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Abstract: The goal of this research is to develop a high-performance fractionalized proportional–integral–derivative 

(FPID) controller based on Henry Gas Solubility Optimization (HGSO) for controlling the speed of a direct current 

(DC) motor. The suggested HGSOA-based Fractionalized PID technique with Matsuda approximation method was 

used to obtain the optimal FPID controller by minimising the integral of time multiplied absolute error (ITAE) as the 

objective function. Index of performance and disturbance rejection analyses, as well as transient and frequency 

responses, were all employed to validate the suggested approach's effectiveness. The proposed HGSO-FPID controller 

with Matsuda approximation was then compared not only to the original HGSO algorithm-tuned PID controller, but 

also to other controllers tuned by cutting-edge meta-heuristic algorithms such as Atom Search Optimization algorithm 

(ASO), Grey Wolf Optimization algorithm (GWO), Particle Swarm Optimisation (PSO), Invasive Weed Optimisation 

(IWO), and stochastic fractal search (SFS). The results showed that the proposed HGSOA-FPID controller has better 

performance with lower settling time, Ts which 0.1003 s, with lower rise time, Tr which is 0.0579 s, negligible 

overshoot, D which is 0.0052% and strong output disturbance rejection when compared to the performance of the other 

controllers. 

Keywords: Fractionalized PID (FPID), DC motor, HGSO algorithm, Optimal control, Approximation method. 

 

 
 

1. Introduction 

DC motors are widely employed in various 

industrial applications that demand a wide speed 

range. The advantage of dc motors may be the ability 

to control the speed. The word "speed control" refers 

to the purposeful change of speed, which can be done 

both automatically and manually. Different 

controllers are used to control the speed of DC 

motors; the most commonly used controllers are 

conventional controllers PI and PID [1, 2]. 

PID controllers, on the other hand, have some 

drawbacks, such as unwanted speed overshoot and 

sluggish response due to rapid changes in load torque, 

as well as sensitivity to controller gains Ki and KP. 

The accuracy of system models and parameters 

determines the controller's performance. As a result, 

a controller that can overcome the drawbacks of PID 

controllers is required. 

Proportional integral (PI), PID fuzzy logic 

controller (FLC), or a mix of the two: fuzzy-genetic 

algorithm, particle swarm optimization are examples 

of traditional and numeric controller types. One of the 

most prevalent methodologies in various industries is 

the proportional–integral–derivative (PID) design 

with a meta-heuristic algorithm. These later have 

recently become popular in optimization issues. 

Several algorithms have been created. Hashim et al. 

[3] highlighted one of the newest of them, Henry Gas 

Solubility Optimization (HGSO). Henry's law of 

physics influenced this algorithm. This algorithm has 

also been used in other papers [4-6]. For example, in 

[7] the authors conduct a performance comparison of  
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Figure.1 DC Motor model 
 

 

Figure.2 DC motor equivalent circuit with PID 

controller 

 

the slime mould algorithm (SMA) for efficient PID 

design. 

To tune the PID controller for the aircraft pitch 

angle control system, zci et al. [8] employed harris 

hawks optimization (HHO). For PID tuning in an 

AVR microcontroller, the authors in [9] employed an 

improved kidney-inspired algorithm(IKIA). 

The speed regulation of the DC motor has been 

the subject of numerous meta-heuristic methods 

investigations; for example Ekinci et al. [10] 

employed Henry gas solubility optimization (HGSO) 

to tune the PID controller for the DC motor speed 

regulation. Other examples; particle swarm 

optimization (PSO) [11, 12] which hold a lot of 

potential for solving a variety of optimization 

problems, but they have issues with memory capacity 

and computational load. Jaya optimization algorithm 

(JOA) [13], gravitational search (GSA) [14], salp 

swarm  algorithm (SSA) [15], atom search 

optimization algorithm (ASOA) [16] encounters 

local minima stagnation and a slow rate of 

convergence, grey wolf optimization (GWO)[17, 18] 

which was presented as a competitive optimizer for 

global optimization problems, are heavily influenced 

by numerous parameters. Similarly like ASO, 

stochastic fractal search (SFS) [19, 20] has an issue 

with premature convergence and stagnation and sine 

— cosine algorithm (SCA) [21]; a recently 

discovered technique for solving optimization 

problems. 

To achieve the stated goal of higher DC motor 

performance, a reliable controller is required. 

Classical PID, on the other hand, as proposed in the 

literature by various optimization techniques for 

enhancing performance, may not be capable of 

getting the optimum results. A fractional-order 

controller (FOC) can help with this by making it 

easier to change the control system's time and 

frequency responses. 

Fractional order proportional integral derivative 

controllers have attracted a lot of attention in 

academia and industry in recent years [11, 16-17]. 

Pdlubny [22] et al. introduced the FOC in 1997. The 

authors conclude in [23] that implementing the 

FOPID improves performance when compared to 

traditional ways of adjusting conventional PID 

controllers. In the case of DC speed control, several 

fractional order control methods were proposed [16-

17, 24-26]. 

This paper demonstrates the advantages of 

fractionalized PID based on the HGSO algorithm, 

which uses fractional order filters to approach integer 

order transfers in the feedback control loop. By 

incorporating fractional order integrators into the 

classical feedback control loop without modifying 

the overall equivalent closed loop transfer function, 

the automation designer can apply the properties and 

dynamics of fractional order to the rational system 

under consideration. 

