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Abstract: Within the exponential growth in raw data production, attributed in no small part to social media - Facebook, 

Youtube, and others. Video is proving to be the most important data type thanks to the substantial amount of raw data 

it contains, requiring an efficient way to be understood, organized, structured, and stored for ease of retrieval. Hence, 

an efficient video indexing architecture is thus crucial for video datasets. This paper proposes an efficient Multi-Object 

Semantic Video Detection (MOSD) that leverages the deep learning power to achieve effective indexing on the 

semantic concept level. MOSD is multi-detection network of video semantics in multiple frames. MOSD exploits a 

3D convolution operation to do multiple detections among multiple frames with higher performance. The detected 

semantics then structured and used for indexing the video segments. MOSD has been trained and evaluated on 

ImageNet VID dataset and has been compared to peers. MOSD showed efficiency in exploiting the temporal context 

of a video to do simultaneous detections of consecutive frames which speeds up the detection of semantic objects. 

MOSD also showed performance efficiency in terms of mAP which is 85.2%. 
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1. Introduction 

Nowadays, video is the primary as well as the 

comprehensive medium for the exchange of 

information. It is also widely used in several 

significant domains such as education, surveillance, 

entertainment, medicine, and others [1]. The ubiquity 

of smart devices, advances in processing power, and 

markedly improving internet connection have 

supported the rapid spread of video data. Moreover, 

the video characterizes with [2]: 

1- Non-defined prior structure.  

2- Rich in raw data.  

3- Repetitive nature of the frames.  

4- Needs large storage capacity. 

5- Include video formation issues, e.g., 

viewpoint change, illumination variation, 

motion blur, occlusion, etc.  

For these reasons, video is considered the most 

important multimedia type, and structuring its data 

for effective storage is a critical concern [1]. Over the 

past decade or so, considerable efforts have enriched 

the literature with significant breadths covered thanks 

to deep learning paradigms. The Convolutional 

Neural Network (CNN) has achieved exceptional 

results which have attracted the attention of 

researchers worldwide. In 2010, the Large Scale 

Visual Recognition Challenge (ILSVRC) had 

launched and deep learning paradigms have widely 

spread since AlexNet, 2012 winner, is considered as 

the first considerable work introduced to CNN and 

since then, the number of research contributions in 

deep learning architectures in real-world problems 

has been rapidly growing. Deep learning 

architectures have also achieved exceptional success 

in the context of video as well. 

The process of managing and organizing video 

datasets becomes crucial. The key concern is that for 

the large amount of video datasets, the process of 

manually annotating is no longer being an effective 
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way as it is very time-consuming[1]. One of the most 

important computer vision topics is video indexing. 

Video indexing is a way to assign an index for the 

video segment for effective organization of the video 

dataset and effective retrieval.  

Semantic Video Indexing (Semantic-VID) is the 

process of exploring a set of expressive semantic 

concepts of video frames and assigning it to the video 

[3]. Semantic-VID output depends on the level of 

indexing that the model seeks to achieve. At the 

highest level of indexing, there are both the video 

label and/or the video shots’ labels. The intermediate 

level has more semantic depth of the video; it 

comprises a set of objects, actions, and activities. The 

lowest level is the most representative of the video. It 

represents the video by a dense representation of 

annotations and captions. 

VID comprises basic subtasks such as video 

classification, object detection, action/activity 

recognition, and so on. It may comprises other tasks 

(e.g., facial recognition) depending on the application. 

VID architectures can roughly be classified into two 

main sub-categories: 1) Conventional (Handcrafted 

based) architectures and 2) Deep learning-based 

architectures.  

The difference lies in the features and how they 

are extracted to ultimately reach the video index. 

Deep learning techniques are efficient in extracting 

the semantic concepts in one step unlike conventional 

ones which extract the video features and then 

annotate the frames using the extracted features. 

This paper introduces an effective deep learning-

based semantic video indexing architecture. Multi-

Object Semantic Video Detection (MOSD) is mainly 

concerned with detecting multiple semantics from 

multi-frames simultaneously. MOSD uses a 

Convolutional Neural Network (CNN) in abstracting 

the video frames’ features in different levels. It forms 

a paramedical feature representation of the frames’ 

features. This paramedical representation is then used 

to detect the semantic categories from the frames. 

MOSD utilizes a 3D convolution to do multiple 

detections among multiple frames simultaneously. It 

trained and evaluated on the ILSVRC 2015 VID 

dataset [4].  

The paper is organized as follows: Section 2 

covers the related work of video indexing, while 

Sections 3 and 4, respectively, introduce a newly 

proposed MOSD model and the implementation 

details. Section 5 provides a dataset overview, and 

Section 6 introduces the experimental results and the 

results discussion. The paper ends with its conclusion 

and acknowledgments. 

