Implementation Optimal Location of STATCOM on the IEEE New England Power System Grid (100 kV)

Najib Ababssi¹* El alami Semma¹ Azeddine Loulijat¹

¹Laboratory of Engineering Industrial Management and Innovation, Faculty of Science and Technique, Hassan I University, Settat, Morocco
* Corresponding author’s Email: nababssi@gmail.com

Abstract: Voltage instability and voltage collapse are the serious problems that can occur due to reactive power deficits caused by increased load or contingencies. Detecting potential voltage collapse in power systems is essential to maintain voltage stability during high demand. The stability of power systems is an important issue in the planning and operation of these systems. This paper determined the optimal location and size of a FACT STATCOM device for improving the static voltage stability margin of a transmission system. The study network is the IEE New-England transmission network. The problem has been formulated as a multi-criteria optimisation with the objectives of maximising load margin, minimising power losses and minimising voltage deviation. The objective function of the problem is adjusted using the analysis and optimisation method (CPF). The appropriate values and placement for STATCOMs are found using the CPF method based on the objectives below. The proposed method is verified using a simulation test on the IEEE-100 kV network which is part of the IEEE- 39 bus New England power system. The simulation results showed the efficiency of the CPF for the nominal values and the optimal location of the STATCOM. The results showed that the improvement of the voltage stability margin, the voltage profile of IEEE-100 kV is increased and the power losses are reduced. Finally, STATCOM ensures the overall stability of the transport network.

Keywords: Flexible alternatif current transmission system (FACTS), Continuous power flow (CPF), STATic synchronous COMpensator (STATCOM), Power system analysis toolbox (PSAT) software, Theory of bifurcation, Stability.

1. Introduction

Today, the problems associated with the operation of electricity transmission and generation networks have assumed considerable importance. Faced with ever-increasing electricity consumption and very demanding environmental conditions, electricity networks are tending to grow and are becoming more and more meshed and interconnected. In addition, energy is transported over long distances using lines with high transmission capacity. This complexity of structure has many consequences. Such as: The difficulty of maintaining an acceptable voltage profile and keeping a stable network operating within contractual standards. The voltage stability of the network is then characterised by the ability of the network to maintain a voltage at the network buses within the specified operating limits. Voltage instability, on the other hand, is the result of the inability of the electrical network to supply the reactive power required by the load. Several widespread incidents around the world have been associated with voltage instabilities, resulting from poor reactive power management by the system [1]. There is a great need to improve the use and quality of electrical energy while maintaining its reliability, safety and stability [2-5]. Maintaining the voltage stability of the power system is one of the major problems due to frequent voltage collapse caused by disturbances, overloaded systems and operating conditions. Therefore, the voltage point is known as a high load point [6-8]. Similarly, the lack of capacity of the system to meet the reactive power demand is the main reason for the deterioration of the voltage profile [9]. Generally, the system is considered
unstable when the voltage amplitude of any bus decreases and the reactive power increases for the same system bus [10-13]. However, the main way to avoid voltage dips is to decrease the reactive power load or increase the reactive power of systems [14-17].

To avoid the instability of electrical networks, it will probably be necessary to complement their action by implementing power electronic devices with high response speed, recently developed and known under the name FACTS (Flexible Alternative Current Transmission System), which translate a concept that groups together all the devices based on power electronics that make it possible to improve the operation of the electrical network. These FACTS devices provide a significant improvement in the voltage stability margin of large-scale power systems [18-22]. STATCOM, which is one of the FACTS devices, is mainly used to improve the voltage profile, where it is used to adjust the voltage by injecting a controllable voltage into the system [23].

In the existing literature, the optimal placement of FACTS devices is achieved using several analysis and optimisation techniques such as particle swarm optimisation (PSO), Newton-Raphson method and genetic algorithm (GA). In [9] the disadvantages of this method (PSO) are the high number of setting parameters and the use of archives. However, the use of archives introduces additional temporal and spatial complexities. This degrades the performance of these algorithms. In [20] the disadvantage of this method (NR) is its cost, it has to compute the Jacobian matrix at each iteration, and then factor it to solve the linear system. In [21] the disadvantages of this method (GA) is that it is computationally expensive, since it handles several solutions simultaneously. The adjustment of a GA is delicate. One of the most characteristic problems is that of genetic drift. Another problem arises when the right elements are no longer selected, and the algorithm no longer progresses.

