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Abstract: Missing data in software attributes as a common occurrence that can lead to incorrect estimates and poor 

predictability. For this reason, the imputation approach was used in our study. We model incomplete data using an 

Autoencoder (AE) approach for missing value imputation, which substantially minimizes the complexity of data 

modeling when dealing with small data in regression situations. In this study, we introduce the imputation approach 

through Stacked Denoising Autoencoder (SDAE) with dropout regularization and perform hyperparameter tuning. The 

scenario presented in this research is built up by eliminating data intervals from the whole dataset at various missing 

rates (10 percent - 80 percent missing rate). Experimental findings from 11 datasets support the efficacy of the 

suggested technique (on Promise and ISBSG10). The proposed method's performance is compared to that of other 

techniques (such as: Generative Adversarial Imputation Networks (GAIN), k-Nearest Neighbor imputation (kNNI), 

Multiple Imputation by Chained Equations (MICE), and Random Forest Imputation (MissForest)), demonstrating that 

our method outperforms others even with an 80% data missing rate, with producing the best value (low) on mean 

absolute error (MAE: 0.0839) and root mean square error (RMSE: 0.1061). 

Keywords: Stacked, Denoising autoencoder, Dropout regularization, Inducing missingness, Software effort 

estimation. 

 

 

1. Introduction 

Missing data in critical software properties is 

widespread, and it can lead to inaccurate estimations 

and poor predictability [1], [2], It can sabotage the 

learning process by leading to incorrect assumptions 

[3]. Furthermore, it can result in data analysis bias 

and loss of information [4]. Understanding the 

mechanics of missing data is necessary for 

comprehending the impact of missing data on a 

particular analysis or method of missing data [5], [6]. 

There are three processes explaining the pattern of 

missing values, according to little and rubin (1987), 

such as: missing at random (MAR), missing 

completely at random (MCAR), and nonignorable 

missing (NIM) [6]. 

Meanwhile, in the missing data methodology, 

there are three ways to deal with missing data [7], 

such as: toleration, deletion technique, and 

imputation technique. Although simple, toleration is 

not a reliable approximation, and sometimes even 

provides a less efficient estimate than the estimation 

of the deletion technique [5], [6]. Meanwhile, the 

deletion technique has many disadvantages after 

deletion of valuable data including a loss of precision 

and result bias [8]. Furthermore, numerous studies 

have revealed the risks of utilizing listwise deletion 

[9].  

The missing data imputation methodology links 

the missing data before applying the standard full 

data method to the filled data [8]. Popular static 

imputation method packages in the SEE field 

accessible in R, including as multiple imputations by 

chained equation (MICE), random forest imputation 

(MissForest), and k-nearest neighbor imputation 

(kNNI) [10]. Some of these imputation approach 

procedures have previously been studied in empirical 

software engineering in the realm of software 
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measurement data. 

The application of the kNNI approach to a model 

with insufficient capacity for the task. MICE and 

MissForest, on the other hand, are iterative 

approaches that try to enter the whole data set all at 

once. In real-world scenarios, when new data is 

generated on a daily basis, this can be a disadvantage 

[11]. According to Idri et al (2015), Despite the fact 

that most software project data sets contain largely 

categorical characteristics with a large number of 

missing values, most imputation methods are used on 

numeric data types [12].  

However, some of these imputation methods 

cannot handle missing data with multi-type variables, 

for example, binary, categorical, and continuous 

attribute combinations, and do not have outliers 

resistance. Meanwhile, various deep learning-based 

methods have been developed in recent years to 

overcome this challenge, such as: generative 

adversarial imputation networks (GAIN) [13, 14] and 

denoising autoencoders (DAE) [15–17]. However, 

because the GAIN technique assumes the data is 

static and ignores the temporal component of the data, 

it typically performs badly when the data is a long run 

time series [16], and network modeling is tough to do, 

as well as training [15]. In contrast to DAE, which is 

designed to recover missing data from noisy input 

through unattended learning, which makes it suitable 

for unlabeled data [18]. However, missing data may 

depend on non-observable latent interactions or 

representations in the input data set space [15]. DAE 

can use stochastic noise injection to corrupt a subset 

of input data and then use nested nonlinear 

transformations to try to reconstruct it [19], and if you 

work on a known small training data set, there will be 

an overfitting problem [20]. Unfortunately, this kind 

of algorithm usually faces a series of drawbacks, such 

as low training efficiency, complicated network, 

local minimums, difficult tuning of control 

parameters, and gradient disappearing [21]. 

Nevertheless, according to Vincent et al (2008), 

the denoising autoencoder (DAE) was created to 

remove noise from data with high dimensions in 

hidden layers and stochastic contamination in inputs 

[22]. The data distribution is implicitly approximated 

by the DAE reconstruction capabilities as an 

asymptotic markov chain distribution alternating 

between corruption and denoising [23]. In the 

meantime, the stacked method is being used to limit 

process variability and corruption's influence [24]. As 

a result, the stacked denoising autoencoder (SDAE) 

can handle data sets that are more complex (higher 

number of samples and dimensions). Furthermore, 

while the benefits of SDAE appear to be greater at 

larger loss rates (by 40 percent) [25]. To limit the 

possibility of overfitting, we used a dropout strategy 

to train this newly rebuilt DAE, which extends the 

corruption process deeper into the neural network 

architecture [19]. 

We present a stacked DAE-based model of 

missing data imputation adapted for missing 

imputation in regression models with small data sets, 

motivated by the observed drawbacks of 

implementing a combined DAE utilizing stacked on 

the missing imputation problem. Thus, our research, 

which employs a stacked DAE (SDAE) based on 

dropout regularization approaches, intends to 

uncover hidden correlations between missing and 

non-missing values in small data sets, and then 

estimate for imputations [26], [20]. 