 

2. Related work 

Video Indexing (VID) is the process of 

generating an expressive index that describes the 

video segment for efficient storage and retrieval 

purposes[2]. As indicated in figure 1, video indexing 

architectures can be divided into two categories: 

features-based and semantic-based. 

Video Indexing architectures can also be divided 

into two categories: conventional methods and deep 

learning methods. Conventional video indexing 

methods create an index based on the video's high-

level features. Using conventional machine learning 

techniques like SVM, several of these methods 

attempt to bridge the gap between a video's features 

and its semantics. While Deep Learning-based 

approaches derive video semantics in a single step by 

extracting features and classifying them into 

semantic classes.  

2.1 Features based Indexing 

Feature based indexing is a method that utilizes 

high-level features in indexing video segments. 

Histogram of Oriented Gradients (HOG) detector is 

one of the most important features-based indexing 

architectures [N. Dalal and B. Triggs, "Histograms of 

oriented gradients for human detection”, 2005 IEEE 

Computer Society Conference on Computer Vision 

and Pattern Recognition (CVPR'05), 2005, pp. 886-

893 Vol. 1, doi: 10.1109/CVPR.2005.177.5]. HOG is 

an example of feature-based methods which works by 

counting the occurrence of gradient orientation of an 

image, and describes the image object appearance 

and shape by intensity gradient and edge direction. 

Another important feature is the Scale–Invariant 

Feature Transform (SIFT). SIFT describes high-level 

features of an object, which locates certain interest 

points and assigns an invariant feature to them 

regardless the image scale, noise, or illumination. 

After calculating and storing SIFT features reference 

images, the new SIFT is calculated and compared 

with the stored ones and therefore identifying key 

points in the new to filter out the best matches. 

Abozaid et al. proposed a Global Dominant SIFT 

(GD-SIFT) descriptor for video indexing and 

retrieval [1]. These approaches have a gap between 

the extracted high-level features and the semantics, 

making them unsuitable for semantic video indexing. 

They lack an interpretation from the human 

perspective of the semantic index, as they rely on the 

video's features rather than its semantics (such as 

person and car).  
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Figure. 1 Video indexing architecture classification 

2.2 Semantic-based indexing: 

Semantics based indexing is video indexing by 

using a set of meaningful semantic concepts [6]. The 

essence of semantic VID lies in understanding the 

video context from a human perspective and 

structuring it in an efficient manner for easy retrieval 

purposes. Semantics concepts can roughly be 

classified into three levels:  

i. High level: to extract single semantic label for 

a video and/or semantic labels for its shots. 

ii. Intermediate level: to extract semantic objects, 

actions, or activities out of the video.  

iii. Low level: to extract a dense representation of 

the semantic concepts (e.g., annotations and 

captions). 

Semantic index extraction undergoes with set of 

tasks which are video classification, video object 

detection (VOD)/Recognition, video actions/events 

recognition, and video captioning / annotating. The 

literature has a lot of investigation regarding these 

tasks and it had a great evolution path, especially in 

the Deep Learning era. Convolutional Neural 

Network (CNN) introduces amazing architectures to 

semantically detect the semantic concept in a single 

step instead of the conventional architectures taking 

multiple stages to extract the semantics. Ghatak and 

Bhattacharjee proposed a multi-stage video indexing 

technique based on the Viola Jones algorithm [7], 

although others rely on the CNN model, which only 

requires a single step of semantic detection [6, 8, 9].  

Semantic indexing of a video is one of three main 

levels: 1) High-Level Semantic Index, 2) 

Intermediate Level Semantic Index, and 3) Low-

Level Semantic Index. 

2.2.1. Extraction of high level semantics: 

Picking an indexing task depends mainly on the 

video dataset nature which may have a very diverse 

content in which a single semantic label is quite 

enough to describe the content. In other cases this is 

not adequate to efficiently index the video and higher 

semantic levels, are more preferable.  

Video classification is the process of assigning a 

semantic label that is relevant to the content of the 

video segment. A good semantic label is the one that 

best describe the video content. This is the most basic 

indexing strategy and the simplest one.  

Kumar et al. proposed a classification model 

based on automated comprehension of human 

motions for obtaining semantic labels from sports’ 

videos [10]. Savran et al proposed a CNN-RNN 

model for extraction of semantic labels of the video 

[11]. Their architecture utilized both spatial and 

temporal information of the video for better 

classification results.   

High-level indexing techniques are appropriate 

for video datasets with highly diverse content (such 

as one clip of a match, another one for a school 

lecture, another for traffic, etc.). For retrieval 

purposes, indexing a video with a single label would 

suffice in these cases. However, in real-world 

datasets with substantially more similar content, 

more indexing layers are required. As a result, 

intermediate and low levels have been come into 

place to go deeply into the content and characterize 

the video using semantics like objects, events, and/or 

activities. 