In contrast to these three methods, continuous power flow (CPF) does not have the above-mentioned shortcomings. The CPF ensures greater accuracy in assessing the stability margin. The proposed method (CPF) finds the solutions of a series of successive power flows to determine the voltage profile as a function of the load evolution up to the collapse point. This advantage makes the CPF method more suitable for voltage stability analysis. Therefore, the continuous power flow (CPF) method was chosen.

In this paper, a methodology based on the (CPF) technique is proposed to find the nominal values and select the optimal location of the FACTS device. However, this paper focuses on the optimal selection and placement of the STATCOM compensator and its implementation in the IEEE- 39 Bus(100 kV) power system network to increase the stability margin, improve the voltage profile, reduce the active and reactive losses of the system and thus reduce power generation. Finally, all objectives are met and the total cost of the power system is reduced. STATCOM is able to improve the overall system performance.

The rest of the paper is structured as follows: the grid stability formulation, modelling of the FACTS device “STATCOM” coupled to the grid is explained in Section 2, the proposed method, load factor and power directions for voltage collapse study are presented in Section 3, simulation tests and discussion are provided in Section 4 followed by conclusions in Section 5.

2. Research method

In this section, the objective function of this document is to find the optimal location and ratings of the STATCOM device. This paper investigates the combination of three objective functions that maintain the bus voltage at the desired level, maximise the load margin, minimise the power flow in overloaded lines and minimise active and reactive power losses. As well as modelling a type of FACTS devices. In this paper, the overall performance of the power system is improved by using the shunt FACT device which is the STATCOM.

2.1 Load margin index (λ) and power flow

In this section, voltage stability indices are proposed with a standard power flow model. In this paper, bifurcation theory was used where the power flow equations of the system depend on a set of parameters with state variables, whose equation is given in Eq. (1):
In order to know the state of the electrical system for different load factors, the state variable must be added to Eq. (2).

\[
\begin{align*}
\{P_{G1} &= (1 + \lambda)(P_{G0} + P_S) \cr
\{P_{L1} &= (1 + \lambda)(P_{L0} + P_D) \cr
\end{align*}
\]

(2)

Where \(P_{G0}\) is the Active Power of the Generator, \(P_{L0}\) is the Active Power of the Load, \(P_S\) is the Supply bids and \(PD\) is the Demand bids.

The powers that multiply \(\lambda\) are called the steering powers. Eq. (2) differ from the model generally used in the analysis of continuous power flow (CPF). The total power gaps of the power flow problem are defined by the following Eq. (3), [24]. The system under consideration is summarised in Eq. (2):

\[
\begin{align*}
\{P_{G2} &= (P_{G0} + \lambda P_S) \cr
\{P_{L2} &= (P_{L0} + \lambda P_D) \cr
\end{align*}
\]

(3)

Where the load factor (\(\lambda\)) affects only the power variables \(P_S\) and \(PD\). The bifurcation point of the system is determined by systematically increasing the system load factor through the CPF. In typical bifurcation diagrams, voltages are plotted as a function of \(\lambda\), thus obtaining the \(V(p)\) curves that determine the voltage collapse points. The indices 0, 1 and 2 denote the base case, the first point and the second point of power directions respectively. The proposed method for studying voltage collapse phenomena is based on the bifurcation theory using two approaches: the predictive step realised by the calculation of the tangent vector and the corrective step obtained either by a local parameterisation or by the perpendicular intersection as presented in Fig. 1. In the second approach, the FACTS device equations are added to the power flow equations. The new power flow equations are then used in the corrective step of the CPF process[25].

2.2 Power loss index (PLI)

The objective of reducing active and reactive power losses is achieved by choosing the best combination of variables, which minimises the total power losses of the power system. Based on this objective function, the active and reactive power losses are calculated with and without FACTS controller. The method proposed in this document is based on the CPF technique. Using the CPF, the active and reactive power losses are calculated. The behaviour of the test system considered with and without FACT, for different buses and different load conditions is studied. The PLI at the stability margin is minimised.

