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Abstract: Psoriasis diagnosis from gene expression data requires efficient machine learning classifiers with the 

finest pre-processing methods to overcome the outlier and missing value problems. This paper developed relative 

entropy fuzzy score (REFS) normalization and genetic weighted k-nearest neighbors (GWKNN) imputation for 

enhancing pre-processing and hybrid multi-kernel universum support vector machines (MKUSVM) - radial basis 

function extreme learning machine (RBFELM) classifier for accurate psoriasis recognition. REFS normalization 

utilizes improved fuzzification and relative entropy in the gene fuzzy score estimation to reduce the skewness and 

outlier gene data. GWKNN imputation performs symbolic regression of weighted k-nearest neighbors (KNN) with 

genetic programming (GP) for missing value estimation. Finally, the hybrid MKUSVM-RBFELM classifier 

classifies the psoriasis gene data with features selected using mutual-information parameter. Evaluated over public 

dataset GSE55201, the proposed model achieved 91.67 % accuracy, 92.58 % precision, 90.94 % recall, 91.75 % F-

measure, and 0.8452 MCC values with a reduced processing time of 0.373 seconds. 

Keywords: Psoriasis classification, Skin diseases, Machine learning, Relative entropy fuzzy score, Genetic weighted 

k-nearest neighbors, Multi-kernel universum support vector machines, Radial basis function extreme learning 
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1. Introduction 

Skin diseases are common chronic diseases that 

vary differently in terms of severity and symptoms 

[1]. While most of the skin diseases are less 

threatening and minor, some are serious and side-

effects of other major diseases. These diseases might 

cause rashes, inflammation, itchiness or other skin 

changes. Although these disorders are less 

threatening, some of these disorders might be the 

primary symptoms of diseases like skin cancer, toxic 

epidermal necrolysis [2], staphylococcal scalded 

skin syndrome [3], etc. Therefore efficient analysis 

must be performed to diagnose the skin diseases for 

early treatments and prevention of serious issues. 

Psoriasis is a common chronic autoimmune or 

inflammatory skin disease that keeps flaring for a 

longer period with hyper-proliferative expressions 

on the skin and joints. Although psoriasis is not 

considered life-threatening, it is associated with 

heart and diabetes issues such as amplified 

hyperlipidemia, hypertension, coronary artery 

disease (CAD), diabetes (type II), stroke and fatness 

[4]. Latest studies have shown that psoriasis is also 

allied with angst and emotional disorders and also 

isolates the patients from having close relationships 

in their social life. Psoriasis has certain phenotypic 

indicators such as epidermal hyperplasia and 

angiogenesis with infiltrations by dendritic cells, 

lymphocytes, chemokine and cytokine [5]. 

Diagnosis of psoriasis is often performed using 

the visual investigation of cutaneous lesion biopsy, 

but it is an unproductive process due to the 

possibility of errors. The genetic and molecular 

analysis of psoriasis must be performed well enough 
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to obtain useful revelations about the disease [6]. 

Gene expression profiles and protein-protein 

interaction data are valid sources and the 

quantitative polymerase chain reaction (qPCR) and 

microarray (high-throughput) are the procedures to 

perform these investigations. Examining the 

molecular basis and the genetic expression patterns 

will help in diversifying the normal and diseased 

patients. Therefore, gene expression and molecular 

analysis are demonstrated as the main approaches 

for extracting and recognizing psoriasis disease 

using efficient classification models.  

Recent years have seen the increase in usage of 

machine learning (ML) based classifiers for many 

applications including medical data mining and 

classification. Many ML algorithms like naïve bayes 

(NB), SVM, artificial neural network (ANN), etc. 

were established to analyse and diagnose diseases 

[7]. The gene expression data might contain noisy 

outlier data and missing values due to poor data 

compilation [8]. It also contains redundant and 

inconsistent data instances which increase the 

difficulty of the search process in ML-based 

classifiers. When handling missing values, the 

traditional ML classifiers face high computation 

complexity and less accurate classification [9]. 

