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Abstract: Stroke is a condition in which the blood supply to the brain is cut off. This occurs due to the rupture of a 

blood vessel. In addition, this can lead to fatal conditions for the patient where causes damages in several areas of the 

patients’ brain. The examination by health workers is generally carried out to receive an image of the part of the 

patient’s brain that has a stroke disorder. Commonly, stroke detection is done using magnetic resonance imaging (MRI). 

The purpose of this study is to use convolutional neural network (CNN) as a method for classifying MRI stroke images. 

The data used in this study is the DWI stroke MRI image dataset 5,226 images. The data consisted with 1,742 normal 

images, 1,742 intra cerebral hemorrhage (ICH) images, and 1,742 acute ischemic images, which are grouped into 3 

parts, training, validation, and testing. The images produced by the MRI are labeled manually by the doctor to obtain 

certain types of strokes. This study employed the multi optimizer which is Root Mean Squared Propagation (RMSprop), 

adaptive moment estimation (Adam), and stochastic gradient descent (SGD). This study compared between the 

scenario original CNN model and the scenario hepta convolution layer neural network (HCL-NN) which proposed by 

this study. Both of the scenario of CNN tested using magnetic resonance –diffusion weighted (MR-DWI) images. 

Transfer learning in the CNN model (inside the CNN library) was tested with the author's data for performance testing. 

Then, the results of the performance trials that have been carried out earlier are compared with the results of the original 

CNN and HCL-NN. The experiment shows by using scenario HCL-NN display data training accuracy value 99.23 

percent and data testing accuracy 97.40 percent. The both values are achieved with using RMSprop optimizer. 

Furthermore, this study also tested the values of precision, Recall and F1-scores. The scores for testing the HCL-NN 

scenario 97.43, 97.40 and 97.40 are higher compare to the other scenarios (original CNN) and other transfer learning 

(RESNET, VGG19 and mobilenet V2). As a summary of this study, the proposed HCL-NN performed better than 

other CNN scenarios for classifying strokes for MR-DWI images. 
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1. Introduction 

The brain is the center of the nervous system that 

regulates and coordinates most of the movement, 

behavior, and functions of the human body. Damage 

to the brain results in the cessation of some functions 

of the human body (paralysis). One of the diseases 

that can damage the brain is stroke. Stroke or 

cerebrovascular injury (CVA) is a condition that 

occurs when the blood supply to the brain is cut off 

due to blockage or rupture of a blood vessel, resulting 

in the death of some areas of the brain. This disease 

is a health condition that can be fatal if not treated 

quickly [1]. 

According to WHO (world health organization) 

in 2012, 51% of deaths due to stroke worldwide are 

caused by high blood pressure (hypertension). 



Received:  February 16, 2022.     Revised: March 11, 2022.                                                                                             305 

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022           DOI: 10.22266/ijies2022.0630.26 

 

According to 2013 basic health research data, the 

prevalence of stroke in Indonesia is 12.1 per 1,000 

population. Stroke has become the main cause of 

death in Indonesia. Stroke rates were significantly 

higher in men (7.1%) compared to women (6.8%) [2]. 

The most important factor causing a stroke is age 

because stroke often occurs in the elderly [3]. A 

stroke can cause paralysis on one side of the body. 

Paralysis usually occurs on the opposite side of the 

lesion in the brain because of cross-representation 

regulation by the brain. In addition, stroke also causes 

visual disturbances, aphasia (difficulty speaking or 

understanding speech), decreased consciousness, and 

dementia (impaired intellectual function) [4]. 

One way to diagnose stroke is computed 

tomography (CT) Scan and MRI (magnetic 

resonance imaging). CT scan is performed using a 

series of X-rays to produce clear and detailed images 

of the patient's brain. CT scans can show the presence 

of bleeding in the brain, ischemic stroke, tumors, and 

various other health conditions. The doctor may also 

inject a dye into the bloodstream to get a better view 

of the blood vessels in the neck and brain. If a patient 

is thought to be having a stroke, a CT scan can show 

the doctor the type of stroke the patient is having [5].  

CT scans are thought to be faster than MRIs, 

allowing patients to receive effective treatment as 

soon as possible. An MRI is usually done using radio 

waves and strong magnets to create clear and detailed 

images of the patient's brain. This method can detect 

brain tissue damaged by ischemic stroke and brain 

hemorrhage. Usually, this method is performed on 

patients who have various symptoms, so the location 

of the damage is still unknown. This method is also 

performed on patients who are recovering from a 

transient ischemic attack (TIA) or minor stroke. This 

test also provides more detailed images of brain tissue 

and allows for the detection of locations that would 

otherwise be invisible. A colored fluid may be 

injected into a vein to allow the doctor to see the 

arteries and veins and explain the flow of blood in the 

body [6]. 

Research to identify stroke has been carried out 

previously through CT image results using the 

statistical feature extraction feature to characterize 

the histogram with four parameters, i.e., mean, 

standard deviation, skewness, and kurtosis. Contrast 

limited adaptive histogram equalization (CLAHE) 

has also been used to clarify the image by providing 

a limit value for increasing image contrast. A study 

uses the statistical region merging method for image 

segmentation [7]. The next research is to detect and 

classify cerebral hemorrhage from CT scan images 

using the extreme learning machine artificial neural 

network method for classification. The image 

processing process uses gray scaling, scaling, and 

thresholding for image segmentation. Previous 

research done by Malathi et al. [7], classify strokes 

based on feature extraction for each type of stroke. 