2.2.2. Extraction of intermediate-level semantics 

More sophisticated intermediate levels of 

indexing are usually useful for efficient describing 

most of the datasets. Intermediate levels of video 

index comprise of the extraction of semantic objects, 

actions, or activities out of a video. Video object 

detection and action/activity recognition attracted the 

researchers' interest to the deep learning evolution. 

Undoubtedly, these evolutions added a lot to video 

indexing research. As shown in figure-1, extraction 

methods of intermediate-level Features’ tasks can be 

divided into: Video Object Detection and Video 

Action / Activity Recognition. 

Video Object Detection (VOD): It is a 

challenging task which revolves around detecting 

both semantic object category and location. Two 

main tasks are used in detecting the semantics 

objects; object classification and localization. It is 

roughly divided into two main types: Direct Detector 

and Multi-Stage Detector. 

In Multi-Stage Detector, a set of regions are 

proposed, and then each region is classified using a 

CNN architecture. Girshick et al. have proposed 

RCNN which uses selective search as a region 
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proposal, and then a pre-trained CNN architecture 

(such as VGG) is then fine–tuned to classify the 

regions to semantic objects [12].  RCCN boosts 

performance of object detection with mean average 

precision (mAP) with 58.5%. K. He and X. Zhang 

have proposed Spatial Pyramid Pooling Networks 

(SPPNet) which mainly provides Spatial Pyramid 

Pooling (SPP) that generates a fixed length 

representation of regions without rescaling the 

regions [13]. SPPNet improves speed without 

sacrificing accuracy, as it has a mAP of 59.2%. 

Girshick has proposed a Fast RCNN which unifies 

the three modules used by RCNN into one [14]. 

Rather than depending on selective search and an 

edge box, S. Ren et al. have proposed a Faster RCNN 

which integrates Region Proposal Network (RPN) 

into a CNN [15].  

In Direct Detector one model is used for both 

classification and bounding box regression. Szegedy 

et al. was the first contributor to propose DetectorNet 

which treats object detection as a regression problem. 

He used AlexNet and replaced the Softmax layer with 

a regression one [16]. Sermanet et al. have proposed 

the OverFeat model which is a single-stage object 

detection one, where both classification and 

localization are achieved simultaneously [17]. The 

first effort to develop a real-time object detector was 

the You Only Look Once (YOLO) network. Many 

enhancements were introduced to it, and it evolved 

till Yolov4 and Yolov5 [18]. Liu et al. have proposed 

Single Shot MultiBox Detector (SSD) with its 

pyramidal hierarchy when extracting features with a 

CNN and that improves the detection results [19]. 

Kang et al. have introduced the T-CNN model as an 

example of methods that work on bounding box level 

using precomputed optical flow fields and object 

tracking to propagate bounding boxes to nearby 

frames [20]. Han et al. have built Seq-NMS that 

improved detection by utilizing high score detection 

from nearby frames [21]. B. Hatem et al. have 

proposed Seq-Bbox which built tubelets by linking b-

boxes across frames to improve detection [22]. Chen 

et al. proposed GigaDet, an object detection model 

[23]. The proposed model is composed of a patch 

generation network (PGN) which is used to discover 

feasible areas holding objects and decide the optimal 

resize ratio of each patch. Then the generated patches 

are then used by a decorated detector (DecDet) to 

perform detection. 

While methods working on feature level are an 

improvement, Zhu et al. have introduced Flow-

Guided Feature Aggregation (FGFA) model which 

uses optical flow and features extracted from nearby 

frames for improving detection [24]. Feichtenhoter et 

al have proposed both Detect-to-Track and Track-to-

Detect (D&T) models which are used simultaneously 

for detection and tracking [25]. Yuning Chai has 

proposed a Patch-Work model for detecting objects 

from a video by using specialized memory that 

retrieves lost context [26]. Patchwork adopts Q-

learning based policy that intelligently selects sub-

windows to be treated in subsequent frames. Fujitake 

and Sugimoto proposed a video object detection 

method based on the Generative Adversarial 

Network (GAN) to accomplish identification and 

content synthesis [27]. The architecture utilized an 

encoder-decoder network that decoded the encoded 

features one at a time. The encoder and decoder are 

recurrent encoders and decoders in the network. 

ResNet and Feature Pyramid Network (FPN) are used 

to create the encoder and decoder, respectively. This 

model achieved a mAP of 73.1%. 

In detection and segmentation-based tasks, 

Region of Interest Align, or RoIAlign, is a method for 

obtaining a small feature map from each RoI which 

is firstly proposed by He et al [28]. RoIAlign 

computes the precise values of the input features at 

four regularly sampled locations in each RoI bin 

using bilinear interpolation, and the result is then 

aggregated using max or average. However, RoI 

Align, continues to extract features from a single-

frame feature map for proposals, resulting in derived 

RoI features that lack temporal information from 

movies. 

Gong et al. proposed Temporal RoI Align, which 

is an enhanced version of the RoIAlign that 

exploits the video's temporal information [29]. 

