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Abstract: The fundamental challenge in developing a prediction model for software effort estimation (SEE) is related 

to the availability of inadequate public data or the small amount of information contained in the data. As a result, 

because the information contained in the data is small, it can be challenging to make accurate estimates with 

insufficient SEE data. Data augmentation techniques, and synthetic data have been used successfully to overcome 

problems with limited data sets. In this study, conditional variational autoencoder (CVAE) and an inverse 

normalization transformation (INT) were investigated as methods for data augmentation and synthetic data generation. 

Eleven data sets in the field of software engineering (such as the PROMISE repository and ISBSG) that will be used 

as case studies. Overall, the CVAE-INT model was used for the augmented data set (synthetic data). Based on the 

Mann-Whitney test, it shows that our method provides a significant level with a mean p-value greater than 0.90 in the 

data set. Our model yields lower mean absolute error (MAE) and root mean squared error (RMSE) values. Increased 

mean error for the datasets Albercht (0.0269; 0.0842), China (0.0444; 0.1079), Cocomo81 (0.0544; 0.1155), 

Desharnais (0.0702; 0.1258), IFPUG (0.0225; 0.0448), ISBSG10 (0.0996; 0.1836), Kemerer (0.0776; 0.1457), 

Kitchenham (0.0001; 0.0010), Maxwell (0.0746; 0.1230), Nasa93 (0.0980; 0.1488), and UCP (0.0427; 0.0899). 

Furthermore, we assessed the influence of synthetic data using five machine learning prediction approaches (such as 

CART, k-nearest neighbors (kNN), Support Vector Regression (SVR), MultiLayer Perceptron (MLP), and Random 

Forest (RF)). The results show that our method can provide data augmentation techniques for the transformation of 

variance data that can produce synthetic data that has the same distribution as real data. In addition, this study shows 

that the synthetic data produced has a significant effect on increasing the accuracy of the five predictor methods in the 

machine method. 

Keywords: Data augmentation, Autoencoder, Inverse normalization transformation, Software effort estimation. 

 

 

1. Introduction 

The critical challenge in developing the SEE 

model is the lack of data and the high expenses 

involved with data collecting [1, 2]. This is because 

software project collection is costly and can consume 

significant time and workload [3]. As a result, 

obtaining accurate predictions with minimal SEE 

data may be problematic since the information 

included in such small data may not be sufficient to 

enable the training of the SEE model [3, 4].  

The data augmentation (DATA) technique is a 

technique that aims to complement a data set with 

similar data created from the information in the 

dataset [5]. The use of supervised methods produces 

a model that meets the requirements for completing a 

particular mission with a labeled dataset [6]; a 

function’s output might be a constant value 

(regression) or it can anticipate the input object's 

class label (classification) [7]. One of the most 

challenging types of data expansion in this technique 

is combining different samples with the same label in 

the feature space to create a new sample with the 

same label [5, 8]. 

Only two studies in the SEE context have tackled 
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small datasets to generate synthetic data using data 

augmentation to the best of our knowledge. For 

example, Kamei et al. (2008), augmentation method 

extends synthetic minority over-sampling technique 

(SMOTE) to use analogy-based conventional over-

sampling from classification to regression by relating 

class imbalances to the most predictive features of 

SEE [9]. Furthermore, Song et al. (2018), proposed a 

synthetic data generator by slightly shifting several 

randomly selected training examples. Where 𝛾 

(syn.rate) and ⌈. ⌉ used for rounding up operator, 𝜏 

(categorical) overcoming categorical data and 𝜎2 

(Gaussian) for the probability of each categorical. It 

can be used as a data preprocessor with any SEE 

technique [1].  

Previous research has shown that data 

augmentation will serve as a regulator to help prevent 

overfitting and improve performance with 

imbalanced distribution of data [10, 11]. This is 

mostly done in the technique of adding data to 

enlarge the training set and improve training 

performance [12, 13]. One of the traditional method 

that is often used as data augmentation in dealing 

with data limitations and small data, such as: 

synthetic minority over-sampling technique 

(SMOTE) [9], Gaussian Copula [14], multiple 

imputation chained equations (MICE) [15, 16]; while 

the most popular deep learning-based generative 

models, such as generative adversarial networks 

(GAN) [18, 19], and variational autoencoders (VAE) 

[17].  

SMOTE oversampling is likely the most often 

utilized approach [20, 21]. In the work of Torgo et al. 

(2015), several resampling techniques were 

successfully applied for regression such as SMOTER 

[22]. This method is very susceptible to the problem 

of generating noise samples [23]; they still have 

several flaws, such as overgeneralization and a lot of 

variation [24]. In contrast to MICE, for data sets 

containing different variables, this method is not 

suitable for drawing from shared distributions when 

the conditional models are not compatible [25]. 

Gaussian Copula creates synthetic data and judges its 

usefulness to be too esoteric, expensive, and 

convoluted [26]. Meanwhile, GAN has its strength in 

capturing complex data distributions [27, 28]. 

However, GANs require multiple models to train, 

which makes identifying optimal model parameters 

difficult and time-consuming [29].  

VAE is significantly easier to train by utilizing a 

gradient-based approach [30, 31]. VAE is also 

effective at capturing the original sample’s 

uncommon distribution characteristics and producing 

synthetic samples that are identical to the original 

[32]; and has better convergence property [24]. 

nonetheless, the variational autoencoder technique 

imposes significant distributional assumptions, 

which may be deleterious to the generative model 

[29]. Unfortunately, while VAE can generate 

samples, it cannot generate specific samples based on 

labels [33]. Kingma et al. (2014) developed 

conditional variational auto-encoder (CVAE) which 

is an extension of VAE to overcome these 

shortcomings [34]. CVAE is a new deep generative 

network that reconstructs input features using output 

vectors [35]; and shrink the network’s dimensions, 

but also create new attack samples in the chosen 

category [33]. 