The disadvantage of this approach is that the method 

cannot distinguish between types of acute ischemic 

stroke and Intra Cerebral Hemorrhage. 

Another study has proposed the convolutional 

neural network (CNN) method. Convolutional neural 

network is a machine learning that has 1 training 

stage (supervised back-propagation). CNN is part of 

the neural network method, which works similarly to 

MLP (multi-layer perceptron). The convolutional 

neural network has previously been used to detect 

brain tumors through magnetic resonance imaging 

(MRI) images [8]. Subsequent research uses CNN to 

classify lung cancer through CT scans [9]. 

Subsequent studies use CNN for the classification of 

Alzheimer's disease through MRI images and MRI 

flares. From the study [8, 9], the researcher only 

identified only identify tumors and Alzheimer's, 

without identifying the presence of stroke in the CT 

scans images.  

Therefore, this study proposes hepta 

convolutional network (HCL-NN) for classifying 

stroke that is based on convolutional neural network 

(CNN) method on MRI images. HCL-NN is a CNN 

model that has seven convolution layers to produce 

many extraction features on each layer on each MRI 

image in each class and classification accuracy value. 

The remainder of this paper is organized as follows: 

section 2 explains CNN architecture the proposed 

methodology for this study, and section 3 provides 

details of the experiment to test the process of the 

scenario models MR image datasets and the results. 

Meanwhile, this section discusses the result of the 

scenario model and comparison with the model of 

transfer learning architecture and section 4 

summarises the result of this study. 

2. Methodology 

The proposed method for classifying stroke 

consists of several stages. These stages start from the 

collection of normal, ischemic stroke, and 

hemorrhagic stroke image data which will be used for 

training and test images. The labeling stage is used to 

divide the image into 3 classes. Scaling is used in the 

pre-processing stage to determine the pixel size used 

in brain image processing [10]. Then, the uniformity 

of the gray image is done using grayscale. The resize 

stage is used for the data input stage. To perform data 

training, data splitting is used to divide the data into 

three, i.e., training data, testing data, and validating  
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Figure. 1 MR stroke image classification process 

 

data. The CNN process will continue by tuning the 

CNN parameters, such as the number of epochs, 

learning rate, so that the next step will be determined 

to calculate the performance value of the 

classification accuracy for each class. 

2.1 Augmentation data 

The image data used in this study is an MRI 

image obtained from some hospitals in Indonesia. 

The CT Scan image data obtained were 150 images, 

i.e., 50 normal images, 50 ischemic stroke images, 

and 50 hemorrhagic stroke images. The data will be 

used as training data and test data. To prevent 

overfitting, data is added by performing 

augmentations such as rescaling data, shearing, 

zooming, horizontal flip [11]. Data sharing is carried 

out with a ratio of 80 percent of training data (20% of 

training data is taken for validation) and 20 percent 

of testing data. 

2.2 CNN Architecture 

The stroke classification approach used in this 

study is the convolutional neural network (CNN) 

method with different layer modifications from 

previous studies. The CNN method uses 3 and 5 

convolution layers with filter values of 32, 64, and 

128. The classification process uses a flattening 

function, a fully connected layer, and a dense 

function. The CNN enhancement method modifies 

the number of convolutions in the CNN architecture. 

The trial process was carried out using an MRI-DWI 

image dataset on stroke patients for ischemic, 

hemorrhagic, and normal types obtained from various 

hospitals in Indonesia. The test scenario is carried out 

with several convolutions and dropouts for each 

model. Thus, the trial results will provide important 

information regarding the CNN approach which has 

better performance and the most appropriate number 

of convolutions to be used so that the stroke 

classification performance can be optimal. 

Convolutional neural network (CNN) method 

was developed through several stages, i.e., building 

model, training model, evaluation model, and final 

prediction model. The CNN structure consists of two 

processes, feature extraction and classification [12]. 

The feature extraction process in CNN consists of 

several hidden layers. Where the hidden layer 

consists of a convolution layer, an activation function, 

and a pooling layer. CNN works hierarchically so that 

it can produce output in the first convolution layer. 

The output of the first convolution layer will be used 

as input in the next convolution layer. The 

classification process uses a fully-connected layer. 

Both layer components can be equipped with an 

activation function (softmax) for optimization of the 

CNN process. The input data has an image pixel size 

and the extraction process is carried out on the 

convolution layer so that its size will be reduced [13].  

The convolutional layer forms a filter with length 

and height called the kernel. This kernel will be 

shifted to all parts of the input image to get important 

information from an object [14]. If the image is still 

too large, then down-sampling is done to reduce the 

size of the array, called max-pooling, or by taking the 

largest pixel value from each kernel. In the pooling 

process, the input image size will be drastically 

reduced. However, even if the number of parameters 

is reduced, important information from the image can 

still be retrieved. The process continues until the last 

pooling layer that produces the appropriate image 

size. In the classification section, there are several 

fully connected layers. One of them is flattened 

which is used for flattening data in the form of multi-

dimensional arrays into one dimension. Another layer 

is the hidden layer and the last is the output layer, 

which consists of several classes that represent the 

output classification. 