Among the ML classifiers, SVM has shown higher 

throughput gene expression classification because of 

their kernel functions and boundary parameter. 

SVM fits the hyper-plane to categorize the group of 

genes by projecting the input space into a higher 

space using effective kernel functions. However, the 

architecture of standard SVM becomes complex 

when the size of the input gene expression data 

increases. Similarly, SVM has limitations in 

selecting relevant genes for classification and the 

selection is upper bound limited by the training data 

size leading to selecting only a few genes in highly 

correlated genes [10]. Therefore, this paper is aimed 

at developing an efficient gene expression analysis 

model using efficient pre-processing with better 

normalization and missing value imputation (MVI) 

and advanced ML classifier. 

This paper presents an efficient pre-processing 

technique by proposing relative entropy fuzzy score 

(REFS) normalization and genetic weighted k-

nearest neighbors (GWKNN) imputation. REFS 

based normalization uses an improved fuzzification 

process in which the relative entropy is included in 

the gene fuzzy score. This method is based on GP 

and weighted KNN to calculate the incomplete data 

attributes through the probability of nearest 

informative genes. Additionally, this paper also 

presents an advanced SVM based hybrid classifier 

by combining MKUSVM-RBFELM algorithms. 

The evaluation of the proposed models is performed 

using public gene expression datasets of psoriasis 

disease from gene expression omnibus (GEO) 

repository. The rest of this paper is arranged as: 

relevant literature studies in section 2, proposed pre-

processing and classification algorithms for gene 

expression classification in section 3, their 

evaluations and results in section 4 and finally the 

inferences to conclude the research in section 5. 

2. Related works 

Various techniques have been presented in 

recent years for pre-processing using normalization 

and imputation and classifying gene expression data. 

Belorkar and Wong [11] developed gene fuzzy score 

(GFS) as a pre-processing transformation technique 

for the normalization task. This GFS focussed on 

reducing the obscuring variation of the gene 

expressions using the fuzzy scores derivative from 

rank values of genes in the distinct data samples to 

perform the normalization. This method has reduced 

the batch effects and also increases the 

interpretability of the transformed outcomes without 

any negative impact on the sample size variation. 

Yet, this method is adaptable only for microarray 

gene expression while do not support other high 

throughput gene expressions. Franks et al. [12] 

presented feature specific quantile normalization 

(FSQN) for improving the molecular subtype 

classification of the gene data. This method 

achieved robust performance with 98 % and 97 % 

on the BRCA and CRC gene data, respectively, but 

has increased the computation time. Tang et al. [13] 

developed Bayesian normalization (bayNorm) for 

the normalization of single-cell RNA-sequencing 

data. This approach utilized the scaling based 

probability function of the binomial model for 

estimating the expression values using the priors. 

This model preserved low false-positive rates but 

reduced AUC significantly. Breda et al. [14] 

proposed a Bayesian inference method called sanity 

(Sampling-Noise-corrected Inference of 

Transcription activity) for the RNA-seq data. This 

sampling removed the Poisson sampling fluctuations, 

thus obtaining the true variation of the genes without 

the need for parameter tuning. However, this 

approach does not improve the accuracy when the 

sample size is varied. Lause et al. [15] developed 

analytic pearson residuals (APR) from the negative 

binomial regression for the normalization of RNA-

seq data. This method reduces the biased per-gene 

over-dispersion estimation through the use of 

negative control data without biological variability. 

This model provided a high F1-score, precision and 
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recall with minimized runtimes, but has exaggerated 

the training time in the classifiers. 