Even though CVAE is extensively used for data 

synthesis, all of these methods assume that there is 

enough original data to train the CVAE model 

adequately. CVAE effectively extracts prospective 

data features using a robust learning encoder and 

reconstructs the decoder to offer enough data for deep 

neural networks. If this condition is not met, the 

trained CVAE model will not adequately replicate the 

original data's distribution properties, rendering the 

synthetic data created by such a model incorrect. The 

CVAE structure, in particular, must be redesigned to 

make synthetic data, as the current structure is only 

capable of two-dimensional processing data [35]. In 

addition, the existing tabular data generative model 

has difficulty in dealing with complex and diverse 

types of marginal distributions because the gradient 

problem disappears, and this model pays less 

attention to correlations between attributes. After we 

embed attribute vectors and labels encoded in ordinal 

encoding to convert categorical data. Thus, we 

propose an inverse normalization transformation 

(INT) method to accurately model correlations 

between attributes by introducing additional 

monitoring tasks to aid correlation extraction. Then, 

for each continuous column, we train the neural 

network to conduct an inverse transformation of the 

generated data into the target distribution, resulting in 

synthetic data that closely resembles the real data in 

the SEE context. 

The rest of this document is laid out as follows: 

In section 2, we’ll go over some related research, and 

in section 3, we will present our approach using the 

variational autoencoder and our proposed method. 

We’ll talk about experimental design in section 4 of 

this paper. Section 5 presents a performance 

evaluation, comparing our proposed technique with 

others and the impact of our synthetic data on 

machine learning in a SEE context. Section 6 

concludes with a discussion of the conclusions and 

future work. 
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2. Related studies 

In this paper, we will review some of the prior 

work on the variational autoencoder approach, which 

has been used extensively for synthetic data creation 

or representational learning in general. A variety of 

studies have previously been published that use 

VAE-based solutions as a data augmentation strategy. 

For example, Xu et al. (2021) developed a deep 

learning-based intrusion detection technique called 

the log-cosh conditional variational autoencoder 

(LCVAE) to produce new intrusion data with 

intriguing variations. Unfortunately, this technique 

has trouble identifying characteristics that are very 

similar to those found in standard logs, which might 

lead to classifier misjudgments [36]. Gong et al. 

(2020) proposed CVAE as a data augmentation 

strategy for detecting electricity theft, taking into 

account the shape of the sample and the nature of the 

distribution at the same time. However, there are 

difficulties in modeling the CVAE because the 

training process requires multiple power curves 

labeled electricity theft which is challenging to obtain 

in some cases, making the CVAE model impossible 

to train [35]. Fans et al. (2022) offer a CVAE-based 

time series data augmentation approach that produces 

high-quality synthetic data samples with an average 

RMSE performance increase ratio of 12 to 18 %. 

However, in order to increase the model’s 

generalization performance, this strategy requires a 

larger latent dimension to produce synthetic data [37].  

Adaptive increase dimension of variational 

autoencoder (ADA-INCVAE) by Huang and Wang 

(2021) shows that limiting the generation range based 

on local information can help classifiers improve 

precision (1.17 %) and recall (3.95 %) of minority 

samples resulting in synthetic samples. Unfortunately, 

this method takes a little longer to run during the data 

generation stage [38]. Abdel-Aty and Islam (2021), 

to encode all events into latent space, use a variational 

autoencoder. After training, the model successfully 

differentiated crash and non-crash events, resulting in 

synthetic data that followed the real data pattern with 

enhanced specificity of 8 % and 4 %, respectively. 

However, because this method is trained with a small 

amount of non-crash data, it has lower specificity 

than other techniques and so cannot correctly 

distinguish some of the non-crash events in the test 

data [39]. 

Based on the literature review results, from the 

perspective of tabular data augmentation, our work 

will propose a conditional variation autoencoder 

(CVAE) with inverse normalization transformation 

(INT). To our knowledge, this is the first study of 

CVAE-INT and regression problems in the SEE field  
 

Table 1. Description dataset 

Notations Description 

x Independent variable 

y Target variable/label 

𝜇 Mean 

𝜎 Variances 

𝑧 Latent variable 

⨀ Element-wise product 

𝑞𝜙(𝑧|𝑥𝑛) Encoder network 

𝑝𝜃(𝑥𝑛|𝑧) Decoder network 

𝜙  , 𝜃 Network parameter 

𝑝𝜃(𝑧) Latent variable's prior distribution 

Σ Diagonal matrix constraint 

𝑔(. ) Nonlinear decoder network 

transformation 

𝛽 Vector parameter 

𝑝𝑑(𝑥|𝑦) Multi-modal 

𝑝𝜓(𝑧|𝑦) Conditioned on 𝑦 and is represented 

by a neural network with parameter  

𝜓 

{𝜖𝑛} Independent normally distributed 

error with constant variance 

𝒟, 𝒟∗, 𝒟′ Dataset, New data, Synthetic data 

F Functions 

𝑠2 Squares of the errors 

ℝ Real number 

 
in situations of addressing small data availability. 

3. Our approach 

This section provides a description and 

mathematical modeling for the conditional 

variational autoencoder. We first explain to establish 

a theoretical background for modeling the problem. 

All the notations and abbreviations used in this paper 

are summarized in Table 1. 

3.1 Variational autoencoder 

VAE (variational autoencoder) is a generative 

model capable of modeling data’s latent 

representation [40], [41]. Fig. 1 shows how the VAE 

encoder translates real data into a set of means and 

variances (denoted as 𝜇  and 𝜎2 ), establishing the 

normal distribution features [42]. The latent vector 𝑧 

is then obtained from the latent normal distribution 

using random sampling, where 𝑧 = 𝜇 + 𝜎⨀𝜖, 𝜖 is an 

arbitrary value taken from the standard normal 

distribution, and ⨀  represents the element-wise 

product [37]. Gradient backpropagation through the 

entire VAE model is possible with a random 

sampling process while ensuring stochasticity [30]. 

Regularization loss is a technique for reducing the 

risk of overfitting while also creating a well-

structured latent space. It’s worth noting that the 

latent vector's size must be tuned to guarantee that the  
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Figure. 1 Architecture variantional autoencoder 

 
synthetic data is of high quality [37]. 