This paper's contribution to originality can be 

summarized as follows: 

 

▪ The main contribution is the first time that the 

HGSO algorithm based on fractionalized PID 

controller, HGSO-FPID controller, is used.  

▪ Because these controllers with stated algorithms 

are the newest ways for determining optimal 

controller gains, the proposed HGSO-FPID 

methodology was thoroughly compared to the 

HGSO-PID [10], ASO-PID [16], GWO-PID [17], 

PSO-PID [12], IWO-PID [12], SFS-PID [19], and 

SCA-PID [4]. 

▪ Comparative results of transient and frequency 

responses, as well as load disturbance rejection 

analyses, conclusively verified the performance 

and superiority of the recommended fractionalized 

PID-based HGSO controller over other algorithms. 
 

The rest of this paper is organized as follows. In 

section 2, the mathematical modeling of DC motor is 

formulated. In section 3, a brief review of the 

fundamentals of fractional calculus is presented. 

Frequency domain analysis of fractionalized 

integrated is presented in section 4. section 5 

describes the HGSO algorithm based on 

fractionalized PID controller. section 6 presents the 

simulation results, which are compared to alternative 

tuning criteria. section 7 concludes with the 

conclusions. 
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Table 1. DC motor parameters 

Parameter Value 

Armature resistance (𝑅𝑎) 0.4Ω 

Armature inductance  (𝐿𝑎) 2.7 𝐻 

motor moment of inertia ( 𝐽) 4 × 10−4 𝐾𝑔𝑚2

/𝑠2 

Coefficient of friction  (𝑓) 0.0022𝑁𝑚. 𝑠/𝑟𝑎𝑑 

Motor torque constant (𝐾𝑚) 0.015 𝑘𝑔 𝑚/𝐴 

Back EMF constant (𝐾𝑏) 0.05 𝑠 

 

2. Mathematical model of the DC motor 

The purposeful modification of the driving speed 

to a value required for accomplishing the given work 

is referred to as DC motor speed control.  

Figs. 1 and 2 show, respectively, a DC motor model 

and its equivalent circuit with a PID controller. 

Essentially, a DC motor turns DC electric energy 

into mechanical energy.  

Table 1, displays the DC motor characteristics 

used in this study/simulation [10, 12, 16-17, 19, 21]: 

The following transfer function [10-12] gives the 

mathematical model for a regulated DC motor (for 

𝑇𝐿 = 0 ): 

 

𝐺𝐷𝐶𝑀(𝑠) =
𝐾𝑚

(𝐿𝑎𝑠 + 𝑅𝑎)(𝐽𝑠 + 𝑓) + 𝐾𝑏𝐾𝑚
   (1) 

 

The following open loop transfer function is 

produced by substituting DC motor parameter values 

in Eq. (1): 

 

𝐺𝐷𝐶𝑀(𝑠) =
Ω(𝑠)

𝑉𝑎(𝑠)
=

15

1.08𝑠2 + 6.1𝑠 + 1.63
  (2) 

3. Fractional calculus fundamentals   

3.1 Definitions  

Fractional calculus (FC) is a branch of calculus 

theory that generalizes a function's integral or 

derivative to non-integer order 𝑑𝑛𝑦 𝑑𝑡𝑛⁄  n-fold 

integrals when n is irrational, fractional, or 

complicated are easier to solve with FC. n is 

considered fractional in fractional order (FO) systems. 

The number of applications in which FC has been 

employed has rapidly increased. These mathematical 

phenomena allow us to more precisely characterize a 

real item than traditional integer-order methods. 

Integration and differentiation are included in the 

generalized fundamental operator, which is written 

as: 

 

𝑎𝐷𝑡
𝛼 =

{
 
 

 
 

𝑑𝛼

𝑑𝑡𝛼
               , 𝑅(𝛼) > 0

1                  , 𝑅(𝛼) = 0

∫ (𝑑𝜏)−𝛼     , 𝑅(𝛼) < 0  
𝑡

𝑎

         (3)
 

 

Where,  

𝑎 ∶ Integration Lower limit                              

𝑡 ∶ Integration Upper limit  

𝛼 ∶  Fractional differentiation or   integration 

Order (The negative sign of 𝛼  denotes integration 

while positive sign denotes derivation [27]). 

The Grunwald-Letnikov definition is as follows: 

 

𝑎𝐷𝑡
𝛼𝑓(𝑡) = lim

ℎ→0

1

ℎ𝛼
∑ (−1)𝑟

(𝑡−𝑎)

ℎ

𝑟=0
(
𝛼
𝑟
) 𝑓(𝑡 − 𝑟ℎ) 

(4) 

 

Where ω𝑟
(𝛼)

= (−1)𝑟 (
𝛼
𝑟
) represents the polynomial 

coefficients of (1 − 𝑧)𝛼. 

