
Received: February 14, 2022. Revised: March 10, 2022. 294

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.25

Modified Social Forces Algorithm: from Pedestrian Dynamic to Metaheuristic

Optimization

Purba Daru Kusuma1* Dimas Adiputra2

1Computer Engineering, Telkom University, Indonesia

2Electrical Engineering, Institut Teknologi Telkom Surabaya, Indonesia
* Corresponding author’s Email: purbodaru@telkomuniversity.ac.id

Abstract: This work proposes a new simple metaheuristic optimization method inspired by the social forces model

used in pedestrian dynamics. The proposed model is a swarm-based model where a collective intelligence is shared

among the agents, consisting of several persons or agents who walk over the search space to find the best solution.

Each time a person finds a better solution, they share it with another person. The proposed model is then evaluated by

implementing it to solve ten benchmark functions. The five are multimodal functions (Ackley, Rastrigin, Griewank,

Bukin, and Michalewicz) while the other are unimodal (Sphere, Rosenbrock, Bohachevsky, Zakharov, and Booth).

The performance is compared with five metaheuristic algorithms: particle swarm optimization, darts game optimizer,

shell game optimization, marine predator algorithm, and Komodo mlipir algorithm. The simulation result shows that

the proposed method is competitive enough to solve multimodal and unimodal functions. The performance is superior

in solving Michalewicz and Zakharov functions but less competitive in solving the Bukin function. The results also

imply that there is no single algorithm that is the best in solving all kinds of problems.

Keywords: Social forces, Metaheuristic, Multi-agent, Multimodal, Swarm intelligence.

1. Introduction

Avoiding the local optimal is one major issue in

metaheuristic optimization. As an approximation-

based method, metaheuristic optimization starts with

randomized points within the search space. Then,

during the iteration, the algorithm tries to find a better

solution around its current position (local search). The

algorithm can be trapped in the local optimal solution

during this process when no better solution can be

found [1]. This problem is the disadvantage of

approximation-based optimization, such as the

metaheuristic optimization, but is not the case in the

exact method. Nevertheless, the metaheuristic is still

popular due to its advantage in solving ample space or

multi-dimensional problems where the exact

approach is impossible due to the excessive resource

consumption (time and computation) [2].

As shown by the previous research, every

metaheuristic optimization method has its way of

solving the local optimal problem. Genetic algorithm

(GA) uses mutation process [3]. In simulated

annealing (SA), the new solution can still be accepted,

although it is worse than the current solution based on

some probabilistic calculations [4]. In an artificial bee

colony (ABC), scout bees find alternative food

sources when the existing food sources are abandoned

[5]. A worse solution is also accepted in tabu search

(TS) [6]. In harmony search (HS), new alternatives

can also be generated randomly within possible

problem space rather than only from the harmony

memory (current solutions) [7]. In invasive weed

optimization (IWO), the generated seeds are typically

distributed over the problem space related to their

parent [8].

Nature has been inspiring many metaheuristic

algorithms. Most of them were inspired by animal

behavior, such as birds [9], ants [10], deer [11],

monkey [12], bees [5], dolphins [13], marine

predators [14], Komodo dragon [15], and so on. Some

were inspired by the plants, such as weeds [8]. Many

of them are swarm-based intelligence, where the

Received: February 14, 2022. Revised: March 10, 2022. 295

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.25

model consists of independent agents, and

information is shared among them [16]. The examples

are particle swarm optimization (PSO) [9], ant colony

optimization (ACO) [10], artificial bee colony (ABC)

[5], and so on. Besides nature, several metaheuristic

algorithms are inspired by the game, such as shell

game optimization (SGO) [17] and darts game

optimizer (DGO) [18].

There are hundreds of metaheuristic algorithms,

which the numbers are possible to keep increasing in

the future. This large number of algorithms shows that

studies in metaheuristic optimization are interesting.

The numbers keep growing because no single

metaheuristic method is the best for all types of

problems [2]. Some algorithms are simple, while

others are complicated. Moreover, these methods

have been improved, modified, and combined. The

methods have also been implemented in many aspects

of life, such as the production process, scheduling,

education, transportation, etc.

Although there are many new algorithms, the old

school algorithms are still popular. Today, the GA is

still widely used, for example, in intelligent

controllers for induction motor [19], short-term load

forecasting [20], internet of things (IoT) service

selection [21], and many more. SA is also popular,

especially in data mining tasks [22]. Besides these two

algorithms, there are many examples of the old school

algorithms in many recent optimization studies.

Although these algorithms are beaten many times by

many new algorithms, they are still popular due to

their simplicity, making them easy to modify or

combine. Therefore, the simplicity aspect should be

concerned with developing a metaheuristic algorithm.

Therefore, this work proposes a new metaheuristic

algorithm, which can avoid the local optimal trap. The

algorithm is called the modified social forces

algorithm (MSF). This algorithm is inspired by the

social forces model, well-known for dynamic

pedestrian modeling, especially crowd modeling [23].

In the basic form, the social forces model consists of

a person that walks from his initial location to his

destination point within a certain speed [23]. He may

meet other persons while walking and avoid collision

(interaction forces) [23].

Moreover, he also tries to avoid collision with the

rigid objects around him, such as walls (repulsion

force) [23]. In the improved model, this person may

also be attracted to other objects around him. This

model is implemented into all persons in the system

to be a multi-agent system.