In the generative model in Eq. (1), define the data 

distribution based on 𝑝𝜃(𝑥) on the observed data and 

{𝑥𝑛}𝑛=1
𝑁  for the log-likelihood of the data [24]: 

 

𝑙𝑜𝑔 ∏ 𝑝𝜃(𝑥𝑛) = ∑ 𝑙𝑜𝑔
𝑁Σ𝜃

𝑛

𝑛=1
𝑁
𝑛=1                     (1) 

 
Thus, the log probability may be calculated by 

combining the kullback-leibler (KL) divergence with 

the variational evidence lower bound (ELBO) [40]. 

 

𝑙𝑜𝑔𝑝𝜃(𝑥𝑛) = 𝐷𝐾𝐿 (𝑞𝜙(𝑧|𝑥𝑛)) + 𝐿(𝜃, 𝜙; 𝑥𝑛)  (2) 

 
Where 𝑧 is the latent variable and 𝑞𝜙(𝑧|𝑥𝑛) is a 

close approximation of the true posterior that 

𝑝𝜃(𝑧|𝑥𝑛) cannot solve. Since there is no negative KL 

divergence between 𝑞𝜙(𝑧|𝑥𝑛) and 𝑝𝜃(𝑧|𝑥𝑛). 

 
𝑙𝑜𝑔𝑝𝜃(𝑥𝑛) ≥ 𝐿(𝜃, 𝜙; 𝑥𝑛)                         (3) 

 

𝑙𝑜𝑔𝑝𝜃(𝑥𝑛)  maximization is identical to ELBO 

𝐿(𝜃, 𝜙; 𝑥𝑛) , maximization, which may be divided 

into two terms: 

 

𝐿(𝜃, 𝜙; 𝑥𝑛) = 𝐸𝑞𝜙(𝑍|𝑥𝑛
)
[𝑙𝑜𝑔𝑝𝜃(𝑥𝑛|𝑧)] − 

𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥𝑛)||𝑝𝜃(𝑧))          (4) 

 

Assume that 𝑞𝜙(𝑧|𝑥𝑛)  and 𝑝𝜃(𝑥𝑛|𝑧)  are the 

encoder and decoder networks, respectively, while 𝜙 

and 𝜃  are the network parameters. For example, 

𝑝𝜃(𝑧)  represents the latent variable’s prior 

distribution. In VAE, the latent Gaussian prior 

distribution is used 𝑝(𝑧) = 𝑁(𝑧; 𝟎, 𝑰) . As a 

multivariate gaussian distribution, the approximate 

posterior distribution is multivariate gaussian. 

 

𝑙𝑜𝑔 𝑝𝜙(𝑧|𝑥𝑛) = 𝑙𝑜𝑔𝑁(𝑧; 𝜇(𝑥𝑛), Σ(𝑥𝑛))       (5) 

 

Where 𝜇  and Σ  are deterministic encoder 

functions with variation parameters and a diagonal 

matrix constraint. Because 𝑝(𝑧) and 𝑞𝜙(𝑧| 𝑥𝑛), have 

two Gaussian distributions, it may be computed in 

ELBO as: 

 

𝐷𝐾𝐿(𝑞𝜙(𝑧)||𝑝𝜃(𝑧)) =

𝐷𝐾𝐿[𝑁(𝜇(𝑥𝑛), Σ(𝑥𝑛))||𝑁(𝟎, 𝑰)] =
1

2
∑ ((𝜇𝑙

𝑛)2 +𝐿
𝑙=1

(𝜎𝑙
𝑛)2 − 1 − log ((𝜎𝑙

𝑛)2)                                         (6) 

 

The dimension of 𝑧  is 𝐿 . As a result, 

maximization of ELBO in Eq. (4) equates to 

minimization of the loss function, as follows: 

 

𝐿∗(𝜃, 𝜙; 𝑥𝑛) = ‖𝑥𝑛 − 𝑔(𝑧𝑛)‖2 +
1

2
∑ ((𝜇𝑙

𝑛)2 +𝐿
𝑙=1

(𝜎𝑙
𝑛)2 − 1 − log ((𝜎𝑙

𝑛)2)                                         (7) 

 

𝑔(. )  is a nonlinear decoder network 

transformation. To balance the reconstruction error 

and the KL divergence, an adjustable hyperparameter 

𝛽 is added to the second term of the loss function [43]. 

 

𝐿∗(𝜃, 𝜙; 𝑥𝑛) = ‖𝑥𝑛 − 𝑔(𝑧𝑛)‖2 +
𝛽

2
∑ ((𝜇𝑙

𝑛)2 +𝐿
𝑙=1

(𝜎𝑙
𝑛)2 − 1 − log ((𝜎𝑙

𝑛)2)                                          (8) 

 

A higher value for the hyperparameter 𝛽, leads to 

a more structured latent space with lower 

reconstruction costs, while a lower value leads to a 

better reconstruction with a less structured latent 

space and lower reconstruction costs.  

3.2 Conditional variational autoencoder 

Conditional variational autoencoder (CVAE) [34] 

extends the variational autoencoder (VAE) [40] basic 

model, which comprises an encoder and a decoder, to 

describe the distribution of observed data in an 

unsupervised way using latent variables. The 

conditional distribution 𝑝𝑑(𝑥|𝑦)  [44], is 

approximated using the conditional variational 

autoencoder (CVAE), as shown in Fig. 2. When the  

 

 
Figure. 2 Architecture conditional variantional 

autoencoder 
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distribution of 𝑝𝑑(𝑥|𝑦)  is multi-modal, it can 

outperform the deterministic model ( 𝑥𝑠  varies in 

probability for a given 𝑦). If 𝑥 is real, deterministic 

regression model with a mean squared error loss will 

predict 𝑥  average value. CVAE investigates the 𝑥 

distribution, which may be used to sample a wide 

range of realistic objects [45]. 