The rest of this paper is laid out as follows. In 

section 2, we will review related studies, and in 

section 3, we will present our approach to using a 

stacked denoising autoencoder and the method we 

propose. In our papers in section 4, will discuss 

research methodology. Section 5 presents 

performance evaluation and compares our proposed 

technique to others. Section 6 concludes with a 

discussion of the conclusion and future work. 

2. Related studies 

Since we propose a new data imputation method 

for the problem of missing data on a small dataset on 

a regression problem, we review previous work on 

imputation, for example, autoencoder denoising 

which has received almost no attention in software 

engineering. 

Yoon et al. (2018) used five UCI machine 

learning repository datasets to evaluate GAIN 

performance. The experimental results show that 

GAIN has the best RMSE value on the breast dataset 

(0.0546), spam (0.0513), letter (0.1198), credit 

(0.1858), and news (0.1441). while the overall MSE 

value obtained a value of 0.1137 [13]. Meanwhile, 

Stekhoven et al. (2012) evaluated missforest using 

ten datasets. MissForest performs better than MICE 

and kNNI, again reducing imputation errors in most 

cases by >50 % [27]. Van Buuren and Oudshoorn 

(2011), documenting a significant MICE update, 

results show that imputation using the fully 

conditional specification (FCS) will prove to be a 

great addition to our statistical tool [28]. A study 

conducted by [13], showed that MICE tested using 

the UCI machine learning repository obtained the 

best RMSE scores on the breast dataset (0.0646), 

spam (0.0699), letter (0.1537), credit (0.2585), and 

news (0.1763). While the overall MSE value obtained 

a value of 0.9467. Meanwhile, a study conducted by 

Abnane and Idri (2018) evaluated the missing data 
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imputation technique using four datasets (ISBSG, 

cocomo81, USP05FT, and USP05RQ). The results 

show that the standard value of accuracy using the 

MCAR mechanism, the kNNI technique by 41 %, 

outperforms the tolerance and deletion technique. 

While in the MAR mechanism, kNNI is 34 % and the 

NIM mechanism shows kNNI is 32 % [29].  

Huamin et al. (2020) proposed a denoising 

autoencoder (DAE) based on time series data 

representation by reconstructing the data using a 

recurrence plot (RP) and a Gramian angular field 

(GAF). The experimental results using MSE gave 

values to the data of ECG200 (GAF: 0.0048; RP: 

0.0037), face all (GAF: 0.0134; RP: 0.0221), swedish 

leaf (GAF: 0.0098; RP: 0.0092), OSU leaf (GAF: 

0.0077; RP:0.0121), wafer (GAF:0.0240; RP:0.0069), 

50 words (GAF:0.0101; RP:0.0108), and coffee 

(GAF:0.0336; RP:0.0234). However, this method is 

only effective for univariate time series, but not for 

more complicated multivariate [15]. Zhang and Yin 

(2019) proposed imputing missing data from 

multivariate time series by adapting long short term-

memory (LSTM) and denoising autoencoder (DAE). 

This study evaluates clinical vital signs dataset using 

RMSE with accuracy values on gesture (0.175), eye 

state (0.260), occupancy (0.318), EEG (0.060), and 

eICU (0.046) data. This method can reduce the 

RMSE value by 70 % [16]. Zhang and Yin (2019) 

proposed using long short term memory (LSTM) and 

denoising autoencoder (DAE) to impute missing data 

from multivariate time series. The accuracy of 

gesture (0.175), eye state (0.260), occupancy (0.318), 

EEG (0.060), and eICU (0.046) data was evaluated 

using RMSE. The RMSE number can be reduced by 

70 % with this strategy. When a data collection with 

cryptic classes is utilized to create multi-modal data, 

however, the results can be quite different [17]. 

Meanwhile, Tihon et al. (2021) published DAE with 

mask attention (DAEMA) in the UCI repository. This 

method outperforms current approaches on multiple 

samples of missing data under MCAR and MNAR. 

Unfortunately, this method shows poor performance 

when dealing with small datasets, so DAEMA 

requires a sufficient amount of data to model the 

distribution of the data [11]. Gondara and Wang 

(2018) proposed a multiple imputation model based 

on denoising autoencoders (MIDA). Our model 

outperforms the competition by achieving lower 

RMSE values even with small sample numbers, 

which is a difficult issue for deep architectures [3]. 

Meanwhile, Lu et al. (2020) propose a multiple 

imputation model based on the denoising 

autoencoder to investigate the internal representation 

of data using the metamorphic truth and imputation 

feedback mechanisms to maintain statistical integrity 

of attributes and eliminate bias in the learning process. 

Our model outperforms the DAE and MICE 

imputation models. Nonetheless, when it comes to 

covariance deviations, it’s evident that the bias 

introduced by the original imputation has a large 

impact on covariance [30].  

Based on the results of the literature review that 

we have done. We reviewed several other popular 

imputation methods in the machine learning field. 

Unfortunately, these methods are not noise and 

outlier-resistant. Next, we also examine several 

imputation methods based on the denoising 

autoencoder by outlining some of the limitations of 

previous studies. Motivated by these shortcomings, 

we propose an enhanced stacked DAE with dropout 

regularization for regression problems on small data 

sets and multi-variable types. In contrast to several 

DAE methods that have been developed previously, 

our method adds a standardization technique that 

aims to speed up computational time. Because we use 

a small dataset, we add a dropout regularization 

technique in order to reduce the computational cost 

of overfitting the model. Stacked tries to limit the 

diversity of processes and the effects of corruption. 

This is the first large study based our knowledge that 

uses deep learning to evaluate the imputation of 

missing data in the context of software effort 

estimation. 

