
Received:  February 14, 2022.     Revised: March 10, 2022.                                                                                             294 

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022           DOI: 10.22266/ijies2022.0630.25 

 

 
Modified Social Forces Algorithm: from Pedestrian Dynamic to Metaheuristic 

Optimization 

 

Purba Daru Kusuma1*          Dimas Adiputra2 

 
1Computer Engineering, Telkom University, Indonesia 

2Electrical Engineering, Institut Teknologi Telkom Surabaya, Indonesia 
* Corresponding author’s Email: purbodaru@telkomuniversity.ac.id 

 

 
Abstract: This work proposes a new simple metaheuristic optimization method inspired by the social forces model 

used in pedestrian dynamics. The proposed model is a swarm-based model where a collective intelligence is shared 

among the agents, consisting of several persons or agents who walk over the search space to find the best solution. 

Each time a person finds a better solution, they share it with another person. The proposed model is then evaluated by 

implementing it to solve ten benchmark functions. The five are multimodal functions (Ackley, Rastrigin, Griewank, 

Bukin, and Michalewicz) while the other are unimodal (Sphere, Rosenbrock, Bohachevsky, Zakharov, and Booth). 

The performance is compared with five metaheuristic algorithms: particle swarm optimization, darts game optimizer, 

shell game optimization, marine predator algorithm, and Komodo mlipir algorithm. The simulation result shows that 

the proposed method is competitive enough to solve multimodal and unimodal functions. The performance is superior 

in solving Michalewicz and Zakharov functions but less competitive in solving the Bukin function. The results also 

imply that there is no single algorithm that is the best in solving all kinds of problems. 

Keywords: Social forces, Metaheuristic, Multi-agent, Multimodal, Swarm intelligence. 

 

 

1. Introduction 

Avoiding the local optimal is one major issue in 

metaheuristic optimization. As an approximation-

based method, metaheuristic optimization starts with 

randomized points within the search space. Then, 

during the iteration, the algorithm tries to find a better 

solution around its current position (local search). The 

algorithm can be trapped in the local optimal solution 

during this process when no better solution can be 

found [1]. This problem is the disadvantage of 

approximation-based optimization, such as the 

metaheuristic optimization, but is not the case in the 

exact method. Nevertheless, the metaheuristic is still 

popular due to its advantage in solving ample space or 

multi-dimensional problems where the exact 

approach is impossible due to the excessive resource 

consumption (time and computation) [2]. 

As shown by the previous research, every 

metaheuristic optimization method has its way of 

solving the local optimal problem. Genetic algorithm 

(GA) uses mutation process [3]. In simulated 

annealing (SA), the new solution can still be accepted, 

although it is worse than the current solution based on 

some probabilistic calculations [4]. In an artificial bee 

colony (ABC), scout bees find alternative food 

sources when the existing food sources are abandoned 

[5]. A worse solution is also accepted in tabu search 

(TS) [6]. In harmony search (HS), new alternatives 

can also be generated randomly within possible 

problem space rather than only from the harmony 

memory (current solutions) [7]. In invasive weed 

optimization (IWO), the generated seeds are typically 

distributed over the problem space related to their 

parent [8].  

Nature has been inspiring many metaheuristic 

algorithms. Most of them were inspired by animal 

behavior, such as birds [9], ants [10], deer [11], 

monkey [12], bees [5], dolphins [13], marine 

predators [14], Komodo dragon [15], and so on. Some 

were inspired by the plants, such as weeds [8]. Many 

of them are swarm-based intelligence, where the 
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model consists of independent agents, and 

information is shared among them [16]. The examples 

are particle swarm optimization (PSO) [9], ant colony 

optimization (ACO) [10], artificial bee colony (ABC) 

[5], and so on. Besides nature, several metaheuristic 

algorithms are inspired by the game, such as shell 

game optimization (SGO) [17] and darts game 

optimizer (DGO) [18]. 

There are hundreds of metaheuristic algorithms, 

which the numbers are possible to keep increasing in 

the future. This large number of algorithms shows that 

studies in metaheuristic optimization are interesting. 

The numbers keep growing because no single 

metaheuristic method is the best for all types of 

problems [2]. Some algorithms are simple, while 

others are complicated. Moreover, these methods 

have been improved, modified, and combined. The 

methods have also been implemented in many aspects 

of life, such as the production process, scheduling, 

education, transportation, etc.  