By conditionalizing the distributions investigated 

at 𝑦 [45], the lower limit of variation for VAE may 

be obtained similarly to VAE: 

 

𝐿𝐶𝑉𝐴𝐸(𝑥, 𝑦; 𝜃, 𝜓, 𝜙) 

= 𝐸𝑞𝜙(𝑧|𝑥, 𝑦)
log 𝑝𝜃 (𝑥|𝑧, 𝑦)

− 𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥, 𝑦)||𝑝𝜓(𝑧|𝑦)) 

≤ log 𝑝𝜃,𝜓(𝑥|𝑦)                   (9) 

 

The repameterization method is used to optimize 

CVAE aims. The preceding distribution, 𝑝𝜓(𝑧|𝑦) is 

conditioned on 𝑦  and is represented by a neural 

network with parameter  𝜓 . CVAE employs three 

trainable neural networks, while VAE only employs 

two [45].  

3.3 Inverse normalization transformation 

Assume that the dependent variable 𝑦  and the 

independent variable 𝑥 , and use 𝒟 = {𝑥𝑛, 𝑦𝑛}  to 

model and estimate this relationship. The regression 

model’s generic form for representing 𝑦 in the form 

of 𝑥 is: 

 
𝑦𝑛 = 𝐹(𝑥𝑛, 𝛽) + 𝜖𝑛                                (10) 

 

Where {𝜖𝑛}  is an independent normally 

distributed error with constant variance, and 𝛽 is a 

vector parameter 𝑝 . The values of the parameters 

𝛽0, 𝛽1, … , 𝛽𝑝 are commonly calculated to reduce the 

number of squares of mistakes [46]: 

 

𝑠2 = min
𝛽

∑ [𝑦𝑖 − 𝐹(𝑥𝑛, 𝛽)]2𝑁
𝑛=1                   (11) 

 

The least squares approach’s parameters are 

adjusted using either linear or nonlinear regression 

techniques, depending on the nature of the function F. 

A different way to model the box-cox transformation 

is to transform the dependent variable so that the error 

variance constant and normality of the error 

distribution are obtained when the model is linear for 

F [47]. 

 

𝑦(𝜆) = {
𝑦𝜆−1

𝜆
 (𝜆 ≠ 0)

log(𝑦) (𝜆 = 0)
                             (12) 

If this transformation works, 𝑦(𝜆)  should be 

properly represented by a linear function of the 

standard normal variable 𝑥, 𝐹(𝑥; 𝛽) = 𝛽0 + 𝛽1𝑥. The 

“maximum likelihood” technique is the 𝜆 value for 

that best satisfies this criteria. Eq. (12) can be used to 

derive the box-cox transformation, which can then be 

used to develop the inverse normalization 

transformation (INT) with various error distributions, 

yielding equation [46]: 

 

𝑦 = {[𝜆(𝛽0
′ + 𝛽1

′𝑥) + 1]
1

𝜆 = 𝑀(1 + 𝛽0𝑥)𝛽1 , 𝜆 ≠ 0

exp(𝛽0
′ + 𝛽1

′𝑥) = 𝑀 exp(𝛽2𝑥) ,            𝜆 = 0
  

(13) 

 
In each example, the middle term is rebuilt on the 

right to keep the 𝑌, 𝑀  median. Eq. (13) to give a 

generally poor representation of the quantile 

relationship between y (the quantile of the nonnormal 

variable Y) and the corresponding standard normal 

quantile, X. 

Eq. (14) is obtained by generalizing the log term 

by presenting it as a box-cox transformation [46]. 

 

𝑦 = 𝑀 exp {𝛽1[(1 + 𝛽0𝑥)
𝛽3
𝛽0 − 1]/(

𝛽3

𝛽0
) + 𝛽2𝑥}, 𝑥 

> −1/𝛽0      (14) 
 

INT has four parameters, one of which is the 

median, which is used as a scale parameter and is kept 

by INT (when 𝑥 = 0, 𝑦 = 𝑀 ). The suitable 

installation process will decide the remaining four 

characteristics. 

4. Experiment design 

In this section, we introduce an experimental 
design using a deep learning approach as a data 
augmentation method that aims to generate synthetic 
data on a regression problem: 

4.1 Problem statement 

Building an SEE model usually requires data, but 

collecting data requires a lot of time, workload, and 

high costs associated with data collection. This 

results in the sample training data being available 

being a small data set, leading to unsatisfactory 

performance of the SEE model. Instead of collecting 

as much data on the completed software project as 

possible (takes a considerable amount of time) to 

build a sophisticated SEE model.  

So, we will generate a data synthesis project from 

the completed data based on data 𝒟  by collecting 

small data in the SEE context, as: 𝒟∗ = 𝒟⋃𝒟′ . 

Where 𝒟′ is the resulting synthesis data project, then 
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the training process is based on 𝒟∗ as the new data. 

Given a randomly selected training example 𝒟 =
{(𝑋𝑛, 𝑦𝑛)}𝑛=1

𝑁 , 𝑋 ∈ ℝ𝑑 where 𝑋𝑛 = (𝑥1, 𝑥2, … , 𝑥𝑖) ∈
ℝ𝑑  synthetic project creation with conditions all 

distributions considered on 𝑦, for 𝑦 ∈ ℝ1  as: 

 

       𝑞𝜙: (ℝ𝑑, ℝ) → 𝑝𝜃: (ℝ𝑑 , ℝ) 

([

𝑞𝜙(𝑧|𝑥1)
…

𝑞𝜙(𝑧|𝑥𝑑)
] , 𝑞𝜙(𝑧|𝑦)) = 𝑝𝜃(𝑥𝑠𝑦𝑛, 𝑦𝑠𝑦𝑛)   (15) 

 
Where 𝑞𝜙 is the encoder that is used for the feed 

as input data and 𝑝𝜃 is the decoder that generates the 

synthesis data from 𝑧. 

4.2 Development of the data augmentation 

approach via DVAE-INT 

However, the main limitation of classical 

variational  autoencoder inference is the need for 

conjugation of probability and priors in order for 

most problems to be carefully optimized, which in 

turn may limit the application of the algorithm [48]. 

VAE uses neural networks to show conditional 

posteriors [40], allowing the variational inference 

goal to be properly optimized via stochastic gradient 

descent and conventional backpropagation.  