3. Continuous power flow calculation[5]

In this section, we focus on the continuous power flow method, using two approaches: the predictive step and the corrective step. The former is obtained by means of the tangent or tangent vector calculation, while the latter is obtained either through a local parameterization or at a perpendicular intersection. Fig. 1 illustrates the basic principle of continuous power flow calculation (CPF). The CPF method uses a prediction-correction scheme to solve the power flow equations. In general, the CPF consists of a prediction step performed by calculating the tangent vector and a correction step that can be obtained either by a local parameterisation or at a perpendicular intersection [26]. The method starts with a basic solution (\(\lambda = 0\)) and then estimates the next solution by prediction for a higher load factor.

The estimated solution is then corrected by considering it as the initial solution of the program. The (CPF) method is widely recognised as a valuable tool for determining the \(V(P)\) curves of the power system [27]. Before applying the CPF method to study the voltage stability of the transmission network, it is essential to model the FACT device that is involved in this analysis. Fig. 2 shows the equivalent diagram of the STATCOM coupled to the grid to find the solutions of a series of successive power flows and determine the voltage profile as a function of the load evolution up to the collapse point.

3.1 Not predictor

The CPF method is based on the power flow Eq. (1). For \(\lambda = 0\) (which corresponds to the base state), the prediction of the next solution is made by taking an appropriate step in the direction of the tangent vector to the next solution. The first step in the prediction process is to calculate the tangent vector. The tangent vector is obtained by deriving both members of Eq. (1). The CPF is then carried out in three stages, namely parameterisation, prediction and correction.

Parameterisation is mathematically a means of identifying each solution so that the solution so that the next or previous solution can be evaluated. The correction step obtains the new solution by correcting the predicted solution.

At the generic equilibrium point \(p\), the following relation given in Eq. (4) applies to find this new solution by solving the system of said equation:

\[
f(x_p, \lambda_p) = 0 \Rightarrow \frac{df}{d\lambda}\bigg|_p = D_x f\bigg|_p \frac{dx}{d\lambda}\bigg|_p + \frac{df}{d\lambda}\bigg|_p = 0 \tag{4}
\]
And the tangent vector can be approximated and given in Eq. (5):

$$\tau_p = \frac{dx}{d\lambda_p} \approx \frac{dx_p}{d\lambda_p}$$ (5)

From Eqs. (4) and (5), we have the equation given in (6):

$$\tau_p = -D_x f |_{p} \frac{df}{d\lambda}$$ (6)

With: $\Delta x_p = \tau_p \Delta \lambda_p$

With τ_p is the tangent vector, Δx_p is the deviation vector of the dependent variable at the generically point and $\Delta \lambda_p$ is the deviation vector of the load factor at the generic point.

At this point a control step size k should be chosen to determine the quantity Δx_p and $\Delta \lambda_p$, with a normalization to avoid large steps when $|\tau_p|$ is large, both equations are given in Eq. (7) and its representation is given in Fig. 1(a):

$$\begin{cases} \Delta \lambda_p = \frac{k}{||\tau_p||} \\
\Delta x_p = \frac{k\tau_p}{||\tau_p||}
\end{cases}$$ (7)

Or decrease of λ. Fig. 2(a) shows a graphical representation of the predictor step.

3.2 Not corrector

Where $l \cdot l$ is the Euclidean norm and $k = \pm 1$. The sign of k determines the increase or decrease of λ. Fig. 1(a) shows a graphical representation of the predictor step.

For the corrective step, the set of $n+1$ equation are solved and are given in Eq. (8):

$$\begin{cases} f(x, \lambda) = 0 \\
\eta(x, \lambda) = 0
\end{cases}$$ (8)

After the prediction, the next step is the correction of the predate solution. For this a local parameterization is used in which the system of Eq. (1) is augmented by an equation which specifies the value of one of the state variables of the system. This state variable can be the amplitude of the voltage, the phase of the voltage or the load factor.

Where the solution of must be in the bifurcation manifold and is an additional equation to ensure a non-singular set at the bifurcation point. For the choice of there are two options: the perpendicular intersection and the local parameterization. In the case of the perpendicular intersection, whose representation is given by Fig. 1(b), the expression of η becomes Eq. (9):

$$\eta(x, \lambda) = \left[\frac{\Delta x_p}{\Delta \lambda_p} \right]^T \left[x_c - (x_p + \Delta x_p) \right] = 0$$ (9)

While for the local setting, either the parameter λ or the variable xi is forced to be a fixed value, so the equations as a function of λ and xi are given in Eqs. (10) and (11).

$$\eta(x, \lambda) = \lambda_c - \lambda_p - \Delta \lambda_p$$ (10)

$$\eta(x, \lambda) = x_{ci} - x_{pi} - \Delta x_{pi}$$ (11)

For the variable to be fixed, the choice must depend on the bifurcation manifold of f, as shown in Fig. 1(c).

