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Abstract: In the Printed Circuit Boards (PCBs) manufacturing, the defect detection is an important task that helps in 

improving the quality of PCBs production. The conventional defect detection schemes include few drawbacks like 

high computational cost, noise susceptibility, and strongly depends on a carefully designed template. To highlight the 

above stated drawbacks, a new hybrid deep learning model is proposed in this manuscript. Initially, the input PCB 

defective images are collected from the PCB defect dataset and further, the feature extraction is performed by utilizing 

Binary Robust Invariant Scalable Keypoints (BRISK) and Speeded up Robust Features (SURF) for extracting the 

feature vectors from the PCB defective image. The extracted feature vectors are multi-dimensional that increase the 

computational complexity, so the stacked autoencoder technique is applied for reducing dimension of the extracted 

feature vectors. The stacked autoencoder technique effectively selects minimal sub-set of non-redundant and relevant 

feature vectors and it is used for representing the datasets from original feature space to a reduced and more informative 

feature space. Finally, the selected feature vectors are fed to the Bi-Long Short Memory Network (Bi-LSTM) for 

classifying the defect types like mouse bite, spurious copper, short, spur, missing hole, and open circuit. The extensive 

experimental outcome confirmed that the hybrid deep learning model obtained higher performance in the PCB defect 

detection with the classification accuracy of 99.99%, which is superior related to the comparative models. 

Keywords: Dimensionality reduction, Feature extraction, Long short memory network, PCB defect detection, Stacked 

autoencoder. 

 

 

1. Introduction 

In the recent decades, the electronic products are 

extensively utilized in human daily life like computer, 

television, mobile phone, etc., where the high quality 

PCBs are required for better usage of the electronic 

products [1-3]. During the PCB manufacturing 

process, several defects occur at different stages like 

scratches, holes, crack, broken edges, missing 

components or misaligned, etc. [4, 5]. The manual 

visual inspection is accomplished to find these 

defects in the electronic products. However, the 

manual visual defect detection is slow, inconsistent 

and subjective, where it does not satisfy the present 

manufacturing requirements [6-8]. Therefore, the 

machine learning techniques are effective for an 

automated PCB defect detection in the manufacturing 

process [9]. The existing machine learning 

techniques generally works based on texture analysis 

[10], where a set of active feature values are extracted 

from the spectral or the spatial domain of the test PCB 

defective image [11]. In addition to this, a high level 

multiple dimensional classification techniques such 

as random forest, support vector machine, etc. are 

employed for identifying the defect samples [12]. 

Whereas, the success of the classification techniques 

completely depends on the human experts for 

extracting and selecting the representative feature 

values based on the structure variations and local gray 

level variations of a defect in the test PCB defective 

image [13]. The machine learning techniques need 

handcrafted feature values, which is insufficient to 

detect the defect samples, so a new hybrid deep 

learning model is introduced in this manuscript, 

where the major contributions are given below: 
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• After the collection of PCB defective images, the 

feature extraction is carried out utilizing SURF 

and BRISK feature descriptors for extracting the 

discriminative feature vectors. 

• Then, the stacked autoencoder is developed for 

diminishing the dimensions of the extracted 

features, which improves the computational 

complexity and training time of the Bi-LSTM 

classifier. 

• Lastly, the dimensionally reduced features are 

fed to the Bi-LSTM classifier for classifying the 

defect types like mouse bite, spurious copper, 

short, spur, missing hole and open circuit. The 

proposed hybrid deep learning model’s 

effectiveness is validated by means of f1-score, 

accuracy, specificity, Mathews Correlation 

Coefficient (MCC), and sensitivity. 

This manuscript is organized as follows: few 

recent research papers on the topic “PCB defect 

detection” are reviewed in Section 2. The 

mathematical and experimental analysis of the 

proposed hybrid deep learning model is given in 

Sections 3 and 4. The conclusion of the proposed 

model is represented in Section 5. 