3. Our approach 

3.1 Autoencoder 

The autoencoder (AE) is an unsupervised learning 

approach that use a neural network to learn encoding 

or efficient data representation in order to reconstruct 

the original input data [31], [32]. The autoencoder 

consists of two parts: an encoder and a decoder, each 

denoted by the letters 𝑓 and g. The construction of 

the autoencoder is shown in Fig. 1. 

The mapping function in Eq. (1) is used by the 

encoder to transfer the input vector 𝑥 ∈ ℝ𝑛  to a 

hidden representation 𝑦 ∈ ℝ𝑚 [31], [32]. 

 
𝑦 = 𝑓𝜃(𝑥) = 𝑠(𝑊𝑥 + 𝑏)                       (1) 

 

Where, 𝜃 = {𝑊, 𝑏}, W is 𝑚 × 𝑛 for the weight of 

the matrix, The bias vector is b and the activation 

function is 𝑠 (eg sigmoid or rectified linear unit). The 

decoder retrieves the hidden representation 𝑦 to map 

it to the reconstructed vector 𝑧 ∈ ℝ𝑛 using Eq. (2). 

 
𝑧 = g𝜃′(𝑦) = 𝑠′(𝑊′𝑦 + 𝑏′)                 (2) 
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Figure. 1 Architecture standard autoencoder 

 
Where, 𝜃′ = {𝑊′, 𝑏′}, 𝑊′ is 𝑚 × 𝑛 for the weight 

of the matrix, while 𝑏′ is vector bias, and s′ is the 

activation function. As a result, the autoencoder's 

parameter 𝜃  and 𝜃′  will be tuned to minimize the 

average reconstruction error, using Eq (3). 

 

𝜃∗, 𝜃′ ∗= 𝑎𝑟𝑔𝑚𝑖𝑛
1

𝑛
∑ 𝐿(𝑥(𝑖), 𝑧(𝑖)) =𝑛

𝑖=1

𝑎𝑟𝑔𝑚𝑖𝑛
1

𝑛
∑ 𝐿(𝑥(𝑖),𝑛

𝑖=1 g𝜃′(𝑓𝜃(𝑥(𝑖))))                       (3) 

 
Where, 𝜃∗, 𝜃′ ∗  is a parameter that must be 

learned on the data. Thus, the autoencoder can 

minimize reconstruction losses between input data 

and output data, such as MSE loss. The autoencoder's 

goal is to reconstruct the 𝑧(𝑖)  in such a way that 

𝑧(𝑖) ≈ 𝑥(𝑖) is reconstructed with the least amount of 

function loss 𝐿(𝑥(𝑖), 𝑧(𝑖)). For continuous data, this 

function is defined as the mean squared error, while 

for discrete data, it is defined as the cross entropy. It 

is used in our imputation to reduce the squared error 

between the input 𝑥  and the output 𝑧  which is 

reconstructed using Eq. (4), for the real value x. 

 

𝐿(𝑥(𝑖), 𝑧(𝑖)) = 𝐶(𝜎2)||𝑥 − 𝑧||2               (4) 
 

Where, 𝐶(𝜎2) specifies a constant that is solely 

dependent on 𝜎2  and can be discarded for 

optimization purposes. The squared error inherent in 

most traditional autoencoders is designed to achieve 

this goal. Because of the Gaussian interpretation, it is 

more natural not to utilize nonlinearity squashing in 

the decoder in this situation [33]. 

3.2 Denoising autoencoder 

The denoising autoencoder, as shown in Fig. 2, 

functions similarly to the encoder but adds noise to 

the input data. Denoising autoencoder development 

to reconstruct input 𝑥 for corrupted �̃� version, which 

is a more difficult work than the basic autoencoder.  

This is accomplished by first corrupting the initial  
 

 
Figure. 2 Architecture denoising autoencoder 

 

input 𝑥  into �̃�  via �̃� ~𝑞𝒟(�̃�|𝑥)  stochastic mapping. 

The basic autoencoder maps the corrupted input �̃� to 

the hidden representation 𝑦 = 𝑓𝜃(�̃�) = 𝑠(𝑊�̃� + 𝑏) 

as does the basic autoencoder. What is the best way 

to reassemble 𝑧 = g𝜃′(𝑦) . Where, 𝜃∗  and 𝜃′  are 

trained to reduce the average reconstruction error on 

the training set, i.e. to get 𝑧 as near to the uncorrupted 

input 𝑥  as possible. The primary difference is that 

instead of 𝑥, 𝑧 i is now a deterministic function of �̃�. 

The reconstruction error is the square of the error loss 

𝐿2(𝑥, 𝑧) = ||𝑥 − 𝑧||2 with affine decoder, as before. 

The parameters are randomly initialized before being 

optimized using a descending stochastic gradient. 

Note that each time a training example 𝑥 is shown, 

𝑞𝒟(�̃�|𝑥) generates a corrupted version that differs �̃� 

from it. 

3.3 Stacked denoising autoencoder 

The denoising autoencoder is layer-by-layer 

layered in the form of a deep network structure for 

more sophisticated feature expression. The model 

structure is then built using the stacked denoising 

autoencoder, which links the denoising autoencoder 

up and down. The previous output is pure input later 

in the training process, followed by layer-by-layer 

training. Fig. 3 depicts the training procedure. 

Stacking denoising autoencoders is demonstrated 

in Fig. 3. The learnt encoding function 𝑓𝜃 is applied 

to the clean input after training the first level  

 

 
Figure. 3 Stacked denoising autoencoder 
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denoising autoencoder (shown in Fig. 3) (left). The 

second (middle) level denoising autoencoder is 

trained to learn the second level encoding function 

𝑓𝜃
(2)

using the generated representation. The 

procedure can then be repeated (right). 