Temporal RoI Align works by firstly extract the RoI 

features from the target frame. Then, for target frame 

proposals, Most Similar RoI Align automatically 

collects the most similar RoI features from support 

frames feature maps. Then, in order to create final 

temporal RoI features, a temporal attention 

mechanism is used to aggregate the RoI features and 

the most similar RoI features. Temporal RoI Align 

succeeded in incorporating the temporal information 

of a video however, it still lacks consideration of 

different scales of the object to further enhance the 

detection through the temporal multi-scaled 

representation of the object. 

Video Action/Activity Recognition: Video 

actions and activity recognition to get higher 

indexing levels are crucial for building a robust index. 

An object action produces a video, while one or more 

actions in a given period of time produce an event, 

which makes video actions and events similar 

concepts. It is crucial to effectively use both video 

temporal and context information without loss of 

information. There are three categories of models 

used for action recognition: i) spatiotemporal 
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networks; ii) temporal coherency networks; and iii) 

multiple stream networks. 

i) Spatio-temporal networks 

In terms of video, temporal information should be 

considered for action recognition. Ng et al. (2015) 

proposed the temporal pooling and found that max 

temporal pooling was more beneficial [30]. Varol et 

al. (2016) investigated the enhanced effect when 

increasing the temporal duration of the input and 

combining the results of different temporal durations 

of video, since by adding the temporal dimension, the 

parameters get increased and this will affect the 3D 

convolution operation performance [31]. Yang and 

Zou proposed a deep learning network model based 

on spatiotemporal features fusion (FSTFN). Both the 

spatial and temporal information are utilized through 

composition of two networks composed of CNN and 

LSTM [32]. 

ii) Temporal coherency networks  

The concept of temporal coherency of a video is 

that each of the consecutive set of frames is 

semantically and dynamically coherent. A video is 

said to be coherent if: 

▪ The video frames are in their appropriate 

temporal order 

▪ The video events semantics are correlated 

▪ There are no abrupt changes in event semantics 

or motions 

Misra et al. (2016) investigated temporal 

coherency in learning visual representations of video 

for an action recognition task [33]. Fernando and 

Gould (2016) suggest an end-to-end learning scheme 

that learns both the pooling operation and the 

classifier with back propagation [34]. 

iii) Multiple stream networks 

This type of network is inspired by the human 

visual cortex. The visual cortex has two streams; 

Ventral and Dorsal. The Ventral stream identifies the 

object identity, color and appearance, while the 

Dorsal stream recognizes the motion of the object. 

Simonyan and Zisserman have devised an 

architecture that exploits both appearance and motion 

(spatial and temporal) information [35]. They have 

built a spatial stream network trained by video frames 

and a temporal stream network trained by optical 

flow fields. 

Object detection and activity/action recognition 

are effective and appropriate techniques to 

semantically describe a video at a lower level of 

semantics, better representing the video content than 

high-level approaches. These approaches, on the 

other hand, do not use video contextual and temporal 

information to index multiple video frames 

simultaneously. Furthermore, they haven't 

considered the semantics at different scales, which 

might boost performance. Therefore, it is critical to 

consider both temporal and contextual information, 

as well as different scale representations of the 

semantics. 

2.2.3. Extraction of low level semantics 

In most cases, we need to determine a robust 

index which densely describes the content of the 

video (e.g., a man is riding a bicycle and a child 

playing a football) to densely describe a video 

segment. This would be more expressive and robust 

than the other two types. Jesus et al. review video 

captioning, which is the process of assigning a textual 

description to a video input [36]. Hemalatha et al. 

utilize a 2D and 3D CNN network to extract features 

to identify the domain, and the video domain beside 

a RNN network to generate the video captions [36]. 

Wanting et al. proposed an attention-based dual 

learning strategy (ADL) [37]. ADL is made up of two 

modules: a caption generation module that creates a 

reversible mapping between a video and its caption, 

and a video reconstruction module that uses the video 

captions to recreate the video frames. Vaidya et al. 

proposed a low-level semantic extraction architecture 

for caption generation. This architecture searched for 

the semantics as persons and objects, then the 

semantics information is aggregated over the video 

frames [38]. 

The lowest level of semantics extraction is to 

assign captions (such as a person is crossing the 

street) for video frames for indexing purposes. 

However, as video content becomes larger and the 

content changes rapidly, retrieval would be 

challenging when using such methods. Thus, these 

methods are ideal for small video clips datasets rather 

than the bigger ones because of the storage and 

retrieval constraints. 

2.3 Video index representation 

Video indexing ends by structuring the generated 

semantics in a type of structure for an efficient 

retrieval. It is crucial to have a predefined structure to 

 

 
(a)                         (b)                          (c) 

Figure. 2 MOSD Model: (a) Ground truth bounding 

boxes, (b) (4x4) Feature map, and (c) (3x3) Feature map. 