2. Related works 

Hassanin [14] developed an automated inspection 

model on the PCB images for precise location and 

identification of the fault types. In this literature, the 

SURF feature descriptor and morphological 

operation were employed for detecting feature points 

on the PCB images. Then, the Euclidean distance 

measure was utilized for feature matching to localize 

and detect the missing components regard-less of the 

PCB type, rotation, and position. However, the higher 

dimensional data were not evenly distributed by the 

Euclidean distance measure that was a main concern 

in this study. Kim [15] implemented an automated 

PCB inspection model named skip-connected 

convolutional autoencoder. The developed model 

was trained for decoding the defect images from the 

non-defect images. Next, the decoded images were 

matched with the original input images for 

identifying the defect location. Further, an image 

augmentation technique was used for improving the 

training performance of the presented model. The 

simulation result revealed that the presented model 

obtained promising performance in the PCB defect 

detection. In the inspection systems, the data 

imbalance was a major concern in the skip-connected 

convolutional autoencoder. 

Adibhatla [16] implemented a new inspection 

model named You Only Look Once (YOLO) for 

detecting the defects in the PCB images. In this 

literature, around 11,000 PCB images and the 

network with 2 fully connected layers and 24 

convolutional layers were utilized to achieve better 

PCB defect detection. Hu and Wang, [17] integrated 

feature pyramid network and faster Region-based 

Convolutional Neural Network (RCNN) to detect 

surface defects in the PCB images. The presented 

YOLO and RCNN models were computationally 

expensive, because it needs high-end graphics 

processing unit systems for data training and testing. 

Gaidhane [18] used a similarity measure named as 

symmetric matrix to compare the defect images from 

the non-defect images for an effective defect 

detection in the PCB images. As stated earlier, the 

multi-dimensional data were not evenly distributed 

by the similarity measure, which was a main problem 

in the defect detection. 

Yuk [19] combined SURF feature descriptor and 

weighted kernel density estimation map to extract 

and choose the discriminative feature vectors for 

better defect detection in the PCB images. Further, 

the selected feature vectors were fed to the random 

forest classification technique for classifying the 

defect types. However, the random forest classifier 

was a weak learner related to other machine learning 

methods. Ding [20] combined Tiny Defect Detection 

Network (TDD-Net) and K-means clustering method 

to strengthen the relationship of feature maps for tiny 

defect detection. The quantitative examination on the 

PCB defect dataset showed that the presented model 

obtained superior defect detection performance 

compared to existing models. However, the presented 

TDD-Net model was suitable only for small defects. 

To highlight the issues mentioned in the literature 

phase, a new hybrid deep learning model (stacked 

autoencoder with Bi-LSTM) is proposed in this 

manuscript. 

3. Methodology 

In the PCB defect detection application, the 

proposed deep learning model includes four major 

steps like image collection: PCB defect dataset, 

feature extraction: BRISK and SURF descriptors, 

dimensionality reduction: stacked autoencoder, and 

 

 
Figure. 1 Flowchart of the proposed hybrid deep learning 

model 
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Table 1. Data statistics of PCB defect dataset 

Classes Missing hole Mouse bite Open circuit Short Spur Spurious copper 

Total images 115 115 116 116 115 116 

Number of defects 497 492 482 491 488 503 

 

 
(a) 

 

 
(b) 

Figure. 2 (a) Original PCB defect image and (b) Ground 

truth image 

 

defect classification: Bi-LSTM classifier. The 

flowchart of the proposed deep learning model is 

graphically stated in Fig. 1. 

3.1 Dataset description 

In this manuscript, the proposed model’s 

effectiveness is tested on the PCB defect dataset. The 

PCB defect dataset consists of 693 PCB defective 

images with the pixel size of 2777 × 2138. The 693 

PCB defective images have 2953 defects, which are 

categorized into six classes like mouse bite, spurious 

copper, short, spur, missing hole, and open circuit. 

The PCB defect dataset is available in the link of 

http://robotics.pkusz.edu.cn/resources/dataset/. Data 

statistics about PCB defect dataset is given in table 1 

and the sample PCB defect image is represented in 

Fig. 2. 