Meanwhile, the proposed MSF model has a

specific mechanism for local searching

(intensification) and avoiding the optimal local trap

(diversification). In this work, the social-forces model

is modified into a metaheuristic optimization. The

model still adopts the desired driving force and

interaction force with modification in the formulation.

A person may walk to his target at a certain speed or

visit attractive objects around him. In this algorithm,

the walking behavior represents finding a better

solution. This proposed model also adopts swarm

intelligence where some information (attractive thing)

is shared among persons [16] so that other people may

visit this attractive object.

The contributions of this work are as follows.

1. This work transforms the social forces model

commonly used in crowd modeling into a

metaheuristic algorithm, rather than using

metaphors of nature (animals or plants).

2. This work proposes a new metaheuristic

algorithm that is simple in mechanism and

calculation but can avoid local optimal trap.

The remainder of this paper is organized as follows.

Several well-known or shortcoming metaheuristic

methods are discussed in section two. The proposed

model is explained in section three. The simulation

scenario for testing the proposed algorithm's

performance and the simulation result is shown in

section four. The more profound analysis of the

outcome and findings is explained in section five.

Finally, the conclusion and future work are

summarized in section six.

2. Related works

In general, the metaheuristic algorithm consists of

two activities: intensification and diversification.

Intensification is a mechanism to improve the current

solution by searching for new solutions near the

current solution (neighborhood search or local search).

On the other hand, diversification is a mechanism to

find a new solution somewhere else within the search

space. Diversification is conducted to avoid the local

optimal problem. In some algorithms, these

mechanisms are conducted in different steps, while in

some others, these mechanisms are blended or

unclearly separated. The followings are several

popular or shortcoming metaheuristic algorithms,

including the source of inspiration and their

mechanism.

A genetic algorithm is an algorithm inspired by the

evolution process [3]. Evolution theory says that the

creature may adapt to the environment change by

changing the traits gradually. As an algorithm, the

better solutions are generated by the crossover process

between the best current solutions (intensification).

Meanwhile, mutation may occur with specific

probabilistic calculations (diversification).

Received: February 14, 2022. Revised: March 10, 2022. 296

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.25

Simulated annealing adopts metal's annealing

(controlled heating and cooling) process [4]. The

heating process is done as fast as possible, but the

cooling process is gradually done to avoid defects. A

new solution may be better or worse than the current

solution in every iteration. A better solution will be

accepted immediately (intensification). Meanwhile, a

worse solution can still be accepted with certain

probabilistic calculations (diversification). Here, the

probabilistic scale is the temperature. As the

algorithm runs the calculation, the temperature

gradually decreases to keep the search coverage

minimum.

Tabu search is an example of a metaheuristic

algorithm that works based on local or neighborhood

search [6]. It has a list of solutions called memory. In

every iteration, several candidates are generated near

the current best solution. The best candidate is chosen

among these candidates, which is the best among

them, and it is not in the tabu list. If this candidate is

better than the current best solution, it becomes the

best solution. This solution is then pushed into the

tabu list. The oldest solution is removed from the list

if the tabu list is complete.

Particle swarm optimization is inspired by the

flock of birds [9], a swarm intelligence consisting of

several agents. In the beginning, each agent is

generated randomly within the search space. The

improvisation is conducted for every agent depending

on its current position, local best, global best, and

certain probabilistic value. Each time an agent moves

to a new position, the local best and the global best are

updated.

Ant colony optimization is inspired by ants when

searching for food [10]. It is instrumental in solving

combinatorial problems. This algorithm is multi-

agent, graph-based, and swarms intelligence

simultaneously. In the beginning, every ant searches

for food randomly and returns by laying down a

pheromone. Other ants that find the path will not

search randomly but follow this path and update the

pheromone. Over time, the pheromone evaporates.

Capuchin search algorithm is an algorithm that is

inspired by the dynamic behavior of the capuchin

monkeys in the forest [12]. To search the food, a

Capuchin monkey jumps from tree to tree

(diversification) or swings and climbs from branch to

branch within a tree (intensification). In a way, the

algorithm searches the solution locally first. Then, it

jumps to other areas within the search space to check

whether it is the optimal solution.

The Quantum dolphin swarm algorithm is inspired

by a group of dolphins [13], which improves the

dolphin swarm algorithm. Here, the hunting process

consists of two stages: searching and predating. The

critical aspects of the hunting process are echolocation,

division of the dolphins, cooperation, and information

exchange.

The red deer algorithm is inspired by the mating

behavior of red deer [11]. The population is divided

into male deer and hinds. A group of hinds becomes a

harem. Some male deer become commanders during

mating, and the others become stags. The mating of

the commanders conducts diversification with some

of their and other commanders' harem. The

intensification is conducted during the fight between

male commanders and stags. It also happened when

he stags mate with their nearest hind.

Marine predator algorithm (MPA) is an algorithm

inspired by the behavior of the predators and preys in

the ocean [14]. Here, the predators represent the

elitists or the best solution. The system consists of two

sets: predators and prey. The behavior of the predators

is affected by the prey. On the other side, the behavior

of the prey is also affected by the predator. This

algorithm combines the Brownian and Levy

movements. It is an example of an algorithm that the

iteration affects the mechanism. The iteration is

divided into three phases. In the first phase, all

individuals conduct the Brownian movement. Then,

in the second phase, half of the population conduct

Brownian movement while the rest conduct Levy

movement. In the third phase, all individuals conduct

the Levy movement.