Chen and Zhou [16] developed variability-

preserving imputation for expression recovery 

(VIPER) for estimating the missing values. This 

method employed the cell data of comparable gene 

expressions through the selection of a sparse set of 

local neighbourhood cells by a sparse non-

generative regression model. This progressive 

selection reduces the complexity in estimating the 

imputation weights with better computation stability 

and reduced errors. Yet, this method fails to 

consider the impact of over-dispersion of the 

dropout events. Howey et al. [17] utilized a 

Bayesian network (BN) approach for estimating the 

missing data in complex biological analysis 

problems. This approach utilized the pseudo-

Bayesian nearest neighbour based estimation of the 

best fit BN through the sampling process. This 

approach increased the precision and recall values 

without increasing the model complexity. But this 

approach supports only when the missing data is 

below 10 %. Hu et al. [18] developed weighted 

decomposition of gene expression (WEDGE) to 

assign the missing gene expression values using the 

biased low-rank matrix decomposition method 

(bLRMD). This WEDGE algorithm reproduced the 

missing values through effective cell-wise and gene-

wise correlations even in several cell type datasets 

with high dropout rates. However, this method 

reduced the overall accuracy through higher error 

rates for high dimensional gene expression data. Li 

et al. [19] presented a hybrid MVI algorithm of 

jointly fuzzy C-means and VQNN (Vaguely 

Quantified Nearest Neighbor) imputation (JFCM-

VQNNI) along with an extended fitted model. These 

models utilized fuzzy matrixes, tolerance relations, 

and fuzzy membership relations to obtain the 

potential closest values to fill the missing or zero 

values. These models reduced the RMSE and MAE 

for gene expression data, but these models also 

consume high running time. Keerin and Boongoen 

[20] introduced an improved k-nearest neighbour 

(IKNN) imputation method for solving the missing 

values problem. This improved method utilized the 

perception of the ordered weighted averaging 

(OWA) operator to enhance the summarization in 

KNN for estimating the missing or zero values. This 

method achieved 0.8 and 0.84 normalized RMSE 

values for 55 and 20 % missing values, respectively. 

However, this method has limited performance with 

high errors when the sample size is larger. 

Ahmed et al. [21] demonstrated the robustness 

of the NB classifier for microarray gene expression 

analysis. Evaluated over cancer gene expression 

data HNC, this NB classifier achieved 76 % 

accuracy, 0.9 MCC values and zero error rates. 

However, this classifier performed poorly for the 

large datasets due to the location and scale 

parameters of gene data. Cahyaningrum and Astuti 

[22] introduced ANN and genetic algorithm (GA) 

based microarray gene expression classification for 

cancer discovery. This ANN model obtained 

accuracies of 83.33 %, 76.47 % and 89.93 % for 

colon tumor, prostate tumor and lung cancer in the 

gene expression data. However, the training time of  

 
Table 1. List of notations 

Notations Description 

𝜃1 and 𝜃2 quantile thresholds for assigning fuzzy 

scores 

𝑔𝑖 Genes of the patients 

𝑝𝑗 Patient to whom the genes are collected 

𝑟(𝑔𝑖 , 𝑝𝑗) rank of gene expression 

𝑞(𝑝𝑗 , 𝜃) rank equivalent to the upper quantile 

threshold 

𝑠(𝑔𝑖 , 𝑝𝑗) fuzzy score allocated to 𝑔𝑖 in patient 𝑝𝑗 

𝐴 = 𝑠(𝑔𝐴, 𝑝𝐴) fuzzy value of 𝑔𝐴 in patient 𝑝𝐴 

𝜇𝑖 supporting conditional variable 

𝑣𝑖 opposing conditional variable 

𝜋𝑖 non-available group conditional variable 

𝜆 risk preference index 

𝛿𝐴 REFS function 

𝑝, 𝑞 real-valued gene expression instances 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑞) Euclidean distance between 𝑝, 𝑞 