3.2 Feature extraction 

After collecting the PCB defective images, the 

feature extraction is performed using BRISK and 

SURF. The BRISK descriptor is an effective texture 

descriptor that has better matching quality by 

generating valuable key-points in the collected 

images. The BRISK descriptor utilizes a symmetric 

sampling pattern over sample point of smooth pixels 

in the images, and then direction of each key point is 

identified that allows the orientation-normalized 

descriptor to achieve rotation invariance. Next, the 

BRISK key points are matched, where the intensity 

of the image is considered as 𝑝𝑖  and the Gaussian 

smoothing with standard deviation is assumed as 𝜎𝑖, 

which is directly proportional to the distance between 

circles and points. The key point 𝑘 in the acquired 

images are patterned based on its position and scaling 

and the sampling point pairs are specified as (𝑝𝑖, 𝑝𝑗). 

Additionally, the intensity of smooth value points are 

indicated as 𝑋(𝑝𝑖, 𝜎𝑖) and 𝑋(𝑝𝑗 , 𝜎𝑗), which helps to 

determine the local gradients that is mathematically 

defined in Eq. (1). 

 

𝐺(𝑝𝑖 , 𝑝𝑗) = (𝑝𝑗 − 𝑝𝑖) ×
𝑋(𝑝𝑗,𝜎𝑗)−𝑋(𝑝𝑖,𝜎𝑖)

‖𝑝𝑗−𝑝𝑖‖
2        (1) 

 

Let us consider a set of all sampling-point pairs 𝐴, 

and then separate the pixel pairs into two sub-sets like 

short-distance pairs and long-distance pairs. The 

short-distance pairs is specified as  𝑆 and the long-

distance pairs is indicated as  𝐿 , which are 

mathematically represented in the Eqs. (2) and (3). 

 

𝑆 = {(𝑝𝑖, 𝑝𝑗)𝜖𝐴|‖𝑝𝑗 − 𝑝𝑖‖ < 𝛿𝑚𝑎𝑥} ⊆ 𝐴      (2) 

 

𝐿 = {(𝑝𝑖, 𝑝𝑗)𝜖𝐴|‖𝑝𝑗 − 𝑝𝑖‖ < 𝛿𝑚𝑖𝑛} ⊆ 𝐴      (3) 

 

Further, calculate the local gradient between 

long-distance pairs and the threshold distance is set to 

𝛿𝑚𝑎𝑥 = 9.75𝑡  and  𝛿𝑚𝑖𝑛 = 9.75𝑡 , where 𝑡  is the 

scale of 𝑘. In this scenario, the point pairs are iterated 

using 𝐿 for identifying the complete pattern direction 

of key points 𝑘 that is mathematically defined in Eq. 

(4). 

 

𝐺 = (
𝐺𝑖

𝐺𝑗
) =

1

𝐿
× ∑ 𝐺(𝑝𝑖 , 𝑝𝑗)(𝑝𝑖,𝑝𝑗)𝜖𝐿          (4) 

 

The sampling pattern rotation of orientation is 

stated as 𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛 2(𝐺𝑗, 𝐺𝑖) of the key points. The 

binary descriptor 𝑑𝑘 is generated using short distance 

pairs, where each bit in 𝑑𝑘 is calculated from a pair 

of 𝑆. In this study, the BRISK descriptor is 512 bit 

long and it is gathered by performing short distance 

intensity at every binary feature vectors 𝑏, which is 

mathematically represented in Eq. (5). 

 

𝑏 = {
1,   𝑋(𝑝𝑗

𝛼 , 𝜎𝑗) > 𝑋(𝑝𝑖
𝛼 , 𝜎𝑖)

0,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} ∀(𝑝𝑥

𝛼 , 𝑝𝑦
𝛼)𝜖𝑆  (5) 
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Where, 𝑏  indicates 32 dimensional vectors at 

every key points. 

Further, the SURF descriptor is a local feature 

descriptor, which is extensively employed in the 

image processing and computer vision fields. The 

SURF feature descriptor contains 3 steps such as 

interest point description, interest point localization, 

and integral image generation. In the SURF feature 

descriptor, the key points in the acquired image are 

detected based on scale space theory. The SURF 

feature descriptor uses Fast Hessian Detector to 

extract the SURF feature vectors from the acquired 

PCB defective images. The Hessian matrix is 

determined by using Eq. (6). 