Komodo mlipir algorithm (KMA) is an algorithm

that is inspired by the behavior of the Komodo dragon

during mating and foraging [15]. It is also the

hybridization between evolutionary algorithms and

swarms intelligence. The population is divided into

big males, females, and small males. Big males

conduct intensification (attraction) with certain

diversification (distraction) by interacting with other

big males. Females conduct intensification or

diversification by mating with the highest quality big

male or conducting asexual reproduction. Small males

conduct intensification by following big males with a

certain speed called mlipir. This algorithm is an

example of several ways to conduct intensification

and diversification in one algorithm.

Shell game optimization is an algorithm inspired

by the mechanics of the traditional game, namely the

shell game [17]. There are three possible states for

every agent in every iteration: a combination of

intensification and diversification. The state is chosen

based on some probabilistic calculation from the

agent's fitness score relative to the entire population's

fitness score. First, the agent follows the current best

solution (intensification) in the first state. Then, in the

second state, the agent follows the best solution and

Received: February 14, 2022. Revised: March 10, 2022. 297

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.25

Figure. 1 Proposed model illustration

one randomly picked solution (intensification and

diversification). The agent follows two randomly

picked solutions (diversification).

Darts game optimizer (DGO) is a metaheuristic

algorithm inspired by the mechanics of the darts game

[18]. In general, this game is an intensification-

oriented algorithm because all agents are designed to

follow the current best solution at a certain speed. This

speed is determined based on the accumulation of

three discrete scores based on the darts score matrix.

These scores are determined based on the

probabilistic circumstance determined by comparing

the agent's fitness score relative to the fitness score of

the entire population. This algorithm is also an

example of minimum adjustment so that the disparity

between the best and the worst scenario is minimum.

Several studies developed a hybrid heuristic

method. The hybrid method is implemented to

combine the benefit of several algorithms. The other

reason is to tackle the weakness of an algorithm.

Many old-fashioned algorithms, such as GA, TS, PSO,

and SA, are commonly used in this method. The

reason is that these algorithms are simple and easy to

modify. The example of studies conducting a hybrid

heuristic is as follows.

Umam, Mustafid, and Suryono [24] combined GA

and TS in solving the flow shop scheduling problem.

Their motivation is that GA effectively produces good

and fast solutions in complex problem spaces. But GA

is not so good in the intensification. On the other side,

TS is superior in conducting a local search. Tian and

Liu [25] combined GA and PSO in solving the job

shop scheduling problem. Their motivation is that

PSO can cover the weakness in GA, where the

convergence may occur too fast.

This explanation shows that every metaheuristic

algorithm has its mechanics. Some algorithms

separate the intensification and diversification, while

the others combine both in a single formula.

Meanwhile, several algorithms are developed based

on intensification but accept diversification by certain

probabilistic calculations. Although their mechanism

is various, all metaheuristic algorithms have the same

objective: finding a near-optimal solution or

acceptable solution while avoiding local optimal.

The proposed algorithm is adopted from the

pedestrian dynamic or crowd movement model called

social forces model in this work. It is a swarm-based

intelligence that consists of several agents, where

every agent moves to their destination. An agent may

be attracted to an interesting object near it when

walking (intensification). After an agent arrives at its

current destination, it determines a new destination.

This new destination may be the global best

(convergence) or within the search space

(diversification).

3. Model

The proposed model consists of several agents.

Each agent walks to its target or destination with a

certain walking speed or step size. During walking,

several more attractive or less attractive objects may

be met within the observation range. The less

attractive objects will not be considered. Meanwhile,

if there are any attractive objects, the agent will first

go to the most attractive object. If there is no attractive

object, it will go to its target. After it reaches its

current target, it will determine its new target. The

illustration is shown in Fig. 1. In Fig. 1, the green dots

represent the more attractive objects, the red dots

represent the less attractive objects, the blue-lined

circle represents the observation range, and the orange

circle represents the target.

As a swarm intelligence, the agents interact with

each other. Every time an agent finds a better, more

attractive object, it will share with the other as

collective intelligence. If this more attractive object is

better than the current collective best-attractive object,

it will replace it as a new collective best-attractive

object. When the agent determines the new target, it

has the option to choose between the collective best-

attractive object or any other location as the new target.

The annotations used in the mathematical model

are as follows. The modified social forces algorithm

is formalized in algorithm 1. The algorithm consists

of two rounds: initialization and iteration. The agent's

initial position, target, and global best are determined

during the initialization. These are determined

randomly within the search space. This process is

formalized by using Eq. (1) and Eq. (2). The initial

global best calculation is standardized by using Eq. (3).

