
Received:  January 31, 2022.     Revised: April 11, 2022.                                                                                                 587 

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022           DOI: 10.22266/ijies2022.0630.50 

 

 
Active Fault Tolerant Control based on Backstepping Controller and Non Linear 

Adaptive Observer for Double Star Induction Machine 

 

Badreddine Ladjal1, 3          Fouad Berrabah3          Samir Zeghlache2,3*           Ali Djerioui 1          

Mohamed FouadBenkhoris4 

 
1,4LGE, Laboratory of Electrical Engineering,University of Môsila, Algeria 

2LASS, Laboratory of Analysis of Signals and Systems, University of Môsila, Algeria 
3Department of Electrical Engineering, Faculty of Technology, University of Môsila, Algeria 

4IREENA Laboratory, University of Nantes, Saint-Nazaire, France 

* Corresponding authorôs Email: samir.zeghlache@univ-msila.dz 

 

 
Abstract: This paper presents an active fault tolerant control (FTC) strategy based on the estimated fault information 

for a double star induction machine (DSIM) to compensate for faults effects and thus improve the reliability and 

availability of the machine. The DSIM is powered by two three-phase voltage source inverters (VSI) using pulse 

width modulation (PWM). A defective dynamic model of DSIM in the rotating synchronous d-q frame with a field-

oriented control strategy is developed. The proposed FTC design is based on a backstepping control (BSC) using a 

nonlinear Thau observer with an adaptive fault estimation law. The Thau observer is used for fault detection and 

fault reconstruction at the same time. After that, the estimation value of the faults effect is introduced directly into 

the control law in order to guarantee the stability of the machine in post fault. The sufficient condition for the 

stability of the closed-loop system (machine + observer) in faulty operation is analyzed and verified using Lyapunov 

theory. Finally, the efficiency and robustness of the proposed FTC approach are validated in steady state by a 

numerical simulation developed in MATLAB / Simulink. Obtained results show that the proposed FTC provides a 

strong fault tolerance where all closed-loop system signals are bounded and errors converge to a small neighborhood 

of the origin. Simulation results in healthy and faulty conditions confirm the reliability of the suggested framework 

Keywords: Double star induction machine, Backstepping control, Fault tolerant control, Nonlinear observer, 

Stability. 

 

 

1. Introduction  

The double star induction machine (DSIM) 

belongs to the category of multiphase induction 

machines (MIM). It has been selected as the best 

choice because of its many advantages over its 

three-phase counterpart. The DSIM has been 

proposed for different fields of industry that need 

high power such as electric hybrid vehicles, 

locomotive traction, ship propulsion and many other 

applications where the safety condintellition is 

required such as aerospace and offshore wind 

energy systems. DISM not only guarantees a 

decrease of rotor harmonics currents and torque 

pulsations but it also has many other advantages 

such as: reliability, power segmentation and higher 

efficiency. DSIM has a greater fault tolerance; it can 

continue to operate and maintain rotating flux even 

with open-phase faults thanks to the greater number 

of degrees of freedom that it owns compared to the 

three-phase machines [1]. Nowadays, motors 

installed in the industry represent 85 % of squirrel 

cage induction motors because of their many 

advantages, but because of their continuous use, 

they are subject to different types of faults: about 

40 % to 50 % are bearing faults, 5 % to 10 % are 

severe rotor faults and 30% to 40% are stator-related 

faults [2]. 

Bearing fault (BF) is a defect in different parts 

of the bearing, such as the inner-raceway, the outer-

raceway, the rolling elements and the cage, the  
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Figure. 1 Faults reparation for classical induction motor 

 

occurrence of the BF is due to impurities inside of 

the bearing, loss of lubrication or wrong installation 

[3]. Broken rotor bar (BRB) fault can be caused by 

failures in the rotor fabrication process, overloads 

(mechanical stress), mechanical cracks or thermal 

stress [4]. The most common fault in the stator 

windings is the inter-turn short-circuits (ITSC). 

Usually, ITSC faults are caused by insulation 

failures, mechanical stress, moisture and partial 

discharge [5]. The occurrence of the faults 

mentioned above can cause serious damage to 

DSIM and related equipment and can certainly lead 

to a sudden shutdown of industrial processes 

causing significant economic losses. For this reason, 

there is a major benefit to developing faults tolerant 

control that compensates the fault effect. The FTC 

schemes enable a machine to continue operating 

with an acceptable performance even in the presence 

of faults, over the past decades, researchers have 

classified FTC approaches into two types: passive 

fault-tolerant control (PFTC) and active fault-

tolerant control (AFTC). PFTC uses robust control 

techniques to ensure system insensitivity to closed 

loop faults. It can maintain the stability of the 

system when the fault occurs. With PFTC, the 

system continues to operate with the same controller 

and system structure, usually; this technique is used 

in the case where the diagnosis of the fault is 

difficult to obtain. The PFTC does not require any 

fault detection and diagnosis system or controller 

reconfiguration. AFTC is based on online fault 

compensation and requires online fault information, 

therefore, this approach needs reconfiguration based 

on the information provided by the fault detection 

and identification (FDI) block [6]. 