The local parameterization is necessary to avoid the singularity of the Jacobian matrix at the point of maximum load, which causes numerical problems in the prediction and correction steps. In the correction step the value η is equal to the predicted solution.

3.3 Modelling of STATCOM

STATCOM is used for reactive power compensation, to suppress AC bus voltage fluctuations and to improve system transient voltage stability [28-31]. According to the IEEE, STATCOM is based on the injection of an alternating current into the controlled network through a coupling transformer [32-35]. The mathematical model in Fig. 2 represents the one-line scheme of an electrical network and a STATCOM installed in a transmission line. In general, the STATCOM voltage V_{sh} is injected in phase with the line voltage V, and in this case there is no exchange of active energy with the network but only the reactive power that will be injected or absorbed by the STATCOM.

$$E_{sh} = V_{sh} (\cos \delta_{sh} + j \sin \delta_{sh})$$ (12)

The current injected into the network by the STATCOM is given in Eq. (13):

$$I_{sh} = \frac{V_{sh} - V_t}{jX_t}$$ (13)

The transmission power between the two systems can be represented by the active power transmitted is given in Eq. (14):

$$E_{sh} = V_{sh} (\cos \delta_{sh} + j \sin \delta_{sh})$$ (12)
The reactive power transmitted is given in (15):

\[Q = \frac{V_t^2}{X} - \frac{V_t V_{sh}}{X} \cos(\delta_t - \delta_{sh}) \]

(15)

Where \(V_t, V_{sh} \) is the voltages at the buses, \(\delta, \delta_{sh} \) the angle between the voltage and \(X \), line impedance. After some operations, the active and reactive power equations are given in Eqs. (16) and (17):

\[P_{sh} = V_t^2 g_{sh} - V_t V_{sh}(g_{sh} \cos(\theta_t - \theta_{sh}) + b_{sh} \sin(\theta_t - \theta_{sh})) \]

(16)

\[Q_{sh} = -V_t^2 b_{sh} - V_t V_{sh}(g_{sh} \sin(\theta_t - \theta_{sh}) - b_{sh} \cos(\theta_t - \theta_{sh})) \]

(17)

With: \(g_{sh} + j b_{sh} = \frac{1}{Z_{sh}} \)

Where, \(g_{sh} \) is the equivalent conductance of STATCOM, \(b_{sh} \) is the Equivalent susceptibility of STATCOM and \(Z_{sh} \) is the Equivalent impedance of STATCOM.

For an ideal STATCOM with no active losses, the reactive power in the power system is given in Eq. (18):

\[Q_{sh} = \frac{|V_t^2|}{X_{sh}} - \frac{|V_t||V_{sh}|}{X_{sh}} \cos(\theta_t - \theta_{sh}) = \frac{|V_t^2|}{X_{sh}} - \frac{|V_t||V_{sh}|}{X_{sh}} \]

(18)

If \(|V_t| > |V_{sh}| \), \(Q_{sh} \) becomes positive and STATCOM absorbs reactive power.

If \(|V_{sh}| < |V_t| \), \(Q_{sh} \) becomes negative and STATCOM supplies reactive power.

Where, \(V_t \) is the Line voltage and \(V_{sh} \) is the STATCOM voltage.

4. Results and discussion

The performance of the proposed method is evaluated using simulation tests on the IEEE 39 bus network which is part of a real US 100kV network and has 10 generators (\(P_{G\text{totale}} = 6.19 \text{ Gw} \),...
$Q_{G\text{totale}}= 1.13 \text{ Gvar}$ and 39 buses including 19 load buses and 48 lines. The test system network is shown in Fig. 3. The software [PSAT][36] is used for the implementation of the CPF method. A case study is carried out, on 3 areas belonging to the same electricity network, to evaluate the proposed methodology before and after placement of the FACT device. Based on the proposed method, the values of the test network quantities are presented in Table 2.

