators’ 

minimum and maximum generation limits for real 

power are the key constraints in this problem [4]. 

On the other hand, OPF problem is an extension 

of ELD problem considering dispatchable 

constraints of the transmission system [5]. In order 

to achieve techno-economic efficient operation, 

congestion management (CM) approaches become 

inevitable in transmission system power flow 

control. Particularly, integration of FACTS 

optimally becomes a prominent and an efficient 

solution among all CM approaches [6]. In specific, 

generation cost, transmission loss, voltage stability, 

transmission loadability, congestion relief and 

voltage profile etc., are some of the major objective 

functions that have been considered in this 

optimization problem. Coming to operational 

constraints, power demand, real and reactive power 

generation limits, minimum up and down time limits, 

lime MVA limits, bus voltage magnitude and their 

angle limits, shunt VAr injection limits, tap-changer 

limits etc., are handled.  

On the other hand, in techno-economic-

environmental framework, integration of 

distribution generation (DGs), renewable energy 

sources (RES) and demand side management (DSM) 

are becoming efficient solutions in the modern 

distribution networks and transforming towards 

more reliable microgrids [7, 8], particularly at the 

distribution side. At this stage, it is essential to 

realize the complexity of optimization in almost all 

stages of the power system (including generation, 

transmission and distribution) considering multiple 

objective functions and operational constraints. In 

literature various optimization approaches have been 

adopted so far for solving these problems either 

sequentially or simultaneously [9]. However, 

heuristic approaches have been identified highly in 

recent times due to their various advantages than 

conventional approaches [10]. In [11], whale 

optimization algorithm (WOA) with wavelet 

mutation is proposed for OPF by handling 

simultaneous minimization of power loss and 

voltage deviation under multi-objective function. In 

[12], multi-objective ant lion algorithm (MOALO) 

with fuel cost, emission, losses and voltage profile is 

handled while solving OPF problem. In [13], multi-

verse optimization (MVO), (GOA), and harris 

hawks optimization (HHO) are adapted for OPF 

problem with fuel cost and losses. In [14], cuckoo 

search algorithm (CSA) and sunflower optimization 

(SFO) and their hybrid approach (HCSA-SFO) is 

developed for OPF problem. In [15], non-dominated 

sorting genetic algorithm-2 (NSGA-II) is introduced 

for cost and voltage deviation minimization in OPF 

problem considering voltage-dependent load 

modelling. Similarly, forced initialized multi-

objective differential evolution algorithm (MODEA) 

[16], particle swarm optimization (PSO)- 

gravitational search algorithm (PSO-GSA) [17], 

differential evolution (DE) [18], backtracking search 

algorithm (BSA) for loss, emission and voltage 

deviation minimization [19], moth flam optimizer 

(MFO) [20], improved colliding bodies optimization 

(ICBO) [21] and improved chaotic electromagnetic 

field optimization (ICEFO) [22] etc are some such 

recent works for OPF problem. 

However, no single algorithm is capable and 

suitable for all kinds of optimization problems [23]. 

This fact becomes another motivation for selecting 

an efficient meta-heuristic grasshopper optimization 

algorithm (GOA) in this work [24]. In recent times, 

GOA has attained high attention for solving 

different kinds of optimization problems [25, 26]. 

However, the basic GOA suffers with local optima 

with less exploration capabilities. To overcome this, 

linearly decreasing adaptive factor c is proposed for 

balancing exploration and exploitation phases in 

AGOA [27]. 

On the other hand, considering renewable 

energy sources and their variability, OPF problem is 

handled in few works. DE [28] and grey wolf 

optimizer (GWO) [29] are proposed for handling the 

stochastic nature of solar power plants in OPF 

problem. In [30], sunflower optimization algorithm 

(SOA) is proposed for dealing OPF considering 

variability in PV and wind turbine (WT) power units. 

In [31], dragonfly algorithm (DA) with ageing PSO 

(DA-PSO) is developed for OPF with WT power 

variation. In [32], PV variability is handled in 

security constrained OPF along with simultaneous 

control of optimal unified power flow controller 

(OUPFC) under (N-1) line contingencies.  

From these works, it can be seen that the OPF 

problem is efficiently handled by using heuristic 

approaches. But all these works are focused on OPF 

problem in power transmission system considering 

constant power load. But in recent times, the modern 
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EDNs are becoming more active networks by the 

integration of various renewable energy based 

distributed generation (DG) units and self-healing 

capable microgrids (MG). In this aspect, OPF 

problem considering MG environment along with 

variability in RES and different kinds of load 

profiles (such as residential, industrial, commercial, 

agricultural and electric vehicle loads, etc) is not 

handled so far. Thus, this work is the first such kind 

of research focusing OPF problem in MGs with 

variability. In addition, various new meta-heuristics 

have been developed for solving different real-time 

complex optimization problems. The Mayfly 

algorithm is a recent and efficient algorithm, and it 

was proposed for the first time to solve this type of 

multi-variable multi-optimization problem in 

electrical engineering. The simulation studies are 

performed on modified IEEE 33-bus benchmark test 

system [33]. 