FDI in any active fault tolerance strategy is an 

important area of research nowadays. [7] proposes a 

fault-tolerance control scheme for DTC of induction 

motor (IM) drive against the current sensor failures, 

the sensor fault is identified by a third-difference 

operator (TDO) and the current corresponding to the 

faulty phase is estimated by a flux-linkage observer, 

after the failure, a decision-making logic circuit 

automatically selects the correct current signal to 

ensure continuity of operation of the drives. [8] 

introduces new schemes for detection, isolation, and 

compensation of speed and current sensor faults in 

field oriented IM drives; the novelty in these 

approaches is that they do not use any type of 

machine model and motor parameters. [9] Presents 

an improved sliding mode based faults detection, 

reconstruction and fault-tolerant control scheme for 

motor systems with typical actuator faults, a 

standard sliding mode observer is used to detect and 

reconstruct the unknown faults presented in the 

motor model, this combination guarantees tolerance 

to a wide class of total additive failures. This paper 

presents a fault tolerant control scheme based on the 

Thau observer for backstepping control of a double 

star induction machine. The three main steps 

involved in the proposed FTC design are fault 

detection, fault estimation and, finally, fault 

compensation. Compared to recent work reported in 

the literature, the contributions of this paper are 

presented under different aspects such as: fault 

modeling, control strategy, type of machine 

processed and type of fault: 

 

¶ The fault modeling method is based on the motor 

current signal analysis (MCSA) method, which 

avoids the use of additional hardware. 

¶ This work consists in proposing a new control 

strategy to improve the dynamic performance of the 

double star induction machine, especially in case of 

faulty operation. 

¶ The combination of the backstepping control and 

the Thauôs observer to design a fault tolerant control 

scheme for DSIM in presence of the faults. 

¶ Compared to [7, 8], the Thauôs robust observer is 

used for on-line fault estimation and compensation, 

eliminating the need for a fault detection and 

isolation module. 

¶ Compared to the work done in [9, 10], the 

application of the proposed FTC on a DSIM is more 

advantageous because nowadays the multiphase 

induction machine is more used than the traditional 

induction motor in several important areas of the 

industry. 

¶ Compared to [1, 11], the degree of severity of the 

fault dealt with in this paper is more important since 

open phase fault tolerance is a specific feature of 

multiphase machines thanks to the high number of 

phases that belong to it. 

¶ Unlike the passive FTC presented in [12], the 

proposed control structure is not bounded and can 

simultaneously compensate for three different faults 

without information of their upper bounds, such as: 

broken rotor bar fault, stator fault and bearing fault. 

¶ As stated in [13] ñA Recent approach for dealing 

with uncertainties is based on the use of sliding 
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mode method to enhance the robustness of FTCs. 

However, the problem of FTC design on SMC 

schemes is still in its early stage of development, 

and a few results have been reported in the 

literatureò. In this contest and considering the 

existing results, the systemic design of the FTC 

scheme in this paper focuses on very simple 

structure, more sensitive detection and a quicker 

compensation procedure. 

 

This paper is organized as follows: In section 2, 

the dynamic model of DSIM in healthy condition is 

given. In section 3, a defective model of the DSIM 

is presented. An adaptive Thau observer for faults 

estimation is introduced in section 4. The proposed 

FTC design is carried out in section 5. Simulation 

results are presented and analyzed in section 6. 

Performance comparison in section 7. Finally, the 

conclusion is given in section 8. 

2. DSIM healthy model 

DSIM has two stators shifted by an electrical 

angle and mobile squirrel cage rotor. Each star is 

composed by three immovable windings which are 

uniformly distributed and have axes that are shifted 

from each other an electrical angle equal to (2  ́/3). 

The Fig. 2 shows an explicit schematic of the stator 

and rotor windings, Ŭ is the angle shift between the 

two stators and ɗ is the angle between rotor and 

stator1 [1]. Usually, the shift angle between the two 

statorsŬ is equal to 30°. 

In order to establish the mathematical model of 

DSIM, the following assumptions are made:  

 

¶ Air -gap uniform. 

¶ Magnetic linearity. 

¶ Negligible saturation. 

¶ Stators are identical. 

 

According to the simplifying hypotheses 

mentioned above, the dynamic healthy model of 
 

 
Figure. 2 The DSIM windings 

 

Table 1. Symbols and notations 

Symbol Notation 

 h Angle between the stators 

 ̒ Angle between rotor and stator1 

ὺ ȟὺ  Stator1 voltages components 

ὺ ȟὺ  Stator2 voltages components 

Ὥ ȟὭ  Stator1 currents components 

ὼ Measurable state vector 

ό Control input 

ώ Output state vector 

ὥ,ὦ  
Expressed according to the machine 

parameters 

Ὥ ȟὭ  Stator2 currents components 

• ȟ•  Rotor flux components 

ὒ ȟὒ ȟὒȟὒ  
Stator1, stator2, rotor and mutual 

inductance, respectively 

Ὑ ȟὙ  , Ὑ Stator1, stator2 and rotor resistance 

Ὕ Rotor time constant 

Ὕ Applied load torque 

‫  Actual rotor speed 

ὐȟὑ Rotor inertia and friction coefficient 

‫  Stator pulsation 

‫  Slip pulsation 

• Rotor flux 

ὴ Denotes the number of pole pairs 

Ὠȟή Quadrate indices 

ὲ 
Number of all harmonics generated 

by the faults 

Ὢ Fault frequency 

Ὓ Dynamic matrix 

Ὢ Observer faults vector 

ῲ Symmetric matrix 

ὑ , ὑ , 

ὑ , ὑ  
Positive gains 

ὠ ,ὠ  ,  

ὠ , ὠ  
Estimated faults 

ὺ , ὺ , 

ὺ , ὺ  
Nominal controls designed for 

healthy functioning 

ὺ , ὺ , 

ὺ , ὺ  
additive controls 

 

squirrel cage double star induction machine in the d-

q axis with a reference frame fixed to the rotor is 

given by the following system of equation: 
 

ὼȕ ὃὼ ὄό
ώ ὅὼ

                                               (1) 

 

Where: ὼ Ὥ Ὥ Ὥ Ὥ •  is the 

measurable state vector, ό

ὺ ὺ ὺ ὺ is the control input, ώ

Ὥ Ὥ Ὥ Ὥ is the output state vector and: 

 

1Stator

2Stator

Rotor

r ci

1sai

2sai

1sbi

2sbi

2sci

1sci

a

q

rai

rbi

rci
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• • • . 