The coefficients can also be obtained recursively 

from  

 

ω0
(𝛼) = 1,ω𝑟

(𝛼) = (1 −
𝛼 + 1

𝑟
)ω𝑟−1

(𝛼) , 𝑟 = 1,2,… 

(5) 

 

The riemann-liouville definition is expressed as: 

 

𝑎𝐷𝑡
−𝛼𝑓(𝑡) =

1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓(
𝑡

𝑎

𝜏) 𝑑𝜏     (6) 

 

Where  0 < 𝛼 <  1, ℎ  is the step time, and 𝛼 is 

the first time occurrence, which is frequently 

considered to be zero, i.e., 𝑎 = 0. The differentiation 

is then denoted as  𝐷𝑡
−𝛼𝑓(𝑡). 

The Caputo’s definition is given by 

 

0𝐷𝑡
−𝛼𝑦(𝑡) =

1

𝛤(1 − 𝛾)
∫

𝑦(𝑚+1)(𝜏)

(𝑡 − 𝜏)𝛾

𝛼−1𝑡

𝑎

 𝑑𝜏    (7) 

 

The Riemann-Liouville and Grunwald-Letnikov 

definitions are comparable for a broad class of 

functions that exist in many engineering applications 

and real physical systems [28]. 

3.2 Matsuda’s approximation method 

Matsuda's method is based on the continuing 

fraction technique (CFE) [29], which allows for the  

 



Received:  January 4, 2022.     Revised: February 7, 2022.                                                                                                 62 

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022           DOI: 10.22266/ijies2022.0630.06 

 

 

Figure. 3 Integral operator fractionalization 

 

 
Figure. 4 Bode diagram comparaison of the integration 

1

𝑠
 

with the oustaloup and matsuda approximations   

𝐺0.3(𝑠) × 𝐺0.7(𝑠) 

 

approximation of an irrational function by a rational 

one. Assuming that the selected points are 𝑠𝑘 , 𝑘 =
0,1,2,…𝑁  , the approximation takes on the form: 

 

𝐺(𝑠) = 𝛼0 +
𝑠 − 𝑠0

𝛼1 +
𝑠−𝑠1

𝛼2+
𝑠−𝑠2
𝛼3+⋯

                (8) 

 

Where   

𝛼𝑖 = 𝑣𝑖(𝑠𝑖), 𝑣0(𝑠) = 𝐺(𝑠), 𝑣𝑖+1(𝑠) =
𝑠 − 𝑠𝒊

𝑣𝑖(𝑠)−𝛼𝑖
 

4. Frequency domain analysis of a 

fractionalized integrator 

Let us examine an integrator given by its 

transform of Laplace: 

 

𝐺(𝑠) =
1

𝑠
                                    (9) 

 

The classical integrator fractionalization Eq. (9) 

as represented in Fig. 3 leads to, 

 
1

𝑠
=

1

𝑠𝛼
.
1

𝑠1−𝛼
                              (10) 

 

Where 𝛼 is a real number such that  0 < 𝛼 < 1. 

Using the matsuda approximation approach, as 

described in section 3.2, and the approximation 

parameters: ω𝑏 = 0.01 𝑟𝑎𝑑/𝑠  ,  ωℎ = 1000 𝑟𝑎𝑑/𝑠 , 

we get the approximated functions  𝐺𝛼(𝑠)  and 

𝐺1−𝛼(𝑠) given bellow: 

 

𝐺𝛼(𝑠) = 𝐺0.3(𝑠) 

=

0.0803 𝑠5 +  94.29 𝑠4 + 5357 𝑠3 +
24490 𝑠2 + 9372 s +  223.9

 𝑠5 + 418.6 𝑠4 + 10940 𝑠3 + 23930 𝑠2 +
4212 s +  35.87

  (11) 

 

𝐺1−𝛼(𝑠) = 𝐺0.7(𝑠) 

=

0.00202 𝑠5 +  7.128  𝑠4 + 712  𝑠3 +
5348 𝑠2 + 3363 s +  141.3

 𝑠5 + 238.1 𝑠4 + 3786  𝑠3 +  5040 𝑠2 +
504.6 s +  1.43

  (12) 

 

Fig. 4 illustrates the frequency domain 

comparison between the integer order integral 

operator 1 𝑠⁄  and the product of the fractional order 

integral operators approximating filters 1 𝑠𝛼⁄  and 

1 𝑠1−𝛼⁄  obtained by the Matsuda approximation 

method. 

In Fig. 4, the filter's Bode diagram is placed on 

the exact responses of 1/s. It can be seen that the 

matsuda–fujii filter has a larger fitting band. 

Furthermore, it is clear that this filter product gives a 

decent approximation of the integral operator in the 

frequency interval of interest.  

5. Fractionalized PID controller based on 

HGSO algorithm 

5.1 HGSO optimization methods 

In optimization problems, meta-heuristic methods 

have found a home. One of the most recent 

population-based techniques is Henry gas solubility 

optimization (HGSO). Henry's law of physics 

influenced this algorithm. 

This optimization technique's mathematical 

modeling can be described in the steps below: 

Step1: Initialization 

The following equation is used to randomly 

initialize the search using N gas particles. 

 

𝑋𝑖(𝑡 + 1) = 𝑋𝑚𝑖𝑛 + 𝑟 × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)   (13) 

 

In Eq. (13), 𝑋𝑖  signifies the position of the 𝑖𝑡ℎ 

particle, 𝑟  denotes an integer produced at random  

 

 1

𝑠
 

1

𝑠1−𝛼
 

1

𝑠𝛼
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Figure. 5 The Henry gas solubility principle [3] 

 

from the range [0,1] ,  𝑡 denotes the number of 

iterations, and 𝑋𝑚𝑖𝑛 defines the lower bound of the 

search space and 𝑋𝑚𝑎𝑥  denotes the upper bound. 

