
Received: February 7, 2021. Revised: March 8, 2022. 253

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.22

Missing Data Imputation Via Stacked Denoising Autoencoder Combined with

Dropout Regularization Based Small Dataset in Software Effort Estimation

Robert Marco1* Sharifah Sakinah Syed Ahmad2 Sabrina Ahmad2

1Department of Informatics, Universitas Amikom Yogyakarta, Yogyakarta, Indonesia

2Faculty of Information & Communication Technology, Universiti Teknikal Malaysia Melaka, Malaysia

* Corresponding author’s Email: robertmarco@amikom.ac.id

Abstract: Missing data in software attributes as a common occurrence that can lead to incorrect estimates and poor

predictability. For this reason, the imputation approach was used in our study. We model incomplete data using an

Autoencoder (AE) approach for missing value imputation, which substantially minimizes the complexity of data

modeling when dealing with small data in regression situations. In this study, we introduce the imputation approach

through Stacked Denoising Autoencoder (SDAE) with dropout regularization and perform hyperparameter tuning. The

scenario presented in this research is built up by eliminating data intervals from the whole dataset at various missing

rates (10 percent - 80 percent missing rate). Experimental findings from 11 datasets support the efficacy of the

suggested technique (on Promise and ISBSG10). The proposed method's performance is compared to that of other

techniques (such as: Generative Adversarial Imputation Networks (GAIN), k-Nearest Neighbor imputation (kNNI),

Multiple Imputation by Chained Equations (MICE), and Random Forest Imputation (MissForest)), demonstrating that

our method outperforms others even with an 80% data missing rate, with producing the best value (low) on mean

absolute error (MAE: 0.0839) and root mean square error (RMSE: 0.1061).

Keywords: Stacked, Denoising autoencoder, Dropout regularization, Inducing missingness, Software effort

estimation.

1. Introduction

Missing data in critical software properties is

widespread, and it can lead to inaccurate estimations

and poor predictability [1], [2], It can sabotage the

learning process by leading to incorrect assumptions

[3]. Furthermore, it can result in data analysis bias

and loss of information [4]. Understanding the

mechanics of missing data is necessary for

comprehending the impact of missing data on a

particular analysis or method of missing data [5], [6].

There are three processes explaining the pattern of

missing values, according to little and rubin (1987),

such as: missing at random (MAR), missing

completely at random (MCAR), and nonignorable

missing (NIM) [6].

Meanwhile, in the missing data methodology,

there are three ways to deal with missing data [7],

such as: toleration, deletion technique, and

imputation technique. Although simple, toleration is

not a reliable approximation, and sometimes even

provides a less efficient estimate than the estimation

of the deletion technique [5], [6]. Meanwhile, the

deletion technique has many disadvantages after

deletion of valuable data including a loss of precision

and result bias [8]. Furthermore, numerous studies

have revealed the risks of utilizing listwise deletion

[9].

The missing data imputation methodology links

the missing data before applying the standard full

data method to the filled data [8]. Popular static

imputation method packages in the SEE field

accessible in R, including as multiple imputations by

chained equation (MICE), random forest imputation

(MissForest), and k-nearest neighbor imputation

(kNNI) [10]. Some of these imputation approach

procedures have previously been studied in empirical

software engineering in the realm of software

Received: February 7, 2021. Revised: March 8, 2022. 254

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.22

measurement data.

The application of the kNNI approach to a model

with insufficient capacity for the task. MICE and

MissForest, on the other hand, are iterative

approaches that try to enter the whole data set all at

once. In real-world scenarios, when new data is

generated on a daily basis, this can be a disadvantage

[11]. According to Idri et al (2015), Despite the fact

that most software project data sets contain largely

categorical characteristics with a large number of

missing values, most imputation methods are used on

numeric data types [12].

However, some of these imputation methods

cannot handle missing data with multi-type variables,

for example, binary, categorical, and continuous

attribute combinations, and do not have outliers

resistance. Meanwhile, various deep learning-based

methods have been developed in recent years to

overcome this challenge, such as: generative

adversarial imputation networks (GAIN) [13, 14] and

denoising autoencoders (DAE) [15–17]. However,

because the GAIN technique assumes the data is

static and ignores the temporal component of the data,

it typically performs badly when the data is a long run

time series [16], and network modeling is tough to do,

as well as training [15]. In contrast to DAE, which is

designed to recover missing data from noisy input

through unattended learning, which makes it suitable

for unlabeled data [18]. However, missing data may

depend on non-observable latent interactions or

representations in the input data set space [15]. DAE

can use stochastic noise injection to corrupt a subset

of input data and then use nested nonlinear

transformations to try to reconstruct it [19], and if you

work on a known small training data set, there will be

an overfitting problem [20]. Unfortunately, this kind

of algorithm usually faces a series of drawbacks, such

as low training efficiency, complicated network,

local minimums, difficult tuning of control

parameters, and gradient disappearing [21].

Nevertheless, according to Vincent et al (2008),

the denoising autoencoder (DAE) was created to

remove noise from data with high dimensions in

hidden layers and stochastic contamination in inputs

[22]. The data distribution is implicitly approximated

by the DAE reconstruction capabilities as an

asymptotic markov chain distribution alternating

between corruption and denoising [23]. In the

meantime, the stacked method is being used to limit

process variability and corruption's influence [24]. As

a result, the stacked denoising autoencoder (SDAE)

can handle data sets that are more complex (higher

number of samples and dimensions). Furthermore,

while the benefits of SDAE appear to be greater at

larger loss rates (by 40 percent) [25]. To limit the

possibility of overfitting, we used a dropout strategy

to train this newly rebuilt DAE, which extends the

corruption process deeper into the neural network

architecture [19].

We present a stacked DAE-based model of

missing data imputation adapted for missing

imputation in regression models with small data sets,

motivated by the observed drawbacks of

implementing a combined DAE utilizing stacked on

the missing imputation problem. Thus, our research,

which employs a stacked DAE (SDAE) based on

dropout regularization approaches, intends to

uncover hidden correlations between missing and

non-missing values in small data sets, and then

estimate for imputations [26], [20].

The rest of this paper is laid out as follows. In

section 2, we will review related studies, and in

section 3, we will present our approach to using a

stacked denoising autoencoder and the method we

propose. In our papers in section 4, will discuss

research methodology. Section 5 presents

performance evaluation and compares our proposed

technique to others. Section 6 concludes with a

discussion of the conclusion and future work.

2. Related studies

Since we propose a new data imputation method

for the problem of missing data on a small dataset on

a regression problem, we review previous work on

imputation, for example, autoencoder denoising

which has received almost no attention in software

engineering.

Yoon et al. (2018) used five UCI machine

learning repository datasets to evaluate GAIN

performance. The experimental results show that

GAIN has the best RMSE value on the breast dataset

(0.0546), spam (0.0513), letter (0.1198), credit

(0.1858), and news (0.1441). while the overall MSE

value obtained a value of 0.1137 [13]. Meanwhile,

Stekhoven et al. (2012) evaluated missforest using

ten datasets. MissForest performs better than MICE

and kNNI, again reducing imputation errors in most

cases by >50 % [27]. Van Buuren and Oudshoorn

(2011), documenting a significant MICE update,

results show that imputation using the fully

conditional specification (FCS) will prove to be a

great addition to our statistical tool [28]. A study

conducted by [13], showed that MICE tested using

the UCI machine learning repository obtained the

best RMSE scores on the breast dataset (0.0646),

spam (0.0699), letter (0.1537), credit (0.2585), and

news (0.1763). While the overall MSE value obtained

a value of 0.9467. Meanwhile, a study conducted by

Abnane and Idri (2018) evaluated the missing data

Received: February 7, 2021. Revised: March 8, 2022. 255

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.22

imputation technique using four datasets (ISBSG,

cocomo81, USP05FT, and USP05RQ). The results

show that the standard value of accuracy using the

MCAR mechanism, the kNNI technique by 41 %,

outperforms the tolerance and deletion technique.