ὄ

ὦ ὦ π π
ὦ ὦ π π
π π ὦ ὦ
π π ὦ ὦ

,  

ὃ

ụ
Ụ
Ụ
Ụ
ợ
ὥ ὥ ὥ π ὥ
ὥ ὥ π ὥ ὥ
ὥ π ὥ ὥ ὥ‫
π ὥ ὥ ὥ ὥ‫
ὥ ὥ π π ὥ Ứ

ủ
ủ
ủ
Ủ

 

, 

                              ὅ

ρ π π π π
π ρ π π π
π π ρ π π
π π π ρ π

 

The mechanical equation is expressed by: 

 

‫ ὥ Ὥ Ὥ • ὥ‫ ὥ        (2) 

 

The componentsὥ Ὥ ρȟρρȅ  and ὦ Ὥ ρȟςȅare 

expressed according to the machine parameters as 

follows: 

 

ὥ   

  

ὥ ‫  , 

ὥ   

ὥ , 

ὥ ,   ὥ  , 

ὥ ,ὥ ȟὥ  , 

ὥ ,       ὦ    ,  

ὦ  

 

Where: ὺ ȟὺ are stator1 voltages 

components. ὺ ȟὺ are stator2 voltages 

components. Ὥ ȟὭ arestator1 currents 

components. 

Ὥ ȟὭ are stator2 currents components. 

• ȟ• are rotor flux components. 

ὒ ȟὒ ȟὒ andὒ are stator1, stator2, rotor and 

mutual inductance, respectively. Ὑ ȟὙ andὙare 

respectively stator1, stator2 and rotor resistance. 

Ὕ ὒ Ὑϳ isthe rotor time constant. Ὕ is the 

applied load torque.‫ is the actual rotor speed. 

ὐȟὑdenote the rotor inertia and friction coefficient. 

‫ is the stator pulsation.‫ is the slip pulsation.• is 

the rotor flux. ὴdenotes the number of pole pairs.  

 

Table 2. Frequency related to the fault [14] 

Type of faults Frequency (Hz) 

Bearing fault Ὢ Ὢ ὯὪ  

Stator fault Ὢ Ὢά ρ ί ὴϳ Ὧ  

BRB fault Ὢ ρ ςὯίὪ 

 

The subscripts Ὠȟή designate direct and quadrate 

indices according to the usual (d-q) axis components 

in the synchronous rotating frame.   

3. DSIM faulty model 

In this section, a DSIM model is established in 

the presence of faults that may be both mechanical 

and electrical nature due to rotor, stator and bearing 

failures. According to the researches of [9], the 

presence of these faults causes an asymmetry of the 

DSIM and produces harmonic components on the 

stator currents, so that the two quadratic and direct 

components of stator current are increased by a 

sinusoidal component of pulsation ‫ ς“Ὢ as 

follows: 

 

Ὥ ᴼὭ ὃÓÉÎ‫ὸ ‰

Ὥ ᴼὭ ὃÃÏÓ‫ὸ ‰

Ὥ ρȟȢȢȢȟὲ

  (3) 

 

Where:  

ὲis the number of all harmonics generated by 

the faults. The amplitudeὃand the phase ‰  are 

unknown parameters; they depend on the fault 

severity and describe its initial state.Ὢrepresents the 

fault frequency, its value is known and varies 

according to the faults type (see Table 2). 

Where: 

Ὢ  is the frequency that characterizes the 

vibration, Ὢ  is the supply frequency, ά
ρȟςȟσȟȢȢȢ,Ὧ πȟρȟσȟυȟȢȢȢ,ὴis the number of pole pairs 

ands is the per unit slip which given by: 

 

ί               (4) 

 

In order to avoid the uncertainty of the 

amplitude and phase of the additive harmonics, the 

sinusoidal generated by the faults can be represented 

by the following state equation (ecosystem):  

 

ᾀȕ ὛȢᾀ              (5) 

 

Ὓ is a dynamic matrix, its elements are the faults 

frequencies which are the only known parameters 

describing the faults and are given by: 
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Ὓ ὨὭὥὫὛ

Ὓ
π ‫
‫ π

Ὥ ρȟςȟȢȢȢȟὲ

                (6) 

 

With: 
ίὭᾀὩὛ ςὲ Ȅ ςὲ

ίὭᾀὩᾀ ςὲ Ȅ ρ
  

The solution of the ecosystem presented in Eq. 