Henry's constant, partial pressure, and a constant 

value of each gas particle in the 𝑗𝑡ℎ  cluster are 

represented by 𝑗(𝐻𝑗(𝑡)), 𝑃𝑖,𝑗, and 𝑗(𝐶𝑖), respectively. 

Eqs. (14–16) are used to initialize the latter terms, 

with constant values of 𝐼1, 𝐼2, and 𝐼3 equal to 5. 10−2, 

100, and 10−2, respectively. 

 

𝐻𝑗(𝑡) = 𝑙1 × 𝑟𝑎𝑛𝑑(0,1)               (14) 

 

𝑃𝑖,𝑗 = 𝑙2 × 𝑟𝑎𝑛𝑑(0,1)                  (15) 

 

𝐶𝑗 = 𝑙3 × 𝑟𝑎𝑛𝑑(0,1)               (16) 

 

Step2: Clustering 

Because of the many types of gases accessible in 

HGSO, the population is divided into 𝑘  groups. 

Henry's constant, 𝐻𝑗,  varies depending on the gas 

type. 

Step3: Fitness evaluation  

The considered objective function is performed to 

analyse the 𝑖𝑡ℎ gas particle in the 𝑗𝑡ℎ cluster. 

Following the evaluation procedure, the 

population is ranked based on fitness values. The 

latter aids in the discovery of the best particle in each 

cluster (𝑋𝑖,𝑗) as well as the total population (𝑋best). 

Step 4: Updating coefficient of Henry 

Eq. (17) is used to update Henry's coefficient for 

the 𝑗𝑡ℎ cluster in each iteration: 

 

𝐻𝑗(𝑡 + 1) = 𝐻𝑗(𝑡) × 𝑒
(−𝐶𝑗×(1 𝑇(𝑡)⁄ −1 𝑇𝜃⁄ ))   (17) 

 

Where:  

𝑇(𝑡) = 𝑒(−𝑡 𝑡𝑚⁄ ) and  𝑇𝜃 = 298.15 

 

Where 

𝑡𝑚  and 𝑇  stand for maximum iterations and tempera

-ture values, respectively. 

Step 5: Updating Solubility 

𝑆𝑖,𝑗 is the solubility of the ith gas in cluster 𝑗. Eq. 

(16) is used to change this parameter: 

 

𝑆𝑖,𝑗 = 𝐾 ×𝐻𝑗(𝑡 + 1) × 𝑃𝑖,𝑗(𝑡)          (18) 

 

where 𝐾 is a constant and 𝑃𝑖,𝑗  is the partial 

pressure, respectively. These are user-defined values, 

which are all set to 1. 

Step 6: Position Updating 

Eq. (19) is used to change the position 𝑋𝑖,𝑗  in 

iteration 𝑡 + 1: 
 

𝑋𝑖,𝑗(𝑡 + 1) = 𝑋𝑖,𝑗(𝑡) + 𝐹 × 𝑟1 × 𝑟2 × 𝛾 × 

(𝑋𝑖,𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖,𝑗(𝑡)) + 𝐹 × 𝑟2 × 𝛼 × 

(
𝑠𝑖,𝑗(𝑡) ×

𝑋 𝑏𝑒𝑠𝑡

(𝑡) − 𝑋𝑖,𝑗(𝑡))                (19) 

 

Where  𝛾 =× 𝑒
−(

𝐹𝑏𝑒𝑠𝑡(𝑡)+𝜀

𝐹𝑖,𝑗(𝑡)+𝜀
)
  and 𝜀 = 0.05 

 

where 𝑟1  and 𝑟2  are two separate randomly 

generated values in the range [0, 1].  The 𝐹  flag is 

used to control the search direction, whereas is a user-

defined constant with a default value of 1. A search 

agent's ability to interact with other search agents in 

its cluster is represented by  𝛾; The impact of other 

search agents on search agent 𝑖  is denoted by 𝛼 . 

𝑋𝑗,𝑏𝑒𝑠𝑡 , denotes the best candidate solution in 

the  𝐽𝑡ℎ cluster, whereas 𝑋𝑏𝑒𝑠𝑡  denotes the best 

solution in the entire population. 

Step7: Escaping from Local Optimum 

With the help of Eq. (20), the number of worst 

agents (𝑁𝜔) is ranked and chosen: 

 

𝑁𝜔 = 𝑁 × (𝑟𝑎𝑛𝑑(𝑐2 − 𝑐1) + 𝑐1)           (20) 
 

Where 𝑐1 = 0.1 and 𝑐2 = 0.2. 
Step8: Updating worst agents  

The following is an updated list of the worst 

agents: 

 

𝐺𝑖,𝑗 = 𝐺𝑚𝑖𝑛(𝑖,𝑗) + 𝑟 × (𝐺𝑚𝑎𝑥(𝑖,𝑗) − 𝐺𝑚𝑖𝑛(𝑖,𝑗))   

(21) 
 

𝐺𝑖,𝑗 is the position of gas 𝑖 in cluster 𝑗, and 𝑟 is a 

random number in Eq. (21). The problem's 

boundaries are 𝐺𝑚𝑖𝑛 and 𝐺𝑚𝑎𝑥. 