3.4 Denoising autoencoder with dropout 

regularization 

To create a deep neural network using an 

unsupervised method, DAE was employed as the 

deep neural network’s hidden layer. A huge number 

of x inputs are employed to initialize the model 

parameters in our paper. The initialization method on 

the multi-layer encoder model is obtained via layer-

by-layer DAE training. The output of the lower layer 

DAE is the input of the upper layer. The DAE for all 

layers is a deep neural network (DNN) hidden layer 

structure. During this phase, there may be concerns 

with network overfitting. 

Overfitting is a difficult problem to solve when 

building high-dimensional deep learning models, and 

it must be treated with caution. A recently discovered 

regularization strategy known as “dropout” has 

shown to be quite successful in neural networks [34]. 

Dropout is an approach for reducing “overfitting”, 

while training neural networks with limited training 

data sets [35]. Furthermore, the dropout approach can 

avoid repeating features caused by DAE hidden layer 

mutual adaptation [36].  

To create neural networks, dropout and 

dropconnect techniques are utilized [26], [37]. A 

fully connected layer is the most basic component of 

a neural network, consisting of a linear translation of 

the input vector z to the output vector x, with 

nonlinearity applied to the component x. Given a 

generic linear transformation x = Gz with column 

vectors z and x, the regularization approach is based 

on multiplying the components z (dropout) and G 

(dropconnect) by an independent bernoulli random 

variable. As a result, the x component is computed as 

follows [38]: 

 
𝑥𝑖 = ∑ 𝑔𝑖𝑘(𝜉𝑘𝑧𝑘)𝑘 => 𝑑𝑟𝑜𝑝𝑜𝑢𝑡               (5) 

 
𝑥𝑖 = ∑ (𝜉𝑖𝑘𝑔𝑖𝑘)𝑧𝑘𝑘 => 𝑑𝑟𝑜𝑝𝑐𝑜𝑛𝑛𝑒𝑐𝑡       (6) 

 
Where, 𝜉𝑘 , 𝜉𝑖𝑘~ℬ(1 − p)  with the 

hyperparameter p known as the rate of decline. The 

element 𝑥𝑖  is approximately Gaussian for 

Lyapunov’s central limit theorem (Wang and 

Manning, 2013), so that the distribution as: 

 

𝑥𝑖~𝒩(∑ 𝜃𝑖𝑘; 𝛼𝑘 ∑ 𝜃𝑖𝑘
2

𝑘 )                   (7) 

Where, 𝛼 = 𝑝/(1 − 𝑝) and 𝜃𝑖𝑘 = 𝑔𝑖𝑘𝑧𝑘(1 − 𝑝).  

Unit dropout, in particular, removes the unit from 

the network, as well as all incoming and outgoing 

links within the network. The most basic technique is 

to store each unit in the network with a retention 

probability 𝑝 that is independent of the other units. 

The probability 𝑝  can either be chosen from the 

validation set or set naively to 0.5. Although simple, 

the pre-set probability 𝑝 at 0.5 looks to be near ideal 

for various networks and applications. One example 

is that the best probability of retention for input units 

is frequently closer to 1 than 0.5 [39]. 

4. Materials and methods 

We offer a deep learning methodology 
(autoencoder family) for imputing missing load data 
in this part: 

4.1 Problem statement 

The dataset is defined as 𝒟 = {(𝑋𝑛, 𝑦𝑛)}𝑛=1
𝑁 , 𝑋 ∈

ℝ𝑑 for 𝑑 = 1,2, … , 𝑑, for a basic matrix consisting of 

𝑛  samples and 𝑑  features. Where, 𝑋𝑛 =

(𝑥𝑖
1, 𝑥𝑖

2, … . , 𝑥𝑖
𝑑) ∈ ℝ𝑑  and 𝑦 ∈ ℝ1  is an effort to 

develop this software. In this work, our dataset 

contains several sets of categorical feature indices 

(converting numeric using ordinal encoding), with 

features taking discrete (continuous) values. The goal 

is to keep losses and metrics simple, so that the focus 

is on data sets that have become numerical features 

only. 

The data set with missing values will be assigned 

to 𝑋 . Thus, it can be defined in the missingness 

matrix for, 𝑀(0,1)𝑛×𝑑 such that 𝑥𝑖
𝑗
 is missing if and 

only if 𝑚𝑖
𝑗

= 0 . We state, that 𝒟∗ = (𝑋𝑛
∗ , 𝑦), 𝑋𝑛

∗ ∈

ℝ𝑑  is a basic truth dataset without missing data. 

Although, the dataset that we use is only one dataset 

that has more than 40 % missing data, namely 

ISBSG10. We attempted to retrieve data using 

MCAR in this investigation. The use of dataset 𝒟 by 

determining the appropriate missingness matrix M 

(range missingness used is 10 % to 80 %). Thus, the 

imputation function is defined as: 𝑓: ℝ𝑑 × (0,1)𝑑 →
ℝ𝑑 = (𝑥, 𝑚) → 𝑓′(𝑥, 𝑚) . The purpose of 

implementing this function ( 𝑓′ ) is to minimize 

reconstruction metrics in missing data imputation. 

4.2 Development of the imputation approach via 

SDAE-dropout regularization 

Deep learning and neural networks (DNN) are 

new advances in machine learning that can handle 

large volumes of data and learn high-level 

representations. In general, when a neural network 
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(NN) model works on a known small training data set, 

there will be an overfitting problem [20]. According 

to Hinton et al (2012), when training NN with a small 

training dataset, using the dropout strategy can assist 

reduce overfitting [35]. Dropout is produced by 

turning off the output of some hidden neurons, 

preventing them from taking part in the forward 

propagation training process. Dropout is turned off 

during testing, implying that all hidden neurons' 

output is visible [20]. 

Denoising autoencoder (DAE) has recently 

attracted the attention of the research community due 

to its nature in terms of the ability to learn from 

corrupted data, which is an extension to missing data 

fields [3, 40]. DAE, on the other hand, can corrupt a 

section of the input data with stochastic noise 

injection and then attempt to reconstruct it using 

nested nonlinear transformations [19]. 