(5) allows us to rewrite Eq. (3) in the following 

form: 

 
Ὥ ᴼὭ ὗὤ
Ὥ ᴼὭ ὗὤ                 (7) 

 

With:  

 
ὗ ρ π ρ π ȢȢȢρ π
ὗ π ρ π ρ ȢȢȢπ ρ

   (8) 

 

The time derivative of Eq. (7) is obtained by: 

 

Ὥ ᴼ Ὥ ὗȢὛȢὤ

Ὥ ᴼ Ὥ ὗȢὛȢὤ
                (9) 

 

After inserting the additive perturbing terms 

ὗὤ  and ὗὤand their derivativesὗȢὛȢὤ , 

ὗȢὛȢὤrespectively in Eq. (1), we obtain the 

defective model of the DSIM in the stationary 

reference frame:  

 

ừ
Ử
Ử
Ử
Ử
Ử
Ừ

Ử
Ử
Ử
Ử
Ử
ứ Ὥ ὥὭ ὥὭ ὥὭ ὥ•

ὦὺ ὦὺ ὠ

Ὥ ὥὭ ὥὭ ὥὭ ὥ•

ὦὺ ὦὺ ὠ

Ὥ ὥὭ ὥὭ ὥὭ ὥ•‫

ὦὺ ὦὺ ὠ

Ὥ ὥὭ ὥὭ ὥὭ ὥ•‫

ὦὺ ὦὺ ὠ

• ὥὭ ὥὭ ὥ•

                                (10) 

 

In this case, Eq. (1) becomes: 

 
ὼȕ ὃὼ ὄό ὊὪ

ώ ὅὼ
               (11) 

Where: Ὂ

ụ
Ụ
Ụ
Ụ
ợ
ρ π π π
π ρ π π
π π ρ π
π π π ρ
π π π πỨ

ủ
ủ
ủ
Ủ

 and, 

 Ὢ ὠ ὠ ὠ ὠ ῲᾀ.  

With: 
 

ῲ

ụ
Ụ
Ụ
Ụ
ợ
ὥ ὥ ὗ ὥὗ ὗὛ

ὥ ὥ ὗ ὥὗ ὗὛ

ὥ ὥ ὗ ὥὗ ὗὛ

ὥ ὥ ὗ ὥὗ ὗὛỨ
ủ
ủ
ủ
Ủ

         (12) 

4. Fault estimation based on an adaptive 

Thau observer 

4.1 Adaptive Thau observer design 

The standard observer of Thau which estimates 

Eq. (1) is given by [15]: 

 

ὼͮȕ ὃײὼͮ ὄײό ὑώ ώͮ
ώͮ ὅײὼͮ

                            (13) 

 

Where: 

ὼͮɴ ᴙ is the observer state vector, ώͮᶰᴙ is the 

observer output vector, K is the gain of the observer. 

According to theorem 1 of [16], K satisfies that the 

state model of Eq. (13) is an asymptotic estimate of 

the machine model defined by Eq. (1) only if the 

following equation is valid: 

 

ὑ ὖ ὅ                                                     (14) 

 

Where: 

ὖ is a positive definite solution of the following 

Lyapunov function: 

 

ὃὖ ὖὃ ὅὅ —ὅὖ π            (15) 

 

With — π  

In this case, the error e tends to zero when t tends to 

infinity:  

 

ÌÉÍ
ᴼ
Ὡὸ ÌÉÍ

ᴼ
ὼὸ ὼͮὸ π                 (16) 

 

However, in case of faulty operation whenὩ

ώ ώͮ π, the standard observer is not able to make 

a reliable estimate, for this reason and in order to fix 

the estimation problem when faults occur, an 

adaptive Thau observer is suggested to detect faults 

and estimate their parameters at the same time, its 

strategy is based on fault detection provided by the  
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Figure. 3 Fault detection structure for the DSM 

 

standard Thau observer [16]. The fault detection and 

estimation process is represented in Fig. 3. The new 

nonlinear observer is given by [15]: 

 

ὼͮȕ ὃὼͮ ὄό ὊὪͮ ὑώ ώͮ
ώͮ ὅὼͮ

                 (17) 

 

Where: 

Ὢͮ  is the observer faults vector. 

4.2 Adaptive Thau observer stability 

Assumption : 

Let be the following system of equation: 
 
ὖὃ ὑײὅ ὃ ὑײὅ ὖ ‎ὖײὖ ‎Ὅ ὗ

ὖײὄ ὅὋ
 

(18) 

 

Where: 

‎ is a positive parameter, ὗ π , the 

matrixesὖ and Ὃ  are a solution of Eq. 

(18). 

 

Definition: 

The dynamics of the estimation error is defined 

by: 

 
Ὡȕ ὃ ὑὅὩ ὊὩ

Ὡ ὼ ὼͮ
                         (19) 

 

The estimation error of the faults is indicated by: 

 

Ὡ Ὢ Ὢͮ

ụ
Ụ
Ụ
Ụ
ợ
ὠǽ

ὠǽ

ὠǽ

ὠǽ Ứ
ủ
ủ
ủ
Ủ

ụ
Ụ
Ụ
Ụ
ợ
ὠ ὠͮ

ὠ ὠͮ

ὠ ὠͮ

ὠ ὠͮ Ứ
ủ
ủ
ủ
Ủ

        (20)  

 

The square module of Ὡis given by:  

 

Ὡ  

ὠǽ ὠǽ ὠǽ   ὠǽ      (21) 

 

The estimation error is presented by: 

 

Ὡ

ụ
Ụ
Ụ
Ụ
ợ
Ὥ ͮ
Ὥ ͮ

Ὥ ͮ
Ὥ ͮ

• •ͮ Ứ
ủ
ủ
ủ
Ủ

                                      (22) 

 

The dynamic of the adaptive fault estimation law 

is defined as follows [16]: 

 

Ὢͮȕ ῲὋώ ώͮ „ῲὪͮ                          (23) 

 

Where ײῲis a symmetric matrix that checks: 

 

ῲ ῲ
ῲ π

                                               (24) 

 

Usually, ῲcalled weighing matrix, its role is to 

guarantees the convergence of the observer 

presented by (13). „isa positive constant that must 

verify the following inequality: 

 

„ ‗ ῲ π                                     (25) 

 

Where: ‗ is the maximum eigenvalue of ῲ . 