Although there are many new algorithms, the old 

school algorithms are still popular. Today, the GA is 

still widely used, for example, in intelligent 

controllers for induction motor [19], short-term load 

forecasting [20], internet of things (IoT) service 

selection [21], and many more. SA is also popular, 

especially in data mining tasks [22]. Besides these two 

algorithms, there are many examples of the old school 

algorithms in many recent optimization studies. 

Although these algorithms are beaten many times by 

many new algorithms, they are still popular due to 

their simplicity, making them easy to modify or 

combine. Therefore, the simplicity aspect should be 

concerned with developing a metaheuristic algorithm. 

Therefore, this work proposes a new metaheuristic 

algorithm, which can avoid the local optimal trap. The 

algorithm is called the modified social forces 

algorithm (MSF). This algorithm is inspired by the 

social forces model, well-known for dynamic 

pedestrian modeling, especially crowd modeling [23]. 

In the basic form, the social forces model consists of 

a person that walks from his initial location to his 

destination point within a certain speed [23]. He may 

meet other persons while walking and avoid collision 

(interaction forces) [23]. 

Moreover, he also tries to avoid collision with the 

rigid objects around him, such as walls (repulsion 

force) [23]. In the improved model, this person may 

also be attracted to other objects around him. This 

model is implemented into all persons in the system 

to be a multi-agent system. 

Meanwhile, the proposed MSF model has a 

specific mechanism for local searching 

(intensification) and avoiding the optimal local trap 

(diversification). In this work, the social-forces model 

is modified into a metaheuristic optimization. The 

model still adopts the desired driving force and 

interaction force with modification in the formulation. 

A person may walk to his target at a certain speed or 

visit attractive objects around him. In this algorithm, 

the walking behavior represents finding a better 

solution. This proposed model also adopts swarm 

intelligence where some information (attractive thing) 

is shared among persons [16] so that other people may 

visit this attractive object.  

The contributions of this work are as follows. 

1. This work transforms the social forces model 

commonly used in crowd modeling into a 

metaheuristic algorithm, rather than using 

metaphors of nature (animals or plants). 

2. This work proposes a new metaheuristic 

algorithm that is simple in mechanism and 

calculation but can avoid local optimal trap. 

The remainder of this paper is organized as follows. 

Several well-known or shortcoming metaheuristic 

methods are discussed in section two. The proposed 

model is explained in section three. The simulation 

scenario for testing the proposed algorithm's 

performance and the simulation result is shown in 

section four. The more profound analysis of the 

outcome and findings is explained in section five. 

Finally, the conclusion and future work are 

summarized in section six. 

2. Related works 

In general, the metaheuristic algorithm consists of 

two activities: intensification and diversification. 

Intensification is a mechanism to improve the current 

solution by searching for new solutions near the 

current solution (neighborhood search or local search). 

On the other hand, diversification is a mechanism to 

find a new solution somewhere else within the search 

space. Diversification is conducted to avoid the local 

optimal problem. In some algorithms, these 

mechanisms are conducted in different steps, while in 

some others, these mechanisms are blended or 

unclearly separated. The followings are several 

popular or shortcoming metaheuristic algorithms, 

including the source of inspiration and their 

mechanism. 

A genetic algorithm is an algorithm inspired by the 

evolution process [3]. Evolution theory says that the 

creature may adapt to the environment change by 

changing the traits gradually. As an algorithm, the 

better solutions are generated by the crossover process 

between the best current solutions (intensification). 

Meanwhile, mutation may occur with specific 

probabilistic calculations (diversification). 
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Simulated annealing adopts metal's annealing 

(controlled heating and cooling) process [4]. The 

heating process is done as fast as possible, but the 

cooling process is gradually done to avoid defects. A 

new solution may be better or worse than the current 

solution in every iteration. A better solution will be 

accepted immediately (intensification). Meanwhile, a 

worse solution can still be accepted with certain 

probabilistic calculations (diversification). Here, the 

probabilistic scale is the temperature. As the 

algorithm runs the calculation, the temperature 

gradually decreases to keep the search coverage 

minimum. 

Tabu search is an example of a metaheuristic 

algorithm that works based on local or neighborhood 

search [6]. It has a list of solutions called memory. In 

every iteration, several candidates are generated near 

the current best solution. The best candidate is chosen 

among these candidates, which is the best among 

them, and it is not in the tabu list. If this candidate is 

better than the current best solution, it becomes the 

best solution. This solution is then pushed into the 

tabu list. The oldest solution is removed from the list 

if the tabu list is complete. 