The remainder of the paper is laid out as 

follows: The mathematical modelling of major 

components in a modified IEEE 33-bus microgrid is 

described in section 2. The proposed multi-objective 

OPF problem with different operational constraints 

is presented in section 3. The notion of Mayfly 

optimization and its solution approach are presented 

in section 4. The results achieved using MOA are 

detailed in section 5, and the major contribution of 

this research is summarised in section 6.   

2. Modelling of modified IEEE 33-bus 

microgrid components 

In our work, the modified IEEE 33-bus 

benchmark test system [33] is considered as grid-

connected MG, which has photovoltaic generation 

units, different kinds of loads such as residential, 

industrial, commercial and agricultural and electric 

vehicle loads are considered. Also, dynamic reactive 

power compensators like switched capacitor bank 

(SCB)/ D-STATCOMs are considered. According to 

Newton-Raphson (NR) load flow theory, the buses 

with PV units are chosen as generator buses/PV 

buses, the buses with reactive power compensation 

are considered as voltage-controlled buses, and the 

sub-station bus is treated as slack bus. And all other 

buses are treated as load buses/PQ buses. In addition, 

the network can be transformed to loop network 

from radial configuration by considering three tie-

lines. In this section, the variability in PV power and 

network loading profile considering different types 

of loads are presented here.      

2.1 Modeling of photovoltaic generation  

Considering a PV unit of maximum capacity at 

bus-k, the net effective loading profile is modeled as, 

 

𝑃𝑑𝑘(𝑡)
𝑛𝑒𝑡 = 𝛾𝑘(𝑡)𝑃𝑑𝑘

𝑏𝑎𝑠𝑒 − 𝑃𝑔𝑘(𝑡)     (1) 

 

𝑃𝑔𝑘(𝑡) = 𝑃𝑃𝑉,𝑘
𝑚𝑎𝑥 𝐺(𝑡)

𝐺𝑟𝑒𝑓
                                                (2) 

 

where 𝑃𝑑𝑘(𝑡)
𝑛𝑒𝑡  and 𝑃𝑑𝑘

𝑏𝑎𝑠𝑒 are the net effective load at 

bus-k after compensating PV generation and base 

case connected load, respectively; 𝑃𝑔𝑘  is the real 

power generation at bus-k, 𝛾𝑘(𝑡) is a scaling factor 

between [0,1] for defining variability in load at bus-

k, 𝑃𝑃𝑉,𝑘
𝑚𝑎𝑥 is the maximum installed PV unit capacity, 

𝐺(𝑡) and 𝐺𝑟𝑒𝑓  are the radiation at time-t and 

reference radiation at STC, respectively.  

2.2 Modeling of network load profile 

In general, EDNs serve different kinds of loads 

such as residential (RL), industrial (IL), commercial 

(CL), transportation/ electric vehicles (EVL), and 

agriculture (AL), etc, which may have different 

daily load profile. However, the power consumption 

of any kind load is dependent on its associated bus 

voltage magnitude as defined in voltage-dependent 

load modelling [34]. Here, a composite load model 

is proposed by considering aforementioned loads 

and given by, 

 

𝑃𝑑𝑘(𝑡)
𝑛𝑒𝑡 = 𝑃𝑑𝑘

𝑟𝑒𝑓
{

𝛾𝑟(𝑡)𝐴𝛼𝑟 + 𝛾𝑖(𝑡)𝐴𝛼𝑖 +

𝛾𝑐(𝑡)𝐴𝛼𝑐 + +𝛾𝑒(𝑡)𝐴𝛼𝑒

+𝛾𝑎(𝑡)𝐴𝛼𝑎

}                (3) 

 

𝑄𝑑𝑘(𝑡)
𝑛𝑒𝑡 = 𝑄𝑑𝑘

𝑟𝑒𝑓
{

𝛾𝑟(𝑡)𝐴𝛽𝑟 + 𝛾𝑖(𝑡)𝐴𝛽𝑖 +

𝛾𝑐(𝑡)𝐴𝛽𝑐 + +𝛾𝑒(𝑡)𝐴𝛽𝑒

+𝛾𝑎(𝑡)𝐴𝛽𝑎

}               (4) 