MOSD detects at different feature map scales (exactly, 

(3x3) and (4x4)) 
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Figure. 3 Multi-object semantic video detection (MOSD). It comprises three main stages: (1) Base feature extractor (3D 

VGG16), (2) High-level features extractor, (3) Semantics detector 

 

organize the generated semantics in effective way for 

ease retrieval. The video index is being structured and 

stored by using Structured Index Store or Semi-

Structured Index Store. Structured Index Store: it is 

about structuring the semantics and storing it in a 

predefined static data model like relational database 

management systems, while Semi-Structured Index 

Store uses a semi-structured dynamic data model for 

storage such as NoSQL database (document-based, 

key-value, graphs, etc.).  

Porter et al. represented a shot by a directed 

weighted graph in which its nodes represent the video 

semantic concepts and edges define the 

dissimilarities between each node semantic [39]. 

Podlesnaya et al. have – inspired by ImageNet – 

introduced a method of building an index by using 

graph databases, based on the WordNet lexical 

database [8]. Truong et al. structure and store the 

video index in a file [40]. 

3. Materials and methods 

As the Deep Learning architectures evolve 

rapidly with time to tackle many challenges, this 

paper proposes the Multi-Object Semantic Video 

Detection (MOSD) model which is a semantic deep 

learning VID one. Unlike intermediate-level video 

indexing methods, MOSD considers both contextual 

and temporal information through a 3D convolution 

operation. In addition to, it considers a multi-scales 

representation of a semantic object in a video.  

MOSD is characterized by extracting multiple 

semantic objects from different frames 

simultaneously to form a robust video index. It is an 

adapted 3D model from the 2D SSD object detection 

model [19]. Thus, it is much faster than the 2D object 

network since it can process a total of roughly 185 

FPS. 

The MOSD model is a CNN based network that 

outputs a collection of bounding boxes and 

confidence scores for the presence of semantic 

objects. These detection collections are followed by 

a non-max suppression to produce the final 

predictions. For each input frame, a set of feature 

maps is produced. Each one produces a set of 

detections using a set of convolutional filters. For a 

feature map of size h, w, and c channels per i input 

depth (e.g., 3 frames). A 3x3xc kernel for each i input 

image is used to produce a score and 4 offsets relative 

to the default box. For each feature map, a set of 

anchor boxes of different scales (e.g. 4x4 and 3x3) 

and aspect ratios are generated for each frame from 

the input ones. For each generated default box, offsets 

and semantic category scores are predicted. The 

default boxes are matched against the ground truth 

boxes. For each semantic object, some of the default 

boxes are identified as positive and the remaining are 

negative as showed in Fig. 2.  

As shown in Fig. 3, MOSD model consists of 

three main phases:  

1) Base feature extractor (3D VGG16)  

2) High-level feature extractor: for higher-level 

features 

3) Semantics detector: for multi-scale prediction 

3.1 Base features extractor: 

MOSD model is a 3D version of the 2D VGG16 

to form the network backbone. A 3D convolution 

adds an extra dimension to the extraction process 

with a little increase of parameters. It utilizes a 3D 

convolution layer in the CNN to exploit the video 

temporal dimension. A stream of video frames passes 

the network to extract the features out of them. These 

features are then classified to semantic categories. 

Essentially, a 3D convolution is the same as the 2D 

one, but the kernel moves in the 3D convolution 

causing a better feature capture for multiple frames. 

The 3D convolution layer is more robust in detecting 

global/local features of consecutive frames 

simultaneously. The adapted 3D VGG16 architecture 

consists of 6 blocks, as shown in figure-4. Each block 

consists of multiple 3D convolutions and 3D pooling 

layers. These convolutions are Conv1, Conv2, Conv3, 

Conv4, Conv5, Conv6 and Conv7. 

3.2 High-level features extractor: 

More abstraction levels of the features are needed 

to form a robust feature map that reflects the features  
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Figure. 4 MOSD base feature extractor (3D VGG16) 

 

 
Figure. 2 MOSD high level features extractor 

 

 
Figure. 3 MOSD semantic detector 

 
in different scales. MOSD makes use of a high-level 

feature extractor that comprises 4 layers each and 

each has 2 convolutional operations. These layers use 

different kernel sizes to down-sample the base 

features into different smaller scales. All pairs of the 

convolution operations are applied with two different 

kernel sizes of (3x3 and 1x1) as shown in Fig. 5. 

These feature maps are useful for detecting tiny 

semantic objects as well as bigger ones. The 

generated feature maps are then passed to the 

prediction layers to detect the semantics’ categories 

and locations. 