 

𝐻(𝑋, 𝜎) = {
𝐶𝑥𝑥(𝑋, 𝜎) 𝐶𝑥𝑦(𝑋, 𝜎)

𝐶𝑦𝑥(𝑋, 𝜎) 𝐶𝑦𝑦(𝑋, 𝜎)
}            (6) 

 

Where, 𝜎 states scale, 𝑋 represents points of the 

images, 𝐶𝑥𝑥(𝑋, 𝜎)  states convolution of Gaussian 

2nd order derivative 
𝜕2

𝜕𝑥2 𝑔(𝜎), 𝑔(𝜎) =
1

2𝜋𝜎2 𝑒
−(𝑥2+𝑦2)

2𝜎2  

with the image in point 𝑋. Similarly, 𝐶𝑦𝑦(𝑋, 𝜎) and 

𝐶𝑥𝑦(𝑋, 𝜎) states convolution of Gaussian 2nd order 

derivative 
𝜕2

𝜕𝑦2 𝑔(𝜎) 𝑎𝑛𝑑 
𝜕2

𝜕𝑥𝜕𝑦
𝑔(𝜎)  with the image 

in point 𝑋. 

The box filter is used in the SURF feature 

descriptor as the approximation of the convolution 

Gaussian 2nd order derivative. The box filter is 

computed using the integral images for achieving 

convolution of box filters such as 𝐵𝑥𝑥, 𝐵𝑥𝑦, 𝑎𝑛𝑑 𝐵𝑦𝑦. 

The approximate determinant of the Hessian matrix 

is determined for finding the image key-points, which 

is mathematically defined in Eq. (7). 

 

𝐷𝑒𝑡 [𝐻(𝑋, 𝜎)] = 𝐵𝑥𝑥𝐵𝑦𝑦 − (0.912 𝐵𝑥𝑦)2       (7) 

 

Where, 0.912 is used for stabling the determinant 

of Hessian matrix. The SURF descriptor utilizes the 

box filters to identify and match the interest points for 

obtaining the scale invariance. Whereas, the size of 

the box filters is altered for constructing the scale 

space and it is further portioned into octaves. Hence, 

the approximate determinant of the Hessian matrix is 

identified at a non-maximum suppression in 3 × 3 ×
3 neighborhood to find the maxima value. The SURF 

feature descriptor’s scale 𝜎 and key-point’s location 

are obtained with the reference to the maximum 

values. By finding the Haar Wavelet response, an 

orientation is assigned to the obtained key-points 

with the radius of 6𝑠 , where  𝑠  indicates sampling 

steps. 

Next, an orientation direction is assigned to the 

key point’s center with a square size of 20s. In 

addition, the square size is divided into 4 × 4 sub-

regions, and it is again partitioned into 5 × 5 space 

points. Further, the vertical and horizontal Haar 

Wavelet response 𝑑𝑥 and 𝑑𝑦 are determined at every 

space points. By using Haar Wavelet response, each 

sub-regions creates four-dimensional vector that is 

mathematically determined in Eq. (8). 

 

𝑣 = (∑ 𝑑𝑥 , ∑ 𝑑𝑦 , ∑|𝑑𝑥|, ∑|𝑑𝑦|)            (8) 

 

 
(a) 

 

 
(b) 

Figure. 3: (a) Extracted features and (b) feature matching 
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Lastly, all the sub-regions are merged into vectors 

4 × (4 × 4) that result in 64 dimensional vectors at 

every key points, which are further used to 

accomplish the matching process. In the next step, the 

dimension of the extracted feature vectors is reduced 

by employing stacked autoencoder that effectively 

reduces the computational complexity and running 

time of the classifier. Whereas, the extracted features 

and feature matching are graphically depicted in Fig. 

3. 