The following theorem holds. 

 

Theorem: 

The observer presented in Eq. (17) that adopts 

Eq. (23), can guarantee that the following steady-

state error limits tend to zero i.e. [16]: 

 
ÌÉÍ
ᴼ
Ὡ π

ÌÉÍ
ᴼ
Ὡ π

                                (26) 

 

Proof: 

The time derivative of the estimation error is 

computed by:  

 

Ὡȕ Ὢȕ ῲὋὩ „ῲὪ „ῲὩ                   (27)
 

 

Consider the following Lyapunov function: 

 
ὠ ὩὖὩ Ὡ ῲ Ὡ π             (28) 

 

The time derivative of (28) is given by: 
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Fault
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ὠȕ Ὡ ὃ ὑὅὖ ὖὃ ὑὅὩ
ςὩῲ Ὢȕ ς„ὩὪ ς„ὩὩ                             (29) 

 

Properties:
 According to [16, 17], we can exploit these 

properties in the rest of the paper: 

 

ςὩῲ Ὢȕ ‗ ῲ Ὡ ‗ ῲ Ὢ  (30) 

 

ς„ὩὪ „Ὡ „Ὢ                         (31) 

      

Where: 

 

„ π And  
ȿὪȿ Ὢ

Ὢȕ Ὢ
. 

ς„ὩὩ ς„Ὡ                                        (32) 

 

ὩὗὩ ‗ ὗᴁὩᴁὗ π                   (33) 
 

Where:  

‗ Ȣis the maximum eigenvalue ofὗ. 

Using the properties mentioned above, we can 

make the following inequality: 

 

ὠȕ Ὡ ὃ ὑὅὖ ὖὃ ὑὅ ‎ὖὖ

‎ὍὩ ‗ ῲ Ὡ Ὢ „ Ὡ Ὢ

ς„Ὡ                    (34) 

 

‗ ὗᴁὩᴁ „ ‗ ῲ Ὡ

‗ ῲ ȢὪ „Ὢ  (35) 

 

Where: 

‗ Ȣis the minimum eigenvalue of ὗ and, 

‗ Ȣ is the maximum eigenvalue ofῲ . 

Finally, if„ ‗ ῲ π, the inequality 

below holds: 

 

ὠȕ ὧᴁὩᴁ Ὡ π             (36) 

 

Where: 

ὧ is a positive parameter that checks: 

 

ὧ ÍÉÎ‗ ὗȟ„ ‗ ῲ              (37) 

 

Hence the convergence of estimates errors to 

zero is proven, which guarantees the stability of the 

adaptive Thau observer, despite the presence of 

faults.  

 

5. Control strategy of the DSIM in presence 

of the faults 

In this section, a systematic FTC scheme based 

on fault estimation is designed to compensate for the 

faults effect respecting the stability and convergence 

of the system according to the Lyapunov theory. 

The currents Ὥ ȟὭ ȟὭ  and Ὥ  and the speed 

are supposed to be measured. The dynamic 

equations of DSIM are nonlinear. Using the 

backstepping strategy, the system is gradually 

controlled, step by step, from virtual controls (stator 

currents) to real controls (stator voltages). It is 

clearly demonstrated in the state equation of the 

defective DSIM model presented in Eq. (11) that the 

rotor flux can be controlled by the sum of the 

components of the stator current Ὥ  andὭ . The 

speed ‫ is adjusted by Ὥ Ὥ  as shown in Eq. 

(2). On the other hand, the currents in turn are 

controlled by the stator voltages ὺ , ὺ , ὺ , 

and ὺ . Therefore, the design of the proposed FTC 

is presented by a feedback structure with two 

consecutive steps. 

5.1 Step 1: speed and flux control 

This step forces the rotor flux •  and the speed 

‫  to reach their desired references •ᶻandʖɕ, 

respectively, by identifying their errorsὤandὤ and 

that means finding the virtual control that guarantees 

this convergence. Flux and speed tracking errors are 

given by: 

 
ὤ ‫ᶻ ‫
ὤ •ᶻ •

                                           (38) 

 

The derivation of Eq. (38) gives: 

 

ὤȕ ‫ȕᶻ ‫ȕ

ὤȕ •ȕᶻ •ȕ
                                           (39) 

 

Using (2) and (10), (39) becomes: 

 

ὤȕ ‫ȕᶻ ὥ Ὥ Ὥ • ὥ‫ ὥ

ὤȕ •ȕᶻ ὥ Ὥ Ὥ ὥ•
 

(40) 

 

The first Lyapunov candidate function adapted 

to rotor flux and speed errors is defined by: 

 

ὠ ὤ ὤ                                            (41) 

 

The time derivative of Eq. (41) is obtained by: 
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ὠȕ ὤὤȕ ὤὤȕ                                      (42) 

 

To achieve stability according to the Lyapunov 

theory, the derivative of ὠ must be defined negative, 

in this case, we take:   

 

ὤȕ ὑὤ

ὤȕ ὑὤ
                                           (43)  

 

Replacing Eq. (43) into Eq. (42), the derivative 

of the first Lyapunov function becomes: 

 

ὠȕ ὑὤ ὑὤ                           (44) 

 