The data used is divided into training data, 

validation, and test data. Then, a network design was 

carried out using the CNN method to classify. The 

training data is used to carry out the network learning 

process and then evaluated. If the accuracy of the 

network model training process is not good, it is 

necessary to modify the CNN architecture, the 

network parameters, or the sample data. If the 

accuracy results are satisfactory, the next step is 

testing with data validation. The term "validation 

data" refers to data that is not used in the training 

process. If the accuracy of this validation data is poor, 

overfitting may occur, and the network must be 

modified again. If the results are good, it can be used  
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Figure. 2 CNN architecture in this study 

 

 
Figure. 3 CNN scenario 1st model 

 

 
Figure. 4 CNN scenario 2nd model / HCL-NN 

 
Table 1. DW-MRI image dataset specification 

Process 
Normal 

Images 

ICH 

Images 

Acute 

Ischemic 

Images 

Training 976 976 976 

Validation  418 418 418 

Testing 348 348 348 

Total 1,742 1,742 1,742 

 

to process test data. The CNN architecture used to 

detect stroke in this study is shown in Fig. 2. 

The convolutional neural network architecture 

used has 5 convolution layers, with dimension values 

32, 64, 128. The convolutional layer is used for 

convolution operations on the output of the previous 

layer. This layer is the main activity in the 

convolutional neural network approach. The 

convolution process on the image data is carried out 

to extract features from the input image. This process 

produces a linear transformation of the input data 

according to the spatial information in the data. 

The CNN method in this study was also modified 

by using ELM in the classification process, as shown 

in Fig. 2. CNN is used in the feature extraction 

process. Then, these features are entered into the 

ELM classifier engine. Theoretically, ELM has a fast 

training speed and high training precision. In addition, 

the use of ELM can result in better CNN performance. 

The dataset for the trial process in this study used a 

collection of stroke images (intra cerebral 

hemorrhage/ICH, acute ischemic stroke) and normal 

axial images obtained from various hospitals in 

Indonesia. The specifications for the number of 

datasets used in this study are shown in Table 1. 

Determination of the amount and specification of this 

data refers to the provisions of 80% training 

data/validation data and 20% test data.  
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Table 2. The first scenario for 1st CNN model 

 

The DWI stroke MRI image dataset has 5,226 

images, consisting of 1,742 normal images, 1,742 

ICH images, and 1,742 acute ischemic images, which 

are grouped into 3 parts, training, validation, and 

testing. 

2.3 Testing scenarios 

The trial process in this study used an MRI-DWI 

image dataset. The results obtained were stroke 

classification performance in the training, validation, 

and testing processes. Recognition accuracy in 

percent is used to measure classification performance. 

The original image in the dataset uses 90x90x3 pixel 

dimensions. The classification process has two 

scenarios. The first scenario uses a common CNN 

module which is used with 2 layers on its convolution 

as shown in Fig. 3.  

The second scenario uses hepta convolution 

layers (HCL) as shown in Fig. 4. Each scenario uses 

3 optimizers using optimizer: adam, SGD, and 

RMSProp. The testing process is carried out in each 

scenario to produce the performance of the 

classification model, including accuracy, precision, 

recall, and F1 score. Accuracy is calculated based on 

the ratio of the predicted data according to its class 

from the entire data. Precision is calculated based on 

the ratio of class-appropriate data compared to 

positive predicted data. The recall is calculated based 

on the ratio of predicted data according to its class 

compared to data that is following its class.  

2.4 Performance Measure 

Evaluation of classification performance, 

accuracy, precision, recall, and the value of the F1 

score were measured. Dependent patients and 

independent patients who were correctly classified 

were considered as true positive (TP) and true 

negative (TN). False-positive (FP) can be interpreted 

as an independent patient who is misclassified as a 

dependent patient. False negatives (FN) are 

dependent patients who are misclassified as 

independent patients [15]. The calculation for this is 

as follows: 

 

Accuracy =  
TP+TN

TP+TN+FP+FN
                       (1) 

 

Precision =
TP

TP+FP
                            (2) 

 

Recall =  
TP

TP+FN
                  (3) 

 

F1_score =  
2∗TP

2∗TP+FP+FN
                 (4) 

3. Result and discussion 

3.1 Test process with CNN model scenario 

The trial process that has been carried out has 

resulted in the stroke classification performance as 

shown in Tables 2 and 3. Tables 2 and 3 show the 

performance of the CNN method in each test scenario 

determined based on the number of convolutions in 

1st Model 
Training Process Testing Process Optimizer 

Precision Recall F1-score Support Precision Recall F1-score Support 

RMSprop 

Acute 0.9293 0.987 0.9573 1306 0.789 0.8578 0.822 436 

ICH 0.9861 0.925 0.9546 1306 0.7211 0.9014 0.8012 436 

Normal 1.0000 1.0000 1.0000 1307 1.0000 0.6621 0.7967 435 

Accuracy   0.9707 3919   0.8072 1307 

Macro avg 0.9718 0.9706 0.9706 3919 0.8367 0.8071 0.8066 1307 

Weighted avg 0.9718 0.9707 0.9706 3919 0.8366 0.8072 0.8066 1307 

Acute 0.9293 0.9870 0.9573 1306 0.8157 0.9037 0.8575 436 

Adam 

ICH 0.9861 0.9250 0.9546 1306 0.8964 0.7936 0.8418 436 

Normal 1.0000 1.0000 1.0000 1307 0.9932 1.0000 0.9966 435 

Accuracy   0.9707 3919   0.8990 1307 

Macro avg 0.9718 0.9706 0.9706 3919 0.9018 0.8991 0.8986 1307 

Weighted avg 0.9718 0.9707 0.9706 3919 0.9017 0.8990 0.8985 1307 

Acute 0.9405 0.9801 0.9599 1306 0.8435 0.8280 0.8356 436 

SGD 

ICH 0.9792 0.9380 0.9582 1306 0.8345 0.8440 0.8392 436 

Normal 1.0000 1.0000 1.0000 1307 0.9863 0.9931 0.9897 435 

Accuracy   0.9727 3919   0.8883 1307 

Macro avg 0.9732 0.9727 0.9727 3919 0.8881 0.8884 0.8882 1307 

Weighted avg 0.9732 0.9727 0.9727 3919 0.8880 0.8883 0.8881 1307 
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Table 3. The second scenario for model 2nd CNN model (HCL-CNN) 