3.3 Semantics detector: 

The prediction layers are the MOSD final stages 

of semantic object detection. As illustrated in figure-

6, the prediction is based on six distinct scales of the 

backbone's produced features and higher-level 

features. These six output feature map scales are 

produced by the dotted convolutions that are showed 

in Fig. 4 and 5. Two separate scales of base features, 

which are the result of Conv4 layer and Conv7's third 

convolution operation, are combined with four scales 

of high-level features. The second convolution of 
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Conv8, Conv9, Conv10, and Conv11 produces the 

four scales of high-level features. The six feature map 

scales are fed to six convolutions for semantic 

categories detection and another six for object 

localization. Each layer of the convolutional layer is 

specialized in detection of semantics of different 

sizes. The final output of the convolutional layers is 

the semantic categories and locations which are 

(8732 x number of classes) semantic categories and 

(8732 x 4) semantic locations. 

3.4 Model training: 

Regarding model training, MOSD utilizes the 

concept of default boxes and MultiBox loss function. 

During training, the default box that best matches the 

ground truth box needs to be determined. MOSD 

generates default boxes on top of the model structure 

which are varying in scale and aspect ratio. These 

default boxes are matched to the ground truth box to 

determine the best matching one. The best matching 

default box is the one that has the best Jaccard overlap. 

The default boxes that have a Jaccard overlap with a 

value higher than a threshold (0.5) are selected. 

Jaccard Index: It is a metric that is used to 

quantify the overlap percentage between the default 

box and the ground truth box. It measures the 

intersection over union between them as presented in 

Eq. (1). 

 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 (𝐽𝐼) =  
𝑑𝑏𝑖  ∩  𝑔𝑡𝑗

𝑑𝑏𝑖  ∪ 𝑔𝑡𝑗
           (1) 

 

Where 𝑑𝑏𝑖  is the ith  default box for i ∊ set of 

default boxes, and 𝑔𝑡𝑗  is the jth  ground truth box for 

j ∊ set of ground truth boxes. 

Default Boxes: the MOSD uses multiple default 

boxes that vary in their location, scales, and aspect 

ratios. The used aspect ratios are  {1, 2, 3,
1

3
,

1

2
 } and 

the scale for each feature map is calculated by Eq. (2). 

 

𝑠𝑖 =  𝑠𝑚𝑖𝑛 + 
𝑠𝑚𝑎𝑥−𝑠𝑚𝑖𝑛

𝑚−1
 ( 𝑖 − 1 )            (2) 

 

Where 𝑠𝑖  represents the scale for the ith feature 

map, 𝑖 ∈ [1, 𝑚],  m is the number of feature maps 

used for prediction, 𝑠𝑚𝑖𝑛 = 0.2  and 𝑠𝑚𝑎𝑥 = 0.9 , 

which means that the minimum scale is 0.2 and the 

maximum is 0.9. The width and height of the default 

box are calculated by Eqs. (3) and (4). 

 

𝑤 =  𝑠𝑖 . √𝐴𝑅                        (3) 

 

ℎ =  
𝑠𝑖

√𝐴𝑅
                            (4) 

 

Where w and h are the default box width and 

height, respectively, and AR is the aspect ratio. We 

now have five default boxes for each location in the 

feature map. Another 6th default box with a scale 

𝑠′𝑖 = √𝑠𝑖. 𝑠𝑖+1 for the aspect ratio = 1. 

Loss Function: The objective function of the 

MOSD model is the weighted sum of both semantic 

confidence and localization loss. Let 𝑝𝑓𝑖𝑗
𝑐 = {0,1} be 

an indicator for matching the 𝑖𝑡ℎ element of ground 

truth with the 𝑗𝑡ℎ element of default box for category 

c in the frame f of the input frame. The sum of 

localization losses for all input frames. For each input 

frame, it is calculated by using the smooth_l1 

between the predicted box b and the ground truth g  

as defined by Eq. (5). The smooth_l1 used quantifies 

the difference between the predicted box b and 

ground truth box g parameters (cx, cy, h, w) for each 

frame f in the input frames, for each of the positive 

default boxes. 

The sum of semantic confidence losses for all 

input frames. For each input frame, it is defined to be 

the Softmax loss over multiple class confidences t  
which is defined by Eq. (6). 

Where 𝑝𝑓𝑖𝑗
𝑝

 is an indicator for the 𝑖𝑡ℎ element of 

ground truth with the 𝑗𝑡ℎ element of default box for 

category p in the frame f  of the input frame,  �̂�𝑓𝑖
𝑝

=

𝑒𝑥𝑝(𝑐𝑓𝑖
𝑝

)

∑ 𝑐𝑓𝑖
𝑝

𝑝
 , g  is the ground truth, b is predicted box, d 

is the default box and ID is the input depth of the 

model. 