4.1 Detection of the weakest bus

In order to study the voltage collapse point and to detect the weakest bus in the system, voltage stability margins are performed on the IEEE 39-bus test system (Fig. 3) with two types of stability indices: Load factor (λ) and active and reactive power losses. With respect to the first index, the system load is increased by the load factor (λ), starting from an initial stable operating point, until reaching the singularity point of the power flow linearization (λ_{max}). The incremental increase in system load while applying the first index leads to the response shown in Fig. 4(b), 4(c) and 4(d) of the 3 areas. From these figures, as well as Fig. 4(a) of the voltage profile, it can be deduced that the most fragile bus is the one that is closest to zero, (it is the one that tends to the voltage collapse point before the other buses (Fig. 5(b), which is the case for all three zones). As a result, it is the most sensitive bus to voltage variation in relation to reactive power. The maximum load point or bifurcation point when the Jacobian matrix is singular occurs at $\lambda=2.2806\text{p.u.}$ The overall rankings of the weakest buses in the system according to their response to voltage collapse without FACT are presented in Table 1. The reactive powers of the STATCOMs are obtained by the relations Eqs. (19) and (20):

$$Q_{\text{max}} = I_{L_{\text{max}}} \times U_{\text{max}} \tag{19}$$

and

$$Q_{\text{min}} = I_{c_{\text{max}}} \times U_{\text{min}} \tag{20}$$

from where:

$$X_{SL} = \frac{U_{\text{max}} - U_{\text{min}}}{I_{L_{\text{max}}} - I_{c_{\text{max}}}} \tag{21}$$

Where, $I_{L_{\text{max}}}$ is the Maximum inductive current, $I_{c_{\text{max}}}$ is the Maximum capacitive current, $U_{\text{max}}, U_{\text{min}}$ is the Voltage limits in regulation and X_{SL} is the Slope of the static characteristic in the control operating area.

![Figure 3 The IEEE 39-Bus test network](image-url)
Table 1. Weakest bus ranking in the 3 areas

<table>
<thead>
<tr>
<th>Area 1 (Rank order)</th>
<th>Area 2 (Rank order)</th>
<th>Area 3 (Rank order)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 7, 5, 6, 4, 12, 14</td>
<td>3, 18, 17, 27</td>
<td>15, 16, 24, 21, 28</td>
</tr>
</tbody>
</table>

The initial data used by the Continuation Power Flow (CPF) are values obtained from the Power Flow. The first execution of the power Flow has given results. The results of the parameters of the weakest bus of the 3 areas are in Table 2.

Table 2. Power flow results of the weakest buses in the 3 areas (Basic state)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS03</td>
<td>0.77924</td>
<td>-0.68701</td>
<td>0</td>
<td>0</td>
<td>7.3428</td>
<td>0.05473</td>
</tr>
<tr>
<td>BUS04</td>
<td>0.65385</td>
<td>-0.74122</td>
<td>0</td>
<td>0</td>
<td>11.4019</td>
<td>4.1959</td>
</tr>
<tr>
<td>BUS5</td>
<td>0.66496</td>
<td>-0.62088</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BUS6</td>
<td>0.67682</td>
<td>-0.55724</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BUS7</td>
<td>0.63518</td>
<td>-0.7578</td>
<td>0</td>
<td>0</td>
<td>5.3315</td>
<td>1.9155</td>
</tr>
<tr>
<td>BUS08</td>
<td>0.63731</td>
<td>-0.80455</td>
<td>0</td>
<td>0</td>
<td>11.9035</td>
<td>4.0135</td>
</tr>
<tr>
<td>BUS12</td>
<td>0.63569</td>
<td>-0.43042</td>
<td>0</td>
<td>0</td>
<td>0.19383</td>
<td>2.0067</td>
</tr>
<tr>
<td>BUS14</td>
<td>0.67659</td>
<td>-0.57193</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BUS15</td>
<td>0.69422</td>
<td>-0.62942</td>
<td>0</td>
<td>0</td>
<td>7.2972</td>
<td>3.489</td>
</tr>
<tr>
<td>BUS16</td>
<td>0.76104</td>
<td>-0.52743</td>
<td>0</td>
<td>0</td>
<td>7.5116</td>
<td>0.73656</td>
</tr>
<tr>
<td>BUS17</td>
<td>0.76356</td>
<td>-0.60644</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BUS18</td>
<td>0.76264</td>
<td>-0.66831</td>
<td>0</td>
<td>0</td>
<td>3.603</td>
<td>0.68411</td>
</tr>
<tr>
<td>BUS21</td>
<td>0.77199</td>
<td>-0.35331</td>
<td>0</td>
<td>0</td>
<td>6.2482</td>
<td>2.6224</td>
</tr>
<tr>
<td>BUS24</td>
<td>0.7756</td>
<td>-0.51796</td>
<td>0</td>
<td>0</td>
<td>7.0372</td>
<td>-2.1025</td>
</tr>
<tr>
<td>BUS27</td>
<td>0.77377</td>
<td>-0.62843</td>
<td>0</td>
<td>0</td>
<td>6.4079</td>
<td>1.7217</td>
</tr>
<tr>
<td>BUS28</td>
<td>0.86833</td>
<td>-0.29065</td>
<td>0</td>
<td>0</td>
<td>4.6976</td>
<td>0.62939</td>
</tr>
</tbody>
</table>