While in the MAR mechanism, kNNI is 34 % and the

NIM mechanism shows kNNI is 32 % [29].

Huamin et al. (2020) proposed a denoising

autoencoder (DAE) based on time series data

representation by reconstructing the data using a

recurrence plot (RP) and a Gramian angular field

(GAF). The experimental results using MSE gave

values to the data of ECG200 (GAF: 0.0048; RP:

0.0037), face all (GAF: 0.0134; RP: 0.0221), swedish

leaf (GAF: 0.0098; RP: 0.0092), OSU leaf (GAF:

0.0077; RP:0.0121), wafer (GAF:0.0240; RP:0.0069),

50 words (GAF:0.0101; RP:0.0108), and coffee

(GAF:0.0336; RP:0.0234). However, this method is

only effective for univariate time series, but not for

more complicated multivariate [15]. Zhang and Yin

(2019) proposed imputing missing data from

multivariate time series by adapting long short term-

memory (LSTM) and denoising autoencoder (DAE).

This study evaluates clinical vital signs dataset using

RMSE with accuracy values on gesture (0.175), eye

state (0.260), occupancy (0.318), EEG (0.060), and

eICU (0.046) data. This method can reduce the

RMSE value by 70 % [16]. Zhang and Yin (2019)

proposed using long short term memory (LSTM) and

denoising autoencoder (DAE) to impute missing data

from multivariate time series. The accuracy of

gesture (0.175), eye state (0.260), occupancy (0.318),

EEG (0.060), and eICU (0.046) data was evaluated

using RMSE. The RMSE number can be reduced by

70 % with this strategy. When a data collection with

cryptic classes is utilized to create multi-modal data,

however, the results can be quite different [17].

Meanwhile, Tihon et al. (2021) published DAE with

mask attention (DAEMA) in the UCI repository. This

method outperforms current approaches on multiple

samples of missing data under MCAR and MNAR.

Unfortunately, this method shows poor performance

when dealing with small datasets, so DAEMA

requires a sufficient amount of data to model the

distribution of the data [11]. Gondara and Wang

(2018) proposed a multiple imputation model based

on denoising autoencoders (MIDA). Our model

outperforms the competition by achieving lower

RMSE values even with small sample numbers,

which is a difficult issue for deep architectures [3].

Meanwhile, Lu et al. (2020) propose a multiple

imputation model based on the denoising

autoencoder to investigate the internal representation

of data using the metamorphic truth and imputation

feedback mechanisms to maintain statistical integrity

of attributes and eliminate bias in the learning process.

Our model outperforms the DAE and MICE

imputation models. Nonetheless, when it comes to

covariance deviations, it’s evident that the bias

introduced by the original imputation has a large

impact on covariance [30].

Based on the results of the literature review that

we have done. We reviewed several other popular

imputation methods in the machine learning field.

Unfortunately, these methods are not noise and

outlier-resistant. Next, we also examine several

imputation methods based on the denoising

autoencoder by outlining some of the limitations of

previous studies. Motivated by these shortcomings,

we propose an enhanced stacked DAE with dropout

regularization for regression problems on small data

sets and multi-variable types. In contrast to several

DAE methods that have been developed previously,

our method adds a standardization technique that

aims to speed up computational time. Because we use

a small dataset, we add a dropout regularization

technique in order to reduce the computational cost

of overfitting the model. Stacked tries to limit the

diversity of processes and the effects of corruption.

This is the first large study based our knowledge that

uses deep learning to evaluate the imputation of

missing data in the context of software effort

estimation.

3. Our approach

3.1 Autoencoder

The autoencoder (AE) is an unsupervised learning

approach that use a neural network to learn encoding

or efficient data representation in order to reconstruct

the original input data [31], [32]. The autoencoder

consists of two parts: an encoder and a decoder, each

denoted by the letters 𝑓 and g. The construction of

the autoencoder is shown in Fig. 1.

The mapping function in Eq. (1) is used by the

encoder to transfer the input vector 𝑥 ∈ ℝ𝑛 to a

hidden representation 𝑦 ∈ ℝ𝑚 [31], [32].

𝑦 = 𝑓𝜃(𝑥) = 𝑠(𝑊𝑥 + 𝑏) (1)

Where, 𝜃 = {𝑊, 𝑏}, W is 𝑚 × 𝑛 for the weight of

the matrix, The bias vector is b and the activation

function is 𝑠 (eg sigmoid or rectified linear unit). The

decoder retrieves the hidden representation 𝑦 to map

it to the reconstructed vector 𝑧 ∈ ℝ𝑛 using Eq. (2).

𝑧 = g𝜃′(𝑦) = 𝑠′(𝑊′𝑦 + 𝑏′) (2)

Received: February 7, 2021. Revised: March 8, 2022. 256

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.22

Figure. 1 Architecture standard autoencoder

Where, 𝜃′ = {𝑊′, 𝑏′}, 𝑊′ is 𝑚 × 𝑛 for the weight

of the matrix, while 𝑏′ is vector bias, and s′ is the

activation function. As a result, the autoencoder's

parameter 𝜃 and 𝜃′ will be tuned to minimize the

average reconstruction error, using Eq (3).

𝜃∗, 𝜃′ ∗= 𝑎𝑟𝑔𝑚𝑖𝑛
1

𝑛
∑ 𝐿(𝑥(𝑖), 𝑧(𝑖)) =𝑛

𝑖=1

𝑎𝑟𝑔𝑚𝑖𝑛
1

𝑛
∑ 𝐿(𝑥(𝑖),𝑛

𝑖=1 g𝜃′(𝑓𝜃(𝑥(𝑖)))) (3)

Where, 𝜃∗, 𝜃′ ∗ is a parameter that must be

learned on the data. Thus, the autoencoder can

minimize reconstruction losses between input data

and output data, such as MSE loss. The autoencoder's

goal is to reconstruct the 𝑧(𝑖) in such a way that

𝑧(𝑖) ≈ 𝑥(𝑖) is reconstructed with the least amount of

function loss 𝐿(𝑥(𝑖), 𝑧(𝑖)). For continuous data, this

function is defined as the mean squared error, while

for discrete data, it is defined as the cross entropy. It

is used in our imputation to reduce the squared error

between the input 𝑥 and the output 𝑧 which is

reconstructed using Eq. (4), for the real value x.

𝐿(𝑥(𝑖), 𝑧(𝑖)) = 𝐶(𝜎2)||𝑥 − 𝑧||2 (4)

Where, 𝐶(𝜎2) specifies a constant that is solely

dependent on 𝜎2 and can be discarded for

optimization purposes. The squared error inherent in

most traditional autoencoders is designed to achieve

this goal. Because of the Gaussian interpretation, it is

more natural not to utilize nonlinearity squashing in

the decoder in this situation [33].

3.2 Denoising autoencoder

The denoising autoencoder, as shown in Fig. 2,

functions similarly to the encoder but adds noise to

the input data. Denoising autoencoder development

to reconstruct input 𝑥 for corrupted �̃� version, which

is a more difficult work than the basic autoencoder.

This is accomplished by first corrupting the initial

Figure. 2 Architecture denoising autoencoder

input 𝑥 into �̃� via �̃� ~𝑞𝒟(�̃�|𝑥) stochastic mapping.