Fig. 5 depicts the principle of Henry gas solubility. 
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Figure. 6 The proposed HGSO-FPID approach using 

approximation method for DC speed motor control 

 

 
Table 2. HGSO-PID parameters for performing 

optimization problems 

Parameter Value 

Total number of gas particles 40 

Number of iterations 50 

Number of independent runs 20 

Lower bound for 
[𝐾𝑝;  𝐾𝑖 ;  𝐾𝑑] [0.001;  0.001;  0.001] 

Upper bound for 
[𝐾𝑝;  𝐾𝑖 ;  𝐾𝑑] [20;  20;  20] 

Dimension for optimization 
problem 

3 

Time of simulation (𝑡𝑠𝑖𝑚) 1s 

 
 
As can be seen, the volume of the gas in equilibrium 

drops as the pressure rises. 

5.2 Fractionalized PID controller 

The proposed fractionalization approach is 

examined in this study by addressing its application 

to the transfer function of a feedback control DC 

motor system given in Eq. (2). 

The feedback control loop with a HGSO based on 

the Fractionalized PID controller is shown in Fig. 6. 

In Fig. 6, Ω𝑟𝑒𝑓 is the reference angular speed, Ω 

is the output angular speed, (𝐾𝑝, 𝐾𝑖 , 𝐾𝐷 ) are gains of 

fractionalized PID and 𝛼 is the fractional order. 

The traditional PID controller to be designed 

looks like this: 

 

𝐺𝑐(𝑠) = 𝐾𝑝 (1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠)               (22) 

 

The enhancement The PID control law is adjusted 

by fractionalizing a control system part, and the 

operator of integral 1/𝑠  is fractionalized as 

expressed  in Eq. (10) and illustrated in Fig. 3; that is, 

 

1

𝑠
=

1

𝑠𝛼
1

𝑠(1−𝛼)
 

 

The fractionalization of the classical PID 

controller to be created is provided as [30], 

 

          𝐺𝑐(𝑠) = 𝐾𝑝(1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠) 

            =
1

𝑠
(
(𝐾𝑝𝑇𝑑𝑠

2 + 𝐾𝑝𝑇𝑖𝑠 + 𝐾𝑝

𝑇𝑖
) 

=
1

𝑠𝛼
1

𝑠(1−𝛼)
(
(𝐾𝑝𝑇𝑑𝑠

2 + 𝐾𝑝𝑇𝑖𝑠 + 𝐾𝑝
𝑇𝑖

)    (23) 

 

where, 0 < 𝛼 < 1 

6. Results of comparative simulations and 

discussion 

The performance of the algorithm in controlling 

the speed response of a DC motor system given in Eq. 

(10) is demonstrated in the simulations below. 

MATLAB/SIMULINK software was used to create 

the simulations. Table 2 lists the parameters of the 

proposed HGSO algorithm. 

The technique for determining the optimal gains 

of the PID controller using the HGSO algorithm 

began with the initialization phase, in which the 

advanced MATLAB/Simulink model for DC speed 

control was merged with the HGSO algorithm and 

approximation method. 

The PID controller's gains, which needed to be 

improved, were assigned to a vector of real numbers 

that represented each gas particle in the population. 

The population consisted of N randomly created gas 

particles and their opposing forces. Then, for each gas 

particle, a time domain simulation of the DC motor 

speed control system with the suggested PID 

controller and unity feedback was performed, and the 

system's speed response curves were obtained along 

with the ITAE value given in Eq. (24). 

 

𝐽(𝐾𝑝, 𝐾𝑖, 𝐾𝑑) = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡

𝑡𝑠𝑖𝑚

0

         (24) 

 

𝐽 refers for performance criteria. It denotes the 

degree to which the controlled object is similar to the 

reference model. Where 𝑒(𝑡)  represents the 

difference between the set point and the controlled 

variable, and 𝑡 is the time. 

Fig. 7 depicts a detailed flow chart of the 

suggested design approach. 

For the system model 𝐺𝐷𝐶𝑀(𝑠) presented in Eq.  
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Figure. 7 The proposed design approach for DC speed control is depicted as a flowchart 

 
 

(2) with the following PID parameters: 𝐾𝑝 =

13.4430 , 𝐾𝑖 = 1.2059 , 𝐾𝑑 = 2.2707 , a PID 

controller is constructed using the HGSO algorithm. 