ὠȕ π is always satisfied ὑᶅ ȟὑ π , 

therefore, the values of Eq. (43) ensure the stability 

of the closed-loop subsystem. By equating Eq. (40) 

with Eq. (43), we obtain:      

 

ὑὤ ‫ȕᶻ ὥ Ὥ Ὥ • ὥ‫ ὥ

ὑὤ •ȕᶻ ὥ Ὥ Ὥ ὥ•

(45) 

 

Posing: 

 
Ὥ Ὥ Ὥᶻ

Ὥ Ὥ Ὥᶻ
                                      (46) 

 

And assuming that: 

 

Ὥᶻ Ὥᶻ
ᶻ

Ὥᶻ Ὥᶻ
ᶻ                                       (47) 

 

Finally, the virtual elements of control are given 

by: 

 

Ὥᶻ •ȕᶻ ὥ• ὑὤ

Ὥᶻ ‫ȕᶻ ὥ‫ ὥ ὑὤ
          (48) 

5.2 Step 2: currents control 

This step establishes the control law by forcing 

the currents Ὥ ȟὭ ȟὭ ȟὭ resulting from the 

first step to reach their desired references 

Ὥᶻ ȟὭᶻ ȟὭᶻ ȟὭᶻ respectively; this objective 

requires the identification of four new errors. The 

tracking errors of the currents are:     

 

ừ
Ử
Ừ

Ử
ứὤ Ὥᶻ Ὥ

ὤ Ὥᶻ Ὥ

ὤ Ὥᶻ Ὥ

ὤ Ὥᶻ Ὥ

                                (49) 

 

The derivation of   Eq. (49) gives: 

 

ừ
ỬỬ
Ừ

ỬỬ
ứὤ
ȕ Ὥᶻ Ὥ

ὤȕ Ὥᶻ Ὥ

ὤȕ Ὥᶻ Ὥ

ὤȕ Ὥᶻ Ὥ

                         (50) 

 

By substituting the derivatives of the currents 

from Eq. (10) in Eq. (50), we obtain: 

 

ừ
ỬỬ
Ừ

ỬỬ
ứὤ
ȕ Ὥᶻ Ὢ ὦὺ ὦὺ ὠ

ὤȕ Ὥᶻ Ὢ ὦὺ ὦὺ ὠ

ὤȕ Ὥᶻ Ὢ ὦὺ ὦὺ ὠ

ὤȕ Ὥᶻ Ὢ ὦὺ ὦὺ ὠ

 

(51) 

 

With,   

 

Ὢ

Ὢ
Ὢ
Ὢ
Ὢ ụ

Ụ
Ụ
ợ
ὥὭ ὥὭ ὥὭ ὥ•

ὥὭ ὥὭ ὥὭ ὥ•‫

ὥὭ ὥὭ ὥὭ ὥ•

ὥὭ ὥὭ ὥὭ ὥ•‫ Ứ
ủ
ủ
Ủ

                             (52)
 

 

We note that the actual control variables 

ὺ ,ὺ , ὺ andὺ  have appeared in Eq. (51), 

so the increased function of Lyapunovὠis chosen as 

follows: 

 

ὠ ὤ ὤ ὠ ὠ ,ά π 

                             (53) 

 

Where: 

 

ὠ ὤ ὤ ὤ ὤ

ὠ ὩὴὩ Ὡὴ Ὡ

                 (54) 

 

From Eq. (35), we have: 

 

ὠȕ ‗ ὗᴁὩᴁ „ ‗ ῲ Ὡ

                                         (55) 
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Putting: 

 
ὧ ‗ ὗ π

ὧ „ ‗ ῲ π
            (56) 

       

The inequality (55) becomes: 

 

ὠȕ ὧᴁὩᴁ ὧ Ὡ             (57) 

      

The stability of the observer requires that

0xe = , in this case we have: 

 

ὠȕ ὧ Ὡ                          (58) 

 

According to (58), the time derivative ofὠcan 

be written as follows: 

 

ὠȕ ὠȕ ὤ ὤȕ ὤ ὤȕ ὤ ὤȕ

ὤ ὤȕ ὧ Ὡ               (59) 

 

ὠȕ ὠȕ ὤ ὤȕ ὤ ὤȕ ὤ ὤȕ

ὤ ὤȕ Ὡ                            (60) 

 

With: ά  

Replacing Eq. (21) into Eq. (60), we obtain: 

 

ὠȕ ὠȕ ὤ ὤȕ ὤ ὤȕ ὤ ὤȕ

ὤ ὤȕ ὠǽ ὠǽ ὠǽ

ὠǽ                                         (61) 

 

Using Eq. (51), Eq. (61) becomes: 

 

ὠȕ ὠȕ ὤ Ὥᶻ Ὢ ὦὺ ὦὺ

ὠͮ ὠǽ ὤ Ὥᶻ Ὢ

ὦὺ ὦὺ ὠͮ ὠǽ   

ὤ Ὥᶻ Ὢ ὦὺ ὦὺ ὠ

ὠǽ ὤ Ὥᶻ Ὢ ὦὺ

ὦὺ ὠ ὠǽ                              (62) 

 

The inequality Eq. (62) can be rewritten in this 

form: 

ὠȕ ὠȕ ὤ Ὥᶻ Ὢ ὦὺ ὦὺ

ὠǽ ὠͮ ὠǽ ὤ Ὥᶻ

Ὢ ὦὺ ὦὺ ὠǽ ὠͮ

ὠǽ +

 
ὤ Ὥᶻ Ὢ ὦὺ ὦὺ

ὠǽ ὠͮ ὠǽ   

ὤ Ὥᶻ Ὢ ὦὺ ὦὺ

ὠǽ ὠͮ ὠǽ                               (63) 
 