We present a stacked denoising autoencoder 

(SDAE) based model of missing data imputation for 

regression models with small data sets, motivated by 

the reported inadequacies of applying the denoising 

autoencoder (DAE) to the problem of missing data 

imputation (shown Fig. 4). Thus, our research intends 

to capture hidden correlations between missing and 

non-missing values in small data sets utilizing SDAE 

based on dropout regularization approaches, and then 

estimate for imputations. Dropout regularization 

approach is used in both the input and hidden layers 

to avoid overfitting during fine-tuning. If necessary, 

we also allow L2 regularization during training to 

further limit the risk of model overfitting. In addition, 

the proposed SDAE is a model that is driven by 

missing values with model training process and a 

different imputation strategy in the regression field. 

In this paper, we will compare our proposed 

method with four advanced missing imputation  

 

 
Figure. 4 Our proposed improved SDAE with dropout 

regularization 

techniques, including GAIN (generative adversarial 

imputation networks) [13], MICE (multiple 

imputation by chained equations) [28], MissForest 

(random forest imputation) [27], and k-nearest 

neighbor imputation (kNNI) [29]. 

4.3 Data collection and data preprocessing 

The most widely used dataset related to the SEE 

context is the repository in PROMISE (PREdictOr 

models in software engineering) and ISBSG, which 

is one of the most popular datasets [41–44]. In the 

early 2000s, the usage of small datasets was quite 

popular, and most empirical research in software 

engineering was done using small samples [12]. 

Because gathering and reporting data from the project 

is expensive, the development team focused less on 

data collection [9]. This causes incomplete datasets 

to appear frequently throughout SEE studies on that 

dataset. 

The data set used in our paper is shown in Table 

1, which includes the number of projects, features, 

categorical features, predictor feature name, and 

target feature name. PROMISE is an online data 

repository that is open to the public. We used 9 

datasets available in the promise repository, such as: 

maxwell, cocomo81, kitchenham, nasa93, kemerer, 

albrecht, desharnais, China and the preprocessing 

rules used in the study by [45, 46], and UCP dataset 

as per rules [47]. Meanwhile, 2 datasets are available 

from ISBSG such as: ISBSG18 refers to research [48], 

and ISBSG10 refers to research [49]. 

Data preprocessing is conducted out after data 

collection in order to improve data quality. Feature 

reduction, or deleting irrelevant features, is 

frequently part of the data pre-processing procedure. 

The next step is to convert categorical data into 

numeric using ordinal encoding. Since each category 

is displayed as a single input, the advantage is that the 

dimensions of the problem space do not increase [50]. 

Give the i-th object the value 𝑓  and 𝑓  has a status 

sorted 𝑀𝑓 with rank {1,2, … , 𝑀𝑓}. 𝑟𝑖𝑓 = {1,2, … , 𝑀𝑓} 

should be used to replace each 𝑥𝑖𝑓 . So that each 

attribute has the same weight, change the range of 

each attribute to [0, 1]. Use 𝑧𝑖𝑓  to display the i-th 

object’s attributes 𝑟𝑖𝑓. 

 

𝑧𝑖𝑓 =
𝑟𝑖𝑓−1

𝑀𝑓−1
                                      (8) 

 
Data normalization (DN) changes the value of a 

feature based on predefined rules to ensure that all 

scaled features have the same impact [51]. The 

interval [0, 1] will be used as a scaling goal in our 

study, as illustrated in Eq. (9).  
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Table 1. The study’s dataset 

Dataset 
Criterion 

ID Proj N Cat. Predictors Target 

Without missing values: 

China Ch 499 17 0 AFP, Input, Output, Enquiry, File, Interface, Added, 

Changed, Deleted, PDR_AFP, PDR_UFP, 

NPDR_AFP, NPDU_UFP, Resource, Dev.Type, 

Duration 

Effort 

Albrecth Al 24 7 0 Input, Output, Inquiry, File, AdjFP, RawFPcounts, 

Effort 

Effort 

Maxwell Mw 62 26 0 App, Har, Dba, Ifc, Source, Telonuse, Nlan, T01, T02, 

…., T14, T15, Duration, Size, Time 

Effort 

Nasa93 N93 93 18 16 mode, rely, data, cplx, time, stor, virt, turn, acap, aexp, 

pcap, vexp, lexp, modp, tool, sced, equivphyskloc 

act_effort 

Cococmo81 C81 63 17 0 rely, data, cplx, time, stor, virt, turn, acap, aexp, pcap, 

vexp, lexp, modp, tool, sced, loc 

Actual 

Kitchenham Kt 145 4 0 Actual.duration, Adjusted.function.points, 

First.estimate 

Actual.effort 

Kemerer Km 16 6 0 language, hardware type, estimated duration, AdjFP, 

RawFP 

KSLOC 

Desharnais Dh 81 8 0 Team-Exp, ManagerExp, Transactions, Entities, 

PointsNonAdjust, Adjustment, Language 

PointsAjust 

UCP Ucp 71 5 0 UAW, UUCW, TCF, ECF Real_Effort_Per

son_Hours 

With missing values: 

ISBSG10 I10 952 11 6 FunctionalSize, ValueAdjustmentFactor, 

ProjectElapsedTime, DevelopmentType, 

BusinessAreaType, ClientServer, 

DevelopmentPlatform, LanguageType, FirstOS, 

MaxTeamSize 

NormalisedWor

kEffortLevel1 

ISBSG18 

IFPUG 

I18 36 12 11 Data_Quality, UFP, IS, DP, LT, PPL, CA, FS, RS, 

Recording_Method, FPS 

S_effort 

 

𝑥𝑘  𝑖𝑛 [0,1] =
𝑥𝑘−x𝑚𝑖𝑛

x𝑚𝑎𝑥−x𝑚𝑖𝑛
                       (9) 

 
Where, 𝑥 is the data matrix’s feature column. 𝑥𝑘 

corresponds to the k-th value in 𝑥 , while 𝑥𝑚𝑖𝑛  and 

𝑥𝑚𝑎𝑥 relates to the minimum and maximum values in 

𝑥. The mean and standard deviation of 𝑥 are used to 

determine �̅� and 𝑠𝑡𝑑(𝑥). 