Particle swarm optimization is inspired by the 

flock of birds [9], a swarm intelligence consisting of 

several agents. In the beginning, each agent is 

generated randomly within the search space. The 

improvisation is conducted for every agent depending 

on its current position, local best, global best, and 

certain probabilistic value. Each time an agent moves 

to a new position, the local best and the global best are 

updated. 

Ant colony optimization is inspired by ants when 

searching for food [10]. It is instrumental in solving 

combinatorial problems. This algorithm is multi-

agent, graph-based, and swarms intelligence 

simultaneously. In the beginning, every ant searches 

for food randomly and returns by laying down a 

pheromone. Other ants that find the path will not 

search randomly but follow this path and update the 

pheromone. Over time, the pheromone evaporates. 

Capuchin search algorithm is an algorithm that is 

inspired by the dynamic behavior of the capuchin 

monkeys in the forest [12]. To search the food, a 

Capuchin monkey jumps from tree to tree 

(diversification) or swings and climbs from branch to 

branch within a tree (intensification). In a way, the 

algorithm searches the solution locally first. Then, it 

jumps to other areas within the search space to check 

whether it is the optimal solution. 

The Quantum dolphin swarm algorithm is inspired 

by a group of dolphins [13], which improves the 

dolphin swarm algorithm. Here, the hunting process 

consists of two stages: searching and predating. The 

critical aspects of the hunting process are echolocation, 

division of the dolphins, cooperation, and information 

exchange.   

The red deer algorithm is inspired by the mating 

behavior of red deer [11]. The population is divided 

into male deer and hinds. A group of hinds becomes a 

harem. Some male deer become commanders during 

mating, and the others become stags. The mating of 

the commanders conducts diversification with some 

of their and other commanders' harem. The 

intensification is conducted during the fight between 

male commanders and stags. It also happened when 

he stags mate with their nearest hind. 

Marine predator algorithm (MPA) is an algorithm 

inspired by the behavior of the predators and preys in 

the ocean [14]. Here, the predators represent the 

elitists or the best solution. The system consists of two 

sets: predators and prey. The behavior of the predators 

is affected by the prey. On the other side, the behavior 

of the prey is also affected by the predator. This 

algorithm combines the Brownian and Levy 

movements. It is an example of an algorithm that the 

iteration affects the mechanism. The iteration is 

divided into three phases. In the first phase, all 

individuals conduct the Brownian movement. Then, 

in the second phase, half of the population conduct 

Brownian movement while the rest conduct Levy 

movement. In the third phase, all individuals conduct 

the Levy movement. 

Komodo mlipir algorithm (KMA) is an algorithm 

that is inspired by the behavior of the Komodo dragon 

during mating and foraging [15]. It is also the 

hybridization between evolutionary algorithms and 

swarms intelligence. The population is divided into 

big males, females, and small males. Big males 

conduct intensification (attraction) with certain 

diversification (distraction) by interacting with other 

big males. Females conduct intensification or 

diversification by mating with the highest quality big 

male or conducting asexual reproduction. Small males 

conduct intensification by following big males with a 

certain speed called mlipir. This algorithm is an 

example of several ways to conduct intensification 

and diversification in one algorithm. 

Shell game optimization is an algorithm inspired 

by the mechanics of the traditional game, namely the 

shell game [17]. There are three possible states for 

every agent in every iteration: a combination of 

intensification and diversification. The state is chosen 

based on some probabilistic calculation from the 

agent's fitness score relative to the entire population's 

fitness score. First, the agent follows the current best 

solution (intensification) in the first state. Then, in the 

second state, the agent follows the best solution and  

 



Received:  February 14, 2022.     Revised: March 10, 2022.                                                                                             297 

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022           DOI: 10.22266/ijies2022.0630.25 

 

 
Figure. 1 Proposed model illustration 

 

one randomly picked solution (intensification and 

diversification). The agent follows two randomly 

picked solutions (diversification). 

Darts game optimizer (DGO) is a metaheuristic 

algorithm inspired by the mechanics of the darts game 

[18]. In general, this game is an intensification-

oriented algorithm because all agents are designed to 

follow the current best solution at a certain speed. This 

speed is determined based on the accumulation of 

three discrete scores based on the darts score matrix. 

These scores are determined based on the 

probabilistic circumstance determined by comparing 

the agent's fitness score relative to the fitness score of 

the entire population. This algorithm is also an 

example of minimum adjustment so that the disparity 

between the best and the worst scenario is minimum. 

Several studies developed a hybrid heuristic 

method. The hybrid method is implemented to 

combine the benefit of several algorithms. The other 

reason is to tackle the weakness of an algorithm. 