 

 
Figure. 5 Results of confusion matrix for the three optimizer models on the 1st CNN model: (a) RMSprop, (b) Adam and 

(c) SGD 

 

 
Figure. 6 Results of confusion matrix for the three optimizer models on the 2nd CNN model: (a)RMSprop, (b) Adam, and 

(c) SGD 

 

each CNN layer. Based on the 3x3 confusion matrix 

in Fig. 5 (a), it is shown that the columns are 

predictions and therefore the rows must be actual 

values. The main diagonals (374, 393, 288) give the 

correct prediction. This is the case where the actual 

and predicted values of the model are the same. The 

first line is the actual acute number. The model 

predicted 374 of these correctly and incorrectly 

predicted 62 of acute becoming ICH. The second line 

is the actual number of ICH. The model predicted 393 

of these correctly and incorrectly predicted 43 ICH to 

be acute. The third line is the actual normal number. 

The model predicted 288 of these correctly and 

incorrectly predicted 57 normal to acute and 90 

normal to ICH. 

2nd Model 
Training Process Testing Process Optimizer 

Precision Recall F1-score Support Precision Recall F1-score Support  

Acute 1.0000 0.9770 0.9884 1306 0.9763 0.9770 0.9604 436 

 

 

RMSprop 

ICH 0.9775 1.0000 0.9886 1306 0.9467 1.0000 0.9616 436 

Normal 1.0000 1.0000 1.0000 1307 1.0000 1.0000 1.0000 435 

Accuracy   0.9923 3919   0.9740 1307 

Macro avg 0.9925 0.9923 0.9923 3919 0.9743 0.9740 0.9740 1307 

Weighted avg 0.9925 0.9923 0.9923 3919 0.9743 0.9740 0.9740 1307 

Acute 0.9992 0.987 0.9931 1306 0.8435 0.828 0.8356 436 

 

 

Adam 

ICH 0.9871 0.9992 0.9932 1306 0.8345 0.844 0.8392 436 

Normal 1.0000 1.0000 1.0000 1307 0.9863 0.9931 0.9897 435 

Accuracy   0.9954 3919   0.8883 1307 

Macro avg 0.9955 0.9954 0.9954 3919 0.8881 0.8884 0.8882 1307 

Weighted avg 0.9955 0.9954 0.9954 3919 0.888 0.8883 0.8881 1307 

Acute 0.8559 0.9502 0.9006 1306 0.8361 0.9243 0.8780 436 

 

 

SGD 

ICH 0.9601 0.8292 0.8899 1306 0.9465 0.8119 0.8741 436 

Normal 0.9746 1.0000 0.9872 1307 0.9645 1.0000 0.9819 435 

Accuracy   0.9265 3919   0.9120 1307 

Macro avg 0.9302 0.9265 0.9259 3919 0.9157 0.9121 0.9113 1307 

Weighted avg 0.9302 0.9265 0.9259 3919 0.9120 0.9120 0.9113 1307 



Received:  February 16, 2022.     Revised: March 11, 2022.                                                                                             310 

International Journal of Intelligent Engineering and Systems, Vol.15, No.3, 2022           DOI: 10.22266/ijies2022.0630.26 

 

Fig. 5 (b) shows columns are predictions and 

therefore rows must be actual values. The main 

diagonals (394, 346, 432) give the correct prediction. 

This is the case where the actual and predicted values 

of the model are the same. The first line is the actual 

acute number. The model predicted 394 of these 

correctly and incorrectly predicted 89 acute to be ICH 

and 2 acute to be normal. The second line is the actual 

number of ICH. The model predicted 346 of these 

correctly and incorrectly predicted 43 ICH to be acute 

and 1 ICH to be normal. The third line is the actual 

normal number. The model predicted 445 of these 

correctly. 

Fig. 5 (c) shows columns are predictions and 

therefore rows must be actual values. The main 

diagonals (361, 368, 445) give the correct prediction. 

This is the case where the actual and predicted values 

of the model are the same. The first line is the actual 

acute number. The model predicted 361 of these 

correctly and incorrectly predicted 72 acute to be ICH 

and 3 acute to be normal. The second line is the actual 

number of ICH. The model predicted 368 of these 

correctly and incorrectly predicted 65 ICH to be acute 

and 3 ICH to be normal. The third line is the actual 

normal number. The model predicted 432 of these 

correctly and incorrectly predicted 2 normal to be 

acute and 1 normal to be ICH. In Table 5.1 (scenario 

model 1), the highest value accuracy in the testing 

process on the Adam optimizer is 89.90 percent 

compared to the RMSprop and SGD optimizers. A 

total of 89 ischemic stroke patients with ICH were 

detected as acute stroke patients, 40 acute ischemic 

stroke patients were detected as ICH stroke patients. 