 

where 𝐴 = |𝑉𝑘(𝑡)| |𝑉𝑟𝑒𝑓|⁄  , |𝑉𝑘(𝑡)|
 
and |𝑉𝑟𝑒𝑓|

 
are the 

actual and nominal voltage magnitudes of bus-i, 

respectively; 𝑃𝑑𝑘(𝑡)
𝑛𝑒𝑡 and 𝑄𝑑𝑘(𝑡)

𝑛𝑒𝑡  are the net real and 

reactive power loads of bus-i respectively; 𝑃𝑑𝑘
𝑟𝑒𝑓

 and 

𝑄𝑑𝑘
𝑟𝑒𝑓

 are the real and reactive power loads of bus-i at 

nominal voltage, respectively; (𝛾𝑟(𝑡), 𝛼𝑟, 𝛽𝑟) , 

(𝛾𝑖(𝑡), 𝛼𝑖 , 𝛽𝑖) , (𝛾𝑐(𝑡), 𝛼𝑐 , 𝛽𝑐)  , (𝛾𝑒(𝑡), 𝛼𝑒 , 𝛽𝑒)  and 

(𝛾𝑎(𝑡), 𝛼𝑎 , 𝛽𝑎) are the (fraction of load, real power 

exponent and reactive power exponents) for 

residential, industrial, commercial, electric vehicles 

and agricultural type of loads, respectively.  
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3. Problem formulation 

In order to ensure secure and reliable power 

supply, various operational constraints need to be 

satisfied at each section in the power system. Hence, 

considering security, reliability and dispatchable 

problems to the generation schedule derived at ELD 

stage, the optimal power flow (OPF) problem can be 

formulated as a multi-objective optimization 

problem. 

3.1 Objective functions 

Operating cost minimization, loss minimization, 

voltage profile enhancement and transmission 

system loadability enhancement etc, are the major 

objective functions used to define multi-objective 

function, as in Eq. (5), 

𝑂𝐹 = 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4                             (5) 

3.1.1. Operating cost  

The fundamental objective of OPF is to 

minimize the cost of real power production without 

compromising operational constraints. The 

production can be obtained by using cost curves of 

generating units and expressed as in Eq. (6) for first 

objective function 𝑓1 = 𝐶(𝑡). 

 

𝑓1 = ∑ (𝑎𝑘𝑃𝑔𝑘
2 + 𝑏𝑘𝑃𝑔𝑘 + 𝑐𝑘)

𝑁𝑔

𝑘=1 $/ℎ                   (6) 

 

where Ng is the number of generators, 𝑃𝑔𝑘 is the real 

power generation at bus-k, 𝑎𝑘 , 𝑏𝑘 and 𝑐𝑘  are the 

coefficients for determining fuel cost of a generator.   

3.1.2. Distribution loss  

Minimization of transmission/distribution losses 

can relieve the burden on generation units and 

consequently, results for low production cost and 

efficient system operation. The total real power 

losses can be determined by summing losses of all 

lines in the system, as given in Eq. (7) for second 

objective function 𝑓2 = 𝑃𝑙𝑜𝑠𝑠(𝑡). 

 

𝑓2 = ∑ 𝑔𝑘(𝑉𝑝
2 + 𝑉𝑞

2 − 2𝑉𝑝𝑉𝑞𝑐𝑜𝑠𝜃𝑝𝑞)
𝑁𝑏𝑟

𝑘=1
∈(𝑝,𝑞)

𝑘𝑊   (7) 

 

where 𝑁𝑏𝑟 is the number of branches in the network, 

k-is the branch index connected between buses p and 

q, 𝑉𝑝 and 𝑉𝑞 are the voltage magnitudes of bus-p and 

bus-q, respectively, 𝑔𝑘 is the conductance of branch-

k, 𝜃𝑝𝑞 is the load angle difference between bus-p 

and bus-q.  

3.1.3. Voltage profile  

Voltage profile: In power systems, low voltage 

profiles may cause high current flows in 

transmission lines and consequently more losses 

may take place. In addition, it also leads to voltage 

instability and hence, managing adequate voltage 

profile is an important task. Considering maximum 

bus voltage magnitude as reference, the average 

voltage deviation index (AVDI) is defined for third 

objective  𝑓3 = 𝐴𝑉𝐷𝐼(𝑡) as given in Eq. (8). 

Minimization of this index ensures a good voltage 

profile across the network.  

 

𝑓3 =
1

𝑁𝑏
∑ √(|𝑉𝑟𝑒𝑓| − |𝑉𝑘(𝑡)|)

2𝑁𝑏
𝑘=1      (8) 

 

where 𝑁𝑏 is the number of buses in the network.  

3.1.4. Transmission system loadability 

In order to avoid high generation cost due to 

congestion and to ensure secure power flows, the 

transmission lines should not be overloaded for any 

schedule at any time. Hence, maximization of 

transmission security margin (TSM) defined in Eq. 