Many old-fashioned algorithms, such as GA, TS, PSO, 

and SA, are commonly used in this method. The 

reason is that these algorithms are simple and easy to 

modify. The example of studies conducting a hybrid 

heuristic is as follows.  

Umam, Mustafid, and Suryono [24] combined GA 

and TS in solving the flow shop scheduling problem. 

Their motivation is that GA effectively produces good 

and fast solutions in complex problem spaces. But GA 

is not so good in the intensification. On the other side, 

TS is superior in conducting a local search. Tian and 

Liu [25] combined GA and PSO in solving the job 

shop scheduling problem. Their motivation is that 

PSO can cover the weakness in GA, where the 

convergence may occur too fast. 

This explanation shows that every metaheuristic 

algorithm has its mechanics. Some algorithms 

separate the intensification and diversification, while 

the others combine both in a single formula. 

Meanwhile, several algorithms are developed based 

on intensification but accept diversification by certain 

probabilistic calculations. Although their mechanism 

is various, all metaheuristic algorithms have the same 

objective: finding a near-optimal solution or 

acceptable solution while avoiding local optimal.  

The proposed algorithm is adopted from the 

pedestrian dynamic or crowd movement model called 

social forces model in this work. It is a swarm-based 

intelligence that consists of several agents, where 

every agent moves to their destination. An agent may 

be attracted to an interesting object near it when 

walking (intensification). After an agent arrives at its 

current destination, it determines a new destination. 

This new destination may be the global best 

(convergence) or within the search space 

(diversification). 

3. Model 

The proposed model consists of several agents. 

Each agent walks to its target or destination with a 

certain walking speed or step size. During walking, 

several more attractive or less attractive objects may 

be met within the observation range. The less 

attractive objects will not be considered. Meanwhile, 

if there are any attractive objects, the agent will first 

go to the most attractive object. If there is no attractive 

object, it will go to its target. After it reaches its 

current target, it will determine its new target. The 

illustration is shown in Fig. 1. In Fig. 1, the green dots 

represent the more attractive objects, the red dots 

represent the less attractive objects, the blue-lined 

circle represents the observation range, and the orange 

circle represents the target. 

As a swarm intelligence, the agents interact with 

each other. Every time an agent finds a better, more 

attractive object, it will share with the other as 

collective intelligence. If this more attractive object is 

better than the current collective best-attractive object, 

it will replace it as a new collective best-attractive 

object. When the agent determines the new target, it 

has the option to choose between the collective best-

attractive object or any other location as the new target.  

The annotations used in the mathematical model 

are as follows. The modified social forces algorithm 

is formalized in algorithm 1. The algorithm consists 

of two rounds: initialization and iteration. The agent's 

initial position, target, and global best are determined 

during the initialization. These are determined 

randomly within the search space. This process is 

formalized by using Eq. (1) and Eq. (2). The initial 

global best calculation is standardized by using Eq. (3). 

 

𝑥𝑖(0) = 𝑈(ℝ)             (1) 
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x current position 

xta target 

xat attractive object 

xatb the best attractive objects 

xlo local best 

xgo global best 

xwa walking position 

xsh shifting position 

Δx step size 

f fitness function 

i agent index 

n number of agents 

m number of attractive objects 

p probabilistic ratio 

r observation range 

ℝ search space 

t iteration 

tmax maximum iteration 

 

algorithm 1: modified social forces algorithm 

1 //initialization 
2 for i = 1 to n do 
3   determine xi 
4   determine xta,i 
5   xlo,i = xi    
6 end for 
7 calculate xgo 
8 //iteration 
9 for t = 1 to tmax do 
10   for i = 1 to n do 
11     for j = 1 to m do 
12       determine xat,i 
13     end for 
14     select xatb,i  
15     update xi  
16     update xlo 
17     update xgo 
18     if xi = xta,i then 
20       update xta,i 
21     end if 
22   end for 
23 end for 

 

𝑥𝑡𝑎,𝑖(0) = 𝑈(ℝ)    (2) 

 

𝑥𝑔𝑜(0) = 𝑥𝑙𝑜(0), 𝑥𝑙𝑜 ∈ 𝑋𝑙𝑜 ∧ min (𝑓(𝑥𝑙𝑜(0)))  (3) 

 

The iteration runs until the maximum iteration is 

reached. Several processes are conducted sequentially 

in every iteration. These processes are determining the 

attractive objects for every agent, selecting the most 

attractive object, updating the agent's next position, 

updating the local best and global best, and finally 

updating the agent's next target if it must be updated. 