Figure 4 (a) IEEE 39-bus network voltage profile and V(P) curves for (b) Area 1 of the system (basic state), (c) Area 2 of the system (basic state), and (d) Area 3 of the system (basic state)
4.2 Voltage profiles and power losses [37]

After determining the weakest bus of the test network. The method used based on the proposed CPF technique, to determine the optimal placement and nominal values of the FACT device is executed. At the first time, STATCOM is placed on bus 8 of area 1, it can be seen from Figure 5.a that the weakest buses in area1 have a better voltage profile than the baseline state and the load factor λ increases to the

<table>
<thead>
<tr>
<th>Total Generation</th>
<th>Total Load</th>
<th>Total Loses</th>
</tr>
</thead>
<tbody>
<tr>
<td>144.3043</td>
<td>121.2158</td>
<td>140.2543</td>
</tr>
</tbody>
</table>

Table 4. CPF results of the weakest buses of the 3 areas (after placing STATCOM)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS03</td>
<td>0.83248</td>
<td>-0.56145</td>
<td>0</td>
<td>0</td>
<td>7.4588</td>
<td>0.05559</td>
</tr>
<tr>
<td>BUS08</td>
<td>0.7846</td>
<td>-0.6495</td>
<td>0</td>
<td>1e-005</td>
<td>12.0915</td>
<td>0.93843</td>
</tr>
<tr>
<td>BUS15</td>
<td>0.75482</td>
<td>-0.5163</td>
<td>0</td>
<td>0</td>
<td>7.4124</td>
<td>3.5441</td>
</tr>
</tbody>
</table>

Figure. 5 (a) V (P) curve area 1 with STATCOM at bus 8, (b) System voltage profiles with STATCOM at bus 8 and powers losses profiles area 1With STATCOM at bus 8 for (c) Active loss, and (d) Reactive loss
maximum value. The bifurcation point occurs at a value $\lambda = 2.31$ p.u. The value of the capacitive reactive power calculated from Eqs. (19) and (20) is -380 MVAR +/- 420 MVAR. The voltage profiles of the base case and the system with STATCOM are shown in Fig. 5(b). It is evident compared to the baseline state. This is due to the fact that STATCOM is installed at the weakest buses. On the other hand, the application of the active and reactive power loss index of the test system (with STATCOM placed at bus 8) while increasing the load, shows that the increase of losses in the vicinity of the collapse point is small, as shown in Fig. 5(c) and 5(d). Based on the proposed method, total active and reactive power generation, total load and total losses before STATCOM placement are presented in Table 3. from this figure that STATCOM provides a better voltage profile at the point of voltage collapse.

Based on the proposed method, the values of the test network quantities after STATCOM placement are presented in Table 4.

On the other hand, for the same STATCOM placed on bus 3 of area 2 and bus 15 of area 3, it is observed that this STATCOM offers the maximum of the load factor, as shown in Fig. 6. In the second step, and since our goal through the search for the ideal location of the STATCOM device is to increase the voltage stability i.e. maximise the load factor λ of the system while controlling the voltage and minimising the active and reactive power losses, we place the same STATCOM on buses 3 and 15 belonging to areas 2 and 3 respectively, since these buses are the most fragile of these areas, and we observe the impact it can bring. The STATCOM placed on bus 3 of area 2 and bus 15 of area 3 offers the maximum load factor shown in Fig. 6. The V(p) curves with STATCOM on buses 3 and 15 are shown in Fig. 7(a) and 7(b), as well as their voltage profiles which are shown in Fig. 7(c) and 7(d). According to these figures, a slight voltage improvement on buses 2, 3 and 4 can be seen in the case of the STATCOM placed on bus 3. On the other hand, for the STATCOM placed on bus 15, the figures representing the voltage profiles show a slight drop in voltage on buses 5, 6, 7, 8, 9, 11 and 13 and an improvement for buses 15, 16, 17, 18 and 20. Table 3. Total active and reactive power generation, total active and reactive load and total active and reactive losses after placing STATCOM.