𝑟𝑖 range of the i-th feature 

𝑋𝑖,𝑗
𝐾  Set of input instances 

𝑅𝑖,𝑗 Set of reference instances 

𝐷𝑖,𝑗
𝐾  Distances between instances 

𝑊𝑖,𝑗
𝐾  distance-based weights 

𝐼𝑖,𝑗 instances 

𝐽𝑖,𝑗 feature indexes of the data subset 

𝑉𝑖,𝑗 reference instances of non-missing 

values 

{𝐺𝑔}𝑔=1
𝑁

 GP regression function 

𝑇𝑖,𝑗 target missing values 

𝑊𝑅𝑆𝐸𝑖,𝑗
𝐾  weighted relative squared error 

(𝑅, �̅�) possible classes-relevant and irrelevant 

𝑝(𝑅) probability of the relevant class 

𝑝(�̅�) probability of the irrelevant class 

𝑥𝑗
∗ ∈ 𝑅𝑛 Universum samples in 𝑅𝑛 search space 

𝐶𝑡 margin parameter of SVM 

𝐶𝑢 margin parameter of MKUSVM 

𝜓𝑡 , 𝜓𝑡
∗ lack variables of MKUSVM 

𝜀 insensitive loss function 

𝐾(𝑥𝑖 , 𝑥𝑗) kernel function 

𝛾 output weight of the hidden layer 

𝐻† Moore–Penrose generalized inverse of 

H 
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ANN is higher. Tapak et al. [23] proposed a GA-

based SVM for effective feature selection and gene 

expression data classification for psoriasis 

recognition. This model utilized the GEO repository 

dataset GSE55201 from which select best gene 

features were extracted using GA and applied to the 

SVM classifier. This model obtained an accuracy of 

62.5 % for whole features while 79.17 % for 

selected 27265 features. However, the local 

optimum problem of GA and limited correlated 

genes in upper bound training of SVM degrades the 

classification performance. Chatra et al. [24] 

developed cancer classification from gene data by 

binary bat optimization (BBO) based feature 

selection and ELM classifier. The ELM model 

utilized the genes nominated by the BBO to obtain 

an accuracy of 89 % to 100 % over different cancer 

types. However, the ELM provides huge variance 

for the degenerate gene expression data. 

From the above literature studies, the major 

research problems are identified for this research 

paper. The primary problem of pre-processing due 

to the less effective normalization and MVI methods 

are considered. The proposed pre-processing 

methods aim at reducing the error rates associated 

with the normalized and imputed values of gene 

expression data. Then the classification errors and 

complexity in traditional and recent methods are 

considered. Based on the limitations, this paper 

focuses on developing a hybrid classification 

approach using advanced SVM and ELM classifiers. 

3. Methods 

The proposed psoriasis gene expression 

classification model has been aimed at providing 

high accurate psoriasis prediction with analysis of 

quality gene expression profiles by efficient pre-

processing methods.  

Table 1 lists the notations used in this study. 

The proposed pre-processing method has two 

major steps: REFS normalization and GWKNN 

imputation process. Then the features/gene 

signatures are extracted and the top features/gene 

signatures are selected using mutual information 

measures. Lastly, the carefully chosen gene 

signatures are fed as input to the hybrid classifier of 

the MKUSVM-RBFELM for psoriasis identification. 

The functional illustration of the proposed approach 

is given in Fig. 1.  

3.1 Data description 

The gene expression profiles related to the 

psoriasis treatment were utilized from the publically 

available psoriasis whole blood transcriptome 

dataset named GSE55201 created using the 

affymetrix human genome U133 plus (microarray) 

with platform ID GPL570 [25]. This open-source 

dataset is available in the GEO repository 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?ac

c=GSE55201 [23]). It contains samples collected 

from 81 patients who have volunteered for 

interleukin IL-7 treatments. This dataset includes 

gene expression data of 30 normal people, 44 

psoriasis patients at baseline and 7 psoriasis patients 

after two weeks of treatment. The differently 

expressed genes (DEGs) amongst the 30 healthy and 

44 diseased baseline patients were determined using 

the data analysis models. This dataset has been 

selected for evaluation because of the number of 

gene signatures (54675 probe features) exceeding 

the expected range. 

3.2 REFS normalization method 

The proposed REFS normalization process  

 

 

 
Figure. 1 Representative illustration of the proposed approach 
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integrates the relative entropy score functions into 

the gene fuzzy score computation. The fuzzy score 

is generally a positive value but in some cases, most 

of the genes are nearer to the negative fuzzy values. 