3.3 Dimensionality reduction 

After feature extraction, the feature 

dimensionality reduction is carried out by utilizing 

stacked autoencoder. The stacked autoencoder 

consistently performed well in the dimensionality 

reduction compared to conventional classifiers. The 

stacked autoencoder is the feed forward neural 

network, which comprises of multiple hidden layers, 

an input layer and an output layer, which are 

described in the Eqs. (9) and (10). 

 

𝑍(𝑙) = 𝑦(𝑙−1)𝑊(𝑙) + 𝑏(𝑙)                   (9) 

 

𝑦(𝑙) = 𝑔(𝑍(𝑙))                          (10) 

 

Where,  𝑍(𝑙)  indicates pre-activation layer of 

vector 𝑙, 𝑦(𝑙−1) represents input of present layer 𝑙 and 

output of previous layers  𝑙 − 1 , 𝑊(𝑙) ∈ ℝ𝑛𝑖×𝑛0 

denotes matrix of learnable biases 𝑏, 𝑦(𝑙) represents 

input of the model,  𝑔(. )  indicates nonlinear 

activation function, 𝑙 ∈ [1, … 𝐿]  denotes 𝑙𝑡ℎ  layer, 

and 𝑦(𝐿) indicates final layer output. In this scenario, 

the ReLU is utilized as an activation function that 

superiorly enhances the computer efficiency, and 

increases the learning rate of the model for better 

dimensionality reduction. Additionally, the softmax 

non-linearity function is applied in the output layer to 

obtain better probability interpretation that is 

mathematically stated in Eq. (11). 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍(𝐿)) =
𝑒𝑥𝑝𝑍𝑘

∑ 𝑒𝑥𝑝𝑍𝑘
𝐾
𝑘=1

              (11) 

 

Where, 𝐾  denotes output classes. In stacked 

autoencoder, the cross entropy loss function is 

applied to deal with the optimization problem, which 

is mathematically determined in Eq. (12). 

 

𝐶 = − ∑ �̂�𝑘log (𝑦𝑘
(𝐿)

)𝐾
𝑘=1                  (12) 

 

Where, 𝑦(𝐿)  specifies model output and �̂�𝑘 ∈
{0,1}𝑘 represents encoded label. In this manuscript,  
 

 
Figure. 4 Defect detected PCB image 

 

the stacked autoencoder is designed for learning the 

low dimensional feature vectors. The stacked 

autoencoder with a hidden layer is mathematically 

determined in Eq. (13). 

 

ℎ𝑒 = 𝑎1(𝑊𝑒𝑥) 𝑎𝑛𝑑 𝑥 = 𝑎2(𝑊𝑑  ℎ𝑒),        (13) 

 

Where , 𝑥  indicates input feature vectors and 

𝑥 represents reconstructed feature vectors, 𝑊𝑒  and 

𝑊𝑑  are matrices, which indicates the linear 

combination of inputs for encoding and decoding 

sections. Further, 𝑎1 and 𝑎2 are constant values, and 

ℎ𝑒 is the output of bottleneck layer and it is 

considered as the low dimensional representation of 

the input feature vectors. The parameter setting of 

stacked autoencoder is indicated as follows: sparsity 

regularization is 4, L2 weight regularization is 0.004, 

sparsity proportion is 0.150, number of hidden layers 

is 100, maximum iterations: SAE learning is 100, and 

maximum iterations: softmax learning is 100. The 

defect detected PCB image is denoted in Fig. 4. 

3.4 Classification 

The optimized 26 dimensional vectors are given 

as the input to the Bi-LSTM network for classifying 

the six PCB defects such as mouse bite, spurious 

copper, short, spur, missing hole, and open circuit. 

The LSTM network is the advanced version of the 

recurrent neural network that uses memory cell for 

controlling input, output and forget gates, and storing 

the network temporal state. The input and output 

gates are used for controlling the input and output 

flows of the memory cell. Additionally, the forget 

gate is attached to the memory cell that transfers 

output information from current neuron to the next 

neuron. The information is stored in memory cell, if 

the input has high activation, and the information is 

passed to the next neuron, if the output has high 

activation. The LSTM network contains input gate 𝑖𝑡, 

forget gate 𝑓𝑡, cell 𝑐𝑡  and output gate 𝑜𝑡 , which are 

indicated in the Eqs. (14) to (17). 