1 patient ICH stroke images were detected as normal 

images and 2 acute ischemic stroke images were 

detected as normal images. 

Based on the 3x3 confusion matrix in Fig. 6 (a) it 

is shown that the columns are predictions and 

therefore the rows must be actual values. The main 

diagonals (361, 368, 432) give the correct prediction. 

This is the case where the model's actual and 

predicted values are the same. The first line is the 

actual acute number. The model predicted 361 of 

these correctly and incorrectly predicted 72 acute to 

be ICH and 3 acute to be normal. The second line is 

the actual number of ICH. The model predicted 368 

of these correctly and incorrectly predicted 65 ICH to 

be acute and 3 ICH to be normal. The third line is the 

actual normal number. The model predicted 432 of 

these correctly and incorrectly predicted 2 normal to 

be acute and 1 normal to be ICH. 

Fig. 6 (b) shows columns are predictions and 

therefore rows must be actual values. The main 

diagonals (394, 346, 432) give the correct prediction. 

This is the case where the model's actual and 

predicted values are the same. The first line is the 

actual acute number. The model predicted 394 of 

these correctly and incorrectly predicted 89 acute to 

be ICH and 2 acute to be normal. The second line is 

the actual number of ICH. The model predicted 346 

of these correctly and incorrectly predicted 43 ICH to 

be acute and 1 ICH to be normal. The third line is the 

actual normal number. The model predicted 445 of 

these correctly. 

Fig. 6 (c) shows columns are predictions and 

therefore rows must be actual values. The main 

diagonals (361, 368, 432) give the correct prediction. 

This is the case where the model's actual and 

predicted values are the same. The first line is the 

actual acute number. The model predicted 361 of 

these correctly and incorrectly predicted 72 acute to 

be ICH and 3 acute to be normal. The second line is 

the actual number of ICH. The model predicted 368 

of these correctly and incorrectly predicted 65 ICH to 

be acute and 3 ICH to be normal. The third line is the 

actual normal number. The model predicted 432 of 

these correctly and incorrectly predicted 2 normal to 

be acute and 1 normal to be. Table 5.2 shows the 

accuracy of the testing process for the 3 classes in the 

stroke classification generated on the RMSprop 

optimizer of 97.40 percent. Recall, precision and F1-

score also have the highest scores on other optimizers 

such as Adam, and SGD. The process of adding 

convolutions for each layer results in the performance 

value of the CNN model adding to the accuracy value 

and other values. In the confusion matrix RMSprop 

optimizer, 2 images of ischemic stroke patients were 

detected as normal images, 65 images of acute 

ischemic stroke which were read as ICH stroke 

images, 1 image of ICH stroke which was detected as 

normal images, and 72 images of acute ischemic 

stroke which were read as ICH strokes. On the other 

hand, 3 images of acute ischemic stroke were read as 

normal images and 3 images of ICH stroke were 

detected as normal images. 

3.2 Trial process with transfer learning 

3.2.1. ResNet50 

ResNet-50 is an architecture from CNN which 

introduces a new concept, i.e., shortcut connections. 

The emergence of the shortcut connection concept in 

the ResNet-50 architecture is caused by the vanishing 

gradient problem. Vanishing gradient occurs when 

the process of deepening the network structure is 

carried out [16]. However, deepening the network 

with the aim of improving its performance cannot be 

done simply by stacking layers. This is because, the 

deeper the network, the more likely it is to experience  
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Figure. 7 ResNet-50 architecture block diagram 

 

 
Figure. 8 Confusion matrix results for the three optimizer models in the ResNet-50 model: (a) RMSprop, (b) Adam 

and (c) SGD 

 

missing gradient problems, which causes the gradient 

to become very small, resulting in decreased 

performance or accuracy. 

Fig. 7 shows the difference between the ResNet-

50 architecture used in this study and the original 

architecture. This is because there are slight 

modifications made to suit the needs of the 

classification system. Modifications made include: 
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Table 4. ResNet-50 architecture performance 

 

a. Changing the number of outputs on the fully 

connected layer to 3 classes. 

b. Changing the activation function on the fully 

connected layer from softmax to sigmoid. 

c. Overriding optimization functions: RMSprop, 

Adam, and SGD 

Based on the 3x3 confusion matrix in Fig. 8 (a), it 

is shown that the columns are predictions and 

therefore the rows must be actual values. The main 

diagonal (275, 357, 320) gives the correct prediction. 

This is the case where the actual and predicted values 

of the model are the same. The first line is the actual 

acute number. The model predicted 275 of these 

correctly and incorrectly predicted 135 acute to be 

ICH and 26 acute to be normal. The second line is the 

actual number of ICH. The model predicted 357 of 

these correctly and incorrectly predicted 47 ICH to be 

acute and 19 ICH to be normal. The third line is the 

actual normal number. The model predicted 320 of 

these correctly and incorrectly predicted 66 normal to 

acute and 49 normal to ICH. 

Fig. 8 (b) indicates column and row predictions 

are actual values. The main diagonal (324, 308, 381) 

gives the correct predictive value. This is the case 

where the actual value and the predicted value of the 

model are the same. The first line is the actual acute 

number. The model predicted 324 of these correctly 

and incorrectly predicted 65 acute to be ICH and 47 

acute to be normal. The second line is the actual 

number of ICH. The model predicted 308 of these 

correctly and incorrectly predicted 81 ICH to be acute 

and 64 ICH to be normal. The third line is the actual 

normal number. The model predicted 381 of these 

correctly and incorrectly predicted 45 normal to be 

acute and 9 normal to be ICH. 