𝑥𝑖(0) = 𝑈(ℝ) (1)

Received: February 14, 2022. Revised: March 10, 2022. 298

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.25

x current position

xta target

xat attractive object

xatb the best attractive objects

xlo local best

xgo global best

xwa walking position

xsh shifting position

Δx step size

f fitness function

i agent index

n number of agents

m number of attractive objects

p probabilistic ratio

r observation range

ℝ search space

t iteration

tmax maximum iteration

algorithm 1: modified social forces algorithm

1 //initialization
2 for i = 1 to n do
3 determine xi
4 determine xta,i
5 xlo,i = xi
6 end for
7 calculate xgo
8 //iteration
9 for t = 1 to tmax do
10 for i = 1 to n do
11 for j = 1 to m do
12 determine xat,i
13 end for
14 select xatb,i
15 update xi
16 update xlo
17 update xgo
18 if xi = xta,i then
20 update xta,i
21 end if
22 end for
23 end for

𝑥𝑡𝑎,𝑖(0) = 𝑈(ℝ) (2)

𝑥𝑔𝑜(0) = 𝑥𝑙𝑜(0), 𝑥𝑙𝑜 ∈ 𝑋𝑙𝑜 ∧ min (𝑓(𝑥𝑙𝑜(0))) (3)

The iteration runs until the maximum iteration is

reached. Several processes are conducted sequentially

in every iteration. These processes are determining the

attractive objects for every agent, selecting the most

attractive object, updating the agent's next position,

updating the local best and global best, and finally

updating the agent's next target if it must be updated.

These processes are formalized using Eq. (4) to Eq.

(11).

𝑥𝑎𝑡,𝑖,𝑗 = 𝑈(ℝ) ∧ |𝑥𝑎𝑡,𝑖,𝑗 − 𝑥𝑖| ≤ 𝑟 (4)

𝑥𝑎𝑡𝑏,𝑖 = 𝑥𝑎𝑡,𝑖 ∈ 𝑋𝑎𝑡,𝑖 ∧ min(𝑓(𝑥𝑎𝑡,𝑖)) (5)

𝑥𝑖
′ = {

𝑥𝑎𝑡𝑏,𝑖, 𝑓(𝑥𝑎𝑡𝑏,𝑖) < 𝑓(𝑥𝑖)

𝑥𝑤𝑎 , 𝑒𝑙𝑠𝑒
 (6)

𝑥𝑤𝑎,𝑖 = {
𝑥𝑡𝑎,𝑖 , |𝑥𝑖 − 𝑥𝑡𝑎,𝑖| ≤ ∆𝑥𝑖

𝑥𝑠ℎ,𝑖, 𝑒𝑙𝑠𝑒
 (7)

𝑥𝑠ℎ,𝑖 = {
𝑥𝑖 + ∆𝑥𝑖, 𝑥𝑖 < 𝑥𝑡𝑎,𝑖
𝑥𝑖 − ∆𝑥𝑖, 𝑥𝑖 > 𝑥𝑡𝑎,𝑖

 (8)

𝑥𝑙𝑜,𝑖
′ = {

𝑥𝑙𝑜,𝑖 , 𝑓(𝑥𝑖) ≥ 𝑓(𝑥𝑙𝑜,𝑖)

𝑥𝑖, 𝑒𝑙𝑠𝑒
 (9)

𝑥𝑔𝑜
′ = {

𝑥𝑙𝑜,𝑖, 𝑓(𝑥𝑙𝑜,𝑖) < 𝑓(𝑥𝑔𝑜)

𝑥𝑔𝑜, 𝑒𝑙𝑠𝑒
 (10)

𝑥𝑡𝑎,𝑖
′ = {

𝑥𝑡𝑎,𝑖, 𝑥𝑖 ≠ 𝑥𝑡𝑎,𝑖
𝑥𝑔𝑜, 𝑥𝑖 = 𝑥𝑡𝑎,𝑖 ∧ 𝑈(0,1) ≤ 𝑝

𝑈(ℝ), 𝑥𝑖 = 𝑥𝑡𝑎,𝑖 ∧ 𝑈(0,1) > 𝑝
 (11)

Eq. (4) states that the attractive objects are

generated randomly within the agent's observation

range. The most attractive object is the highest fitness

score, as calculated using Eq. (5). After that, the most

attractive object becomes the agent's next position if

its fitness score is better than the current, as declared

by Eq. (6). Otherwise, the agent chooses to walk. Eq.

(7) states that the agent arrives at the target if its

distance is less than its step size. Otherwise, an agent

chooses to shift. Eq. (8) states that the agent shifts to

the new position depending on its current and step

size. Eq. (9) declares that the agent's local best will

be replaced with the agent's current position if the

agent's current position's fitness score is better than

the agent's local best's fitness score. Eq. (10) states

that the agent local best will replace the global best if

its fitness score is better than the global best's. Eq. (11)

is used to determine the agent's next target. If the

agent has arrived at its current target, the next target

can be chosen from the global best or any location

within the search space.