 

𝑖𝑡 = 𝜎(𝑊𝑖ℎℎ𝑡−1 + 𝑊𝑖𝑎𝑎𝑡 + 𝑏𝑖)           (14) 
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Figure. 5 Architecture of LSTM unit 

 

𝑓𝑡 = 𝜎(𝑊𝑓ℎℎ𝑡−1 + 𝑊𝑓𝑎𝑎𝑡 + 𝑏𝑓)          (15) 

 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 

+𝑖𝑡 ⊙ 𝑡𝑎𝑛ℎ (𝑊𝑐ℎℎ𝑡−1 + 𝑊𝑐𝑎𝑎𝑡 + 𝑏𝑐) (16) 

 

𝑜𝑡 = 𝜎(𝑊𝑜ℎℎ𝑡−1 + 𝑊𝑜𝑎𝑎𝑡 + 𝑏0)          (17) 

 

Where, 𝑎𝑡 = 𝐴[𝑡, . ] ∈ ℝ𝐹  indicates quasi-

periodic feature, ⊙states point-wise multiplication, 

𝜎(. )  states sigmoid activation function, 𝑡𝑎𝑛ℎ (. ) 

represents hyperbolic tangent activation function, 

ℎ𝑡−1 denotes output of the prior LSTM unit, 𝑊 and 𝑏 

indicates work coefficients. The output of LSTM unit 

ℎ𝑡  is mathematically defined in Eq. (18), and 

graphically depicted in Fig. 5. 

 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡)                    (18) 

 

As indicated in Fig. 5, the term ℎ𝑡  includes 

information of the prior time steps 𝑡 of a cell 𝑐𝑡 and 

output gate 𝑜𝑡. The cell states {𝑐𝑡|𝑡 = 1,2, . . 𝑇} learns 

the memory information of the temporal quasi-

periodic feature vectors for short and long time period 

based on dependency relation during data training. 

The Bi-LSTM network is developed to overcome the 

problems of LSTM cell, where it effectively works on 

the prior content, but it cannot utilize the future one. 

In Bi-LSTM network, the input flows in two direction 

that makes this network is different from the 

conventional LSTM network. Hence, the LSTM 

network makes flow in one direction (neither 

backward nor forward), where Bi-LSTM network 

makes input flow in both directions for preserving the 

past and the future information. The parameter setting 

of Bi-LSTM network is given as follows: minimum 

batch size is 27, maximum epochs is 200, gradient 

threshold is one and the execution environment is 

graphics processing units. 

4. Experimental results 

The proposed hybrid deep learning model 

(stacked autoencoder with Bi-LSTM) performance is  
 

Table 2. Confusion matrix related to the PCB defect 

detection 

 Actual class 

Defects Non-

defects 

Predicted 

class 

Defects True 

positive 

False 

positive 

Non-

defects 

False 

negative 

True 

negative 

 

tested using MATLAB 2020 software environment 

on a system configuration with windows 10 operating 

system, 16 GB random access memory, 4 TB hard 

disk, and Intel core i7 processor. The proposed hybrid 

deep learning model’s efficiency is validated utilizing 

five performance measures: F1-score, MCC, 

specificity, classification accuracy, and sensitivity. 

The classification accuracy is an important 

performance measure in the PCB defect detection 

that denotes how close the achieved result to the true 

values. Correspondingly, the specificity and 

sensitivity test measures are used for identifying the 

features without and with the PCB defects. The 

mathematical representation of the classification 

accuracy, specificity, and sensitivity are represented 

in the Eqs. (19) to (21). Where, FP, FN, TP, and TN 

indicates false positive, false negative, true positive, 

and true negative. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100         (19) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100             (20) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100             (21) 

 
In addition to this, the F1-score is the harmonic 

mean of sensitivity and precision values, and the 

parametric value of MCC lies between 1 to -1, where 

the proposed hybrid deep learning model is effective 

in the PCB defect detection, when the parametric 

value is 1. The mathematical formula of MCC and 

F1-score is indicated in the Eqs. (22) and (23). 