 

𝑳𝒍𝒐𝒄𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 = ∑ ∑ ∑ 𝑝𝑓𝑖𝑗
𝑘  𝑆𝑀𝑂𝑂𝑇𝐻_𝐿1(𝑏𝑓𝑖

𝑚 −  𝑔𝑓𝑗
𝑚 )𝑚∈{𝑐𝑥,𝑐𝑦,𝑤,ℎ}

𝑁
𝑖∈𝑃𝑜𝑠    𝑓 ∈ 𝐼𝐷                         (5) 

 

𝑳𝒄𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆 = ∑ (− ∑ 𝑝𝑓𝑖𝑗
𝑝

𝑙𝑜𝑔(�̂�𝑓𝑖
𝑝

)𝑁
𝑖∈𝑃𝑜𝑠  − ∑ 𝑙𝑜𝑔(�̂�𝑓𝑖

0 )𝑖∈𝑁𝑒𝑔 )𝑓 ∈ 𝐼𝐷                                 (6) 

 

The bounding box regression is conducted for the 

offsets of the center (cx, cy ) of the default box and 

its width w and height h. Hence, the ground truth 

coordinates are transformed according to Eqs. (7.1) 

to (7.4). 

𝑔𝑗
𝑐𝑥 = 𝑙𝑜𝑔 (

𝑔𝑗
𝑐𝑥−𝑑𝑖

𝑐𝑥

𝑑𝑖
𝑤 )                  (7) 

 

𝑔𝑗
𝑐𝑦

= 𝑙𝑜𝑔 (
𝑔𝑗

𝑐𝑦
−𝑑𝑖

𝑐𝑦

𝑑𝑖
ℎ )                        
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𝑔𝑗
𝑤 = 𝑙𝑜𝑔 (

𝑔𝑗
𝑤

𝑑𝑖
𝑤)                                

 

𝑔𝑗
ℎ = 𝑙𝑜𝑔 (

𝑔𝑗
ℎ

𝑑𝑖
ℎ)                                 

 

Where �̂�𝑗
𝑐𝑥 , �̂�𝑗

𝑐𝑦
 are the 𝑗𝑡ℎ  transformed ground 

truth coordinates, 𝑔𝑗
𝑐𝑥 , 𝑔𝑗

𝑐𝑦 are the 𝑗𝑡ℎoriginal ground 

truth coordinates, 𝑑𝑖
𝑐𝑥 , 𝑑𝑖

𝑐𝑦
 are the 𝑖𝑡ℎ default box 

center coordinates and 𝑑𝑖
𝑤, 𝑑𝑖

ℎ  are the 𝑖𝑡ℎ width and 

height of default box. 

Let N be the number of matched (positive) default 

boxes of the input frames with ground truth. 

Therefore, the overall loss is given by Eq. (8). 

 

𝐿 =
1

𝑁
(𝐿𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 −  𝛼𝐿𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)        (8) 

 

Where 𝐿𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  is the confidence loss and 

𝐿𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is the localization loss. N is not equal to 

zero and if it is, then the loss would be zero (there is 

no positive default box). 

Building Video Index: The semantic objects 

generated by using MOSD are then structured and 

stored in a semi-structured index store (JSON). The 

final video index comprises the video metadata, the 

extracted semantic objects, and the semantic objects’ 

occurrences. 

4. Results and discussion 

4.1 ILSVRC dataset 

Before the results, it’s crucial to define and 

conduct some statistics on the dataset used and work 

progress regarding VID ImageNet [4]. The VID 

ImageNet has been provided for public use since 

2015 for use in the ImageNet Large Scale Visual 

Recognition (ILSVR) Challenge. There is a total of 

3862 snippets for training. The number of snippets 

for each synset or category ranges from 56 to 458. 

There are 555 validation snippets and 937 test 

snippets. There are 30 basic-level categories in this 

dataset. The objects are chosen considering different 

factors such as movement type, level of video clutter, 

average number of object instances, and others. 

4.2 Evaluation metrics: 

The mean Average Precision (mAP) was used to 

measure the precision for the entire model. It was 

used to find the correct percentage predictions in the 

model. It is calculated using according to Eq. (9). 

 

𝑚𝐴𝑃 =  
1

𝑛
∑ 𝐴𝑃𝑘

𝑛
𝑘=1                         (9) 

Table 1. MOSD comparison among different 

configurations  

First 

frame 

First-

Last 

frames 

First-

Middle-

Last 

frames 

Frame Per Second 

(FPS) 

78 126 185 

1-Minute Video 

Number of Frames 

60 120 180 

Model Complexity Normal Interm

ediate 

High 

Number of Parameters 77,176,

418 

89,606

,852 

102,037,

286 

mAP(%) 81.92% 83% 85.2 % 

 

Where 𝐴𝑃𝑘 is the 𝑘𝑡ℎ class average precision and 

𝑛 is the total number of classes. 

4.3 Implementation 

The MOSD model has been implemented using 

Pytorch. The experiment is conducted with three 

different input depths. An input depth of 1,2, and 3 

are used to train the model. Each frame of the input 

has a size of 3×300×300. The model training was 

conducted on a single NVIDIA GeForce GTX 

TITAN X GPU with 32 GB memory for 3 input 

depths. Based on these input depths, the video 

segment is represented by a different number of 

frames which are used to extract the semantic 

concepts.  