VAE has a higher convergence rate than GAN, 

one of its main advantages. Even though VAE is 

often used for data synthesis, these approaches 

presume enough real-world data to train the VAE 

model effectively. If this assumption is incorrect, the 

trained VAE model will not capture the real data's 

distribution features, resulting in erroneous synthetic 

data [24]. Kingma et al. (2014) developed 

Conditional variational auto-encoder (CVAE) which 

is an extension of VAE to overcome these 

shortcomings [34]. CVAE successfully extracts 

prospective features using an encoder with high 

learning capabilities. The decoder reconstructs the 

input features, providing adequate data for the deep 

neural network [35].  

However, based on the findings of previous 

research studies, CVAE use in generating synthetic 

data to overcome the availability of small data in 

regression problems is still limited. We use CVAE 

which is effective in extracting potential features in 

the data, and reconstructing it to produce synthetic 

data. We also redesigned the CVAE structure to make 

it suitable for processing one-dimensional data. Also, 

we perform categorical conversion of data using 

ordinal encoding embedded in attribute vectors and 

labels. Furthermore, to strengthen the correlation  

 

 
Figure. 3 Our proposed improved CVAE-INT 

 

between the attributes in the regression, we used the 

inverse normalization transformation (INT) method 

to aid correlation extraction. Then, we train the neural 

network to perform an inverse transformation into the 

target distribution to obtain synthetic data that looks 

like real data for each continuous column. 

However, some of the other popular augmentation 

methods that will be used for comparison in the 

method we are developing have some drawbacks. 

Torgo et al (2015) proposed SMOTER with a re-

sampling method to generate synthetic data for a 

regression task, where the target variable is 

continuous [22]. Unfortunately, this method is very 

prone to problems generating noise samples and 

resulting in overgeneralization/high variance. 

Goodfellow et al. (2014), the GAN trains two models 

at the same time: the generative model G, which 

captures the data distribution, and the discriminative 

model D, which estimates the probability of the 

sample being drawn from the training data. The 

disadvantages are mainly that there is no explicit 

representation of 𝑝𝑔(𝑥), and that D must synchronize 

nicely with G during training, making optimal model 

parameters difficult and time consuming [49]. Yoon 

et al. (2019) developed a new time series GAN 

(TGAN) architecture for generating realistic time-

series data, integrating the unsupervised paradigm's 

flexibility with the control afforded by supervised 

training. This method generates realistic samples 

using a variety of real-time and synthetic datasets. 

However, the time GAN algorithm has system-wide 

compatibility, overall training time, and is not very 

sensitive to hyperparameters [50]. Xu et al. (2019) 

proposed conditional tabular generative adversarial 

networks (CTGAN) to generate realistic synthetic 

data from tabular data having a mix of discrete and 

continuous columns. To solve the problem the 

continuous column may have several modes while 

the discrete column is sometimes unbalanced making 

modeling difficult [51]. 
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4.3 Dataset collection and preprocessing 

We selected eleven publicly accessible real-life 

datasets, nine from the PROMISE Repository and 

two from the ISBSG [52], [53], [54], which is one of 

the most prominent datasets, such as Maxwell, 

Cocomo81, Kitchenham, Nasa93, Kemerer, Albrecht, 

Desharnais, China, and UCP are the datasets 

accessible in Promise Repository. Meanwhile, 

ISBSG has two datasets available: ISBSG18-IFPUG 

and ISBSG10. 

These data sets come in different sizes and 

dimensions to conduct comprehensive experiments. 

After data collection, the data preprocessing stage 

will be carried out to improve data quality. The data 

preprocessing step usually includes feature reduction, 

i.e., removing irrelevant features. The next step is to 

convert categorical data into numeric using ordinal 

encoding. Note that the ISBSG dataset has a sample 

with the value “?” as missing values; we address the 

problem of missing data using the Denoising 

autoencoder approach for missing imputation of the 

dataset. Table 2 summarizes all variables in the real 

data, including mean, standard deviation (std), 

skewness (Skew), and kurtosis (Kurt).  

4.4 Performance analysis 

We present a model training and validation 

technique on the suggested model in Fig. 4 to 

determine whether the resultant data performs as 

intended. The real data is then divided into three 

groups: 70 % training, 15 % testing, and 15 % 

validation. After then, only training data is used, 

while test data is saved for the ultimate evaluation. 

The next step is to use CVAE-INT to analyze and 

create synthetic data. Finally, carry out the data 

augmentation evaluation procedure. 

The performance of our model is evaluated in this 

study using error metrics. The model is superior if the 

mean absolute error (MAE) and root mean squared 

error (RMSE) values are low and the R-squared (R2)  

 
Table 2. Description dataset 

Dataset Mean Std Skew Kurt 

Albercht 178.847 354.367 0.104 2.564 

China 331.375 1850.14 2.458 18.95 

Cocomo81 45.633 468.473 3.491 22.91 

Desharnais 116.506 162.231 0.110 4.345 

IFPUG 240.639 1224.507 0.103 3.385 

ISBSG10 178.847 354.367 -0.854 3.624 

Kemerer 366.230 561.459 0.408 3.069 

Kitchenham 1675.802 6052.215 0.357 8.560 

Maxwell 335.977 2539.394 0.729 8.147 

Nasa93 41.195 295.891 3.919 30.46 

UCP 1167.333 2435.962 0.387 2.841 

value is high. 

 

𝑀𝐴𝐸 =
1

𝑚
∑ |𝑋𝑖 − 𝑌𝑖|𝑚

𝑖=1                             (16) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑋𝑖 − 𝑌𝑖)2𝑚

𝑖=1                        (17) 

 

𝑅2 = 1 −
∑ (𝑋𝑖−𝑌𝑖)2𝑚

𝑖=1

∑ (�̅�−𝑌𝑖)2𝑚
𝑖=1

                              (18) 

 

Statistical testing uses non-parametric which aims 

to validate the model further. Usually, the mann-

whitney U test is used if the data is continuous. The 

procedure for calculating the mann-whitney p-value 

is described below: 

 

𝑈 = 𝑁1𝑁2 +
𝑁2(𝑁2+1)

2
− ∑ 𝑅𝑖

𝑁2
𝑖=𝑁1+1             (19) 

 

Where, 𝑁1 as the first sample size (real data), and 

𝑁2 as the second sample size (synthetic data). While,  

 

 
Figure. 4 Prosedur of the training scheme 
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𝑅𝑖  as a sample size rating. The maximum possible 

value of 𝑅𝑖  can be 𝑁1𝑁2 +
𝑁2(𝑁2+1)

2
. The first null 

and alternate hypotheses are formed when testing 

statistical significance between two data samples 

using the mann-whitney p-value. 
 