(9) as objective 𝑓4 = 𝑇𝑆𝑀(𝑡), 

 

 𝑓4 =
1

𝑁𝑏𝑟
∑ (1 −

𝑆𝑘(𝑝,𝑞)+𝑆𝑘(𝑞,𝑝)

2𝑆𝑘
𝑚𝑎𝑥 )

𝑁𝑏𝑟
𝑘=1

∈(𝑝,𝑞)

   (9) 

 

where 𝑆𝑘 and 𝑆𝑘
𝑚𝑎𝑥 are the apparent power flow of 

branch-k connected between buses p and q, and its 

maximum power flow limit. TSM should be near to 

1 for having high security margin for a given 

schedule. 

3.2 Operating constraints 

Power flow equations corresponding to both real 

and reactive power balance equations are the 

equality constraints that should satisfy at every 

scheduling hour-t, as given in Eqs. (10) and (11), 

respectively. 

 

∑ 𝑃𝑔𝑘(𝑡)
𝑁𝑔

𝑘=1 + 𝑃𝑔𝑟𝑖𝑑(𝑡) = 𝑃𝑙𝑜𝑠𝑠(𝑡) + ∑ 𝑃𝑑𝑘(𝑡)
𝑛𝑒𝑡𝑁𝑏

𝑘=1 (10) 

 

∑ 𝑄𝑐𝑘
𝑁𝑏𝑐
𝑘=1 + 𝑄𝑔𝑟𝑖𝑑(𝑡) = 𝑄𝑙𝑜𝑠𝑠(𝑡) + ∑ 𝑄𝑑𝑘(𝑡)

𝑛𝑒𝑡𝑁𝑏
𝑘=1    (11) 

 

The real power generation limits(𝑃𝑔 ), reactive 

power generation limits (𝑄𝑔 ) , voltage magnitude 

limits |𝑉𝑘|,  phase angle limits 𝛿,  tap-changing 

transformer control limits 𝑎𝑡, shunt MVAr injection 

limits 𝑄𝑐  and line MVA limits 𝑆𝑘, are the major 
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unequal constraints in OPF problem and defined in 

Eqs. (12)-(18), respectively.   

 

𝑃𝑔𝑘
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑘(𝑡) ≤ 𝑃𝑔𝑘

𝑚𝑎𝑥, ∀𝑘 = 1: 𝑁𝑔                    (12) 

 

𝑄𝑔𝑘
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑘(𝑡) ≤ 𝑄𝑔𝑘

𝑚𝑎𝑥, ∀𝑘 = 1: 𝑁𝑔                   (13) 

 

|𝑉𝑘
𝑚𝑖𝑛| ≤ |𝑉𝑘(𝑡)| ≤ |𝑉𝑘

𝑚𝑎𝑥|, ∀𝑘 = 1: 𝑁𝑏             (14) 

 

𝛿𝑘
𝑚𝑖𝑛 ≤ 𝛿𝑘(𝑡) ≤ 𝛿𝑘

𝑚𝑎𝑥, ∀𝑘 = 1: 𝑁𝑏             (15) 

 

𝑎𝑡
𝑚𝑖𝑛 ≤ 𝑎𝑡(𝑡) ≤ 𝑎𝑡

𝑚𝑎𝑥, ∀𝑘 = 1: 𝑁𝑡             (16) 

 

𝑄𝑐𝑘
𝑚𝑖𝑛 ≤ 𝑄𝑐𝑘 ≤ 𝑄𝑐𝑘

𝑚𝑎𝑥, ∀𝑘 = 1: 𝑁𝑛𝑐             (17) 

 

𝑚𝑎𝑥(|𝑆𝑘(𝑝,𝑞)|, |𝑆𝑘(𝑞,𝑝)|) ≤ 𝑆𝑘
𝑚𝑎𝑥 , ∀𝑘 = 1: 𝑁𝑏𝑟  (18) 

 

where 𝑁𝑡  and 𝑁𝑛𝑐  are the number of tap-changers 

and number of shunt VAr compensation locations. 

As seen in the mathematical model for OPF 

problem, various parameters and controlling 

variables are needed to optimize simultaneously. 

The reactive power generations are interdependent 

on generator bus voltage magnitudes. The real 

power generations including transmission losses are 

interdependent on current flows and subsequently on 

load bus voltage magnitudes, phase angles and 

admittances, tap-ratios, shunt MVAr injections etc. 

Hence, calculation of bus voltage magnitudes and 

phase angles w.r.t. real and reactive power injections 

and all other controlling parameters, is very 

important in OPF problems. Generally, Newton-

Raphson (NR) load flow technique is a very 

powerful tool for solving nonlinear load flow 

equations. 