For a 1-minute 24-FPS video, the total number of 

frames is roughly 1440 frames. For each one second 

of video we consider three cases, the first frame (i.e., 

60 frames), first-last frames (i.e., 120 frames) and 

first-middle-last frames (i.e. 180 frames). Then the 

experiment has been conducted on the generated 

frames. The three cases are compared through 

different criterion as depicted in Table 1. 

We have conducted our experiments on the 

training samples and we have observed the mAP 

accuracy, processed FPS, model parameters, and 

model complexity. It has been noticed that as we 

increase the input depth as we get more frames to be 

processed and the model ability to process FPS is 

increased. However, in the other side, the model gets 

more complexity as the input depth increases and the 

model parameters increases. 

The three different cases achieved 81.92%, 83%, 

and 85.2 % respectively, for the first frame, first-last 

frames and first-middle-last frames. First-Middle-

Last input depth case achieved the best mAP. It also 

has the highest FPS (185 FPS) but a quite large 

number of parameters. This large number of 

parameters slows down the processing time but  
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Figure. 7 Average percision per semantic class 

 

 
Figure 4. Training loss per epoch 

 

increases the ability of the model to differentiate 

different cases. As a result, we concluded that the 

third case (First-Middle-Last) achieved the best case 

in terms of FPS and mAP accuracy. 

4.4 Results analysis 

In a training wise, the model shows efficiency in 

terms of the mAP in extracting the semantic objects 

out of the video. We have considered three frames for 

each second (first, middle, and last), so the input 

depth is three frames. The model training has been 

conducted on ImageNet VID training dataset [4] for 

200 epochs and the model has achieved superior 

detection results on the ImageNet VID testing dataset. 

The loss decreases during training, which indicates 

the model fits the training data over time as depicted 

in figure-8. The model performance started to 

degrade on the validation set after 175 epochs. We 

thus used the early stopping approach to stop the 

training at this point. Along with applying 

normalization and data augmentation techniques to 

the dataset to avoid model over-fitting.  

To prove efficiency of the proposed model, mAP 

has been conducted and compared with Detect-to-

Track and Track-to-Detect (D&T) [25], T-CNN [20], 

Seq-NMS [21], Flow-Guided Feature Aggregation 

(FGFA) [24] and Temporal ROI Align [39]. They are 

all trained on ImageNet VID dataset with different 

backbones and detectors. 

Table 2. MOSD vs Peer-Model Comparison. Mean 

Average Precision (mAP) comparison of D&T, TCNN, 

Seq-NMS, and FGFA vs MOSD 

Method Backbone Detector mAP % 

D&T [25] ResNet-101 R-FCN 79.8 

ResNet-101 Faster R-FNN 80.2 

Inception-v4 R-FCN 82.2 

TCNN [20] DeepID+Craft R-CNN 73.8 

Seq-NMS 

[21] 

VGG16  Seq-NMS 

(max) 

50.5 

VGG16  Seq-NMS 

(avg) 

51.4 

VGG16  Seq-NMS 

(best) 

53.6 

FGFA [24] ResNet R-FCN 78.4 

Aligned 

Inception 

ResNet 

R-FCN 80.1 

 Temporal 

ROI Align 

[29] 

ResNet-101 RPN  84.3 

MOSD 3D-VGG16 MOSD-

Detector 

85.2 

 

MOSD performance was improved by combining 

video temporal information with multiple semantic 

representational scales. This allowed for 

simultaneous detection of multiple frames. Therefore, 

MOSD outperformed the previously described 

techniques. This was demonstrated by the results in 

Table 1; using the first, middle, and final video 

frames provided the best FPS as well as the best mAP. 

MOSD has achieved a mAP of 85.2 % on first-

middle-last frames of each video second, which 

outperforms the aforementioned models as presented 

in Table 2 and Fig. 9. The average precision per each 

of the semantic objects has been calculated also as 

shown in Fig. 7. 

As a result, The MOSD has superior results 

compared to the state-of-the-art video semantic 

detection models in the context of video semantic 

object detection. 
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Figure. 5 mAP Comparison for MOSD and other methods 

5. Conclusions 

This paper presented a quick review on the VID 

extraction methods. Both of the features based and 

semantics based methods were carefully reviewed. It 
also proposed MOSD, a new intermediate-level 

semantic extraction approach that uses a 3D 

Convolutional Neural Network to perform many 

detections from multiple frames simultaneously time, 

rather than the usual intermediate-level video 

indexing methods. The key property of the MOSD 

model is that it utilizes the temporal context of the 

video for extracting an intermediate index level. The 

main idea of MOSD is multi-object semantic 

detection from video for indexing. It has the ability to 

detect 185 FPS. MOSD outperformed the state-of-

the-art methods which used to extract intermediate 

semantic concepts of the video. As a future work, 

tinny mobile version of MOSD will be investigated 

to try to get various setups of MOSD. Increasing the 

FPS of the MOSD model will be further investigated. 
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