4. Simulation and result

This proposed model is evaluated for its

performance using ten benchmark functions. These

Received: February 14, 2022. Revised: March 10, 2022. 299

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.25

Table 1. Benchmark functions

No Function Model
Search

Space

Step

Size
Obs. Range

1 Ackley

−20 ⋅ 𝑒𝑥𝑝

(

 −0.2 ⋅ √
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1
)

− 𝑒𝑥𝑝 (
1

𝐷
∑cos 2𝜋𝑥𝑖

𝐷

𝑖=1

) + 20

+ 𝑒𝑥𝑝(1)

[-32, 32] 2 1

2 Rastrigin 10𝑑 +∑(𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖))

𝐷

𝑖=1

 [-5.12, 5.12] 0.2 0.1

3 Griewank
1

4000
∑ 𝑥𝑖

2𝐷
𝑖=1 −∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝐷

𝑖=1 +1 [-600, 600] 40 20

4 Bukin 100√|𝑥2 − 0.01𝑥1
2| + 0.01|𝑥1 + 10|

𝑥1
∈ [−15,−5]

𝑥2 ∈ [−3,3]

0.2 0.1

5 Michalewicz −∑((sin 𝑥𝑖) ⋅ (sin (
𝑖𝑥𝑖
2

𝜋
))

2𝑚

)

𝐷

𝑖=1

, 𝑚 = 10 [0, π] 0.2 0.1

6 Sphere ∑𝑥𝑖
2

𝐷

𝑖=1

 [-5.12, 5.12] 0.2 0.1

7 Rosenbrock ∑(100(𝑥𝑖+1 + 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2)

𝐷−1

𝑖=1

 [-5, 10] 0.2 0.1

8 Bohachevsky 𝑥1
2 + 2𝑥2

2 − 0.3 cos(3𝜋𝑥1) − 0.4 cos(4𝜋𝑥2) + 0.7 [-100, 100] 10 5

9 Zakharov ∑𝑥𝑖
2

𝐷

𝑖=1

+ (∑0.5𝑖𝑥𝑖

𝐷

𝑖=1

)

2

+ (∑0.5𝑖𝑥𝑖

𝐷

𝑖=1

)

4

 [-5, 10] 0.2 0.1

10 Booth (𝑥1 + 2𝑥2 + 7)
2 + (2𝑥1 + 𝑥2 + 5)

2 [-10, 10] 0.2 0.1

functions are divided into multimodal functions and

unimodal functions. A multimodal function has many

optimal solutions, while the unimodal function only

has one optimal global solution [26]. There are five

multimodal functions to be the benchmark: Ackley,

Rastrigin, Griewank, Bukin, and Michalewicz. The

other benchmarks are five unimodal functions: Sphere,

Rosenbrock, Bohachevsky, Zakharov, and Booth.

They are chosen based on a study proposing a nature-

inspired metaheuristic algorithm, namely emperor-

penguins colony [27]. Griewank and Bohachevsky

represent functions with ample search space [27]. The

target of all functions is 0, except Michalewicz, which

is -4.6876, with the number of decision variables (D)

being 5. A more detailed description of these

functions is shown in Table 1.

This proposed model is compared with other

benchmark methods: PSO, DGO, SGO, MPA, and

KMA. The work chooses PSO because it represents a

well-known metaheuristic algorithm that adopts

swarm intelligence. On the other hand, the other four

algorithms are chosen to represent the shortcoming

metaphors-inspired algorithm. For instance, the DGO

and SGO represent game-inspired algorithms, while

MPA and KMA represent the animal-inspired

algorithms. PSO represents the metaheuristic

algorithm whose mechanism is straightforward. DGO

and SGO represent metaheuristic algorithms whose

mechanism is not simple, but the calculation is

straightforward. On the other hand, MPA and KMA

represent metaheuristic algorithms with complicated

mechanisms.

Received: February 14, 2022. Revised: March 10, 2022. 300

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.25

Table 2. Simulation result

Function
Benchmark Score Proposed

Model
Better than

PSO DGO SGO MPA KMA

Ackley 1.2539 5.7696 7.5826 0.5845 5.8316 1.5658 DGO, SGO, KMA

Rastrigin 8.2983 8.2560 13.7112 0.5092 9.4842 1.4434
PSO, DGO, SGO,

KMA

Griewank 0.3487 1.8907 3.3059 0.2416 1.3936 0.3759 DGO, SGO, KMA

Bukin 0.0295 0.9549 0.0236 0.9866 0.0142 1.6614 -

Michalewicz -3.6446 -3.6344 -3.3566 -2.2806 -3.3984 -4.5642
PSO, DGO, SGO,

MPA, KMA

Sphere 0.0002 0.3017 0.6304 0.0007 0.1970 0.0009 DGO, SGO, KMA

Rosenbrock 50.3277 851.3852 689.6760 4.0196 28.9723 4.1941
PSO, DGO, SGO,

KMA

Bohachevsky 0 7.0106 4.3290 0.0852 0.4220 0.1398 DGO, SGO, KMA

Zakharov 0.7140 25.2796 20.1854 0.0082 7.0872 0.0071
PSO, DGO, SGO,

MPA, KMA

Booth 6.9638e-28 0.7539 0.2577 0.2630 0.1423 6.6268e-05
DGO, SGO, MPA,

KMA

All algorithms (the proposed and benchmark

algorithms) are set with several common parameters.

The population size is 20. The maximum iteration is

100.

The specific setting for these algorithms is as

follows. In PSO, the current speed, cognitive, and

social weights are set at 0.5. In SGO, the threshold

between the first and second states is set to be 0.05.

Meanwhile, the threshold between the second and

third states is set at 0.025. In MPA, the fish

aggregating device (FAD) is set at 0.2. In KMA, the

big male proportion is 0.2, the number of females is 1,

and the radius of parthenogenesis is 0.5. In the

proposed algorithm, the probabilistic ratio is set at 0.5,

and the number of attracting objects is set at 20.

The number of decisions for Bukin, Bohachevksy,

and Booth functions is 2, while for other functions, 5.