Further, the confusion matrix of this research is 

depicted in Table 2. 

 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
× 100 (22) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

𝐹𝑃+2𝑇𝑃+𝐹𝑁
× 100            (23) 

4.1 Quantitative evaluation 

In this manuscript, the proposed hybrid deep 

learning model performance is evaluated on the PCB 
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defect dataset, which comprises of 693 PCB defective 

images in that 80:20% of the defective images is 

applied for model training and testing. In addition to 

this, the 10-fold cross validation is performed on the 

data that reduces the variance of the resulting 

estimation and computational time. By inspecting 

table 3, the performance evaluation is done by 

varying the classification techniques: random forest, 

K-Nearest Neighbour (KNN), decision tree, and Bi-

LSTM network along with and without the stacked 

autoencoder technique. As represented in the table 3, 

the combination: stacked autoencoder with Bi-LSTM 

network achieved high performance in the PCB 

defect detection with accuracy of 99.99%, F1-score 

of 99.41%, sensitivity of 98.35%, specificity of 

99.67%, and MCC of 98.89% on the PCB defect 

dataset. The obtained experimental result is better 

compared to other individual classification 

techniques such as random forest, KNN, and decision 

tree. Related to the comparative classification 

techniques, the Bi-LSTM classifier significantly 

improves the model’s performance on sequence 

classification problems. The experimental results of 

different classifiers with and without using stacked 

autoencoder technique is graphically indicated in the 

Fig. 6 and 7. 

By viewing Table 4, the stacked autoencoder 

technique obtained high classification performance 

with Bi-LSTM classifier compared to the 

conventional techniques: Principal Component 

Analysis (PCA), Probabilistic PCA (PPCA), 

Reconstruction PCA (RPCA), and Reconstruction 

Independent Component Analysis (RICA). The 

stacked autoencoder technique is a good choice for 

the feature dimensionality reduction and 

visualization of dataset with a larger number of the 

variables. Hence, the comparison results of the 

different feature dimensionality reduction techniques 

with Bi-LSTM classifier is depicted in Fig. 8. 

 

 
Table 3. Experimental results of the proposed model by varying the classifiers 

Without stacked autoencoder 

Classifiers Accuracy (%) Sensitivity (%) Specificity (%) MCC (%) F1-score (%) 

KNN 80.33 82.42 81.77 82.36 83.75 

Random forest 63.73 64.54 64.25 65.42 63.38 

Decision tree 88.38 86.48 87.74 88.40 87.51 

Bi-LSTM 95.79 96.67 94.59 95.87 95.75 

With stacked autoencoder 

Classifiers Accuracy (%) Sensitivity (%) Specificity (%) MCC (%) F1-score (%) 

KNN 92.50 92.32 91.75 92.67 93.74 

Random forest 73.74 74.51 73.27 72.41 73.53 

Decision tree 97.33 96.54 96.77 96.30 97.58 

Bi-LSTM 99.99 98.35 99.67 98.89 99.41 

 
 

 
Figure. 6 Comparison results of different classifiers without using stacked autoencoder 
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Figure. 7 Comparison results of different classifiers with using stacked autoencoder 

 
Table 4. Experimental results of the proposed model by varying the feature dimensionality reduction techniques 

Techniques Accuracy (%) Sensitivity (%) Specificity (%) MCC (%) F1-score (%) 

PCA 34.17 34.69 31.67 35.32 36.83 

PPCA 47.50 45.50 44.74 48.38 47.84 

RICA 23.33 25.30 24.28 23.49 23.86 

RPCA 40.83 41.93 40.74 39.75 40.33 

Stacked autoencoder 99.99 98.35 99.67 98.89 99.41 

 

 
Figure. 8 Comparison results of different feature dimensionality reduction techniques with Bi-LSTM classifier 

 

4.2 Comparative evaluation 

The investigation between the proposed hybrid 

deep learning model and the comparative models is 

depicted in Table 5. J. Kim [15] developed a novel 

automated PCB defect detection model based on skip 

connected convolutional autoencoder. The 

quantitative evaluation on the PCB defect dataset 

showed that the presented deep learning model 

attained better defect detection performance with F1-

score of 98.01% and classification accuracy of 

98.08%. Correspondingly, R. Ding [20] integrated 

both k-means clustering algorithm and TDD-Net 

model for an effective PCB defect detection by 

strengthening the relationship of the extracted feature 

map. The experimental analysis showed that the 

developed deep learning model achieved a mean 

average precision of 98.90% on the PCB defect 

dataset.  