The basic autoencoder maps the corrupted input �̃� to

the hidden representation 𝑦 = 𝑓𝜃(�̃�) = 𝑠(𝑊�̃� + 𝑏)

as does the basic autoencoder. What is the best way

to reassemble 𝑧 = g𝜃′(𝑦) . Where, 𝜃∗ and 𝜃′ are

trained to reduce the average reconstruction error on

the training set, i.e. to get 𝑧 as near to the uncorrupted

input 𝑥 as possible. The primary difference is that

instead of 𝑥, 𝑧 i is now a deterministic function of �̃�.

The reconstruction error is the square of the error loss

𝐿2(𝑥, 𝑧) = ||𝑥 − 𝑧||2 with affine decoder, as before.

The parameters are randomly initialized before being

optimized using a descending stochastic gradient.

Note that each time a training example 𝑥 is shown,

𝑞𝒟(�̃�|𝑥) generates a corrupted version that differs �̃�

from it.

3.3 Stacked denoising autoencoder

The denoising autoencoder is layer-by-layer

layered in the form of a deep network structure for

more sophisticated feature expression. The model

structure is then built using the stacked denoising

autoencoder, which links the denoising autoencoder

up and down. The previous output is pure input later

in the training process, followed by layer-by-layer

training. Fig. 3 depicts the training procedure.

Stacking denoising autoencoders is demonstrated

in Fig. 3. The learnt encoding function 𝑓𝜃 is applied

to the clean input after training the first level

Figure. 3 Stacked denoising autoencoder

Received: February 7, 2021. Revised: March 8, 2022. 257

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.22

denoising autoencoder (shown in Fig. 3) (left). The

second (middle) level denoising autoencoder is

trained to learn the second level encoding function

𝑓𝜃
(2)

using the generated representation. The

procedure can then be repeated (right).

3.4 Denoising autoencoder with dropout

regularization

To create a deep neural network using an

unsupervised method, DAE was employed as the

deep neural network’s hidden layer. A huge number

of x inputs are employed to initialize the model

parameters in our paper. The initialization method on

the multi-layer encoder model is obtained via layer-

by-layer DAE training. The output of the lower layer

DAE is the input of the upper layer. The DAE for all

layers is a deep neural network (DNN) hidden layer

structure. During this phase, there may be concerns

with network overfitting.

Overfitting is a difficult problem to solve when

building high-dimensional deep learning models, and

it must be treated with caution. A recently discovered

regularization strategy known as “dropout” has

shown to be quite successful in neural networks [34].

Dropout is an approach for reducing “overfitting”,

while training neural networks with limited training

data sets [35]. Furthermore, the dropout approach can

avoid repeating features caused by DAE hidden layer

mutual adaptation [36].

To create neural networks, dropout and

dropconnect techniques are utilized [26], [37]. A

fully connected layer is the most basic component of

a neural network, consisting of a linear translation of

the input vector z to the output vector x, with

nonlinearity applied to the component x. Given a

generic linear transformation x = Gz with column

vectors z and x, the regularization approach is based

on multiplying the components z (dropout) and G

(dropconnect) by an independent bernoulli random

variable. As a result, the x component is computed as

follows [38]:

𝑥𝑖 = ∑ 𝑔𝑖𝑘(𝜉𝑘𝑧𝑘)𝑘 => 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 (5)

𝑥𝑖 = ∑ (𝜉𝑖𝑘𝑔𝑖𝑘)𝑧𝑘𝑘 => 𝑑𝑟𝑜𝑝𝑐𝑜𝑛𝑛𝑒𝑐𝑡 (6)

Where, 𝜉𝑘 , 𝜉𝑖𝑘~ℬ(1 − p) with the

hyperparameter p known as the rate of decline. The

element 𝑥𝑖 is approximately Gaussian for

Lyapunov’s central limit theorem (Wang and

Manning, 2013), so that the distribution as:

𝑥𝑖~𝒩(∑ 𝜃𝑖𝑘; 𝛼𝑘 ∑ 𝜃𝑖𝑘
2

𝑘) (7)

Where, 𝛼 = 𝑝/(1 − 𝑝) and 𝜃𝑖𝑘 = 𝑔𝑖𝑘𝑧𝑘(1 − 𝑝).

Unit dropout, in particular, removes the unit from

the network, as well as all incoming and outgoing

links within the network. The most basic technique is

to store each unit in the network with a retention

probability 𝑝 that is independent of the other units.

The probability 𝑝 can either be chosen from the

validation set or set naively to 0.5. Although simple,

the pre-set probability 𝑝 at 0.5 looks to be near ideal

for various networks and applications. One example

is that the best probability of retention for input units

is frequently closer to 1 than 0.5 [39].

4. Materials and methods

We offer a deep learning methodology
(autoencoder family) for imputing missing load data
in this part:

4.1 Problem statement

The dataset is defined as 𝒟 = {(𝑋𝑛, 𝑦𝑛)}𝑛=1
𝑁 , 𝑋 ∈

ℝ𝑑 for 𝑑 = 1,2, … , 𝑑, for a basic matrix consisting of

𝑛 samples and 𝑑 features. Where, 𝑋𝑛 =

(𝑥𝑖
1, 𝑥𝑖

2, … . , 𝑥𝑖
𝑑) ∈ ℝ𝑑 and 𝑦 ∈ ℝ1 is an effort to

develop this software. In this work, our dataset

contains several sets of categorical feature indices

(converting numeric using ordinal encoding), with

features taking discrete (continuous) values. The goal

is to keep losses and metrics simple, so that the focus

is on data sets that have become numerical features

only.

The data set with missing values will be assigned

to 𝑋 . Thus, it can be defined in the missingness

matrix for, 𝑀(0,1)𝑛×𝑑 such that 𝑥𝑖
𝑗
 is missing if and

only if 𝑚𝑖
𝑗

= 0 . We state, that 𝒟∗ = (𝑋𝑛
∗ , 𝑦), 𝑋𝑛

∗ ∈

ℝ𝑑 is a basic truth dataset without missing data.

Although, the dataset that we use is only one dataset

that has more than 40 % missing data, namely

ISBSG10. We attempted to retrieve data using

MCAR in this investigation. The use of dataset 𝒟 by

determining the appropriate missingness matrix M

(range missingness used is 10 % to 80 %). Thus, the

imputation function is defined as: 𝑓: ℝ𝑑 × (0,1)𝑑 →
ℝ𝑑 = (𝑥, 𝑚) → 𝑓′(𝑥, 𝑚) . The purpose of

implementing this function (𝑓′) is to minimize

reconstruction metrics in missing data imputation.

4.2 Development of the imputation approach via

SDAE-dropout regularization

Deep learning and neural networks (DNN) are

new advances in machine learning that can handle

large volumes of data and learn high-level

representations. In general, when a neural network

Received: February 7, 2021. Revised: March 8, 2022. 258

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.22

(NN) model works on a known small training data set,

there will be an overfitting problem [20]. According

to Hinton et al (2012), when training NN with a small

training dataset, using the dropout strategy can assist

reduce overfitting [35]. Dropout is produced by

turning off the output of some hidden neurons,

preventing them from taking part in the forward

propagation training process. Dropout is turned off

during testing, implying that all hidden neurons'

output is visible [20].

Denoising autoencoder (DAE) has recently

attracted the attention of the research community due

to its nature in terms of the ability to learn from

corrupted data, which is an extension to missing data

fields [3, 40]. DAE, on the other hand, can corrupt a

section of the input data with stochastic noise

injection and then attempt to reconstruct it using

nested nonlinear transformations [19].