• Null hypothesis (H0) states that the 

distributions of the two samples are identical. 

• Alternative hypothesis (H1): The distributions 

of the two samples are different. 

 
The significance level between real data and 

synthetic data in all investigated data sets is greater 

than 0.05 (p-value>0.05), implying that they are 

statistically quite close or have the same distribution. 

Therefore, the alternative hypothesis must be rejected. 

5. Result and discussion 

We shall assess the success of the strategy 

provided in this study. The keras platform, tensorflow, 

and the scikit-learn python package are used to 

execute our suggested technique and other basic 

models. Setting the hyperparameters is a crucial step 

in training a deep learning model. The trial and error 

technique was used to identify the best parameter 

settings for all deep learning models. Our simulation 

was run on an NVIDIA GeForce GPU Titan 100 with 

an i7-6800k processor, 64 GB of RAM, TensorFlow 

1.2.1, and Ubuntu 14.04 LTS. The default Python 3.0 

parameter settings are utilized. 

5.1 Hyperparameter analysis 

In our work, we are evaluating the performance 

of the suggested model through experiments. In 

PROMISE and ISBSG, we employed 11 distinct 

small datasets from the Repository set. We will 

compare the proposed approach to various standard 

models for creating synthetic data in our study. To 

identify the parameters in our experiment, the 

sequence of data available was randomly partitioned 

into a training data set of 70 %, a testing data set of 

15 %, and a validation data set of 15 %. The training 

data set was the only data set used for data 

augmentation. The resulting synthetic data is 

represented by developing synthetic data from actual 

data and then combining the synthetic and real data 

(𝒟∗ = 𝒟 ∪ 𝒟′). 

CVAE-INT is a work-in-progress that uses fully 

linked layers to generate synthetic data. The model 

was built with a 1D convolution layer and optimized 

with a grid search mode to capture the temporal 

relationships in the regression data [37]. The number 

of layers and hidden filters are tuned in model 

optimization to decrease computational costs since 

they significantly influence model performance. For 

all involved data sets, the hyperparameters defined in 

our trained model employ the embedding dimension 

of the hidden layer of 256, which seeks to improve 

the DNN generalization performance [37], [33]. 

Adam default was learning speed and the rectified 

linear unit (ReLU) optimizer we utilized in this 

experiment in TensorFlow. For our model, Adam for 

a network with a learning rate of 1×10−3 [33], [55]. 

The ReLU is utilized as the activation function for all 

levels except the encoder and decoder output layers, 

which use the linear activation function. We’ll choose 

a latent size of 2.5. The ideal value of ReLU, on the 

other hand, may vary depending on the model [37], 

[56]. To overcome the suggested model’s overfitting 

problem, we incorporated a 0.2 dropout strategy by 

lowering the number of neurons. If gain too much 

weight, will become less fit. 

We separated the model into three subsets and ran 

it five times to ensure that each data subset had an 

equal chance of being utilized in the test section. The 

accuracy score was then obtained by taking the 

average model accuracy in the test subset. Finally, the 

best parameter is chosen as the one with the highest 

cross-validation score. 

5.2 Regression performance 

We consider advanced augmentation techniques 

in dealing with regression problems to validate the 

effectiveness of the proposed model. In this situation, 

we will use error measurements and statistical 

approaches to assess the efficacy of our model, as 

mentioned in section 4.4. 

CVAE-INT was explicitly trained on 11 different 

samples. Each CVAE-INT model was trained over 

100 epochs, with 15 % of the dataset being utilized 

for validation. Fig. 5 shows the model losses for the 

positive and negative data sets in the training and 

validation sets, respectively. Our model mainly 

converges after 20-40 epochs. 

The test is then carried out by comparing the 

distribution of real data with the synthetic sample 

produced by our advanced method. Our technique has 

the benefit of addressing the problem of overfitting 

because broad generalizations are difficult to obtain 

when working with small samples. Our suggested 

approach has a more similar distribution to real data 

and has more variety, and it can overcome the 

regression problem while maintaining the same 

structure. To validate the effectiveness of our strategy, 

we gave the average results of five runs for each 

method. 
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Figure. 5 Training and validation loss of the our model (a) Albercht (b) China (c) Cocomo81 (d) Desharnais (e) IFPUG 

(f) ISBSG10 (g) Kemerer (h) Kitchenham (i) Maxwell (j) Nasa93 (k) UCP 

 

 
Table 3. Evaluation performance our model 

Dataset MAE RMSE R2 

Albercht 0.0269 0.0842 0.9262 

China 0.0444 0.1079 0.0900 

Cocomo81 0.0544 0.1155 0.6072 

Desharnais 0.0702 0.1258 0.6738 

IFPUG 0.0225 0.0448 0.7566 

ISBSG10 0.0996 0.1836 -0.0066 

Kemerer 0.0776 0.1457 0.4057 

Kitchenham 0.0001 0.0010 0.9982 

Maxwell 0.0746 0.1230 0.4542 

Nasa93 0.0980 0.1488 0.2047 

UCP 0.0427 0.0899 0.8929 

 

MAE, RMSE, and R2 were used to apply a set of 

assessment criteria listed in Table 3. In terms of MAE 

and RMSE, our model yielded the lowest error, 

however neither one had the highest error. In our 

model, the best MAE and RMSE values are bolded. 

In addition, R2 in our model delivers the greatest 

value, even though there is a lowest and negative 

value (italics) that shows that the dataset has no 

regression association. 