4. Proposed solution methodology 

Here, the proposed solution methodology using 

adaptive grasshopper optimization algorithm 

(AGOA) and implementation procedure while 

solving OPF problem is discussed mathematically. 

4.1 Adaptive grasshopper optimization  

By nature, grasshoppers are insects, due to their 

damage to the crop and agriculture treated as pets. 

Also, they are usually seen individually but can join 

and form the largest swarm, which may become a 

nightmare for farmers. The grasshopper swarms 

during nymph/larval phase jump and moves like a 

cylinder. During this phase, their movement is slow 

and in small steps. On the other side, adulthood 

phase grasshopper swarms can be able to migrate 

from one continent to another by flying in air itself. 

At this phase, the movement is abrupt and long 

range. In both the phases, they seek food and eat all 

vegetarian in their swarming path. This specific 

swarming nature is the basic motivation for the 

introduction of the grasshopper optimization 

algorithm (GOA) by Mirjalili S in 2016 [24]. 

As known in any nature-inspired optimization 

algorithm, the search process has two stages i.e., 

exploration and exploitation. The abrupt and long-

range swarming nature of the adult phase is handled 

in exploitation and the slow and small-step 

swarming nature of larval phase is handled in the 

exploitation stage. These two stages with food 

targets are modelled in the simulation behaviour of 

grasshoppers. The mathematical model employed in 

GOA is as follows. 

The position of kth grasshopper 𝑋𝑘  is depends 

on social influence 𝑆𝑘 , gravity force 𝐺𝑘 and wind 

advection 𝐴𝑘. 

 

𝑋𝑘 = 𝑆𝑘 + 𝐺𝑘 + 𝐴𝑘               (19) 

 

In order to provide random nature, three 

uniformly distributed random numbers 𝑟𝑖  are 

introduced to Eq. (19) and given in Eq. (20). 

 

𝑋𝑘 = 𝑟1𝑆𝑘 + 𝑟2𝐺𝑘 + 𝑟3𝐴𝑘              (20) 

 

The social influence factor is modelled as a 

function (s) with strength of social forces by 

considering the distance between kth and ith 

positioned grasshoppers (𝑑𝑖𝑘
̅̅ ̅̅ ) and a directional unit 

vector (𝑎𝑖𝑘̅̅ ̅̅ ) as given in Eq. (21). 

 

𝑆𝑘 = ∑ 𝑆(𝑑𝑖𝑘
̅̅ ̅̅ )𝑎𝑖𝑘̅̅ ̅̅𝑁

𝑖=1
≠𝑘

                           (21) 

 

where 𝑑𝑖𝑘
̅̅ ̅̅ = 𝑥𝑖 − 𝑥𝑘  and 𝑎𝑖𝑘̅̅ ̅̅ =

𝑑𝑖𝑘
̅̅ ̅̅ ̅

|𝑑𝑖𝑘
̅̅ ̅̅ ̅|

  and N is the 

number of grasshoppers. 

The social force function s is determined using 

Eq. (22),  

 

𝑠(𝑟) = 𝑓𝑒
−𝑟

𝑙 − 𝑒−𝑟                (22) 

 

where f is the intensity of attraction and l is the scale 

of attractive length. The social force can be either 

attraction or repulsion. By changing f and l, different 

social forces can be formulated. 

Similarly, gravity force 𝐺𝑘  and wind advection 

 𝐴𝑘  components are calculated as given in Eq. (23). 
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𝐺𝑘 = −𝑔𝑒̅𝑔 and 𝐴𝑘 = 𝑢𝑒̅𝑤              (23) 

 

where g and u are the gravitational and drift velocity 

constants respectively; 𝑒̅𝑔  and 𝑒̅𝑤  are the unit 

vectors towards the centre of earth and in the 

direction of wind respectively. 

The expanded version of Eq. (20) by substituting 

Eq. (21) to Eq. (23) can be written as Eq. (24). 

 

𝑋𝑘 = ∑ 𝑆(𝑑𝑖𝑘
̅̅ ̅̅ )𝑎𝑖𝑘̅̅ ̅̅𝑁

𝑖=1
≠𝑘

− 𝑔𝑒̅𝑔 + 𝑢𝑒̅𝑤                    (24) 

 

However, the swarming behaviour of 

grasshoppers expressed in Eq. (24) may not suit 

directly to solve optimization problems, since 

grasshoppers quickly reach their comfort zone and 

do not converge to precise points. In order to 

overcome this, Eq. (24) is slightly modified as given 

in Eq. (25). 