We present a stacked denoising autoencoder

(SDAE) based model of missing data imputation for

regression models with small data sets, motivated by

the reported inadequacies of applying the denoising

autoencoder (DAE) to the problem of missing data

imputation (shown Fig. 4). Thus, our research intends

to capture hidden correlations between missing and

non-missing values in small data sets utilizing SDAE

based on dropout regularization approaches, and then

estimate for imputations. Dropout regularization

approach is used in both the input and hidden layers

to avoid overfitting during fine-tuning. If necessary,

we also allow L2 regularization during training to

further limit the risk of model overfitting. In addition,

the proposed SDAE is a model that is driven by

missing values with model training process and a

different imputation strategy in the regression field.

In this paper, we will compare our proposed

method with four advanced missing imputation

Figure. 4 Our proposed improved SDAE with dropout

regularization

techniques, including GAIN (generative adversarial

imputation networks) [13], MICE (multiple

imputation by chained equations) [28], MissForest

(random forest imputation) [27], and k-nearest

neighbor imputation (kNNI) [29].

4.3 Data collection and data preprocessing

The most widely used dataset related to the SEE

context is the repository in PROMISE (PREdictOr

models in software engineering) and ISBSG, which

is one of the most popular datasets [41–44]. In the

early 2000s, the usage of small datasets was quite

popular, and most empirical research in software

engineering was done using small samples [12].

Because gathering and reporting data from the project

is expensive, the development team focused less on

data collection [9]. This causes incomplete datasets

to appear frequently throughout SEE studies on that

dataset.

The data set used in our paper is shown in Table

1, which includes the number of projects, features,

categorical features, predictor feature name, and

target feature name. PROMISE is an online data

repository that is open to the public. We used 9

datasets available in the promise repository, such as:

maxwell, cocomo81, kitchenham, nasa93, kemerer,

albrecht, desharnais, China and the preprocessing

rules used in the study by [45, 46], and UCP dataset

as per rules [47]. Meanwhile, 2 datasets are available

from ISBSG such as: ISBSG18 refers to research [48],

and ISBSG10 refers to research [49].

Data preprocessing is conducted out after data

collection in order to improve data quality. Feature

reduction, or deleting irrelevant features, is

frequently part of the data pre-processing procedure.

The next step is to convert categorical data into

numeric using ordinal encoding. Since each category

is displayed as a single input, the advantage is that the

dimensions of the problem space do not increase [50].

Give the i-th object the value 𝑓 and 𝑓 has a status

sorted 𝑀𝑓 with rank {1,2, … , 𝑀𝑓}. 𝑟𝑖𝑓 = {1,2, … , 𝑀𝑓}

should be used to replace each 𝑥𝑖𝑓 . So that each

attribute has the same weight, change the range of

each attribute to [0, 1]. Use 𝑧𝑖𝑓 to display the i-th

object’s attributes 𝑟𝑖𝑓.

𝑧𝑖𝑓 =
𝑟𝑖𝑓−1

𝑀𝑓−1
 (8)

Data normalization (DN) changes the value of a

feature based on predefined rules to ensure that all

scaled features have the same impact [51]. The

interval [0, 1] will be used as a scaling goal in our

study, as illustrated in Eq. (9).

Received: February 7, 2021. Revised: March 8, 2022. 259

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.22

Table 1. The study’s dataset

Dataset
Criterion

ID Proj N Cat. Predictors Target

Without missing values:

China Ch 499 17 0 AFP, Input, Output, Enquiry, File, Interface, Added,

Changed, Deleted, PDR_AFP, PDR_UFP,

NPDR_AFP, NPDU_UFP, Resource, Dev.Type,

Duration

Effort

Albrecth Al 24 7 0 Input, Output, Inquiry, File, AdjFP, RawFPcounts,

Effort

Effort

Maxwell Mw 62 26 0 App, Har, Dba, Ifc, Source, Telonuse, Nlan, T01, T02,

…., T14, T15, Duration, Size, Time

Effort

Nasa93 N93 93 18 16 mode, rely, data, cplx, time, stor, virt, turn, acap, aexp,

pcap, vexp, lexp, modp, tool, sced, equivphyskloc

act_effort

Cococmo81 C81 63 17 0 rely, data, cplx, time, stor, virt, turn, acap, aexp, pcap,

vexp, lexp, modp, tool, sced, loc

Actual

Kitchenham Kt 145 4 0 Actual.duration, Adjusted.function.points,

First.estimate

Actual.effort

Kemerer Km 16 6 0 language, hardware type, estimated duration, AdjFP,

RawFP

KSLOC

Desharnais Dh 81 8 0 Team-Exp, ManagerExp, Transactions, Entities,

PointsNonAdjust, Adjustment, Language

PointsAjust

UCP Ucp 71 5 0 UAW, UUCW, TCF, ECF Real_Effort_Per

son_Hours

With missing values:

ISBSG10 I10 952 11 6 FunctionalSize, ValueAdjustmentFactor,

ProjectElapsedTime, DevelopmentType,

BusinessAreaType, ClientServer,

DevelopmentPlatform, LanguageType, FirstOS,

MaxTeamSize

NormalisedWor

kEffortLevel1

ISBSG18

IFPUG

I18 36 12 11 Data_Quality, UFP, IS, DP, LT, PPL, CA, FS, RS,

Recording_Method, FPS

S_effort

𝑥𝑘 𝑖𝑛 [0,1] =
𝑥𝑘−x𝑚𝑖𝑛

x𝑚𝑎𝑥−x𝑚𝑖𝑛
 (9)

Where, 𝑥 is the data matrix’s feature column. 𝑥𝑘

corresponds to the k-th value in 𝑥 , while 𝑥𝑚𝑖𝑛 and

𝑥𝑚𝑎𝑥 relates to the minimum and maximum values in

𝑥. The mean and standard deviation of 𝑥 are used to

determine �̅� and 𝑠𝑡𝑑(𝑥).

Finally, the data was normalized using the Z-

score normalization technique. It can also be used to

eliminate data outliers in order to improve data

quality [52]. The unstructured data can then be

standardized with the Z-score parameter, according

to Eq. (10) [53]:

𝑍 − 𝑠𝑐𝑜𝑟𝑒 𝑥𝑘 =
𝑥𝑘−�̅�

𝑠𝑡𝑑(𝑥)
 (10)

4.4 Performance analysis

Fig. 5 shows the model training and validation

procedures. The first stage is data preparation, which

is then followed by a preprocessing process

consisting of feature reduction, categorical

conversion, normalization, and the sequence of

available data from each building is randomly

partitioned into training, validation, and testing data

sets with a proportion of each 70 %, 15 %, and 15 %.

After that do inducing missingness (10 %-80 %). The

next step is to process missing data using SDAE-

dropout regularization. Finally, carry out the process

of evaluating the imputed data.

A widely used performance metric in the software

effort estimation literature is the measured error rate

of estimation [54], [55]. The metrics utilized in

evaluation are mean absolute error (MAE) and root

mean square error (RMSE). It’s better if the model’s

MAE and RMSE values are low.

𝑀𝐴𝐸 =
1

𝑚
∑ |𝑋𝑖 − 𝑌𝑖|𝑚

𝑖=1 (11)

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑋𝑖 − 𝑌𝑖)2𝑚

𝑖=1 (12)

5. Evaluation and results analysis

In this section, we present the results of an

experimental assessment of the proposed method’s

Received: February 7, 2021. Revised: March 8, 2022. 260

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.22

Figure. 5 Flowchart of our model training scheme

effectiveness. Experiments were carried out using a

computing platform based on Intel Xeon Quad-core

2.4 GHz CPU, GeForce GPU Titan 100, memory 64

Gb and Microsoft Windows 8 R2 Professional 64-bit.