With fractionalized PID and unity feedback, the 

closed loop transfer function of an DC motor system 

is: 

 

 

𝐺𝐶𝐿𝐻𝐺𝑆𝑂−𝐹𝑃𝐼𝐷(𝑠) = 

𝐺𝐻𝐺𝑆𝑂−𝐹𝑃𝐼𝐷(𝑠) ∗ 𝐺𝐷𝐶𝑀(𝑠)

1 + 𝐺𝐻𝐺𝑆𝑂−𝐹𝑃𝐼𝐷(𝑠) ∗ 𝐺𝐷𝐶𝑀(𝑠)
    (25) 

 

As a result, the closed loop transfer function for 

the HGSO Algorithm with the resulting PID 

controller has been 'fractionalized,' as shown in Eq. 
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Figure. 8 Error signal for model reduction 

(23) with integrator fractional order 𝛼 = 0.1 

determined using the Matsuda technique with 𝜔𝑏 =
0.01 𝑟𝑎𝑑/𝑠, 𝜔ℎ = 1000 𝑟𝑎𝑑/𝑠  and unity feedback 

is: 

 

𝐺𝐶𝐿𝐹𝑃𝐼𝐷−𝑀𝑎𝑡𝑠𝑢𝑑𝑎
(𝑠)

=

  0.002399  𝑠12    +     30.57 𝑠11    +
2.705e04 𝑠10     + 
4.308e06  𝑠9 + 

1.94e08𝑠8 + 2.828e09 𝑠7 +
1.678e10 𝑠6 +

4.109e10𝑠5 +  3.543e10𝑠4 +
1.086e10 𝑠3 +

1.199e09  𝑠2 + 4.944e07 s +  5.72e05
 1.082 𝑠12    + 849.6 𝑠11   +

  1.672e05  𝑠10  +
1.032e07𝑠9 + 2.829e08 𝑠8 +
3.352e09 𝑠7 + 1.807e10 𝑠6

+24.236e10 𝑠5 +  3.593e10 𝑠4 +
1.094e10 𝑠3 + 

1.203e09 𝑠2 + 4.948e07s +  5.72e05  

         (26) 

 

The closed loop system with PID based on the HGSO 

algorithm has a high order. As a result, the entire 

fractionalized PID controller's memory capacity will 

be reduced in order to fit better inside the correction 

loop. 
The error signal for model reduction is shown in Fig. 

8, where the original model is given by   
 

𝐺(𝑠) =
𝑏1𝑠

𝑛−1 +⋯+ 𝑏𝑛−1𝑠 + 𝑏0
𝑠𝑛 + 𝑎1𝑠

𝑛−1 +⋯+ 𝛼𝑛−1𝑠 + 𝑎𝑛
    (27) 

 

Our current goal is to find an approximation 

integer-order model with a low order, in the form 

[44]: 

 

𝐺𝑟 𝑚⁄ (𝑠) =
𝛽1s

r +⋯+ 𝛽𝑟𝑠 + 𝛽𝑟+1
sm + 𝛼1𝑠

𝑚−1 +⋯+ 𝛼𝑚−1𝑠 + 𝛼𝑚
 (28) 

 

The following is an objective function for 

minimizing the H2-norm of the reduction error signal 

e(t): 

 

𝐽 = min
θ
‖𝐺̂(𝑠) − 𝐺𝑟/𝑚(𝑠)‖2

               (29) 

 

Where 𝜃 are the parameters set to be optimized such 

that: 

 

𝜃 = [𝛽1, … , 𝛽𝑟, 𝛼1, … , 𝛼𝑚]                    (30) 
 

Therefore, the closed loop transfer function with 

the resulting PID controller  ‘fractionalized’ with 

integrator fractional order 𝛼 =  0.1 approximated  

using Matsuda method and unity feedback for HGSO 

Algorithm given in Eq. (26) becomes: 

 

𝐺𝐶𝐿𝐻𝐺𝑆𝑂−𝐹𝑃𝐼𝐷(𝑠) 

=
40.32 𝑠2 + 238.7 𝑠 + 21.42

1.08 𝑠3 + 46.43 𝑠2 + 240.4𝑠 + 21.42
       (31) 

 

As a result, for different integrator fractional 

orders 𝛼 =  0.2, 𝛼 =  0.3, 𝛼 =  0.4 , and 𝛼  = 0.5 

applied to DC motor system, the closed loop transfer 

functions of the HGSO based low order 

fractionalized PID controller using Matsuda 

approximation approach are expressed as follows: 

 

▪ For 𝛼 =  0.2 

 

        𝐺𝐶𝐿𝐻𝐺𝑆𝑂−𝐹𝑃𝐼𝐷(𝑠) 

=
46.26  𝑠2 + 273.9𝑠 + 24.57

1.08 𝑠3 + 52.36 𝑠2 + 275.5 𝑠 + 24.57
     (32) 

 
▪ For 𝛼 =  0.3 

 
           𝐺𝐶𝐿𝐻𝐺𝑆𝑂−𝐹𝑃𝐼𝐷(𝑠) 

=
51.07  𝑠2 + 302.3 𝑠 + 27.12

1.08 𝑠3 + 57.17𝑠2 + 304 𝑠 + 27.13
       (33) 

 
▪ For 𝛼 =  0.4 

 

𝐺𝐶𝐿𝐻𝐺𝑆𝑂−𝐹𝑃𝐼𝐷(𝑠) 

=
54.15  𝑠2 + 320.6𝑠 + 28.76

1.08 𝑠3 + 60.25𝑠2 + 322.2 𝑠 + 28.76
       (34) 

 
▪ For 𝛼 =  0.5 

 
            𝐺𝐶𝐿𝐻𝐺𝑆𝑂−𝐹𝑃𝐼𝐷(𝑠) 

=
55.2  𝑠2 + 326.8 𝑠 + 29.31

1.08 𝑠3 +  61.3 𝑠2 + 328.4 𝑠 + 29.32
  (35) 

6.1 Overshoot, rising time, and settling time 

comparison 

Table 3 lists the PID controller parameters that 

correspond to the minimal value of the ITAE goal 

 

+ 

- 
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function for various controllers chosen for fair 

comparison. 