These processes are formalized using Eq. (4) to Eq. 

(11). 

 

𝑥𝑎𝑡,𝑖,𝑗 = 𝑈(ℝ) ∧ |𝑥𝑎𝑡,𝑖,𝑗 − 𝑥𝑖| ≤ 𝑟            (4) 

 

𝑥𝑎𝑡𝑏,𝑖 = 𝑥𝑎𝑡,𝑖 ∈ 𝑋𝑎𝑡,𝑖 ∧ min(𝑓(𝑥𝑎𝑡,𝑖))       (5) 

 

𝑥𝑖
′ = {

𝑥𝑎𝑡𝑏,𝑖, 𝑓(𝑥𝑎𝑡𝑏,𝑖) < 𝑓(𝑥𝑖)

𝑥𝑤𝑎 , 𝑒𝑙𝑠𝑒
     (6)  

 

𝑥𝑤𝑎,𝑖 = {
𝑥𝑡𝑎,𝑖 , |𝑥𝑖 − 𝑥𝑡𝑎,𝑖| ≤ ∆𝑥𝑖

𝑥𝑠ℎ,𝑖, 𝑒𝑙𝑠𝑒
        (7) 

 

𝑥𝑠ℎ,𝑖 = {
𝑥𝑖 + ∆𝑥𝑖, 𝑥𝑖 < 𝑥𝑡𝑎,𝑖
𝑥𝑖 − ∆𝑥𝑖, 𝑥𝑖 > 𝑥𝑡𝑎,𝑖

      (8) 

 

𝑥𝑙𝑜,𝑖
′ = {

𝑥𝑙𝑜,𝑖 , 𝑓(𝑥𝑖) ≥ 𝑓(𝑥𝑙𝑜,𝑖)

𝑥𝑖, 𝑒𝑙𝑠𝑒
             (9) 

 

𝑥𝑔𝑜
′ = {

𝑥𝑙𝑜,𝑖, 𝑓(𝑥𝑙𝑜,𝑖) < 𝑓(𝑥𝑔𝑜)

𝑥𝑔𝑜, 𝑒𝑙𝑠𝑒 
    (10) 

 

𝑥𝑡𝑎,𝑖
′ = {

𝑥𝑡𝑎,𝑖, 𝑥𝑖 ≠ 𝑥𝑡𝑎,𝑖
𝑥𝑔𝑜, 𝑥𝑖 = 𝑥𝑡𝑎,𝑖 ∧ 𝑈(0,1) ≤ 𝑝

𝑈(ℝ), 𝑥𝑖 = 𝑥𝑡𝑎,𝑖 ∧ 𝑈(0,1) > 𝑝
  (11) 

 

Eq. (4) states that the attractive objects are 

generated randomly within the agent's observation 

range. The most attractive object is the highest fitness 

score, as calculated using Eq. (5). After that, the most 

attractive object becomes the agent's next position if 

its fitness score is better than the current, as declared 

by Eq. (6). Otherwise, the agent chooses to walk. Eq. 

(7) states that the agent arrives at the target if its 

distance is less than its step size. Otherwise, an agent 

chooses to shift. Eq. (8) states that the agent shifts to 

the new position depending on its current and step 

size. Eq. (9) declares that the agent's local best will 

be replaced with the agent's current position if the 

agent's current position's fitness score is better than 

the agent's local best's fitness score. Eq. (10) states 

that the agent local best will replace the global best if 

its fitness score is better than the global best's. Eq. (11) 

is used to determine the agent's next target. If the 

agent has arrived at its current target, the next target 

can be chosen from the global best or any location 

within the search space. 

4. Simulation and result 

This proposed model is evaluated for its 

performance using ten benchmark functions. These  
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Table 1. Benchmark functions 

No Function Model 
Search 

Space 

Step 

Size 
Obs. Range 

1 Ackley 

−20 ⋅ 𝑒𝑥𝑝

(

 −0.2 ⋅ √
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1
)

 

− 𝑒𝑥𝑝 (
1

𝐷
∑cos 2𝜋𝑥𝑖

𝐷

𝑖=1

) + 20

+ 𝑒𝑥𝑝(1) 

[-32, 32] 2 1 

2 Rastrigin 10𝑑 +∑(𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖))

𝐷

𝑖=1

 [-5.12, 5.12] 0.2 0.1 

3 Griewank 
1

4000
∑ 𝑥𝑖

2𝐷
𝑖=1 −∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝐷

𝑖=1 +1 [-600, 600] 40 20 

4 Bukin 100√|𝑥2 − 0.01𝑥1
2| + 0.01|𝑥1 + 10| 

𝑥1
∈ [−15,−5] 