Related to these existing papers, the proposed 

hybrid deep learning model obtained high 

performance in the PCB defect detection. The 

proposed hybrid deep learning model evenly 

distributed the extracted multi-dimensional features 

by employing stacked autoencoder and the Bi-LSTM  
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Table 5. Comparative valuation between the proposed 

and the existing models 

Models F1-

score 

(%) 

Accuracy 

(%) 

Mean 

average 

precision 

(%) 

Skip connected 

convolutional 

autoencoder [15] 

98.01 98.08 - 

TDD-Net model 

[20] 

- - 98.90 

Hybrid deep 

learning model 

99.41 99.99 99.54 

 

network is a quick and effective learner for the defect 

type classification, which are the main problems 

mentioned in the literature section. 

5. Conclusion 

In this manuscript, a new hybrid deep learning 

model (stacked autoencoder with Bi-LSTM) is 

introduced for an effective PCB defect detection. 

After collecting the PCB defective images, the 

feature extraction is accomplished by using BRISK 

and SURF descriptors for extracting the global 

feature vectors from the PCB defective images that 

superiorly reduces the semantic space between the 

feature sub-sets. Next, the stacked autoencoder 

technique is developed to reduce the dimension of the 

extracted feature values that diminishes the system 

complexity to linear𝑂(𝑁), where 𝑂 states order of 

magnitude, and 𝑁 states size of the data. After feature 

dimensionality reduction, the defect type 

classification is accomplished by using Bi-LSTM 

classifier for classifying the six defect types like 

mouse bite, spurious copper, short, spur, missing hole, 

and open circuit. The proposed hybrid deep learning 

model attained 99.99% of classification accuracy, 

98.35% of sensitivity, 99.67% of specificity, 98.89% 

of MCC, and 99.41% of F1-score in PCB defect 

detection, where the achieved results are better 

related to the comparative dimensionality reduction 

and classification techniques. As a future extension, 

a new hyper-parameter optimization algorithm is 

included in the Bi-LSTM network to further enhance 

the PCB defect detection. 
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Parameters Notation 

𝑝𝑖  Intensity of the image 

𝜎𝑖 Gaussian smoothing with 

standard deviation 

(𝑝𝑖 , 𝑝𝑗) Sampling point pairs 

𝑆 Short-distance pairs 

𝐿 Long-distance pairs 

𝑏 32 dimensional vectors at 

every key points 

𝜎 Scale 

𝑋 Points of the images 

𝑑𝑥 and 𝑑𝑦 Vertical and horizontal 

Haar Wavelet response 

𝑍(𝑙) Pre-activation layer of 

vector 𝑙 

 𝑦(𝑙−1) Input of present layer 𝑙 and 

output of previous 

layers 𝑙 − 1 

𝑊(𝑙) ∈ ℝ𝑛𝑖×𝑛0 Matrix of learnable biases  

𝑔(. ) Nonlinear activation 

function 

𝑦(𝐿) Final layer output 

𝐾 Output classes 

ℎ𝑒 Output of bottleneck layer 

𝑖𝑡 Input gate 

𝑓𝑡 Forget gate 

 𝑐𝑡 Cell state 

 𝑜𝑡 Output gate 

𝑎𝑡 = 𝐴[𝑡, . ] ∈ ℝ𝐹 Quasi-periodic feature 

⊙ Point-wise multiplication 

𝜎(. ) Sigmoid activation 

function 

𝑡𝑎𝑛ℎ (. ) Hyperbolic tangent 

activation function 

FP, FN, TP, TN False positive, false 

negative, true positive, and 

true negative 
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