 

𝑋𝑘
𝑑 = 𝑐 {∑ (

𝑢𝑏𝑑−𝑙𝑏𝑑

2
) 𝑆(𝑑𝑖𝑘

̅̅ ̅̅ )𝑎𝑖𝑘̅̅ ̅̅𝑁
𝑖=1
≠𝑘

} + 𝑇𝑑
̅̅ ̅           (25) 

 

where 𝑢𝑏𝑑 and 𝑙𝑏𝑑 are the upper and lower limits in 

the Dth dimension respectively; 𝑇𝑑
̅̅ ̅ is the best 

solution found so far for the value of target in the 

Dth dimension and c is the adaptive parameter or 

decreasing inertia coefficient to shrink the comfort, 

repulsion and attraction zones, which is given in Eq. 

(26). 

 

𝑐 = (𝑐𝑚𝑎𝑥 − 1) {
𝑖𝑡(𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛)

𝑖𝑡𝑚𝑎𝑥
}                          (26) 

 

In order to maximize local search ability, 

enhance accuracy and for low computational time, 

improved inertia weight is introduced in adaptive 

GOA (AGOA) [27] and it is given in Eq. (27), 

 

𝑐 = 𝑐𝑚𝑎𝑥 − (𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛)(𝑖𝑡 𝑖𝑡𝑚𝑎𝑥⁄ )1 𝑖𝑡⁄           (27) 

 

where 𝑖𝑡𝑚𝑎𝑥 is the number of maximum iterations 

and the minimum and maximum value of c are 

𝑐𝑚𝑖𝑛 = 0.00001 and 𝑐𝑚𝑎𝑥 =1. 

4.2 AGOA for OPF Problem in MG 

The steps involved in solving OPF problem in 

MG considering SPV generation and load variability 

are presented in Fig. 1.  

In each scheduling hour, the maximum real 

power limit at PV buses is adjusted to power 

generation of SPV units subjected to solar radiation 

at that time. Also, the net load of each bus is  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 1 Flowchart of the AGOA for OPF problem 

 

adjusted at each hour in accordance to the variability 

in each kind of load.    

5. Simulation results 

Simulations are performed for two scenarios. In 

Scenario 1, the computational efficiency of AGOA 

is validated by solving OPF problem in microgrid 

consisting of PV uncertainty, and different types of 

loads. In Scenario 2, AGOA is implemented for 

OPF problem in conventional power system and 

compared with literature.    

5.1 OPF Problem in microgrid 

As described in section 2, the modified IEEE 33-

bus benchmark test system [33] is considered as 

grid-associated MG integrated with four SPV type 

Yes 

No 

it = 

it+1 

Initialize the population of grasshoppers 

Xi (i=1: n), Cmin, Cmax and itmax . 

Start 

Evaluate the fitness F(Xi) of each grasshopper 

and determine the best solution (Bs)  

Update C1 and C2  

Normalize the distance 

between Xi in the range [1, 4] 

Update the position of the 

current grasshopper Xi 

Bring Xi back, if it goes 

outside the boundary 

Update Bs if there 

is a better solution 

it < itmax 

Return the best solution Bs  

Stop 
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DGs at bus-18, 22, 25 and 33, of maximum 

capacities of 200 kWp. These buses are treated as 

PV buses. Also, two D-STATCOMs at bus-18 and 

33 are integrated in sizes of 400 kVAr and 600 

kVAr, respectively. Thus, the maximum reactive 

power generation limits at bus-18 and 33 are set to 

D-STATCOM capacities, whereas for bus-22 and 25, 

both minimum and maximum reactive power limits 

are set to zero. On the other hand, the output power 

from SPVs is estimated using PVWatts® calculator 

[36] by considering Bangalore weather conditions 

(Lat, Lon: 12.950, 77.550) and set as maximum real 

power generation limit for each scheduling hour. 

The maximum power generation is noticed on 

February 22, 2022 at 12:00pm as 154.367 kW and 

correspondingly, the typical daily output curve is 

given in Fig. 2.      

The details of cost coefficients for DGs and grid 

supply, the constant power loads at each bus and 

also the branch data are taken from [33]. In the 

proposed composite load model, 30 % residential, 

25 % industrial, 20 % commercial, 10 % EV, and 

15 % agricultural load shares are considered at each 

bus. In order to maintain simple calculations, 𝛾𝑘(𝑡) 

is considered same for all types of loads and set 

equal to same as hourly load profile defined in [33] 

and is given in Fig. 3.  

 

 
Figure. 2 Typical daily generation curve of a 200 kWp 

SPV unit as estimated on February 22, 2022 

 

 
Figure. 3 Typical daily load curve of modified IEEE-33 

EDN as defined in Ref. [33] 

 
Figure. 4 Active and reactive power load profile for 

constant power load model 

 

The bus voltage magnitudes are set to optimize 

between 0.95 to 1.05 p.u., and the OLTC and PST 

controls at substation (i.e., in branch 1) are not taken 

in to account. With these modifications, the NR load 

flow is performed to determine the net effective 

loading profile of MG for each hour. Then, OPF 

using AGOA are performed. In OPF, AGOA needs 

optimize 12 control variables, which include five 

generators active output powers, five generators 

voltage magnitudes (and correspondingly reactive 

output powers), two CB/D-STATCOM reactive 

power injections. Simulations are performed in two 

cases and presented below. 