The transfer functions of HGSO/PID, ASOA/PID, 

GWO/PID, PSO/PID, IWO/PID, SFS/PID and 

SCA/PID controllers are provided in Eqs. (36-42) 

using these parameters given in Table 3. 

         𝐺𝐶𝐿𝐻𝐺𝑆𝑂𝐴−𝑃𝐼𝐷(𝑠) 

=
34.06 𝑠2 +  201.6 𝑠 + 18.09

1.08 𝑠3 + 40.16 𝑠2 + 203.3𝑠 +  18.09
     (36) 

 

    𝐺𝐶𝐿𝐴𝑆𝑂𝐴−𝑃𝐼𝐷(𝑠) 

=
36.54  𝑠2 + 179.2𝑠 + 30.78

1.08 𝑠3 + 42.64 𝑠2 + 180.8 𝑠 +  30.78
     (37) 

 

         𝐺𝐶𝐿𝐺𝑊𝑂−𝑃𝐼𝐷
(𝑠) 

=
13.95  𝑠2 + 103.5 𝑠 + 8.4

1.08 𝑠3 +  20.05 𝑠2 + 105.1 𝑠 +  8.4
     (38) 

 

        𝐺𝐶𝐿𝑃𝑆𝑂−𝑃𝐼𝐷(𝑠) 

=
0.24  𝑠2 + 22.8 𝑠 + 20.7

1.08 𝑠3 +  6.34 𝑠2 + 24.43 𝑠 +  20.7
        (39) 

 

Table 3. Gain parameters of the proposed controllers and 

other controllers compared 

Controller 𝑲𝒑 𝑲𝒊 𝑲𝒅 

HGSOA/PID[10] 13.4430 1.2059 2.2707 

ASOA/PID [16] 11.9437 2.0521 2.4358 

GWO/PID [17] 6.8984 0.5626 0.9293 

PSO/PID [12] 1.5234 1.3801 0.0159 

IWO/PID [12] 1.5782 0.4372 0.0481 

SFS/PID [19] 1.6315 0.2798 0.2395 

SCA/PID [21] 4.5012 0.5260 0.5302 

 

 
Figure. 9 Comparative speed step responses of DC motor 

for different controller designs with the proposed 

HGSOA/FPID controllers for 𝛼 = 0.1 

 

Figure. 10 Comparative bode plots for different controller 

designs with the proposed HGSOA/FPID controllers for 
𝛼 = 0.1 

 

Table 4. Transient response results for 𝛼 = 0.1 

Controller type Overshoo
t (%) 

Settling 
time (s) 

Rise time 
(s) 

HGSOA/FPID 

[proposed] 

0.0052 0.1003 0.0579 

HGSOA/PID[10

] 
0.0000 0.1186 0.0684 

ASOA/PID [16] 0.0000 0.1535 0.0692 

GWO/PID [17] 1.4989 0.2052 0.1388 

PSO/PID [12] 24.2  1.8  0.356 

IWO/PID [12] 6.98  1.25  0.419 

SFS/PID [19] 0.0000 1.4475  0.5436 

SCA/PID [21] 2.3056 0.4899 0.2038 

 

 

       𝐺𝐶𝐿𝐼𝑊𝑂−𝑃𝐼𝐷
(𝑠) 

=
7.35  𝑠2 + 23.7 𝑠 + 29.25

1.08 𝑠3 + 13.45 𝑠2 +  25.33 𝑠 +  29.25
   (40) 

 

         𝐺𝐶𝐿𝑆𝐹𝑆−𝑃𝐼𝐷(𝑠) 

=
3.592   𝑠2 +  24.47 𝑠 + 4.197

1.08 𝑠3 +  9.692 𝑠2 + 26.1 𝑠 + 4.197
     (41) 

 

        𝐺𝐶𝐿𝑆𝐶𝐴−𝑃𝐼𝐷(𝑠) 

=
7.953   𝑠2 + 67.52 𝑠 + 7.89

1.08 𝑠3 + 14.05 𝑠2 + 69.15 𝑠 +  7.89
       (42) 

 

To compare the performances of the proposed 

approach (HGSO/FPID) for DC speed control system 

with other existing approaches such as HGSO/PID 

[10], ASO/PID [16], GWO/PID [17], PSO/PID [12], 

IWO/PID [12], SFS/PID [19] and SCA/PID [21], a 

comparative stability analysis was performed in the 

time and frequency domains; using an input speed 
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reference of 1𝑟𝑎𝑑/𝑠 are in Figs. 9, 10 where Fig. 9 

compares step response to maximum percentage 

overshoot, rise time (for 10% – 90% tolerance), and 

settling time (for 2% tolerance) and Fig. 10 compares 

Bode plot to frequency response performance of gain 

margin (in decibel), phase margin (in degrees), and 

bandwidth. 

This section looks at one test that represents one 

order of integration value in a fractionalized PID 

controller (𝛼 = 1, in a typical PID controller). Other 

tests' results are given in a Table 6. 

It can be seen in Fig. 10 that, the speed of the DC 

motor reaches the set point promptly with a negligible 

overshoot with the proposed HGSO/FPID controller. 