Table 5. Total active and reactive power generation, total active and reactive power load and total active and reactive power losses after placing STATCOM

<table>
<thead>
<tr>
<th>Total Generation</th>
<th>Total Load</th>
<th>Total Losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>146.0172</td>
<td>102.682</td>
<td>142.4692</td>
</tr>
</tbody>
</table>

Figure 6 Maximum load factor with STATCOM
On the other hand, for STATCOM placed on buses 3 and 15 respectively, the increase in active and reactive power losses in the vicinity of the voltage collapse point is large, almost for all buses, as shown in Fig. 8(a) and 8(b), for STATCOM placed on bus 3, and Fig. 8(c) and 8(d), for STATCOM placed on bus 15. Fig. 9 shows the active and reactive power losses without and with the STATCOM device, so that the active power losses are reduced from 4.04(p.u) (basic state) to 3.54(p.u) (with STATCOM) while the reactive power losses are reduced from 89.53(p.u) (basic state) to 73.8(p.u) (with STATCOM), and this for the STATCOM placed on 8 bus. However, in the case of STATCOM placed on bus 3, the active power losses are increased from 4.04(p.u) to 4.18 (p.u) while the reactive power losses are increased from 89.53 to 92.62 (p.u). Whereas in the case of STATCOM placed on bus 15, it can be seen that the active power losses are increased from 4.04(p.u) to 4.15 (p.u) while the reactive power losses are increased from 89.53(p.u) to 92.49 (p.u). Fig. 10 shows the overall voltage ratio of the test system for the different STATCOM locations, where the bus 8 voltage is significantly improved from 0.61p.u to 0.7845 p.u.

Finally, proved that the application of the STATCOM device, placed on bus 8 of area 1 of the test network, by using the CPF technique yields very interesting results, improves the performance and efficiency of the IEEE 39 electric network (100 kV) compared with the references [9] and [21], achieves all the desired objective functions while controlling the real and reactive power flow in transmission lines through the STATCOM device.

5. Conclusion

This paper proposes a methodology to detect, firstly, the weakest bus of electrical systems using two indices: the first is the stability margin (λ) or (Load Factor) and the second is the active and reactive power losses. The proposed method uses the Continuous Power Flow (CPF) technique to select the optimal location and ratings of the FACT device. The
Figure. 8 Powers losses profiles in area 2 and 3 with STATCOM for: (a) Active at bus 3 and (c) Active at bus 15, (b) Reactive at bus 3 and (d) Reactive at bus 15

Figure. 9 Total active and reactive power losses for different STATCOM locations
results show that the weakest bus in the 39-bus IEEE power network is bus 8. According to the proposed method, the optimal location for STATCOM is bus 8. STATCOM is capable of improving the voltage profile of the power system, reducing power losses and improving overall power system performance. On the other hand, the optimal location of STATCOM reduced the active and reactive power losses from 4.04(p.u) to 3.54(p.u) and from 89.53(p.u) to 73.8(p.u) respectively. The analysis and optimization results show that the CPF technique provides solutions when implemented for the FACT (STATCOM) device on bus 8. Thus, FACTS, in particular STATCOM, has a beneficial contribution in terms of network security.

This paper represents the first work that applies the analysis and optimisation method (CPF) together with the bifurcation theory that studies the phenomena of voltage collapse to find the optimal placement and ratings of the STATCOM device on the power system network (IEEE 39 bus 100 kV).

Conflicts of Interest

The authors declare no conflict of interest

Author Contributions

Najib Ababssi and El Alami Semma carried out a study on the impact of STATCOM on the voltage improvement of electrical networks and paper structure. Najib Ababssi has developed a mathematical model of the STATCOM device and implemented it in power flow software such as PSAT in order to study its impact on voltage collapse. Ababssi Najib and Azeddine Loulijat wrote the paper. Najib Ababssi and Azeddine Loulijat contributed to reviewing the paper. All authors read and approved the final manuscript.

References