5.1.1. OPF in radial MG  

In this Case 1, the switchable tie-lines are 

remained open and thus MG maintained basic radial 

configuration. The loads are considered as constant 

power load model. The daily active and reactive 

load profile for this load model is given in Fig. 4.  

The results of OPF for 24-hours are given in 

Table 1. Total operating cost (𝑓1) in $/hr, real power 

losses (𝑓2) in kW, average voltage deviation index 

(𝑓3), overall voltage stability index (𝑓4) are provided 

in respective columns. For the peak-hour (i.e., 8-

9pm), the AGOA optimized controlling parameters 

in OPF problem (i.e., the generators’ active power 

outputs in kW, reactive power generations in kVAr, 

and generator bus voltages in p.u.) are given in 

Table 2.  

Similarly, the controlling parameters when 

network has experienced better performance (i.e., 9-

10am) are given in Table 3. Though the maximum 

SPV penetration is occurred at 12:1pm, the better 

performance is observed at 9-10am. This indicates 

the need of either RE curtailment (since SPV DGs 

are not dispatchable sources) or energy storage, 

which is another important aspect to be considered 

for more efficient operation of MG. 
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Table 1. Optimal results of AGOA for Case 1 and Case 2 

Hr 
Case 1 Case2 

F1  F2 F3  F4  F1  F2 F3  F4  

12-1am 1115.92 82.0776 0.0058 0.7872 1114.563 50.041 0.0023 0.8364 

1-2 1113.78 72.3651 0.0052 0.7996 1112.592 44.526 0.0021 0.8456 

2-3 1113.09 69.3498 0.0050 0.8037 1111.937 42.784 0.0020 0.8486 

3-4 1112.38 66.3607 0.0049 0.8078 1111.279 41.060 0.0020 0.8516 

4-5 1111.95 64.5848 0.0048 0.8103 1110.882 40.033 0.0019 0.8534 

5-6 1110.96 60.6183 0.0045 0.8160 1109.962 37.706 0.0018 0.8577 

6-7 1110.26 57.8597 0.0044 0.8201 1109.294 36.062 0.0018 0.8608 

7-8 1111.98 58.2150 0.0044 0.8212 1108.904 30.623 0.0015 0.8725 

8-9 1115.76 64.1445 0.0047 0.8146 1109.436 26.746 0.0012 0.8816 

9-10 1115.35 56.2692 0.0042 0.8266 1106.968 20.211 0.0008 0.8971 

10-11 1117.07 59.2748 0.0045 0.8225 1107.201 20.042 0.0011 0.8974 

11-Noon 1118.35 62.5612 0.0046 0.8178 1107.707 20.678 0.0013 0.8957 

12-1pm 1119.02 64.8069 0.0048 0.8147 1108.131 21.292 0.0013 0.8942 

1-2 1120.40 72.4223 0.0052 0.8045 1109.924 24.261 0.0012 0.8872 

2-3 1119.35 71.1828 0.0051 0.8059 1110.074 25.134 0.0010 0.8854 

3-4 1119.69 78.4295 0.0056 0.7961 1112.106 30.968 0.0013 0.8729 

4-5 1119.74 86.8694 0.0061 0.7845 1114.450 40.429 0.0018 0.8544 

5-6 1118.51 89.6189 0.0063 0.7794 1115.627 49.227 0.0022 0.8385 

6-7 1119.78 101.4949 0.0069 0.7646 1118.111 60.632 0.0026 0.8203 

7-8 1125.13 132.3496 0.0085 0.7330 1122.958 76.824 0.0032 0.7983 

8-9 1126.30 139.7067 0.0089 0.7261 1124.010 80.570 0.0033 0.7935 

9-10 1125.13 132.3496 0.0085 0.7330 1122.958 76.824 0.0032 0.7983 

10-11 1124.56 128.8399 0.0083 0.7364 1122.448 75.042 0.0031 0.8006 

11-12pm 1120.94 107.7751 0.0072 0.7578 1119.165 63.977 0.0027 0.8155 

*F1 in $/hr, F2 in kW, F3 and F4 in p.u. 