Fig. 8 (c) shows columns are predictions and 

therefore rows must be actual values. The main 

diagonals (371, 64, 275) give the correct prediction. 

This is the case where the actual and predicted values 

of the model are the same. The first line is the actual 

acute number. The model predicted 371 of these 

correctly and incorrectly predicted 28 acute to be ICH 

and 37 acute to be normal. The second line is the 

actual number of ICH. The model predicted 64 of 

these correctly and incorrectly predicted 335 ICH to 

be acute and 3 ICH to be normal. The third line is the 

actual normal number. The model predicted 275 of 

these correctly and incorrectly predicted 157 normal 

to acute and 3 normal to ICH. Table 4 shows that 

Adam's optimization function resulted in training 

accuracy of 0.7885 and testing accuracy of 0.7751. In 

the confusion matrix, there were 81 ICH images 

detected by acute ischemic stroke, 45 normal images 

detected by acute ischemic stroke, 9 normal images 

detected as acute ischemic images. 28 acute ischemic 

images were detected as ICH images, 47 acute 

ischemic images were detected as normal images. 47 

ICH images were detected as normal images.  

3.2.2. VGG19 

The VGG19 architecture is a modification of the 

VGG16 architecture. This architecture has a total of 

19 layers consisting of 16 convolution layers and 3 

fully connected layers. The difference between this 

architecture and the VGG16 is only in the third, 

fourth and fifth parts[17]. Each section is simply  

ResNet 50 Model Training Process Testing Process Optimizer 

Precision Recall F1-score Support Precision Recall F1-score Support  

Acute 0.7206 0.6792 0.6993 1306 0.6858 0.6307 0.6571 436  

 

 

RMSprop 

ICH 0.7008 0.8231 0.7570 1306 0.6599 0.8188 0.7308 436 

Normal 0.9012 0.7957 0.8452 1307 0.8767 0.7356 0.8000 435 

Accuracy   0.7660 3919   0.7284 1307 

Macro avg 0.7742 0.7660 0.7672 3919 0.7408 0.7284 0.7293 1307 

Weighted avg 0.7742 0.7660 0.7672 3919 0.7407 0.7284 0.7293 1307 

Acute 0.7231 0.7519 0.7372 1306 0.7200 0.7431 0.7314 436  

 

Adam 
ICH 0.8356 0.7159 0.7711 1306 0.8063 0.7064 0.7531 436 

Normal 0.8135 0.8975 0.8534 1307 0.8021 0.8759 0.8374 435 

Accuracy   0.7885 3919   0.7751 1307 

Macro avg 0.7907 0.7884 0.7873 3919 0.7761 0.7751 0.7739 1307 

Weighted avg 0.7907 0.7885 0.7873 3919 0.7761 0.7751 0.7739 1307 

Acute 0.4400 0.8568 0.5814 1306 0.4299 0.8509 0.5712 436  

 

SGD 
ICH 0.7393 0.1455 0.2431 1306 0.6737 0.1468 0.2411 436 

Normal 0.7730 0.6618 0.7131 1307 0.7880 0.6322 0.7015 435 

Accuracy   0.5547 3919   0.5432 1307 

Macro avg 0.6508 0.5547 0.5126 3919 0.6305 0.5433 0.5046 1307 

Weighted avg 0.6508 0.5547 0.5126 3919 0.6304 0.5432 0.5044 1307 
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Figure. 9 VGG19 architecture 

 

Table 5. VGG19 architecture performance 

VGG19 Training Process Testing Process Optimize 

Precision Recall F1-score Support Precision Recall F1-score Support  

Acute 0.9106 0.9900 0.9486 1306 0.8873 0.9748 0.9290 436  

 

 

RMSprop 

ICH 0.9891 0.9020 0.9435 1306 0.9770 0.8784 0.9251 436 
Normal 
 0.9992 1.0000 0.9996 1307 0.9954 0.9977 0.9966 435 

Accuracy   0.9640 3919   0.9503 1307 

Macro avg 0.9663 0.9640 0.9639 3919 0.9532 0.9503 0.9502 1307 

Weighted avg 0.9663 0.9640 0.9639 3919 0.9532 0.9503 0.9502 1307 

Acute 0.9569 0.9862 0.9713 1306 0.9369 0.9541 0.9455 436   

 

Adam 
ICH 0.9858 0.9564 0.9709 1306 0.9492 0.9427 0.9459 436 

Normal 1.0000 0.9992 0.9996 1307 1.0000 0.9885 0.9942 435 

Accuracy   0.9806 3919   0.9617 1307 

Macro avg 0.9809 0.9806 0.9806 3919 0.9620 0.9618 0.9619 1307 

Weighted avg 0.9809 0.9806 0.9806 3919 0.9620 0.9617 0.9618 1307 

Acute 0.8902 0.7634 0.8219 1306 0.8699 0.7362 0.7975 436  

 

SGD 
ICH 0.7934 0.9204 0.8522 1306 0.7689 0.9083 0.8328 436 

Normal 0.9720 0.9549 0.9633 1307 0.9764 0.9494 0.9627 435 

Accuracy   0.8796 3919   0.8646 1307 

 

 
Figure. 10 Results of confusion matrix for the three optimizer models in the VGG19 model: (a) RMSprop, (b) Adam 

and (c) SGD 
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added with a convolution layer with the same 

configuration for each section, as shown in Fig. 9.  