Finally, the data was normalized using the Z-

score normalization technique. It can also be used to 

eliminate data outliers in order to improve data 

quality [52]. The unstructured data can then be 

standardized with the Z-score parameter, according 

to Eq. (10) [53]: 

 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 𝑥𝑘 =
𝑥𝑘−�̅�

𝑠𝑡𝑑(𝑥)
                            (10) 

4.4 Performance analysis 

Fig. 5 shows the model training and validation 

procedures. The first stage is data preparation, which 

is then followed by a preprocessing process 

consisting of feature reduction, categorical 

conversion, normalization, and the sequence of 

available data from each building is randomly 

partitioned into training, validation, and testing data 

sets with a proportion of each 70 %, 15 %, and 15 %. 

After that do inducing missingness (10 %-80 %). The 

next step is to process missing data using SDAE-

dropout regularization. Finally, carry out the process 

of evaluating the imputed data. 

A widely used performance metric in the software 

effort estimation literature is the measured error rate 

of estimation [54], [55]. The metrics utilized in 

evaluation are mean absolute error (MAE) and root 

mean square error (RMSE). It’s better if the model’s 

MAE and RMSE values are low.  

 

𝑀𝐴𝐸 =
1

𝑚
∑ |𝑋𝑖 − 𝑌𝑖|𝑚

𝑖=1                         (11) 
 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑋𝑖 − 𝑌𝑖)2𝑚

𝑖=1                    (12) 

5. Evaluation and results analysis 

In this section, we present the results of an 

experimental assessment of the proposed method’s  
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Figure. 5 Flowchart of our model training scheme 

 

effectiveness. Experiments were carried out using a 

computing platform based on Intel Xeon Quad-core 

2.4 GHz CPU, GeForce GPU Titan 100, memory 64 

Gb and Microsoft Windows 8 R2 Professional 64-bit. 

The development environment is notepad plus, text 

editor/IDE, anaconda web programming interface, 

several libraries on Scikit-learn, and NumPy. Default 

parameter settings provided by python 3.0 are used. 

5.1 Hyperparameter setting 

The set of hyperparameters in the proposed 

SDAE-dropout regularization model will perform 

optimally for a particular problem, and varies with 

the amount of data set corrupt. The hyperparameters 

set in the model for all trained benchmarks, we use 

the embedding dimension of the number hidden layer 

of 128 enough for an overly complete representation 

of all the data sets involved, which aims to improve 

the generalization performance of the DNN. DNN 

has the capability of automatically extracting features, 

resulting in a decrease in the number of hidden units 

as the value increases. Next, we train the model for a 

maximum of 500 iterations with an early stop strategy 

for reconstruction losses over known elements. 

Because in our study, using a small data set, we added 

the technique of regularization (L2) parameters of 

1×10−4 and dropout probabilities of 0.5 were used to 

avoid overfitting problems. If L2 is very large, 

however, it will add too much weight and produce a 

lack of fit. Simple 3-layer feed-forward network 

trained 10 times for each autoencoder optimization 

step. In TensorFlow, the Adam optimizer default 

learning rate for both networks is 1×10−3 (1e-3) each 

for SDAE. We examine ReLU as a hidden layer 

activation function to tackle the missing gradient 

problem generated by Sigmoid or the explosion 

gradient problem created by ReLU [56], [57]. Also, 

we apply a random Gaussian noise of 0.2 for each 

time step of the training data progression in 

overcoming the noise data during the training process 

[58]. 

We compared four advanced techniques, 

including GAIN [13], MICE [28], MissForest [27], 

and kNNI [29], to validate our methodology. 

Whereas, for the comparison method we used, the 

adjustment for the imputation approach i.e., the kNNI 

parameter k was set as 5 because the imputation error 

was low in the acceptable time range for all three data 

sets achieved with k = 5. Because it reconstructs the 

complete data set at once, MissForest focuses on the 

repair data set. MissForest employs a total of 100 

estimators, each with no leaf-node limit and a 

maximum of ten iterations (n=10). MICE and GAIN 

have the same maximum number of iterations as 

MissForest. 

5.2 Comparison algorithms 

There are only two data sets in the SEE context 

that are induced by missing values, while other data 

without have missing values. So, in this study we will 

apply inducing missingness with a range between 

10 % to 80 % in our algorithm and the comparison 

algorithm. Consider a dataset with a 𝒟-dimensional 

object 𝑥 where each feature (which is denoted by 𝑥𝑖) 

may be missing and the target value is 𝑦. Missing 

values in objects are not supported by the majority of 

discriminating approaches. Missing features 

imputation is the process of filling in missing feature 

values. 

We standardized the numerical data using min-

max normalization and utilized ordinal encoding to 

express the categorical data as model parameters for 

ease of evaluation and faster convergence. 

Furthermore, we repeat each test ten times and 

publish the average results in order to achieve valid 

experimental data. 

Using multiple publicly accessible real-world 

datasets on PROMISE and ISBSG, we analyze the  
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Figure. 6 The comparison of validation loss of our models (training phases): (a) Albrecht dataset, (b) China dataset, (c) 

Cocomo81 dataset, (d) Desharnais dataset, (e) ISBSG IFPUG dataset, (f) ISBSG10 dataset, (g) Kemerer dataset, (h) 

Kitchenham dataset, (i) Maxwell dataset, (j) Nasa93 dataset, and (k) UCP dataset 
 

imputation quality achieved by the performance of 

SDAE-dropout regularization in this section. Before 

training, we dropped 70 % of the good values on the 

train, 15 % for the test set, and 15 % for the validation 

test set at random.  