Table 4, provides the transient response analysis 

simulation results (overshoot [𝐷], settling time [𝑇𝑠], 
and rise time [𝑇𝑟]) for the integrator fractional order 

and other controllers obtained by the low order 

fractionalised PID controller. 

The DC speed control system with the suggested 

HGSO/FPID with Matsuda approximation had the 

smallest values for both settling and rise times with a 

negligible overshoot, as shown in Table 4. 

 

 
Table 5. Comparative frequency response performance 

analysis results 

Controller 

type 

Gain 

margin 

Phase 

margin 

Bandwidth 

HGSOA/FPID 

[proposed] 
∞ 180 37.5804 

GSOA/PID[10] ∞ 180 31.7975 

ASOA/PID 

[16] 
∞ 

180 
32.9113 

GWO/PID [17] ∞ 180 14.9076 

PSO/PID [12] ∞ 
90.9763 

5.5211 

IWO/PID [12] ∞ 
151.1291 

3.6993 

SFS/PID [19] ∞ 
180 

4.1183 

SCA/PID [21] ∞ 
180 

10.1347 

 

Table 6. Transient response results for different integrator 

order of fractionalized PID 

    

criterions 

HGSOA/FPID controller [Proposed] 

 
𝜶 = 𝟎.𝟐 𝜶 = 𝟎. 𝟑 𝜶 = 𝟎.𝟒 𝜶 = 𝟎. 𝟓 

Overshoot 
(%) 

0.0431 0.0624 0.0713 0.0738 

Settling 

time(s) 
0.0876 0.0795 0.0750 0.0736 

Rise time (s) 0.0505 0.0458 0.0432 0.0424 

 

 

Figure. 11 Comparative study with different approaches 

based PID and HGSOA/FPID controllers for 𝜶 = 𝟎. 𝟏:  

load disturbance unit step response 

 

In terms of transient stability, fast damping 

characteristics, and minimum overshoot, the 

proposed HGSO/FPID controller design approach 

outperforms not only the HGSOA/PID [10] 

controller design approach, but also other controller 

design approaches such as ASOA/PID [16], 

GWO/PID [17], PSO/PID [12], IWO/PID [12], 

SFS/PID [19], and SCA/PID [21]. 

6.2 Comparison of frequency domain analyses 

Fig. 10 shows a comparison of Bode graphs with 

various controller configurations. Table 5, shows the 

findings of the comparative frequency response 

performance analysis, including gain margin (in 

decibels), phase margin (in degrees), and bandwidth 

(in Hertz). 

In terms of frequency response criterion, the table 

clearly illustrates that the suggested HGSO/PID 

controller is the most stable system. 

Table 6 compares the simulation findings of 

transient response analysis (overshoot, settling time, 

and rise time) obtained by the HGSOA/FPID 

controller for four fractional order integrators 𝛼 =
 0.2 , 𝛼 =  0.3 , 𝛼 =  0.4  and 𝛼 =  0.5   of the 

fractionalized PID. 

In comparison to the state-of-the-art design 

techniques, the DC speed control system with the 

suggested HGSO/FPID with Matsuda approximation 

obtained by changing integrator order of FPID had 

the shortest values for both settling and rise times 

with minimum overshoot, as shown in Table 6. (see 

Table 4). 
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6.3 Analysis of robustness comparison 

A robust controller is necessary to keep the 

system response within acceptable bounds. As a 

result, a robustness analysis was performed to 

determine how stable the proposed system is in the 

event of a step disturbance. 

Fig. 11 compares the proposed HGSOA-FPID 

controller's disturbance rejection performance to that 

of the HGSOA/PID [10], ASOA/PID [16], 

GWO/PID [17], PSO/PID [12], IWO/PID [12], 

SFS/PID [19], and SCA/PID [21] controller designs 

for DC speed motor transfer function. 

Because it performs a more stable structure, the 

optimal control strategy for disturbance rejection, as 

shown in the figure above, is achieved by applying 

the proposed controller HGSOA/FPID with the 

Matsuda approximation. Peak errors are high in all of 

the controllers, but the HGSOA/FPID controller with 

integrator fractional order 𝛼 =  0.1  performs 

substantially better. 

7. Conclusion 

To regulate the DC speed motor system, a 

fractionalized PID based on the HGSO algorithm was 

proposed in this study. The HGSO method is used in 

the controller design process to minimize the ITAE 

objective function. To demonstrate the superiority 

and effectiveness of the new proposed HGSO/FPID 

approach with Matsuda approximation, performance 

comparisons were made not only with HGSO-based 

PID controllers but also with various state-of-the-art 

design approaches such as ASOA/PID [16], 

GWO/PID [17], PSO/PID [12], IWO/PID [12], 

SFS/PID [19], and SCA-PID [21]. Time and 

frequency domain analysis, as well as disturbance 

rejection analysis, were performed, and the findings 

reveal that the suggested controller optimizes 

transient response by minimizing rise time, settling 

time and overshoot, as well as having strong output 

disturbance rejection. 

As a future work another approximation method 

for Fractionalized PID controller can be uses and 

compared the result with the result of this paper also 

another system can be uses to show the effect of 

HGSO/FPID controller with different system. 
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