By adding and subtracting the terms 

άὤ Ὥ ρȟτȅin Eq. (63), we get: 

 

ὠȕ ὠȕ ὤ Ὥᶻ Ὢ ὦὺ ὦὺ

άὤ ὠͮ ὤ Ὥᶻ Ὢ ὦὺ

ὦὺ άὤ ὠͮ   

ὤ Ὥᶻ Ὢ ὦὺ ὦὺ άὤ

ὠͮ ὤ Ὥᶻ Ὢ ὦὺ ὦὺ

άὤ ὠͮ   

ά ὤ ὠǽ ὤ ὠǽ

ὤ ὠǽ ὤ ὠǽ        (64) 

 

To have ὠȕ definite negative, we do: 

 

ừ
Ử
Ử
Ử
Ử
Ừ

Ử
Ử
Ử
Ử
ứ Ὥᶻ Ὢ ὦὺ ὦὺ άὤ

ὠͮ ὑ ὤ

Ὥᶻ Ὢ ὦὺ ὦὺ άὤ

ὠͮ ὑ ὤ

Ὥᶻ Ὢ ὦὺ ὦὺ άὤ

ὠͮ ὑ ὤ

Ὥᶻ Ὢ ὦὺ ὦὺ άὤ

ὠͮ ὑ ὤ

  (65) 

  

Where: ὑ , ὑ , ὑ and ὑ  are the 

positive gains that adjust the overall stability of the 

closed-loop system. Finally, the fault-tolerant 

control based on a non-linear observer is represented 

by the following components of the stator voltages: 

 

ὺ Ὥᶻ Ὥᶻ Ὢ

  Ὢ ὠͮ ὠͮ
  

ά ὑ ὤ ά ὑ ὤ   
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                                                     (66) 

 

ὺ Ὥᶻ Ὥᶻ Ὢ

Ὢ ὠͮ ὠͮ ά

ὑ ὤ ά ὑ ὤ               (67) 

                             

ὺ Ὥᶻ Ὥᶻ Ὢ

Ὢ ὠͮ ὠͮ   

ὑ ά ὤ ὑ

ά ὤ                                                               (68) 

 

ὺ Ὥᶻ Ὥᶻ Ὢ

Ὢ ὠͮ ὠͮ
  

ά ὑ ὤ ά ὑ ὤ   

                                                                              (69) 

 

The control law presented by Eq. (66) ï Eq. (69) 

can be formulated like follow: 

 

ὺ
ὺ
ὺ
ὺ

ụ
Ụ
Ụ
Ụ
ợ
ὺ

ὺ

ὺ

ὺ Ứ
ủ
ủ
ủ
Ủ

ụ
Ụ
Ụ
Ụ
ợ
ὺ

ὺ

ὺ

ὺ Ứ
ủ
ủ
ủ
Ủ

              (70)  

 

Where: ὺ , ὺ , ὺ and ὺ  are the 

backstepping control laws called the nominal 

controls designed for healthy functioning  

(whenὪ ὠ ὠ ὠ ὠ π ), their 

role is to correctly manage flux and speed tracking 

by compensating for the load disturbance: 

 

ừ
Ử
Ừ

Ử
ứ ὺ ὦ Ὥᶻ ὦ Ὥᶻ

ὦὪ ὦὪ ὦὋ ὤ ὦὋ ὤ

ὺ ὦ Ὥᶻ ὦ Ὥᶻ

ὦὪ ὦὪ ὦὋ ὤ ὦὋ ὤ

  

 

And, 

 

ừ
Ử
Ừ

Ử
ứ ὺ ὦ Ὥᶻ ὦ Ὥᶻ

ὦὪ ὦὪ ὦὋ ὤ ὦὋ ὤ

ὺ ὦ Ὥᶻ ὦ Ὥᶻ

ὦὪ ὦὪ ὦὋ ὤ ὦὋ ὤ

 (70) 
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Figure. 4 Block diagram of the global AFTC for DSIM 

 

With: 

 

ừ
Ử
Ừ

Ử
ứὋ ὑ ά π

Ὃ ὑ ά π

Ὃ ὑ ά π

Ὃ ὑ ά π

             (72) 

 

And, ὺ , ὺ , ὺ , ὺ  are additive controls, 

their role is to reconfigure the nominal controls to 

compensate for faults. In the absence of faults, we 

have: ὺ ὺ ὺ ὺ π . These 

compensation units are expressed by: 

 

ụ
Ụ
Ụ
Ụ
ợ
ὺ

ὺ

ὺ

ὺ Ứ
ủ
ủ
ủ
Ủ

ụ
Ụ
Ụ
Ụ
ợ ὦ ὦ
ὦ ὦ

π x

π x

ὦ ὦ
ὦ ὦ Ứ

ủ
ủ
ủ
Ủ

ụ
Ụ
Ụ
Ụ
ợ
ὠͮ

ὠͮ

ὠͮ

ὠͮ Ứ
ủ
ủ
ủ
Ủ

  

(73) 

 

Where: ὠͮ , ὠͮ , ὠͮ , and ὠͮ  are the 

estimated faults given by the adaptive observer of 

Thau. The global block diagram of the proposed 

FTC is shown in Fig. 4. In order to protect the 

machine and associated equipment against damage 

and thus prevent the sudden stop of industrial 

processes that can cause significant economic loss, 

an alarm indicator is added to the design. The alarm 

signal indicates that maintenance is needed. 
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            (a)                 (b) 