The development environment is notepad plus, text

editor/IDE, anaconda web programming interface,

several libraries on Scikit-learn, and NumPy. Default

parameter settings provided by python 3.0 are used.

5.1 Hyperparameter setting

The set of hyperparameters in the proposed

SDAE-dropout regularization model will perform

optimally for a particular problem, and varies with

the amount of data set corrupt. The hyperparameters

set in the model for all trained benchmarks, we use

the embedding dimension of the number hidden layer

of 128 enough for an overly complete representation

of all the data sets involved, which aims to improve

the generalization performance of the DNN. DNN

has the capability of automatically extracting features,

resulting in a decrease in the number of hidden units

as the value increases. Next, we train the model for a

maximum of 500 iterations with an early stop strategy

for reconstruction losses over known elements.

Because in our study, using a small data set, we added

the technique of regularization (L2) parameters of

1×10−4 and dropout probabilities of 0.5 were used to

avoid overfitting problems. If L2 is very large,

however, it will add too much weight and produce a

lack of fit. Simple 3-layer feed-forward network

trained 10 times for each autoencoder optimization

step. In TensorFlow, the Adam optimizer default

learning rate for both networks is 1×10−3 (1e-3) each

for SDAE. We examine ReLU as a hidden layer

activation function to tackle the missing gradient

problem generated by Sigmoid or the explosion

gradient problem created by ReLU [56], [57]. Also,

we apply a random Gaussian noise of 0.2 for each

time step of the training data progression in

overcoming the noise data during the training process

[58].

We compared four advanced techniques,

including GAIN [13], MICE [28], MissForest [27],

and kNNI [29], to validate our methodology.

Whereas, for the comparison method we used, the

adjustment for the imputation approach i.e., the kNNI

parameter k was set as 5 because the imputation error

was low in the acceptable time range for all three data

sets achieved with k = 5. Because it reconstructs the

complete data set at once, MissForest focuses on the

repair data set. MissForest employs a total of 100

estimators, each with no leaf-node limit and a

maximum of ten iterations (n=10). MICE and GAIN

have the same maximum number of iterations as

MissForest.

5.2 Comparison algorithms

There are only two data sets in the SEE context

that are induced by missing values, while other data

without have missing values. So, in this study we will

apply inducing missingness with a range between

10 % to 80 % in our algorithm and the comparison

algorithm. Consider a dataset with a 𝒟-dimensional

object 𝑥 where each feature (which is denoted by 𝑥𝑖)

may be missing and the target value is 𝑦. Missing

values in objects are not supported by the majority of

discriminating approaches. Missing features

imputation is the process of filling in missing feature

values.

We standardized the numerical data using min-

max normalization and utilized ordinal encoding to

express the categorical data as model parameters for

ease of evaluation and faster convergence.

Furthermore, we repeat each test ten times and

publish the average results in order to achieve valid

experimental data.

Using multiple publicly accessible real-world

datasets on PROMISE and ISBSG, we analyze the

Received: February 7, 2021. Revised: March 8, 2022. 261

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.22

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

Figure. 6 The comparison of validation loss of our models (training phases): (a) Albrecht dataset, (b) China dataset, (c)

Cocomo81 dataset, (d) Desharnais dataset, (e) ISBSG IFPUG dataset, (f) ISBSG10 dataset, (g) Kemerer dataset, (h)

Kitchenham dataset, (i) Maxwell dataset, (j) Nasa93 dataset, and (k) UCP dataset

imputation quality achieved by the performance of

SDAE-dropout regularization in this section. Before

training, we dropped 70 % of the good values on the

train, 15 % for the test set, and 15 % for the validation

test set at random.

Our SDAE will estimate the missing values as

closely as feasible to the real data once we partition

the dataset into three parts. At the start of each epoch,

we generate a new corruption vector based on the

Gaussian distribution by multiplying the original data

by a sample threshold in the center of the distribution

to create a corrupted input for the encoder. To

minimize the modified loss function, we use 3-fold

cross-validation and the dropout regularization

approach to train our model. Fig. 6 shows that by

applying the SDAE method, the missing data can be

estimated well. This shows that our proposed model

does not experience overfitting problems or

expensive computations. These findings show that

the SDAE model reduces the predicted loss over the

empirical distribution of not just the observed data

Received: February 7, 2021. Revised: March 8, 2022. 262

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.22

but also a portion of the previously seen corrupted

data, hence lowering the chance of bias.

Because there are so many different types of

parameters, using a single autoencoder learning

method will result in large processing costs and a loss

of learning efficiency [17]. As a result, customization

necessitate a computationally efficient approach. In

this instance, the training data must be reconfigured

based on the workload by taking into account

numerous parameters when constructing the

autoencoder. By applying the dropout technique to

achieve better results than non-dropout. The

application of the dropout technique is not only faster

convergence for the encoder decoder to study the

regression data pattern only, but also achieves better

performance in preventing overfitting will be obvious

if the NN is deeper.

On a given data set, we will compare the

imputation performance of our technique to the four

initial imputation methods based on the accuracy of

the missing data estimate in the next stage. The GAIN,

kNNI, MICE, and MissForest approaches are among

the ones we compare to ours. As is customary, we

employ MAE and RMSE as performance

measurements between the baseline truth and

Table 2. Comparison imputation performance using

MAE (with missing rate 80 %)

ID
Our

model
GAIN kNNI MICE MissRF

Al 0.1713 0.2437 0.3405 0.5944 0.3126

Ch 0.1254 0.1263 0.0564 0.0892 0.0661

C81 0.1281 0.1362 0.2621 0.3512 0.2375

Dh 0.1422 0.1425 0.1907 0.2567 0.1902

I18 0.1989 0.2489 0.2741 0.4129 0.2948

I10 0.1061 0.1063 0.1902 0.2474 0.3015

Km 0.1711 0.0279 0.3010 0.3862 0.2799

Kt 0.1215 0.0338 0.0865 0.0918 0.0850

Mw 0.1766 0.1826 0.3170 0.3735 0.2916

N93 0.1591 0.1675 0.3039 0.2757 0.2470

Ucp 0.1074 0.1695 0.1033 0.1219 0.1190

Table 3. Comparison imputation performance using

RMSE (with missing rate 80 %)

ID
Our

model
GAIN kNNI MICE MissRF

Al 0.3273 0.3697 0.3767 0.9320 0.3550

Ch 0.0841 0.0947 0.0990 0.1638 0.1139

C81 0.2792 0.3931 0.3235 0.4881 0.3138

Dh 0.2256 0.2552 0.2364 0.3609 0.2375

I18 0.2428 0.5034 0.2819 0.5310 0.3652

I10 0.2149 0.2840 0.2278 0.4435 0.3814

Km 0.1467 0.1515 0.2836 0.4230 0.2806

Kt 0.0839 0.1392 0.0916 0.0932 0.0905

Mw 0.2901 0.4760 0.3839 0.4604 0.3830

N93 0.2854 0.4661 0.3127 0.3109 0.3016

Ucp 0.1025 0.2939 0.0976 0.1065 0.1097

approximation values. Note that in this series of

studies, additional faults were introduced to the data

set by utilizing the MCAR missing generation

approach to remove 80 percent of all data points at

random. The comparison results of our imputation

approach using MAE and RMSE are shown in Tables

2 and 3.