In this simulation, the step size and observation range

are set depending on the benchmark functions, which

can be found in Table 1. A more extensive search

space means a more extended step size and a broader

observation range. The simulation runs 30 times for

every function to get the result shown in Table 2. In

Table 2, the best score is written in bold font.

Table 2 shows that the proposed algorithm is

proven to achieve the metaheuristic algorithm's

objective. It can find a near-optimal solution in all

benchmark functions, both multimodal and unimodal.

The result also shows that the algorithm can avoid the

local optimal trap in the five benchmark functions.

Table 2 also shows that the proposed algorithm is

competitive enough compared with the other five

algorithms. The proposed algorithm outperforms all

benchmark algorithms in solving Michalewicz and

Zakharov functions. In general, this proposed

algorithm is very competitive compared with DGO,

SGO, and KMA. It is better than at least three

algorithms in solving nine functions. Unfortunately,

this proposed algorithm is not competitive in solving

the Bukin function.

The MPA becomes the algorithm that is most

difficult to beat. Its performance is the best in solving

four functions. But the proposed algorithm is still

better than MPA in solving three functions:

Michalewicz, Zakharov, and Booth.

The second simulation is conducted to observe

the relation between the probabilistic ratio and the

proposed algorithm. There are three values of the

probabilistic ratio (0.1; 0.5; 0.9). The result is shown

in Table 3. The first value represents very low

probabilistic ratio. On the other side, the third value

represents a very high probabilistic ratio. The best

score for every function is in bold font.

Table 3 shows that, in general, a higher

probabilistic ratio can improve the performance of

the proposed algorithm. The best fitness score is

achieved in all multimodal functions when the

probabilistic ratio is very high. On the other side, a

higher probabilistic ratio can improve the

performance in solving Rosenbrock, Bohachevsky,

and Zakharov functions. Meanwhile, in the other two

unimodal functions, a higher probabilistic ratio fails

to improve the performance. In solving sphere

function, its score tends to fluctuate.

The third simulation is conducted to evaluate the

relation between the number of attracting objects and

the performance of the proposed algorithm. In this

simulation, there are three values of attracting objects

(5, 10, 30). In this work, the probabilistic ratio is set

at 0.5. The result is shown in Table 4.

Received: February 14, 2022. Revised: March 10, 2022. 301

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.25

Table 3. Relation between probabilistic ratio and average

fitness score

Function
Average Fitness Score

p = 0.1 p = 0.5 p = 0.9

Ackley 3.0213 1.5749 0.9878

Rastrigin 3.3066 1.6603 1.2988

Griewank 0.4604 0.3473 0.2543

Bukin 1.3554 1.7357 1.3041

Michalewicz -4.5132 -4.5749 -4.5900

Sphere 0.0009 0.0011 0.0010

Rosenbrock 4.1050 4.1007 4.0156

Bohachevsky 0.2778 0.1247 0.0539

Zakharov 0.0197 0.0082 0.0061

Booth 6.199e-5 6.656e-5 7.573e-5

Table 4. Relation between number of attracting objects

and average fitness score

Function
Average Fitness Score

m = 5 m = 10 m = 30

Ackley 4.8765 2.2471 1.3572

Rastrigin 4.8102 2.8249 1.1204

Griewank 0.5051 0.4222 0.3099

Bukin 10.0043 2.1702 1.2798

Michalewicz -4.3143 -4.4809 -4.5964

Sphere 0.0018 0.0014 0.0009

Rosenbrock 75.2478 14.6083 3.9484

Bohachevsky 0.3875 0.2359 0.1272

Zakharov 1.0516 0.0213 0.0052

Booth 0.0005 0.0001 4.3155e-05

Table 4 shows that, in general, the increase of

the number of attracting objects improves the fitness

score, mainly when the number of attracting objects

ranges from 5 to 30. But its significance may be

different among functions. The improvement is

significant for solving Bukin, Rosenbrock, Zakharov,

and Booth functions within this range. Meanwhile, its

improvement is moderate for solving Ackley,

Rastrigin, and Sphere functions. In the end, its

improvement is not significant for solving Griewank

and Michalewicz functions.

5. Discussion

There are several findings due to the simulation

result. The first finding is that the proposed algorithm

is proven as a good metaheuristic algorithm. The

algorithm is good in solving problems whose

problem space is narrow or large. It can find a near-

optimal solution in both unimodal and multimodal

functions. Moreover, the problem space does not

affect its performance.

The second finding is that the result strengthens

the no-free-lunch theory, which says that no

algorithm is the best for all problems. The algorithm's

performance depends on the problem it tries to solve

[28]. The proposed algorithm is very competitive in

solving Michalewicz and Zakharov functions. On the

other hand, it is less competitive in solving the Bukin

function.

The third finding is that a higher probabilistic

ratio is preferred, especially in solving multimodal

problems. Table 3 shows that its performance is the

best when the probabilistic ratio is set high. On the

other hand, in solving a unimodal problem, the

response to the probabilistic ratio varies depending

on the problem's characteristics. Theoretically, a

higher probabilistic ratio makes every agent prefers

to exploit the global best solution after it reaches its

destination. More effort is conducted around the

global best solution rather than exploring search

space randomly. Diversification is still conducted

when the agent moves from its position to its current

destination. The current worse solution is still

accepted during this process if the agent has not

reached its destination yet. This circumstance is like

simulated annealing, but accepting the worse solution

is not based on probabilistic calculation.