Relative entropy is a natural generalization score 

function that considers two difference constraints, 

one between the degree of membership and the 

degree of hesitance while the other between the 

degree of membership and the degree of no-

membership. This relative entropy uses degree of 

objectivity for reducing the error rates. 

In REFS, the raw gene expression matrix of each 

gene expression profile is transformed based on the 

rank values of the genes within each microarray. It 

uses two quantile thresholds namely 𝜃1  and 𝜃2  for 

assigning a fuzzy score to each gene. The genes with 

ranks below the 𝜃2  threshold value are reduced to 

zero scores while the genes with values above the 𝜃1 

threshold values are assigned a score of 1. The 

intermediate valued genes are assigned a score 

between 0 and 1 based on their rank. Let 𝑟(𝑔𝑖, 𝑝𝑗) 

denote the rank of gene expression of a gene 𝑔𝑖 in 

patient 𝑝𝑗 and 𝑞(𝑝𝑗 , 𝜃) denote the rank equivalent to 

the upper quantile threshold 𝜃1 of gene expression 

in patient 𝑝𝑗. 

The fuzzy score 𝑠(𝑔𝑖, 𝑝𝑗) allocated to a gene 𝑔𝑖 

in patient 𝑝𝑗 can be computed as 
 

𝑠(𝑔𝑖 , 𝑝𝑗) = 

{
 
 

 
 1,                 𝑖𝑓 𝑞(𝑝𝑗 , 𝜃1) < 𝑟(𝑔𝑖, 𝑝𝑗)

𝑟(𝑔𝑖,𝑝𝑗)−𝑞(𝑝𝑗,𝜃2)

𝑞(𝑝𝑗,𝜃1)−𝑞(𝑝𝑗,𝜃2)
, 𝑖𝑓 𝑞(𝑝𝑗 , 𝜃1) ≥ 𝑟(𝑔𝑖, 𝑝𝑗) ≥ 𝑞(𝑝𝑗 , 𝜃2)

0,                 𝑖𝑓  𝑟(𝑔𝑖 , 𝑝𝑗) > 𝑞(𝑝𝑗 , 𝜃2)

(1) 

 

This equation denotes the fuzzy values assigned 

to the gene based on the rank of the gene expression. 

However, as described above, this score function 

can also result in zero fuzzy values when the noise 

in the genes is very high. In such cases, the 

normalized values will be nearer to zero and do not 

offer much information on the classification of 

psoriasis skin genes. So to overcome this limitation, 

the relative entropy score function is added. It is 

computed as the expected score function of these 

fuzzy values. It is achieved by applying natural 

generalization. 

Let 𝐴 = 𝑠(𝑔𝐴, 𝑝𝐴) be a fuzzy value of a gene 𝑔𝐴 

in patient 𝑝𝐴  and rank 𝑟(𝑔𝐴, 𝑝𝐴) . The relative 

entropy score function 𝛿𝐴 for this gene is given as 
 

𝛿𝐴 = 𝜇𝑖 − 𝑣𝑖 + (𝜆𝜇𝑖 log
𝜇𝑖

𝑣𝑖
+ (1 − 𝜆)𝜇𝑖 log

𝜇𝑖

𝑣𝑖
)𝜋𝑖 (2) 

𝜇𝑖  denotes the supporting conditional variable, 

𝑣𝑖 denotes the opposing conditional variable and  𝜋𝑖 
denotes the non-available group conditional variable. 

𝜆  denotes the risk preference index which 

determines the negative, neutral or positive risks 

associated with each sample. 

To apply the relative entropy score function, the 

non-decreasing property of the general relative 

entropy must be proved with respect to the 

membership grade values. By applying the fuzzy 

scores to the relative entropy score function, 

generality is gained with the effective preservation 

of the important genes. The REFS function is given 

by 

 

𝛿𝐴 =
𝑟(𝑔𝑖 , 𝑝𝑗)

𝑞(𝑝𝑗 , 𝜃1)
+ 

[𝜇𝑖 − 𝑣𝑖 + (𝜆𝜇𝑖 log
𝜇𝑖

𝑣𝑖
+ (1 − 𝜆)𝜇𝑖 log

𝜇𝑖

𝑣𝑖
)𝜋𝑖]       (3) 

 

This function of the proposed REFS is effective 

in normalizing the gene expression profiles of 

psoriasis skin gene datasets. 