We also use t-SNE to display synthetic data 

which is used to compare the distribution of real and 

synthetic data. The findings suggest that our approach 

can assist in bridging the gap between real and 

synthetic data. Fig. 6 depicts an analysis of the data 

distribution of each of the 11 datasets utilized in this 

study. 

To compare the distribution of real data with the 

resulting data (synthetic data), we used scatter plots.  
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p-value = 0.9466; mean = 166.26;  

t-test = -0.0672; std = 337.508 

(a) 

 
p-value = 0.9755; mean = 346.55;  

t-test = 0.0306; std = 1563.85 

(b) 

 
p-value = 0.9047; mean = 55.397;  

t-test = -0.1190; std = 526.238 

(c) 

 
p-value = 0.7956; mean = 101.50;  

t-test = 0.2590; std = 136.039   

(d) 

 
p-value = 0.9691; mean = 246.35;  

t-test = -0.0388; std = 1042.851 

(e) 

 
p-value = 0.8549; mean = 372.91;  

t-test = -0.1828; std = 1788.975 

(f) 

 
p-value = 0.9558; mean = 1509.7;  

t-test = -0.0553; std = 563.746 

(g) 

 
p-value = 0.9656; mean = 364.47;  

t-test = 0.0434; std = 6230.028 

(h) 

 
p-value = 0.9516; mean = 338.28;  

t-test = -0.0607; std = 2519.062 

(i) 

 
p-value = 0.9892; mean = 43.025;  

t-test = 0.0134; std = 296.752 

(j) 

 
p-value = 0.9825; mean = 1158.4;  

t-test = 0.0219; std = 2409.071 

(k) 

 

Figure. 6 Evaluation data distributions using t-SNE visualization of bridged by CVAE-INT: (a) Albercht dataset, (b) 

China dataset, (c) Cocomo81 dataset, (d) Desharnais dataset, (e) ISBSG IFPUG dataset, (f) ISBSG10 dataset, (g) 

Kemerer dataset, (h) Kitchenham dataset, (i) Maxwell dataset, (j) Nasa93 dataset, and (k) UCP dataset 

 

 

This allows us to compare distributions and offers us 

an estimate of the mean of the two data sets. In Fig. 

6, real data is shown in blue, while synthetic data is 

shown in orange. The resulting data pattern is very 

similar to the real data distribution for all variables. 

The value of the standard deviation of the distribution 

for the synthetic dataset, which has a value smaller 

than the real data, indicates that the data generated 

from the augmentation process contains fewer 

outliers. Based on the mann-whitney test shows that 

our method provides a significant level greater than 

0.05 with a mean p-value greater than 0.90 in the data 

set, as can be observed. This indicates that the mean 

of all datasets is similar. Thus, we can conclude that 

the two data sets are statistically comparable. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure. 7 Comparison performance evaluation of the algorithm (a) MAE, (b) RMSE, (c) P-Values, and (d) std  

 
 

5.3 Comparison with state-of-the-art algorithms 

In this part, we compare our proposed technique 

to popular data augmentation methods, including 

SMOTE Regression (SMOTER) [22], which was 

modified from SEE, generative adversarial networks 

(GAN) [49], TimeGAN (TGAN) [50], and 

conditional tabular generative adversarial networks 

(CTGAN) [51].  

Fig. 7 shows a performance comparison of our 

proposed technique with other standard data 

augmentation methods based on error metrics and 

statistical tests. 

The comparison of our technique with various 

prominent methods is based on the MAE and RMSE 

values, as shown in Fig. 7. The results show that our 

method produces the best accuracy value. Where, our 

method has the lowest value on the evaluation of the 

error metrics with MAE and RMSE values 

respectively, in the data set albercht (0.0269; 0.0842), 

China (0.0444; 0.1079), cocomo81 (0.0544; 0.1155), 

desaharnias (0.0702; 0.1258), ISBSG18-IFPUG 

(0.0225; 0.0448), ISBSG10 (0.0996; 0.1836), 

kemerer (0.0776; 0.1457), kitchenham (0.0001; 

0.0010), maxwell (0.0746; 0.1230), nasa93 (0.0980; 

0.1488), and UCP (0.0427; 0.0899 ). while the poor 

values were obtained by the SMOTER method on the 

kemerer data (0.2558; 0.3148), the GAN method on 

the albercht data (0.2660; 0.3638), china (0.0892; 

0.1699), and maxwell (0.1872; 0.2716). Furthermore, 

by the TGAN method on ISBSG18-IFPUG data 

(0.2909; 0.3787), ISBSG10 (0.1513; 0.2588), nasa93 

(0.2299; 0.3058), and UCP (0.2644; 0.3502), the last 

by the CTGAN method on cocomo81 data (0.2273; 

0.3152), desharnais (0.2153; 0.2864), and kichenham 

(0.1339; 0.2022). 

Based on the mann-whitney test, it shows that our 

method provides a significant level greater than 0.05 

with a mean p-value greater than 0.90 in the data set, 

as can be observed. The findings reveal that our 

technique beats all other popular methods in most 

datasets (equal distribution of real and synthetic data), 

except for ISBSG10, Kemerer, and UCP, which 

outperform the conventional GAN method. However,  
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Table 4. Comparison of the impact of machine learning performance on synthetic and real datasets using MAE values 

Dataset 
CART KNN MLP SVR RF 

Real Syn. Real Syn. Real Syn. Real Syn. Real Syn. 