𝑥2 ∈ [−3,3] 

0.2 0.1 

5 Michalewicz −∑((sin 𝑥𝑖) ⋅ (sin (
𝑖𝑥𝑖
2

𝜋
))

2𝑚

)

𝐷

𝑖=1

, 𝑚 = 10 [0, π] 0.2 0.1 

6 Sphere ∑𝑥𝑖
2

𝐷

𝑖=1

 [-5.12, 5.12] 0.2 0.1 

7 Rosenbrock ∑(100(𝑥𝑖+1 + 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2)

𝐷−1

𝑖=1

 [-5, 10] 0.2 0.1 

8 Bohachevsky 𝑥1
2 + 2𝑥2

2 − 0.3 cos(3𝜋𝑥1) − 0.4 cos(4𝜋𝑥2) + 0.7 [-100, 100] 10 5 

9 Zakharov ∑𝑥𝑖
2

𝐷

𝑖=1

+ (∑0.5𝑖𝑥𝑖

𝐷

𝑖=1

)

2

+ (∑0.5𝑖𝑥𝑖

𝐷

𝑖=1

)

4

 [-5, 10] 0.2 0.1 

10 Booth (𝑥1 + 2𝑥2 + 7)
2 + (2𝑥1 + 𝑥2 + 5)

2 [-10, 10] 0.2 0.1 

 

functions are divided into multimodal functions and 

unimodal functions. A multimodal function has many 

optimal solutions, while the unimodal function only 

has one optimal global solution [26]. There are five 

multimodal functions to be the benchmark: Ackley, 

Rastrigin, Griewank, Bukin, and Michalewicz. The 

other benchmarks are five unimodal functions: Sphere, 

Rosenbrock, Bohachevsky, Zakharov, and Booth. 

They are chosen based on a study proposing a nature-

inspired metaheuristic algorithm, namely emperor-

penguins colony [27]. Griewank and Bohachevsky 

represent functions with ample search space [27]. The 

target of all functions is 0, except Michalewicz, which 

is -4.6876, with the number of decision variables (D) 

being 5. A more detailed description of these 

functions is shown in Table 1.  

This proposed model is compared with other 

benchmark methods: PSO, DGO, SGO, MPA, and 

KMA. The work chooses PSO because it represents a 

well-known metaheuristic algorithm that adopts 

swarm intelligence. On the other hand, the other four 

algorithms are chosen to represent the shortcoming 

metaphors-inspired algorithm. For instance, the DGO 

and SGO represent game-inspired algorithms, while 

MPA and KMA represent the animal-inspired 

algorithms. PSO represents the metaheuristic 

algorithm whose mechanism is straightforward. DGO 

and SGO represent metaheuristic algorithms whose 

mechanism is not simple, but the calculation is 

straightforward. On the other hand, MPA and KMA 

represent metaheuristic algorithms with complicated 

mechanisms.  
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Table 2. Simulation result 

Function 
Benchmark Score Proposed 

Model 
Better than 

PSO DGO SGO MPA KMA 

Ackley 1.2539 5.7696 7.5826 0.5845 5.8316 1.5658 DGO, SGO, KMA 

Rastrigin 8.2983 8.2560 13.7112 0.5092 9.4842 1.4434 
PSO, DGO, SGO, 

KMA 

Griewank 0.3487 1.8907 3.3059 0.2416 1.3936 0.3759 DGO, SGO, KMA 

Bukin 0.0295 0.9549 0.0236 0.9866 0.0142 1.6614 - 

Michalewicz -3.6446 -3.6344 -3.3566 -2.2806 -3.3984 -4.5642 
PSO, DGO, SGO, 

MPA, KMA 

Sphere 0.0002 0.3017 0.6304 0.0007 0.1970 0.0009 DGO, SGO, KMA 

Rosenbrock 50.3277 851.3852 689.6760 4.0196 28.9723 4.1941 
PSO, DGO, SGO, 

KMA 

Bohachevsky 0 7.0106 4.3290 0.0852 0.4220 0.1398 DGO, SGO, KMA 

Zakharov 0.7140 25.2796 20.1854 0.0082 7.0872 0.0071 
PSO, DGO, SGO, 

MPA, KMA 

Booth 6.9638e-28 0.7539 0.2577 0.2630 0.1423 6.6268e-05 
DGO, SGO, MPA, 

KMA 

 

 

All algorithms (the proposed and benchmark 

algorithms) are set with several common parameters. 