The goal of the imputation method is to reliably

restore missing data (from minor to severe

corruption). As a result, we anticipate that after using

this strategy, the broken distribution will be forced to

follow the true distribution. Bold numbers indicate

the highest accurate imputation; italics, on the other

hand, indicate the least accurate imputation. Based on

the results in the table using a data missing rate of

80 %, showing the MAE value (Table 2), that our

model produces the poor error in the kitchenham

dataset with a value of 0.1215 and is followed by the

china dataset (0.1254), UCP (0.1074), and kemerer

(0.1711). Meanwhile, in other datasets our model

produces the best performance. In Table 3, which

shows the performance of our model using the RMSE

value has the best performance on all data sets. This

shows that the use of SDAE can overcome the large

number of calculations required, local minimums,

and missing gradient problems [17]. When using

backpropagation, the use of numerous propagation

and optimizer functions makes learning easier [59],

and the addition of a dropout technique helps reduce

overfitting when training a limited dataset [35]. This

is why our model has the best accuracy rate than some

of the other popular methods used in our study.

As for the comparison method, based on the

results in Tables 2 and 3, it shows that GAIN has an

MAE value with the poor performance in the China

dataset (0.1263) and UCP (0.1695). Meanwhile,

GAIN has the best performance on the kemerer

(0.0279) and kitchenham (0.0338) datasets. However,

GAIN also has the poor RMSE value in the datasets

kitchenham (0.1392), UCP (0.2939), Nasa93

(0.4661), maxwell (0.4760), and ISBSG18 (0.5034).

This is because GAIN is a modeling that has a

complex network and difficult training. If it is run on

a small dataset, it can cause overfitting and bias in the

imputation results. This technique, according to

Nazabal et al (2018), can only handle continuous or

binary data, and adapting to diverse data is difficult.

As a result, there is still a need for approaches for

efficiently training deep generative models on

incomplete and diverse data sets [60].

kNNI has the best performance as indicated by

the MAE value in the china dataset (0.0564) and UCP

(0.1033), but has the poor value in the nasa93 dataset

(0.3039). MICE most of the datasets produce the poor

Received: February 7, 2021. Revised: March 8, 2022. 263

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.22

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

Figure. 7 RMSE values obtained from five imputation methods: (a) Albrecht dataset, (b) China dataset, (c) Cocomo81

dataset, (d) Desharnais dataset, (e) IFPUG dataset, (f) ISBSG10 dataset, (g) Kemerer dataset, (h) Kitchenham dataset, (i)

Maxwell dataset, (j) Nasa93 dataset, and (k) UCP dataset

Received: February 7, 2021. Revised: March 8, 2022. 264

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.22

performance. Meanwhile, MissForest only has one

poor performance on the MAE value in the ISBSG10

dataset (0.3015). This shows that MICE, MissForest

and kNNI are data imputation methods that do not

have resistance to noise which can cause low

accuracy values. kNNI, on the other hand, cannot be

employed at greater missing rates due to the

limitation that it can only use complete cases as

probable nearest neighbors (as seen in this

experiment). MICE and MissForest experienced the

similar problem, resulting in poor utility when

dealing with small data and noise. Whereas, our

model’s improved performance in this case with a

small data set size and constrained dimensions

demonstrates its utility when faced with high

dimensional missing values, which is a performance

barrier for some other imputation algorithms,

whereas our model can tolerate noise. Meanwhile, for

small datasets, the computational costs of our model

are comparable to or better than imputation using

GAIN, kNNI, MICE, and MissForest.

5.3 Missingness sensitivity

We will assess our algorithm in this section to

see how sensitive it is to a specific missing

percentage ranging from 10 % to 80 %. We also

compare this strategy to a few other imputation

methods in this section. It is important to note that our

proposed solution successfully compensates for the

vast majority of situations, especially those with

missing intervals of up to 80 %. These are the most

severe circumstances, due to the high level of

corruption, estimation of missing data becomes

inconsistent and impossible to correct using other

approaches. Each data set’s feature is successively

injected with missing and calculated data, with

imputation quality evaluated by comparing the

underlying truth and calculated data using the root

mean square error (RMSE) measure. The association

between missing data rate and imputation

performance for the deleted data period was explored

and illustrated in Fig. 7 to further analyze the value

of the offered technique.

When utilizing a conventional training scheme

based on imputation methods, the five polylines in

each subgraph show essentially identical patterns of

variance, indicating that the rationality of the original

approximation of missing values has a direct impact

on imputation accuracy. Furthermore, when the

amount of missing data grows, the trend of variance

and polyline size in our technique and kNNI are

nearly identical. Nonetheless, the RMSE values

achieved by our technique are marginally better than

those obtained by kNNI in the majority of cases. For

larger missing rates, our technique was more

effective, followed by kNNI, which outperformed

standard MICE, MissForest, and GAIN.

Unfortunately, our method’s performance on the

China dataset has a low value trend. kNNI, MICE,

and MissForest all performed similarly, with

deteriorating estimating results and a greater data rate

missing rate of more than 70 %. In comparison to

previous algorithms, kNNI and MissForest provide

steady performance for 20 % to 70 % missing values

based on low RMSE values. Finally, our technique

reveals that all missing rates have identical

performance trends. By giving the best imputation

methodology, which surpasses all other methods for

missing data rates ranging from 10 % to 80 %. As a

result, the proposed SDAE with dropout

regularization provides a more accurate

approximation of the actual measurement for

majority-omitted interval imputation at various

missing levels.

6. Conclusion

This study introduces a new approach to missing

data imputation called stacked denoising autoencoder

with dropout regularization technique. Our model is

trained using selected parameters to estimate missing

data on a small data set to tackle the regression

challenge. In an experiment with 11 datasets from

clinical trials injected with missing values under the

MCAR, the methodology was compared to four state-

of-the-art algorithms (GAIN, kNNI, MICE, and

MissForest) (including 10 percent to 80 percent

missing rates). Our solution exceeds all others in

terms of total improvement and low error rate.

Due to the high cost and difficulty of obtaining

data, eliminating cases with missing data can result in

a sample size that is too small, resulting in bias. We

use DAE, which consistently accounts for missing

data with minimal error, even for data sets containing

many missing data at the start. Meanwhile, in our

approach, the Stacked mechanism tries to limit

process diversity and the influence of corruption. The

dropout regularization technique is used to limit the

number of neurons in the layer, which helps to avoid

overfitting and the disappearance of gradients when

the model is trained. In the missing imputation model,

this might lead to biased results. We discovered that

going through the standardization stage can help cut

optimization time and prevent overfitting for small

datasets. Experiments on eleven data sets showed that

our technique is effective, particularly for significant

corruption volumes and mixed data.

New studies will be done in the future to test the

SDAE technique with datasets from other contexts,

Received: February 7, 2021. Revised: March 8, 2022. 265

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.22

some of which contain missing values already, and to

apply the remaining missing data procedures (MNAR

and MAR). Furthermore, investigating the impact of

imputation in the classification task is a crucial aspect.

Conflicts of interest

There are no conflicts of interest declared by the

authors.

Author contributions

Conceptualization, R. Marco; methodology, R.

Marco, S. S. S. Ahmad and S. Ahmad; validation, S.

S. S. Ahmad and S. Ahmad; formal analysis, R.

Marco, S. S. S. Ahmad and S. Ahmad; investigation,

R. Marco; resources, R. Marco, S. S. S. Ahmad and

S. Ahmad; data curation, R. Marco; writing—original

draft preparation, R. Marco; writing—review and

editing, S. S. S. Ahmad and S. Ahmad; visualization,

R. Marco; supervision, S. S. S. Ahmad and S. Ahmad;

funding acquisition, R. Marco.