Modifications made include: 

 

• Changing the number of outputs in the fully 

connected layer to 3 classes. 

• Changing the activation function on the fully 

connected layer from softmax to sigmoid. 

• Overriding optimization functions: RMSProp, 

Adam and SGD. 

 

From the experiment produced on Adam's 

optimization function, the training accuracy is 0.9806 

and the test accuracy is 0.9617. 25 ICH images were 

detected as acute ischemic images, 3 normal images 

were detected as acute ischemic images. 20 acute 

ischemic images were detected as ICH images, 2 

normal images were detected as ICH images, as 

shown in Table 9.  

Based on the 3x3 confusion matrix in Fig. 10 (a), 

it is shown that the columns are predictions and 

therefore the rows must be actual values. The main 

diagonals (425, 383, 434) give the correct prediction. 

This is the case where the actual and predicted values 

of the model are the same. The first line is the actual 

acute number. The model predicted 425 of these 

correctly and incorrectly predicted 9 acute to be ICH 

and 2 acute to be normal. The second line is the actual 

number of ICH. The model predicted 383 of these 

correctly and incorrectly predicted 53 ICH to be acute. 

The third line is the actual normal number. The model 

predicted 434 of these correctly and incorrectly 

predicted 1 normal to be acute. 

Fig. 10 (b) shows columns are predictions and 

therefore rows must be actual values. The main 

diagonal (416, 411, 430) gives the correct prediction. 

This is the case where the actual and predicted values 

of the model are the same. The first line is the actual 

acute number. The model predicted 416 of these 

correctly and incorrectly predicted 20 acute to be ICH. 

The second line is the actual number of ICH. The 

model predicted 411 of these correctly and 

incorrectly predicted 25 ICH to be acute. The third 

line is the actual normal number. The model 

predicted 430 of these correctly, and incorrectly 

predicted 3 normal to be acute and 2 normal to be ICH. 

Fig. 10 (c) shows columns are predictions and 

therefore rows must be actual values. The main 

diagonals (321, 396, 413) give the correct prediction. 

This is the case where the actual and predicted values 

of the model are the same. The first line is the actual 

acute number. The model predicted 321 of these 

correctly and incorrectly predicted 107 acute to be 

ICH and 8 acute to be normal. The second line is the 

actual number of ICH. The model predicted 64 of 

these correctly and incorrectly predicted 335 ICH to 

be acute and 3 ICH to be normal. The third line is the 

actual normal number. The model predicted 413 of 

these correctly and incorrectly predicted 10 normal to 

be acute and 12 normal to be ICH. 

3.2.3. MobileNetV2 

MobileNetV2 still uses depthwise and pointwise 

convolution. MobileNetV2 adds two new features: 1) 

linear bottlenecks, and 2) shortcut connections 

between bottlenecks[18]. The basic structure of this 

architecture is shown in Fig. 11. 

The bottleneck contains the inputs and outputs 

between the models, while the inner layer 

encapsulates the model's ability to convert inputs 

from lower-level concepts (i.e., pixels) to higher-

level descriptors. Ultimately, as with residual 

connections on traditional CNNs, shortcuts between 

bottlenecks allow for faster training and better 

accuracy. From the experiment, the optimization 

function RMSprop resulted in a training accuracy of 

0.9575 and a testing accuracy of 0.9419. 51 ICH 

images were detected as acute images. 22 acute 

ischemic images were detected as ICH images. 3 

acute ischemic images were detected as normal 

images. The confusion matrix is attached in Table 6.  

Based on the 3x3 confusion matrix in Fig. 12 (a), 

it is shown that the columns are predictions and, 

therefore, the rows must be actual values. The main 

diagonals (411, 385, 435) give the correct prediction. 

With the problem where the actual and predicted 

values of the model are the same. The first line is the 

actual acute number. The model predicted 411 of 

these correctly and incorrectly predicted 22 acute 

ICH and three acute to be expected. The second line 

is the actual number of ICH. The model predicted 385 

of these correctly and incorrectly predicted 51 ICH to 

be acute. The third line is the actual standard number. 

The model predicted 435 of these correctly. 

Fig. 12 (b) shows columns are predictions, and 

therefore rows must be actual values. The main 

diagonals (403, 354, 431) are correctly predicted. 

This is the case where the actual and predicted values 

of the model are the same. The first line is the actual 

acute number. The model predicted 403 of these 

correctly and incorrectly predicted 20 acute to be ICH 

and 13 acute to be expected. The second line is the 

actual number of ICH. The model predicted 354 of 

these correctly and incorrectly predicted 79 ICH to be 

acute and 3 ICH to be expected. The third line is the 

actual standard number. The model predicted 435 of 

these correctly. 
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Figure. 11 Architecture of mobilenetV2 

 

Table 6. CNN-mobilenetV2 performance 

 

 
Figure. 12 Results of confusion matrix for the three optimizer models in the mobilenetV2 model: (a) RMSprop, (b) 

Adam and (c) SGD 
 

MobileNetV2 Training Process Testing Process Optimizer 

Precision Recall F1-score Support Precision Recall F1-score Support 

Acute 0.9101 0.9686 0.9384 1306 0.8896 0.9427 0.9154 436  

 

 