The population size is 20. The maximum iteration is 

100.  

The specific setting for these algorithms is as 

follows. In PSO, the current speed, cognitive, and 

social weights are set at 0.5. In SGO, the threshold 

between the first and second states is set to be 0.05. 

Meanwhile, the threshold between the second and 

third states is set at 0.025. In MPA, the fish 

aggregating device (FAD) is set at 0.2. In KMA, the 

big male proportion is 0.2, the number of females is 1, 

and the radius of parthenogenesis is 0.5. In the 

proposed algorithm, the probabilistic ratio is set at 0.5, 

and the number of attracting objects is set at 20. 

The number of decisions for Bukin, Bohachevksy, 

and Booth functions is 2, while for other functions, 5. 

In this simulation, the step size and observation range 

are set depending on the benchmark functions, which 

can be found in Table 1. A more extensive search 

space means a more extended step size and a broader 

observation range. The simulation runs 30 times for 

every function to get the result shown in Table 2. In 

Table 2, the best score is written in bold font.  

Table 2 shows that the proposed algorithm is 

proven to achieve the metaheuristic algorithm's 

objective. It can find a near-optimal solution in all 

benchmark functions, both multimodal and unimodal. 

The result also shows that the algorithm can avoid the 

local optimal trap in the five benchmark functions. 

Table 2 also shows that the proposed algorithm is 

competitive enough compared with the other five 

algorithms. The proposed algorithm outperforms all 

benchmark algorithms in solving Michalewicz and 

Zakharov functions. In general, this proposed 

algorithm is very competitive compared with DGO, 

SGO, and KMA. It is better than at least three 

algorithms in solving nine functions. Unfortunately, 

this proposed algorithm is not competitive in solving 

the Bukin function. 

The MPA becomes the algorithm that is most 

difficult to beat. Its performance is the best in solving 

four functions. But the proposed algorithm is still 

better than MPA in solving three functions: 

Michalewicz, Zakharov, and Booth. 

The second simulation is conducted to observe 

the relation between the probabilistic ratio and the 

proposed algorithm. There are three values of the 

probabilistic ratio (0.1; 0.5; 0.9). The result is shown 

in Table 3. The first value represents very low 

probabilistic ratio. On the other side, the third value 

represents a very high probabilistic ratio. The best 

score for every function is in bold font. 

Table 3 shows that, in general, a higher 

probabilistic ratio can improve the performance of 

the proposed algorithm. The best fitness score is 

achieved in all multimodal functions when the 

probabilistic ratio is very high. On the other side, a 

higher probabilistic ratio can improve the 

performance in solving Rosenbrock, Bohachevsky, 

and Zakharov functions. Meanwhile, in the other two 

unimodal functions, a higher probabilistic ratio fails 

to improve the performance. In solving sphere 

function, its score tends to fluctuate. 

The third simulation is conducted to evaluate the 

relation between the number of attracting objects and 

the performance of the proposed algorithm. In this 

simulation, there are three values of attracting objects 

(5, 10, 30). In this work, the probabilistic ratio is set 

at 0.5. The result is shown in Table 4. 
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Table 3. Relation between probabilistic ratio and average 

fitness score 

Function 
Average Fitness Score 

p = 0.1 p = 0.5 p = 0.9 

Ackley 3.0213 1.5749 0.9878 

Rastrigin 3.3066 1.6603 1.2988 

Griewank 0.4604 0.3473 0.2543 

Bukin 1.3554 1.7357 1.3041 

Michalewicz -4.5132 -4.5749 -4.5900 

Sphere 0.0009 0.0011 0.0010 

Rosenbrock 4.1050 4.1007 4.0156 

Bohachevsky 0.2778 0.1247 0.0539 

Zakharov 0.0197 0.0082 0.0061 

Booth 6.199e-5 6.656e-5 7.573e-5 

 
Table 4. Relation between number of attracting objects 

and average fitness score 

Function 
Average Fitness Score 

m = 5 m = 10 m = 30 

Ackley 4.8765 2.2471 1.3572 

Rastrigin 4.8102 2.8249 1.1204 

Griewank 0.5051 0.4222 0.3099 

Bukin 10.0043 2.1702 1.2798 

Michalewicz -4.3143 -4.4809 -4.5964 

Sphere 0.0018 0.0014 0.0009 

Rosenbrock 75.2478 14.6083 3.9484 

Bohachevsky 0.3875 0.2359 0.1272 

Zakharov 1.0516 0.0213 0.0052 

Booth 0.0005 0.0001 4.3155e-05 

 