       
            (c)                 (d) 

       
            (e)                 (f) 

Figure. 5 Simulation results in case of three faults (BF, ITSC and BRB) affect the DSIM at time t=1.5 s using BSC and 

the proposed FTC: (a) rotor speed, (b) zoom of rotor speed, (c) stator current, (d) zoom of stator current, (e) rotor flux, 

and (f) electromagnetic torque 

 
Table 3. Machine parameters [1] 

Parameters 
Identifiers & 

values 

Voltage 230-380 V 

frequency 50 Hz 

Stator resistance Rs1 = Rs2 = 3.72 Ý 

Rotor resistance Rr = 2.12  Ý 

Stator leakage inductance Ls = 0.022 H 

Rotor leakage inductance Lr = 0.006 H 

Resultant magnetizing 

inductance 

Lm =0.3672H 

Moment of inertia J = 0.0662 kg.m2 

Viscous friction coefficient K f = 0.001 kg.m2/s 

6. Simulations results 

The efficiency and robustness of the proposed 

FTC compared to the BSC in post-fault operation 

are shown through simulation results using 

MATLAB/Simulink environment. The reference 

speed is set at 200 rd/s, a nominal load torque is 

applied at t=1s then a faults effect is introduced at 

t=1.5 sec, throughout the simulation, the value of the 

reference flux is maintained at 1 Wb thanks to a 

weakening block. The nominal electrical and 

mechanical parameters of the machine studied in 

this paper are given in Table 2. The simulations 

presented in Fig. 5 show DSIM responses in healthy 

and defective mode. The results showed the superior 

performance of the proposed FTC. 

During the un-faulty mode, the speed follows its 

reference value with a negligible overshoot and 

without oscillations, BSC has a fast dynamic 

response and a short transient regime, the load 

torque is very well compensated by the 

electromagnetic torque (before t=1.5s) but it is clear 

that after the fault occurrence, an abnormal behavior 

of the DSIM is observed with the BSC accompanied 

by a closed-loop performance degradation; velocity 

oscillations are visible in Fig. 5 (a) and (b). The 

stator phase current is not sinusoidal, the distortion 

of the signal is caused by the faults effect, the 

oscillations on this physical quantity are clearly 

indicated on Fig. 5 (c) and (d), its amplitude can 

reach up to ±14 A greater than the nominal value. 

The flux trajectory is presented in Fig. 5 (e); BSC 

provide weak ripples after the appearance of faults. 

High ripples in the electromagnetic torque can be 

seen in Fig. 5 (f), where the maximum positive 

ripple reaches +60N.m and the maximum negative 

ripple reaches -42 N.m. Regarding the proposed 

FTC, oscillations in rotor speed are completely 

eliminated, the proposed FTC guarantees a better 

speed response with accurate reference tracking and 

also provides better stability with the smallest  
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(a) 

 
(b) 

Figure. 6 Currents Ὥ and Ὥ in case of three faults (BF, 

ITSC and BRB) affect the DSIM at time t=1.5 s using 

BSC and proposed FTC: (a) quadratic stator current i and 

(b) direct stator current i  

 

 
time (s) 

(a) 

 
time (s) 

 (b) 

 
time (s) 

 (c) 

 
time (s) 

 (d) 

Figure. 7 Real and estimated faults in case of three faults 

(BF, ITSC and BRB) affect the DSIM at time t=1.5 s 

when using the proposed FTC: (a) ὠ andὠͮ  (b) 

ὠ andὠͮ  (c) ὠ andὠͮ  (d) ὠ andὠͮ  

 

average static error. The tracking performance of the 

stator  

Currentis excellent, the current signal is 

sinusoidal. Fig. 5 (e) proves that the proposed FTC 

is able to correctly lead the flux to its desired 

reference (1Wb) even under faults. No ripple in the 

electromagnetic torque signal during faulty 
 

Table 4. RMSE values for the proposed control, and 

proposed control in [18-20] 

Controller Types RMSE values 

Proposed control  0.0851 

Proposed control in [18] 0.1702 

Proposed control in [1] 0.2267 

Proposed control in [19] 0.3102 

 

 
Figure. 8 RMSE histogram of the proposed control, and 

proposed control in [18-20] 
 

operation as shown in Fig. 5 (f). Finally, simulation 

results show that defects do not affect the 

performance of the proposed FTC, even in the 

presence of load torque, while BSC fails to handle 

the unbalanced machine correctly. 

Fig. 6 presents the direct and quadratic current 

components that reflect the temporal evolution of 

rotor flux and electromagnetic torque, respectively. 

The next figure shows the performance of the 

Thau observer in estimating unknown additive 

faultsὠ , ὠ , ὠ andὠ . It is clear that the 

nonlinear observer can accurately detect and 

estimate uncertainties. 

7. Performance comparison 

For quantitative comparison between four 

previous control methods, root-mean-square error 

(RMSE) is used as the comparison criteria. Table 4 

and Fig. 8 shows the RMSE values of the numerical 

simulation results in faulty operation using the 

proposed control approaches proposed in [18-20] 

and the proposed control in this paper. It is observed 

that the proposed control method offers the smallest 

values control of RMSE, whereas the proposed 

control in [19] present the largest values of RMSE. 

It can be seen that the system performances are 

better, when using the proposed the proposed 

control as compared to the proposed control 

approaches proposed in [18-20]. 

8. Conclusions 

This paper highlights the importance of active 
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