Our SDAE will estimate the missing values as 

closely as feasible to the real data once we partition 

the dataset into three parts. At the start of each epoch, 

we generate a new corruption vector based on the 

Gaussian distribution by multiplying the original data 

by a sample threshold in the center of the distribution 

to create a corrupted input for the encoder. To 

minimize the modified loss function, we use 3-fold 

cross-validation and the dropout regularization 

approach to train our model. Fig. 6 shows that by 

applying the SDAE method, the missing data can be 

estimated well. This shows that our proposed model 

does not experience overfitting problems or 

expensive computations. These findings show that 

the SDAE model reduces the predicted loss over the 

empirical distribution of not just the observed data 



Received:  February 7, 2021.     Revised: March 8, 2022.                                                                                                 262 

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022           DOI: 10.22266/ijies2022.0630.22 

 

but also a portion of the previously seen corrupted 

data, hence lowering the chance of bias.  

Because there are so many different types of 

parameters, using a single autoencoder learning 

method will result in large processing costs and a loss 

of learning efficiency [17]. As a result, customization 

necessitate a computationally efficient approach. In 

this instance, the training data must be reconfigured 

based on the workload by taking into account 

numerous parameters when constructing the 

autoencoder. By applying the dropout technique to 

achieve better results than non-dropout. The 

application of the dropout technique is not only faster 

convergence for the encoder decoder to study the 

regression data pattern only, but also achieves better 

performance in preventing overfitting will be obvious 

if the NN is deeper. 

On a given data set, we will compare the 

imputation performance of our technique to the four 

initial imputation methods based on the accuracy of 

the missing data estimate in the next stage. The GAIN, 

kNNI, MICE, and MissForest approaches are among 

the ones we compare to ours. As is customary, we 

employ MAE and RMSE as performance 

measurements between the baseline truth and  

 
Table 2. Comparison imputation performance using 

MAE (with missing rate 80 %) 

ID 
Our 

model 
GAIN kNNI MICE MissRF 

Al 0.1713 0.2437 0.3405 0.5944 0.3126 

Ch 0.1254 0.1263 0.0564 0.0892 0.0661 

C81 0.1281 0.1362 0.2621 0.3512 0.2375 

Dh 0.1422 0.1425 0.1907 0.2567 0.1902 

I18 0.1989 0.2489 0.2741 0.4129 0.2948 

I10 0.1061 0.1063 0.1902 0.2474 0.3015 

Km 0.1711 0.0279 0.3010 0.3862 0.2799 

Kt 0.1215 0.0338 0.0865 0.0918 0.0850 

Mw 0.1766 0.1826 0.3170 0.3735 0.2916 

N93 0.1591 0.1675 0.3039 0.2757 0.2470 

Ucp 0.1074 0.1695 0.1033 0.1219 0.1190 

 

Table 3. Comparison imputation performance using 

RMSE (with missing rate 80 %) 

ID 
Our 

model 
GAIN kNNI MICE MissRF 

Al 0.3273 0.3697 0.3767 0.9320 0.3550 

Ch 0.0841 0.0947 0.0990 0.1638 0.1139 

C81 0.2792 0.3931 0.3235 0.4881 0.3138 

Dh 0.2256 0.2552 0.2364 0.3609 0.2375 

I18 0.2428 0.5034 0.2819 0.5310 0.3652 

I10 0.2149 0.2840 0.2278 0.4435 0.3814 

Km 0.1467 0.1515 0.2836 0.4230 0.2806 

Kt 0.0839 0.1392 0.0916 0.0932 0.0905 

Mw 0.2901 0.4760 0.3839 0.4604 0.3830 

N93 0.2854 0.4661 0.3127 0.3109 0.3016 

Ucp 0.1025 0.2939 0.0976 0.1065 0.1097 

approximation values. Note that in this series of 

studies, additional faults were introduced to the data 

set by utilizing the MCAR missing generation 

approach to remove 80 percent of all data points at 

random. The comparison results of our imputation 

approach using MAE and RMSE are shown in Tables 

2 and 3. 

The goal of the imputation method is to reliably 

restore missing data (from minor to severe 

corruption). As a result, we anticipate that after using 

this strategy, the broken distribution will be forced to 

follow the true distribution. Bold numbers indicate 

the highest accurate imputation; italics, on the other 

hand, indicate the least accurate imputation. Based on 

the results in the table using a data missing rate of 

80 %, showing the MAE value (Table 2), that our 

model produces the poor error in the kitchenham 

dataset with a value of 0.1215 and is followed by the 

china dataset (0.1254), UCP (0.1074), and kemerer 

(0.1711). Meanwhile, in other datasets our model 

produces the best performance. In Table 3, which 

shows the performance of our model using the RMSE 

value has the best performance on all data sets. This 

shows that the use of SDAE can overcome the large 

number of calculations required, local minimums, 

and missing gradient problems [17]. When using 

backpropagation, the use of numerous propagation 

and optimizer functions makes learning easier [59], 

and the addition of a dropout technique helps reduce 

overfitting when training a limited dataset [35]. This 

is why our model has the best accuracy rate than some 

of the other popular methods used in our study. 

As for the comparison method, based on the 

results in Tables 2 and 3, it shows that GAIN has an 

MAE value with the poor performance in the China 

dataset (0.1263) and UCP (0.1695). Meanwhile, 

GAIN has the best performance on the kemerer 

(0.0279) and kitchenham (0.0338) datasets. However, 

GAIN also has the poor RMSE value in the datasets 

kitchenham (0.1392), UCP (0.2939), Nasa93 

(0.4661), maxwell (0.4760), and ISBSG18 (0.5034). 