Table 4 shows that, in general, the increase of 

the number of attracting objects improves the fitness 

score, mainly when the number of attracting objects 

ranges from 5 to 30. But its significance may be 

different among functions. The improvement is 

significant for solving Bukin, Rosenbrock, Zakharov, 

and Booth functions within this range. Meanwhile, its 

improvement is moderate for solving Ackley, 

Rastrigin, and Sphere functions. In the end, its 

improvement is not significant for solving Griewank 

and Michalewicz functions. 

5. Discussion 

There are several findings due to the simulation 

result. The first finding is that the proposed algorithm 

is proven as a good metaheuristic algorithm. The 

algorithm is good in solving problems whose 

problem space is narrow or large. It can find a near-

optimal solution in both unimodal and multimodal 

functions. Moreover, the problem space does not 

affect its performance. 

The second finding is that the result strengthens 

the no-free-lunch theory, which says that no 

algorithm is the best for all problems. The algorithm's 

performance depends on the problem it tries to solve 

[28]. The proposed algorithm is very competitive in 

solving Michalewicz and Zakharov functions. On the 

other hand, it is less competitive in solving the Bukin 

function.  

The third finding is that a higher probabilistic 

ratio is preferred, especially in solving multimodal 

problems. Table 3 shows that its performance is the 

best when the probabilistic ratio is set high. On the 

other hand, in solving a unimodal problem, the 

response to the probabilistic ratio varies depending 

on the problem's characteristics. Theoretically, a 

higher probabilistic ratio makes every agent prefers 

to exploit the global best solution after it reaches its 

destination. More effort is conducted around the 

global best solution rather than exploring search 

space randomly. Diversification is still conducted 

when the agent moves from its position to its current 

destination. The current worse solution is still 

accepted during this process if the agent has not 

reached its destination yet. This circumstance is like 

simulated annealing, but accepting the worse solution 

is not based on probabilistic calculation. 

The fourth finding is that, in general, the number 

of attracting objects relates to increasing the proposed 

algorithm's performance. However, the response is 

various depending on the characteristic of the 

problems. The improvement is significant in solving 

unimodal problems but less significant in solving 

multimodal problems. 

The complexity of this proposed algorithm can be 

presented as O(tmaxnm). The explanation is as follows. 

This algorithm contains three loops. First, the 

iteration process until the maximum iteration is 

reached. The second loop is the action of every agent 

in every iteration. The third loop is generating 

particular attractive objects for every agent in every 

iteration. The complexity is proportional to each of 

these three variables when the other ones are set 

constant. 

There are notes related to this work. In general, 

all metaheuristic algorithms consist of several 

adjusted parameters. These parameters can be 

adjusted to improve the performance of the algorithm. 

The adjusted parameters in the proposed algorithm 

and the benchmark algorithms are fixed for all ten 

benchmark functions. It means that the constellation 

between the proposed algorithm and the benchmark 

algorithms may be different with different settings. 

Based on this circumstance, it is not wise to judge that 

an algorithm is better than other algorithms in solving 

all problems.  

Meanwhile, there are several easy methods to 

improve the performance of metaheuristic algorithms. 

First, the performance can be improved by increasing 

the maximum iteration. As an iterative method, there 

is the possibility that the future solution is better than 
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the current solution except if it is trapped in the local 

optimal. Moreover, the performance can also be 

improved for the population-based algorithm by 

increasing the population size. These two factors also 

become reasons why simple old-school algorithms 

are still popular, although the shortcomings often 

beat them. 

6. Conclusion 

This work has demonstrated that the modified 

social forces algorithm is proven as a competitive 

metaheuristic optimization method. Its performance is 

good enough in solving both multimodal and 

unimodal problems. It means this method is proven to 

avoid the optimal local trap. It is competitive 

compared with shell game optimization, darts game 

optimizer, and Komodo mlipir algorithm. The 

algorithm performance is superior in solving 

Michalewicz and Zakharov functions but less 

competitive in solving the Bukin function. 

There are several research potentials related to this 

work. First, this algorithm still needs improvement 

and modification in solving many other functions. 

Second, this algorithm still needs modification to 

solve a combinatorial optimization problem. Third, 

implementing this algorithm into real-world cases is 

also challenging. Moreover, making this model 

becomes widely used is another challenge. 
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