 

Table 2. Optimized parameters for Case 1 during 8-9pm and 9-10am 

At peak-hour (8-9pm) At optimal SPV penetration level (9-10am) 

PG1 PG18 PG22 PG25 PG33 PG1 PG18 PG22 PG25 PG33 

3854.707 0 0 0 0 2425.896 151.595 151.592 151.593 151.594 

QG1 QG18 QG22 QG25 QG33 QG1 QG18 QG22 QG25 QG33 

1422.931 374.197 0 0 599.062 1003.210 278.514 0 0 599.752 

V1  V18 V22  V25 V33 V1  V18 V22  V25 V33 

1.0499 0.9892 1.0422 1.0228 0.9954 1.0499 1.0162 1.0467 1.0324 1.0198 

*PG in kW, QG is kVAr, V in p.u.  

 

Table 3. Optimized parameters for Case 2 during 8-9pm and 10-11am 

At peak-hour (8-9pm) At optimal SPV penetration level (10-11am) 

PG1 PG18 PG22 PG25 PG33 PG1 PG18 PG22 PG25 PG33 

3664.170 0 0 0 0 1647.063 181 181 181 181 

QG1 QG18 QG22 QG25 QG33 QG1 QG18 QG22 QG25 QG33 

1001.120 4.247 0 0 214.235 840.378 0.000 0 0 180.218 

V1  V18 V22  V25 V33 V1  V18 V22  V25 V33 

1.0498 1.0245 1.0303 1.0227 1.0236 1.0472 1.0498 1.0410 1.0342 1.0400 

*PG in kW, QG is kVAr, V in p.u.  
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Table 7. Comparison of AGOA based OPF results in IEEE 30-bus    

Method F1 ($/hr) F2 (MW) Method F1 ($/hr) F2 (MW) 

PSO [13] 828.132 8.350 DEA [16] 799.083 8.630 

MOO [15] 822.430 5.687 BSA [19] 799.076 8.654 

MVO [13] 810.901 7.680 PSOGSA [17] 799.071 8.625 

GOA [13] 809.741 10.090 ICBO [21] 799.035 8.613 

HHO [13] 804.141 7.970 ICEFO [22] 799.034 8.615 

SF-DE [18] 800.413 9.010 MFO [20] 798.945 - 

MOALO [12] 799.144 8.640 WOA [11] 798.028 7.754 

CSA [14] 799.129 8.654 WOA-WM [11] 797.667 8.426 

HCSA-SFO [14] 799.118 8.646 AGOA  789.034 8.615 

 

5.1.2. OPF in meshed MG  

In this Case 2, the switchable tie-lines are closed 

and thus MG converted into meshed network. The 

loads are modelled as proposed composite load. In 

similar to Case 1, the optimized objective functions 

for Case 2 are given in Table 1. Similarly, the 

controlling parameters when network has 

experienced better performance (i.e., 10-11am) are 

given in Table 3. Though the maximum SPV 

penetration is occurred at 12:1pm, the better 

performance is observed at 9-10am. Also, the 

AGOA optimized controlling parameters in OPF are 

given for peak-hour and Table 6.  

In comparison to Case 1, improved network 

performance is observed in all the aspects in Case 2. 

Among all objectives, loss is critical in EDN 

operation, the comparison between radial and 

meshed network can be observed in Fig. 6. From 

these, it can be observed that the overall 

performance of the MG enhanced not only technical 

point of view but also economically irrespective of 

the level of variability.  

5.2 OPF in conventional power system 

According to [11-22], an IEEE 30-bus power 

system with 41 transmission lines has been widely 

explored, and the same is taken into account here for 

comparison and validation of the suggested 

AGOA’s efficiency. It features a total of 25 control 

variables (e.g., 6 generators’ real power adjustments 

and voltage magnitudes, 4 tap-changers, and 9 shunt 

VAr controls) and is optimised for lowering fuel 

costs.  

Table 7 summarises AGOA’s findings and 

compares them to other literature. This comparison 

demonstrates the proposed method’s efficacy and 

robustness, and we can conclude that the AGOA 

algorithm produces very competitive outcomes 

when compared with other methods. 

 
Figure. 6 Comparison of active power loss for radial and 

meshed configuration 

6. Conclusion 

In this paper, OPF problem in MG considering 

variability in photovoltaic power generation and 

network loading profile is presented. To resemble 

realistic loading effect, residential, industrial, 

commercial, electric vehicles and agricultural loads 

are taken into account. The complexity involved in 

OPF problem with various multi-objectives, 

operational equal and unequal constraints is solved 

using an efficient meta-heuristic grasshopper 

optimization algorithm (AGOA) with adaptive 

controlling parameter for balancing between 

exploitation and exploration phases in the 

optimization process. Simulations are performed in 

modified IEEE 33-bus MG over 24-hour span. The 

algorithm is successful in providing feasible and 

optimal values at each scheduling hour with low 

operational cost, reduced distribution losses, good 

voltage profile and high voltage stability margin. 

And, the switching between radial to meshed 

network results of overall improved performance 

irrespective of variability in the network.  
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