References

[1] S. K. Sehra, Y. S. Brar, N. Kaur, and S. S. Sehra,

“Research patterns and trends in software effort

estimation”, Journal of Information and

Software Technology, Vol. 91, pp. 1–21, 2017.

[2] F. A. Amazal, A. Idri, and A. Abran, “Software

development effort estimation using classical

and fuzzy analogy: A cross-validation

comparative study”, International Journal of

Computational Intelligence and Applications,

Vol. 13, No. 3, pp. 1–19, 2014.

[3] L. Gondara and K. Wang, “MIDA: Multiple

imputation using denoising autoencoders”,

Journal of Advances in Knowledge Discovery

and Data Mining, Vol. 10939, pp. 260–272,

2018.

[4] I. Abnane, A. Idri, and A. Abran, “Fuzzy case-

based-reasoning-based imputation for

incomplete data in software engineering

repositories”, Journal of Software: Evolution

and Process, Vol. 32, No. 9, pp. 1–25, 2020.

[5] I. Abnane, M. Hosni, A. Idri, and A. Abran,

“Analogy Software Effort Estimation Using

Ensemble KNN Imputation”, In: Proc. of

International Conf. On Software Engineering

and Advanced Applications, Kallithea, Greece,

pp. 228–235, 2019.

[6] R. J. A. Little and D. B. Rubin, “The Analysis of

Social Science Data with Missing Values”,

Journal of Sociological Methods and Research,

Vol. 18, No. 2–3, pp. 292–326, 1989.

[7] J. Li, A. A. Emran, and G. Ruhe, “Impact

Analysis of Missing Values on the Prediction

Accuracy of Analogy-based Software Effort

Estimation Method AQUA”, In: Proc. of

International Conf. on Empirical Software

Engineering and Measurement (ESEM), Madrid,

Spain, pp. 126–135, 2007.

[8] A. Idri, I. Abnane, and A. Abran, “Missing data

techniques in analogy-based software

development effort estimation”, Journal of

Systems and Software, Vol. 117, pp. 595–611,

2016.

[9] I. Myrtveit, E. Stensrud, and U. Olsson,

“Assessing the benefits of imputing ERP

projects with missing data”, In: Proc. of

International Software Metrics Symposium, pp.

78–84, 2001.

[10] M. L. Yadav and B. Roychoudhury, “Handling

missing values: A study of popular imputation

packages in R”, Journal of Knowledge-Based

Systems, Vol. 160, pp. 104–118, 2018.

[11] S. Tihon, M. U. Javaid, D. Fourure, N. Posocco,

and T. Peel, “DAEMA: Denoising Autoencoder

with Mask Attention”, In: Proc. of International

Conference on Artificial Neural Networks, Vol.

12891, pp. 229–240, 2021.

[12] A. Idri, I. Abnane, and A. Abran, “Systematic

mapping study of missing values techniques in

software engineering data”, In: Proc. of

International Conf. on Software Engineering,

Artificial Intelligence, Networking and

Parallel/Distributed Computing, Takamatsu,

Japan, 2015.

[13] J. Yoon, J. Jordon, and M. V. D. Schaar, “GAIN:

Missing data imputation using generative

adversarial nets”, In: Proc. of International

Conference on Machine Learning, ICML 2018,

Vol. 13, pp. 9042–9051, 2018.

[14] P. Yin and J. Q. Shi, “Simulation-based

sensitivity analysis for non-ignorably missing

data”, Statistical Methods in Medical Research,

Vol. 28, No. 1, pp. 289–308, 2019.

[15] T. Huamin, D. Qiuqun, and X. Shanzhu,

“Reconstruction of time series with missing

value using 2D representation-based denoising

autoencoder”, Journal of Systems Engineering

and Electronics, Vol. 31, No. 6, pp. 1087–1096,

2020.

[16] J. Zhang and P. Yin, “Multivariate Time Series

Missing Data Imputation Using Recurrent

Denoising Autoencoder”, In: Proc. of IEEE

International Conference on Bioinformatics and

Biomedicine, BIBM 2019, pp. 760–764, 2019.

[17] J. C. Kim and K. Chung, “Multi-Modal Stacked

Denoising Autoencoder for Handling Missing

Data in Healthcare Big Data”, IEEE Access, Vol.

Received: February 7, 2021. Revised: March 8, 2022. 266

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.22

8, pp. 104933–104943, 2020.

[18] F. M. Bianchi, L. Livi, K. Ø. Mikalsen, M.

Kampffmeyer, and R. Jenssen, “Learning

representations for multivariate time series with

missing data using Temporal Kernelized

Autoencoders”, arXiv preprint, pp. 1–18, 2018.

[19] R. Lall and T. Robinson, “Applying the MIDAS

Touch : An Accurate and Scalable Approach to

Imputing Missing Data”, APSA Preprints, 2020.

[20] J. Yu, X. Zheng, and J. Liu, “Stacked

convolutional sparse denoising auto-encoder for

identification of defect patterns in

semiconductor wafer map”, Computers in

Industry, Vol. 109, pp. 121–133, 2019.

[21] K. Wang, P. Guo, X. Xin, and Z. Ye,

“Autoencoder, low rank approximation and

pseudoinverse learning algorithm”, In: Proc. of

IEEE International Conference on Systems, Man,

and Cybernetics, SMC 2017, pp. 948–953, 2017.

[22] P. Vincent and H. Larochelle, “Extracting and

Composing Robust Features with Denoising

Autoencoder”, In: Proc. of the 25th

International Conference on Machine Learning,

pp. 1096–1103, 2008.

[23] Y. Bengio, L. Yao, G. Alain, and P. Vincent,

“Generalized denoising auto-encoders as

generative models”, Advances in Neural

Information Processing Systems, pp. 1–9, 2013.

[24] C. Jia, M. Shao, S. Li, H. Zhao, and Y. Fu,

“Stacked Denoising Tensor Auto-Encoder for

Action Recognition with Spatiotemporal

Corruptions”, IEEE Transactions on Image

Processing, Vol. 27, No. 4, pp. 1878–1887, 2018.

[25] A. F. Costa, M. S. Santos, J. P. Soares, and P. H.

Abreu, “Missing data imputation via denoising

autoencoders: The untold story”, Springer

Nature Switzerland, Vol. 11191 LNCS, pp. 87–

98, 2018.

[26] N. Srivastava, G. Hinton, A. Krizhevsky, I.

Sutskever, and R. Salakhutdinov, “Dropout: A

Simple Way to Prevent Neural Networks from

Overfitting”, Journal of Machine Learning

Research, Vol. 15, pp. 1929–1958, 2014.

[27] D. J. Stekhoven and P. Bühlmann, “Missforest-

Non-parametric missing value imputation for

mixed-type data”, Journal of Bioinformatics,

Vol. 28, No. 1, pp. 112–118, 2012.

[28] S. V. Buuren and K. G. Oudshoorn, “mice:

Multivariate imputation by chained equations in

R”, Journal of Statistical Software, Vol. 45, No.

3, pp. 1–67, 2011.

[29] I. Abnane and A. Idri, “Improved analogy-based

effort estimation with incomplete mixed data”,

In: Proc. of the 2018 Federated Conference on

Computer Science and Information Systems,

FedCSIS 2018, Vol. 15, pp. 1015–1024, 2018.

[30] H. Lu, G. Perrone, and J. Unpingco, “Multiple

Imputation with Denoising Autoencoder using

Metamorphic Truth and Imputation Feedback”,

arXiv preprint, Vol. 2, 2020.