The fourth finding is that, in general, the number

of attracting objects relates to increasing the proposed

algorithm's performance. However, the response is

various depending on the characteristic of the

problems. The improvement is significant in solving

unimodal problems but less significant in solving

multimodal problems.

The complexity of this proposed algorithm can be

presented as O(tmaxnm). The explanation is as follows.

This algorithm contains three loops. First, the

iteration process until the maximum iteration is

reached. The second loop is the action of every agent

in every iteration. The third loop is generating

particular attractive objects for every agent in every

iteration. The complexity is proportional to each of

these three variables when the other ones are set

constant.

There are notes related to this work. In general,

all metaheuristic algorithms consist of several

adjusted parameters. These parameters can be

adjusted to improve the performance of the algorithm.

The adjusted parameters in the proposed algorithm

and the benchmark algorithms are fixed for all ten

benchmark functions. It means that the constellation

between the proposed algorithm and the benchmark

algorithms may be different with different settings.

Based on this circumstance, it is not wise to judge that

an algorithm is better than other algorithms in solving

all problems.

Meanwhile, there are several easy methods to

improve the performance of metaheuristic algorithms.

First, the performance can be improved by increasing

the maximum iteration. As an iterative method, there

is the possibility that the future solution is better than

Received: February 14, 2022. Revised: March 10, 2022. 302

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.25

the current solution except if it is trapped in the local

optimal. Moreover, the performance can also be

improved for the population-based algorithm by

increasing the population size. These two factors also

become reasons why simple old-school algorithms

are still popular, although the shortcomings often

beat them.

6. Conclusion

This work has demonstrated that the modified

social forces algorithm is proven as a competitive

metaheuristic optimization method. Its performance is

good enough in solving both multimodal and

unimodal problems. It means this method is proven to

avoid the optimal local trap. It is competitive

compared with shell game optimization, darts game

optimizer, and Komodo mlipir algorithm. The

algorithm performance is superior in solving

Michalewicz and Zakharov functions but less

competitive in solving the Bukin function.

There are several research potentials related to this

work. First, this algorithm still needs improvement

and modification in solving many other functions.

Second, this algorithm still needs modification to

solve a combinatorial optimization problem. Third,

implementing this algorithm into real-world cases is

also challenging. Moreover, making this model

becomes widely used is another challenge.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Conceptualization: Kusuma; methodology:

Kusuma, software: Kusuma; validation: Kusuma and

Adiputra; formal analysis: Kusuma and Adiputra;

investigation: Kusuma and Adiputra; writing-original

paper draft: Kusuma; writing-review and editing:

Adiputra; funding acquisition: Kusuma.

Acknowledgments

This work is funded and supported by Telkom

University, Indonesia.

References

[1] H. R. Moshtaghi, A. T. Eshlaghy, and M. R.

Motadel, “A Comprehensive Review on Meta-

Heuristic Algorithms and Their Classification

with Novel Approach”, Journal of Applied

Research on Industrial Engineering, Vol. 8, No.

1, pp. 63-89, 2021.

[2] H. Stegherr, M. Heider, and J. Hahner,

“Classifying Metaheuristics: Towards a Unified

Multi-Level Classification System”, Natural

Computing, pp. 1-17, 2020.

[3] S. Katoch, S. S. Chauhan, and V. Kumar, “A

Review on Genetic Algorithm: Past, Present,

and Future”, Multimedia Tools and Application,

Vol. 80, pp. 8091-8126, 2021.

[4] T. Guilmeau, E. Chouzenoux, and V. Elvira,

“Simulated Annealing: A Review and a New

Scheme”, In: Proc. of 2021 IEEE Statistical

Signal Processing Workshop (SSP), Rio de

Janeiro, Brazil, pp. 101-105, 2021.

[5] K. Hussain, M. N. M. Salleh, S. Cheng, Y. Shi,

and R. Naseem, “Artificial Bee Colony

Algorithm: A Component-wise Analysis Using

Diversity Measurement”, Journal of King Saud

University – Computer and Information

Sciences, Vol. 32, No. 7, pp. 794-808, 2020.

[6] J. Bi, Z. Wu, L. Wang, D. Xie, and X. Zhao, “A

Tabu Search-Based Algorithm for Airport Gate

Assignment: A Case Study in Kunming, China”,

Journal of Advanced Transportation, Vol. 2020,

ID: 8835201, pp. 1-13, 2020.

[7] Z. W. Geem, J. H. Kim, and G. V. Loganathan,

“A New Heuristic Optimization: Harmony

Search”, Simulation, Vol. 76, No. 2, pp. 60-68,

2001.

[8] A. R. Mehrabian and C. Lucas, “A Novel

Numerical Optimization Algorithm Inspired

from Weed Colonization”, Ecological

Informatics, Vol. 1, No. 4, pp. 355-366, 2006.

[9] D. Freitas, L. G. Lopes, and F. M. Dias, “Particle

Swarm Optimisation: A Historical Review Up to

the Current Developments”, Entropy, Vol. 22,

No. 3, ID: 362, pp. 1-36, 2020.