This is because GAIN is a modeling that has a 

complex network and difficult training. If it is run on 

a small dataset, it can cause overfitting and bias in the 

imputation results. This technique, according to 

Nazabal et al (2018), can only handle continuous or 

binary data, and adapting to diverse data is difficult. 

As a result, there is still a need for approaches for 

efficiently training deep generative models on 

incomplete and diverse data sets [60]. 

kNNI has the best performance as indicated by 

the MAE value in the china dataset (0.0564) and UCP 

(0.1033), but has the poor value in the nasa93 dataset 

(0.3039). MICE most of the datasets produce the poor  
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Figure. 7 RMSE values obtained from five imputation methods: (a) Albrecht dataset, (b) China dataset, (c) Cocomo81 

dataset, (d) Desharnais dataset, (e) IFPUG dataset, (f) ISBSG10 dataset, (g) Kemerer dataset, (h) Kitchenham dataset, (i) 

Maxwell dataset, (j) Nasa93 dataset, and (k) UCP dataset 
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performance. Meanwhile, MissForest only has one 

poor performance on the MAE value in the ISBSG10 

dataset (0.3015). This shows that MICE, MissForest 

and kNNI are data imputation methods that do not 

have resistance to noise which can cause low 

accuracy values. kNNI, on the other hand, cannot be 

employed at greater missing rates due to the 

limitation that it can only use complete cases as 

probable nearest neighbors (as seen in this 

experiment). MICE and MissForest experienced the 

similar problem, resulting in poor utility when 

dealing with small data and noise. Whereas, our 

model’s improved performance in this case with a 

small data set size and constrained dimensions 

demonstrates its utility when faced with high 

dimensional missing values, which is a performance 

barrier for some other imputation algorithms, 

whereas our model can tolerate noise. Meanwhile, for 

small datasets, the computational costs of our model 

are comparable to or better than imputation using 

GAIN, kNNI, MICE, and MissForest. 

5.3 Missingness sensitivity 

We will assess our algorithm in this section to 

see how sensitive it is to a specific missing 

percentage ranging from 10 % to 80 %. We also 

compare this strategy to a few other imputation 

methods in this section. It is important to note that our 

proposed solution successfully compensates for the 

vast majority of situations, especially those with 

missing intervals of up to 80 %. These are the most 

severe circumstances, due to the high level of 

corruption, estimation of missing data becomes 

inconsistent and impossible to correct using other 

approaches. Each data set’s feature is successively 

injected with missing and calculated data, with 

imputation quality evaluated by comparing the 

underlying truth and calculated data using the root 

mean square error (RMSE) measure. The association 

between missing data rate and imputation 

performance for the deleted data period was explored 

and illustrated in Fig. 7 to further analyze the value 

of the offered technique. 

When utilizing a conventional training scheme 

based on imputation methods, the five polylines in 

each subgraph show essentially identical patterns of 

variance, indicating that the rationality of the original 

approximation of missing values has a direct impact 

on imputation accuracy. Furthermore, when the 

amount of missing data grows, the trend of variance 

and polyline size in our technique and kNNI are 

nearly identical. Nonetheless, the RMSE values 

achieved by our technique are marginally better than 

those obtained by kNNI in the majority of cases. For 

larger missing rates, our technique was more 

effective, followed by kNNI, which outperformed 

standard MICE, MissForest, and GAIN. 

Unfortunately, our method’s performance on the 

China dataset has a low value trend. kNNI, MICE, 

and MissForest all performed similarly, with 

deteriorating estimating results and a greater data rate 

missing rate of more than 70 %. In comparison to 

previous algorithms, kNNI and MissForest provide 

steady performance for 20 % to 70 % missing values 

based on low RMSE values. Finally, our technique 

reveals that all missing rates have identical 

performance trends. By giving the best imputation 

methodology, which surpasses all other methods for 

missing data rates ranging from 10 % to 80 %. As a 

result, the proposed SDAE with dropout 

regularization provides a more accurate 

approximation of the actual measurement for 

majority-omitted interval imputation at various 

missing levels. 

6. Conclusion 

This study introduces a new approach to missing 

data imputation called stacked denoising autoencoder 

with dropout regularization technique. Our model is 

trained using selected parameters to estimate missing 

data on a small data set to tackle the regression 

challenge. In an experiment with 11 datasets from 

clinical trials injected with missing values under the 

MCAR, the methodology was compared to four state-

of-the-art algorithms (GAIN, kNNI, MICE, and 

MissForest) (including 10 percent to 80 percent 

missing rates). Our solution exceeds all others in 

terms of total improvement and low error rate.  

Due to the high cost and difficulty of obtaining 

data, eliminating cases with missing data can result in 

a sample size that is too small, resulting in bias. We 

use DAE, which consistently accounts for missing 

data with minimal error, even for data sets containing 

many missing data at the start. Meanwhile, in our 

approach, the Stacked mechanism tries to limit 

process diversity and the influence of corruption. The 

dropout regularization technique is used to limit the 

number of neurons in the layer, which helps to avoid 

overfitting and the disappearance of gradients when 

the model is trained. In the missing imputation model, 

this might lead to biased results. We discovered that 

going through the standardization stage can help cut 

optimization time and prevent overfitting for small 

datasets. Experiments on eleven data sets showed that 

our technique is effective, particularly for significant 

corruption volumes and mixed data. 

New studies will be done in the future to test the 

SDAE technique with datasets from other contexts, 
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some of which contain missing values already, and to 

apply the remaining missing data procedures (MNAR 

and MAR). Furthermore, investigating the impact of 

imputation in the classification task is a crucial aspect. 
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