[31] S. Ryu, M. Kim, and H. Kim, “Denoising

Autoencoder-Based Missing Value Imputation

for Smart Meters”, IEEE Access, Vol. 8, pp.

40656–40666, 2020.

[32] J. Chen and X. Shi, “Sparse convolutional

denoising autoencoders for genotype

imputation”, Genes, Vol. 10, No. 9, pp. 1–16,

2019.

[33] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio,

and P. A. Manzagol, “Stacked denoising

autoencoders: Learning Useful Representations

in a Deep Network with a Local Denoising

Criterion”, Journal of Machine Learning

Research, Vol. 11, pp. 3371–3408, 2010.

[34] W. Sun, S. Shao, R. Zhao, R. Yan, X. Zhang, and

X. Chen, “A sparse auto-encoder-based deep

neural network approach for induction motor

faults classification”, Measurement: Journal of

the International Measurement Confederation,

Vol. 89, pp. 171–178, 2016.

[35] G. E. Hinton, N. Srivastava, A. Krizhevsky, I.

Sutskever, and R. R. Salakhutdinov, “Improving

neural networks by preventing co-adaptation of

feature detectors”, arXiv preprint, pp. 1–18,

2012.

[36] Z. Chen and Z. Li, “Fault diagnosis method of

rotating machinery based on stacked denoising

autoencoder”, Journal of Intelligent and Fuzzy

Systems, Vol. 34, No. 6, pp. 3443–3449, 2018.

[37] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R.

Fergus, “Regularization of Neural Networks

using DropConnect”, In: Proc. of the 30th

International Conference on Machine Learning,

Vol. 28, 2013.

[38] L. Antelmi, N. Ayache, P. Robert, and M.

Lorenzi, “Sparse multi-channel variational

autoencoder for the joint analysis of

heterogeneous data”, In: Proc. of 36th

International Conference on Machine Learning,

ICML 2019, Vol. June, pp. 453–464 , 2019.

[39] R. Xie, J. Wen, A. Quitadamo, J. Cheng, and X.

Shi, “A deep auto-encoder model for gene

expression prediction”, BMC Genomics, Vol. 18,

No. 9, 2017.

[40] A. F. Costa, M. S. Santos, J. P. Soares, and P. H.

Abreu, “Missing data imputation via denoising

autoencoders: The untold story”, Springer

Nature Switzerland, Vol. 11191, pp. 87–98,

2018.

[41] A. K. Bardsiri, S. M. Hashemi, and M. Razzazi,

Received: February 7, 2021. Revised: March 8, 2022. 267

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.22

“Statistical Analysis of the Most Popular

Software Service Effort Estimation Datasets”,

Journal of Telecommunication, Electronic and

Computer Engineering, Vol. 7, No. 1, pp. 87–96,

2015.

[42] B. Vasilescu, A. Serebrenik, and T. Mens, “A

historical dataset of software engineering

conferences”, In: Proc. of IEEE International

Working Conference on Mining Software

Repositories, pp. 373–376, 2013.

[43] T. R. Benala, R. Mall, P. Srikavya, and V.

HariPriya, “Software Effort Estimation Using

Data Mining Techniques”, Advances in

Intelligent Systems and Computing, Vol. 248, pp.

85–86, 2014.

[44] D. Déry and A. Abran, “Investigation of the

effort data consistency in the ISBSG repository”,

In: Proc. of the 15th Intern. Workshop on

Software, No. June, 2005.

[45] L. Song, L. L. Minku, and X. Yao, “A novel

automated approach for software effort

estimation based on data augmentation”, In:

Proc. of the 2018 26th ACM Joint Meeting on

European Software Engineering Conference

and Symposium on the Foundations of Software

Engineering, Vol. 18, pp. 468–479, 2018.

[46]T. Xia, R. Krishna, J. Chen, G. Mathew, X. Shen,

and T. Menzies, “Hyperparameter Optimization

for Effort Estimation”, arXiv preprint, Vol. 4,

2018.

[47] M. Azzeh, A. B. Nassif, and S. Banitaan,

“Comparative analysis of soft computing

techniques for predicting software effort based

use case points”, IET Software, Vol. 12, No. 1,

pp. 19–29, 2018.

[48] L. V. Arias and C. Q. López, “Comparative

study of random search hyperparameter tuning

for software effort estimation”, In: Proc. of the

17th International Conference on Predictive

Models and Data Analytics in Software

Engineering, pp. 21-29, 2021.

[49] L. L. Minku and X. Yao, “Can Cross-company

Data Improve Performance in Software Effort

Estimation ?”, In: Proc. of the 8th International

Conference on Predictive Models in Software,

pp. 69–78, 2012.

[50] E. F. Norris, S. Vahid, and C. Hand, “Evaluating

the Impact of Categorical Data Encoding and

Scaling on Neural Network Classification

Performance: The Case of Repeat Consumption

of Identical Cultural Goods”, Journal of

Communications in Computer and Information

Science, Vol. 311, pp. 343–0352, 2012.

[51] L. Angelis and I. Stamelos, “A Simulation Tool

for Efficient Analogy Based Cost Estimation”,

Journal of Empirical Software Engineering, Vol.

5, No. 1, pp. 35–68, 2000.

[52] K. K. R. Samal, K. S. Babu, and S. K. Das,

“Temporal convolutional denoising autoencoder

network for air pollution prediction with missing

values”, Urban Climate, Vol. 38, No. February,

pp. 100872, 2021.

[53] J. Huang, Y. F. Li, J. W. Keung, Y. T. Yu, and

W. K. Chan, “An empirical analysis of three-

stage data-preprocessing for analogy-based

software effort estimation on the ISBSG data”,

In: Proc. of International Conf. on Software

Quality, Reliability and Security, Prague, Czech

Republic, pp. 442–449, 2017.

[54] E. Stensrud, T. Foss, B. Kitchenham, and I.

Myrtveit, “An Empirical Validation of the

Relationship Between the Magnitude of Relative

Error and Project Size”, In: Proc. of the Eighth

IEEE Symposium on Software Metrics, 2002.

[55] P. Phannachitta and K. Matsumoto, “Model-

based software effort estimation - A robust

comparison of 14 algorithms widely used in the

data science community”, International Journal

of Innovative Computing, Information and

Control, Vol. 15, No. 2, pp. 569–589, 2019.

[56] Y. Yang, K. Zheng, C. Wu, and Y. Yang,

“Improving the classification effectiveness of

intrusion detection by using improved

conditional variational autoencoder and deep

neural network”, Sensors (Switzerland), Vol. 19,

No. 11, 2019.

[57] A. Krizhevsky and G. Hinton, “Convolutional

deep belief networks on cifar-10”, Unpublished

manuscript, pp. 1–9, 2010.

[58] C. Fan, M. Chen, R. Tang, and J. Wang, “A

novel deep generative modeling-based data

augmentation strategy for improving short-term

building energy predictions”, Building

Simulation, Vol. 15, No. 2, pp. 197–211, 2022.

[59] F. Gu, K. Khoshelham, S. Valaee, J. Shang, and

R. Zhang, “Locomotion Activity Recognition

Using Stacked Denoising Autoencoders”, IEEE

Internet of Things Journal, Vol. 5, No. 3, pp.

2085–2093, 2018.

[60] A. Nazabal, P. M. Olmos, Z. Ghahramani, and I.

Valera, “Handling incomplete heterogeneous

data using VAEs”, Pattern Recognition, Vol.

107, No. 107501, 2020.