[10] S. Liang, T. Jiao, W. Du, and S. Qu, “An

Improved Ant Colony Optimization Algorithm

Based on Context for Tourism Route Planning”,

PLOS ONE, Vol. 16, No. 9, ID: e0257317, pp.

1-16, 2021.

[11] A. M. F. Fard, M. H. Keshteli, and R. T.

Moghaddam, “Red Deer Algorithm (RDA): A

New Nature-Inspired Meta-Heuristic”, Soft

Computing, Vol.19, No. 1, pp.1-29, 2020.

[12] M. Braik, A. Sheta, and H. A. Hiary, “A Novel

Meta-Heuristic Search Algorithm for Solving

Optimization Problems: Capuchin Search

Algorithm”, Neural Computing and

Applications, Vol. 33, pp. 2515-2547, 2020.

[13] W. Qiao and Z. Yang, “Solving Large-Scale

Function Optimization Problem by Using a New

Metaheuristic Algorithm Based on Quantum

Dolphin Swarm Algorithm”, IEEE Access, Vol.

7, No. 1, pp. 138972-138989, 2019.

Received: February 14, 2022. Revised: March 10, 2022. 303

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022 DOI: 10.22266/ijies2022.0630.25

[14] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and

A. H. Gandomi, “Marine Predators Algorithm:

A Nature-Inspired Metaheuristic”, Experts

Systems with Applications, Vol. 152, ID: 113377,

pp. 1-48, 2020.

[15] Suyanto, A. A. Ariyanto, and A. F. Ariyanto,

“Komodo Mlipir Algorithm”, Applied Soft

Computing, Vol. 114, ID: 108043, pp. 1-17,

2022.

[16] Y. Qawqzeh, M. T. Alharbi, A. Jaradat, and K.

N. A. Sattar, “A Review of Swarm Intelligence

Algorithms Deployment for Scheduling and

Optimization in Cloud Computing

Environments”, PeerJ Computer Science, Vol. 7,

pp. 1-17, 2021.

[17] M. Dehghani, Z. Montazeri, O. P. Malik, H. Givi,

and J. M. Guerrero, “Shell Game Optimization:

A Novel Game-Based Algorithm”, International

Journal of Intelligent Engineering & Systems,

Vol. 13, No. 3, pp. 246-255, 2020, doi:

10.22266/ijies2020.0630.23.

[18] M. Dehghani, Z. Montazeri, H. Givi, J. M.

Guerrero, and G. Dhiman, “Darts Game

Optimizer: A New Optimization Technique

Based on Darts Game”, International Journal of

Intelligent Engineering & Systems, Vol. 13, No.

5, pp. 286-294, 2020, doi:

10.22266/ijies2020.1031.26.

[19] I. M. Mehedi, N. Saad, M. A. Magzoub, M. A.

Saggaf, and A. H. Milyani, “Simulation

Analysis and Experimental Evaluation of

Improved Field-Oriented Controlled Induction

Motors Incorporating Intelligent Controllers”,

IEEE Access, Vol. 10, pp. 18380-18394, 2022.

[20] J. Son, J. Cha, H. Kim, Y. M. Wi, “Day-ahead

Short-Term Load Forecasting for Holidays

Based on Modification of Similar Days' Load

Profiles”, IEEE Access, Vol. 10, pp. 17864-

17880, 2022.

[21] K. Khadir, N. Guermouche, T. Monteil, and A.

Guittoum, “A Genetic Algorithm based

Approach for Fluctuating QoS Aware of IoT

Services”, IEEE Access, Vol. 10, pp. 17946-

17965, 2022.

[22] M. Xu and C. Li, “Data Mining Method of

Enterprise Human Resource Management Based

on Simulated Annealing Algorithm”, Security

and Communication Networks, Vol. 2021, ID:

6342970, pp. 1-9, 2021.

[23] D. Helbing and P. Molnar, “Social Forces Model

for Pedestrian Dynamics”, Physical Review E,

Vol. 51, No. 5, pp. 4282-4286, 1995.

[24] M. S. Umam, Mustafid, and Suryono, “A Hybrid

Genetic Algorithm and Tabu Search for

Minimizing Makespan in Flow Shop Scheduling

Problem”, Journal of King Saud University –

Computer and Information Sciences, pp. 1-9,

2021, in press.

[25] X. Tian and X. Liu, “Improved Hybrid Heuristic

Algorithm Inspired by Tissue-Like Membrane

System to Solve Job Shop Scheduling Problem”,

Processes, Vol. 9, ID: 219, pp. 1-18, 2021.

[26] K. Hussain, M. N. M. Salleh, S. Cheng, and R.

Naseem, “Common Benchmark Functions for

Metaheuristic Evaluation: A Review”,

International Journal on Informatics

Visualization, Vol. 1, No. 4, pp. 218-223, 2017.

[27] S. Harifi, M. Khalilian, J. Mohammadzadeh, and

S. Ebrahimnejad, “Emperor Penguins Colony: A

New Metaheuristic Algorithm for Optimization”,

Evolutionary Intelligence, Vol. 12, No. 2, pp.

211-226, 2019.

[28] D. H. Wolpert and W. G. Macready, “No Free

Lunch Theorems for Optimization”, IEEE

Transactions on Evolutionary Computation, Vol.

1, No. 1, pp. 67-82, 1997.