RMSprop 

ICH 0.9664 0.9035 0.9339 1306 0.9459 0.8830 0.9134 436 

Normal 0.9992 1.0000 0.9996 1307 0.9932 1.0000 0.9966 435 

Accuracy   0.9574 3919   0.9419 1307 

Macro avg 0.9586 0.9574 0.9573 3919 0.9429 0.9419 0.9418 1307 

Weighted avg 0.9586 0.9574 0.9573 3919 0.9429 0.9419 0.9417 1307 

Acute 0.8559 0.9502 0.9006 1306 0.8361 0.9243 0.8780 436  

 

Adam 
ICH 0.9601 0.8292 0.8899 1306 0.9465 0.8119 0.8741 436 

Normal 0.9746 1.0000 0.9872 1307 0.9645 1.0000 0.9819 435 

Accuracy   0.9265 3919   0.9120 1307 

Macro avg 0.9302 0.9265 0.9259 3919 0.9157 0.9121 0.9113 1307 

Weighted avg 0.9302 0.9265 0.9259 3919 0.9157 0.9120 0.9113 1307 

Acute 0.9495 0.9364 0.9429 1306 0.9416 0.8876 0.9138 436  

 

SGD 
ICH 0.9367 0.9518 0.9442 1306 0.8937 0.9450 0.9186 436 

Normal 1.0000 0.9977 0.9989 1307 0.9908 0.9908 0.9908 435 

Accuracy   0.9620 3919   0.9411 1307 

Macro avg 0.9621 0.9620 0.9620 3919 0.9420 0.9411 0.9411 1307 

Weighted avg 0.9621 0.9620 0.9620 3919 0.9420 0.9411 0.9410 1307 
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Table 7. Experiment results with DW-MRI researcher data (n = 5,266; optimizer: RMSprop) 

Prior Work  Network 
Number of 

Convolution Layers 
ACC (%) 

Gautam et al. 

[19] 
Multi-Focus Image Fusion and CNN 13  Training: 86.076; Testing : 81.389 

Do et al. [20] 
The Recurrent Residual Convolutional 

Neural Network (RRCNN) 
16 Training = 98.090;Testing = 97.222 

Pareira et al. 

[21] 

2 step Convolution Layer   

1st Step 5 Training: 94.375; Testing = 90.833 

2nd Step 3 Training: 97.986; Testing = 93.750 

HCL-NN 
Hepta Convolutional Layer  Neural 

Network 
7 Training = 99.230; Testing = 97.40 

 

 

Fig. 12 (c) shows columns are predictions and 

therefore rows must be actual values. The main 

diagonals (387, 412, 413) give the correct prediction. 

With the actual and predicted values of the model are 

the same, the first line is the actual acute number. The 

model predicted 387 of these correctly and 

incorrectly predicted 47 acute to be ICH and 2 acute 

to be normal. The second line is the actual number of 

ICH. The model predicted 412 of these correctly and 

incorrectly predicted 22 ICH to be acute and 2 ICH 

to be normal. The third line is the actual normal 

number. The model predicted 431 of these correctly 

and incorrectly predicted 2 normal to be acute and 2 

normal to ICH. 

The proposed method is also compared with other 

researchers. Gautam et al. [19] proposed a method 

using image fusion and CNN approaches. Initially, 

several preprocessing operations have been used 

using multi-focus image fusion to improve image 

quality. Next, the preprocessed image is entered into 

the CNN architecture with 13 layers of stroke 

classification. Do et al. [20] developed a deep 

learning algorithm for the automated binary 

classification of the alberta stroke program early 

computed tomographic score (ASPECTS) using 

imaging diffusion weighting (DWI) in acute stroke 

patients. The recurrent residual convolutional neural 

network (RRCNN) was developed for the 

classification of DWI stroke images. CNN uses 16 

convolution layers. Pareira et al. [21] have classified 

stroke using 2 CNN approaches. The first approach 

uses 5 convolution layers and the second approach 

uses 3 convolution layers.  

The dataset used in the study, with a total of 5,266 

images (1,742 every class) and used RMSprop 

optimizer. Then, the data was tested on the 

convolution layer model from the previous 

researchers (Table 7). The results of these 

experiments are written in Table 7. Gautam et al. [19] 

adopted the VGG16 and resnet, employing 13 

convolution layers, the accuracy training result shows 

86.076 percent and accuracy testing 81.389 percent. 

As for Do et al. [20], which employs sixteen 

convolution layers, the accuracy training result shows 

98.090 percent and accuracy testing 97.222 percent. 

The research conducted by H. Pareira et al. [21] 

adopted 5 convolution layers for 1st step, the accuracy 

training result shows 94.375 percent and accuracy 

testing 90.833 percent. And the 2nd step, it adopted 3 

convolution layers, the accuracy training result shows 

97.986 percent and accuracy testing 93.750 percent. 

In this study, we used seven convolution layers in the 

proposed hepta convolutional layer neural network 

(HCL-NN), and the experiment deliver the highest 

accuracy training value 99.230 percent and the 

highest accuracy testing value 97.40 percent. 

Conclusion 

The experiment in this study shows by using scenario 

hepta convolution layer neural network (HCL-NN) 

display data training accuracy value 99.23 percent 

and data testing accuracy 97.40 percent. This value is 

higher compare to the original scenario CNN. This 

study was running RMSprop optimizer to present 

those both values.  

This study also tested the values of precision, 

recall and F1-scores. The scores for testing the HCL-

NN scenario 97.43, 97.40 and 97.40 are higher 

compare to the other scenarios and other transfer 

learning 

As summary this study that HCL-NN showed the 

best scenario CNN model for MR-DWI images 
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