Albercht 0.0534 0.0012 0.1016 0.0011 0.0888 0.0035 0.1694 0.0536 0.1217 0.0009 

China 0.0178 0.0020 0.0244 0.0019 0.0284 0.0087 0.0567 0.0278 0.0115 0.0016 

Cocomo81 0.0934 0.0027 0.0466 0.0019 0.0949 0.0115 0.1230 0.0409 0.0681 0.0018 

Desharnais 0.0228 0.0020 0.0594 0.0018 0.0678 0.0066 0.0522 0.0401 0.0161 0.0014 

IFPUG 0.2557 0.0010 0.1591 0.0008 0.1853 0.0084 0.1923 0.0173 0.1698 0.0007 

ISBSG10 0.0174 0.0038 0.0268 0.0030 0.0228 0.0094 0.0568 0.0379 0.0132 0.0027 

Kemerer 0.1167 0.0105 0.2732 0.0084 0.2442 0.0415 0.3319 0.0382 0.2326 0.0088 

Kitchenham 0.0065 0.0004 0.0068 0.0004 0.0074 0.0008 0.0823 0.0811 0.0044 0.0004 

Maxwell 0.0667 0.0018 0.0718 0.0012 0.0638 0.0060 0.0982 0.0679 0.0544 0.0012 

Nasa93 0.0433 0.0018 0.0492 0.0014 0.0451 0.0093 0.0945 0.0486 0.0213 0.0011 

UCP 0.1146 0.0058 0.1367 0.0037 0.2307 0.0390 0.0960 0.0504 0.1012 0.0045 

 

 

Table 5. Comparison of the impact of machine learning performance  

on synthetic and real datasets using RMSE values 

Dataset 
CART KNN MLP SVR RF 

Real Syn. Real Syn. Real Syn. Real Syn. Real Syn. 

Albercht 0.0776 0.0032 0.1538 0.0031 0.1238 0.0054 0.2379 0.0561 0.1702 0.0025 

China 0.0479 0.0180 0.0479 0.0208 0.0567 0.0176 0.0730 0.0421 0.0400 0.0146 

Cocomo81 0.1911 0.0068 0.0745 0.0041 0.1139 0.0189 0.1528 0.0479 0.1396 0.0018 

Desharnais 0.0321 0.0050 0.0656 0.0061 0.0861 0.0092 0.0654 0.0462 0.0248 0.0041 

IFPUG 0.3762 0.0051 0.2290 0.0036 0.2379 0.0125 0.2382 0.0284 0.2271 0.0039 

ISBSG10 0.0387 0.0143 0.0455 0.0118 0.0309 0.0166 0.0624 0.0421 0.0280 0.0113 

Kemerer 0.1964 0.0280 0.2934 0.0233 0.2680 0.0561 0.3673 0.0511 0.2674 0.0219 

Kitchenham 0.0129 0.0034 0.0156 0.0054 0.0150 0.0023 0.0831 0.0829 0.0098 0.0045 

Maxwell 0.1049 0.0055 0.0982 0.0041 0.0855 0.0090 0.1120 0.0699 0.0959 0.0041 

Nasa93 0.1102 0.0083 0.1223 0.0071 0.0717 0.0148 0.1179 0.0531 0.0457 0.0043 

UCP 0.2655 0.0197 0.1801 0.0122 0.2932 0.0541 0.1206 0.0593 0.1961 0.0146 

 

 

in the Kitchenham dataset, the GAN, TGAN, and 

CTGAN methods have the lowest values. Meanwhile, 

the SMOTER method has a low value in almost all 

datasets. 

Our technique has a lower distribution standard 

deviation number than actual data for a bigger dataset 

because it has a smaller fraction of outliers, as 

previously described. Most of the other 

approaches,have a greater standard deviation than the 

actual data, implying that they contain a higher 

percentage of outliers. 

In general, our strategy outperformed the other 

methods utilized in this study. This is because VAE 

is the outcome of integrating the Bayesian variation 

approach with neural networks’ flexibility and 

scalability [40], [57]. Using variational inference, it 

is feasible to transform an intractable inference into 

an optimization problem. 

5.4 Sensitivity to data augmentation of machine 

learning 

We investigated the impact of producing new 

synthetic data using the data augmentation strategy 

described in this study. Synthetic data generated from 

11 publicly available real-life datasets was used to 

test how much impact they have on machine learning 

performance in the regression field. Synthetic data 

generated in our paper is synthetic data that produces 

the same amount of real data, which is then combined 

with real data. 

We analyze the impact of using synthetic data on 

machine learning performance by comparing it to real 

data. The use of five classical supervised learning 

algorithms that are popular in the SEE context, such 

as classification and regression tree (CART), k-

nearest neighbors (kNN), support vector regression 

(SVR), multilayer perceptron (MLP), and random 

forest (RF). Tables 4 and 5 show the performance 

results on machine learning based on the MAE and 

RMSE error metrics, with the best values declared in 

bold, on the contrary, the poor values in italics. 

Overall, the synthetic data created by our method 

improves the accuracy of the machine learning 

baseline prediction method significantly. The random 

forest algorithm has the best performance than other 

algorithms based on the Table 4 and 5. Nevertheless, 

other algorithms have performance that is almost the 

same or close to the random forest algorithm. 
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6. Conclusion 

This paper investigates the conditional variation 

autoencoder method combined with the inverse 

normalization transformation (CVAE-INT) to 

generate synthetic data. Our study helps overcome 

the limitations of the small, generally available data 

in the SEE field. In this regard, our method is 

compared with four other popular methods, such as 

SMOTER, GAN, TGAN, and CTGAN. Our method 

was used to add eleven data sets to the PROMISE 

repository and the ISBSG. Overall, our method is the 

best-performing model. The mean of our method 

gives an increase in a p-value for the t-test greater 

than 0.90 for all datasets; MAE and RMSE are also 

lower. CVAE-INT effectively extracts potential 

features in 1-dimensional data capable of handling 

complex and diverse types of marginal distributions 

due to disappearance gradient problems to help 

extract correlations between attributes. Our method is 

very stable during the training process and has a fast 

convergence speed. The resulting synthetic data 

curve has a shape and distribution characteristic 

similar to the original data. Finally, we’ll put our 

synthetic data results to the test using machine 

learning regression algorithms (such as CART, KNN, 

MLP, SVR, and RF). In the context of SEE, this 

research provides empirical proof that our synthetic 

data significantly impacts machine learning 

performance. Experiments on synthetic and real-

world data sets reveal that our method outperforms 

state-of-the-art tabular data models. 

It is hoped that in the future, researchers can 

develop CVAE in producing synthetic data to 

overcome the problem of small data in the field of 

classification and production methods that are 

resistant to outliers. It is hoped that further research 

can use several datasets from other fields. 
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