3.3 GWKNN imputation method 

This proposed imputation method is developed 

by integrating the genetic operators to the weighted 

KNN. The first step in this model is to employ the 

weighted KNN to abstract the K instances of gene 

data nearest to the missing value. In the next step, 

the genetic operators are used to predict the 

imputation value based on the extracted K instances. 

The K instances are selected using a distance-based 

similarity measure namely normalized Euclidean 

distance which is expressed as 

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑞) = √∑
(𝑞1−𝑝1)

2

𝑟𝑖
2

𝑛
𝑖=1   (4) 

 

Here 𝑝, 𝑞  is the real-valued gene expression 

instances and 𝑟𝑖 denotes the range of the i-th feature. 

The usage of weighted KNN will increase the 

prominence of the instances that are closer to the 

missing values. Firstly, weighted KNN extracts the 

K nearest instances based on the distance value 

computed using Eq. (4). The weighted KNN will be 

used to obtain the 𝑋𝑖,𝑗
𝐾  which includes the K nearest 

instances to the reference instances 𝑅𝑖,𝑗 . The 

corresponding distances 𝐷𝑖,𝑗
𝐾  and the distance-based 

weights 𝑊𝑖,𝑗
𝐾  are also computed. The value of K is 

computed as 
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𝐾 ← min (max|𝐽𝑖,𝑗| , [
|𝐼𝑖,𝑗|

4
] , |𝐼𝑖,𝑗|)  (5) 

 

Here 𝐼𝑖,𝑗  denotes the instances and 𝐽𝑖,𝑗  denotes 

the feature indexes of the whole data subset 𝑋𝑖,𝑗 . 

[
|𝐼𝑖,𝑗|

4
]  refers to the one-fourth of the number of 

retrieved instances which is used as the upper bound 

of K. Using the distance computation in Eq. (4), the 

values of 𝐷𝑖,𝑗
𝐾  and 𝑊𝑖,𝑗

𝐾  are calculated as 

 

𝐷𝑖,𝑗
𝐾 [𝑘] = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑋𝑖,𝑗

𝐾 [𝑘], 𝑉𝑖,𝑗),   

 𝑘 = 1,2,3,… . , 𝐾  (6) 

 

𝑊𝑖,𝑗
𝐾 =

𝐷𝑖,𝑗
𝐾 [𝑘]

𝐷𝑖,𝑗
,        𝑘 = 1,2,3,… , 𝐾  (7) 

 

Here 𝑉𝑖,𝑗 is the new reference instances of non-

missing values and 𝐷𝑖,𝑗 = max
𝑘=1,2,…,𝐾

𝐷𝑖,𝑗
𝐾 [𝑘]. 

Then the genetic programming is used to build 

the imputation process model with these K instances 

as input instances for estimating the missing values. 

For performing this operation, the GP regression 

function {𝐺𝑔}𝑔=1
𝑁

 with the target variable (missing 

value) as 𝑇𝑖,𝑗 . The weighted relative squared error 

(WRSE) is computed to be the fitness function 

 

𝑊𝑅𝑆𝐸𝑖,𝑗
𝐾 =

∑
1

𝑊𝑖,𝑗
𝐾 (𝑌𝑖,𝑗[𝑘]−𝑇𝑖,𝑗[𝑘])

2𝐾
𝑘=1

∑ (𝑇𝑖,𝑗[𝑘]−�̂�𝑖,𝑗)
2𝐾

𝑘=1
  (8) 

 

Using this fitness function, the temporary and 

final best solutions for 𝐺𝑔
𝑡𝑚𝑝

 is obtained through 

iterative ranking. These obtained results in this 

process will help in replacing the missing values. 

3.4 Feature selection using mutual information 

Feature selection is the process of choosing the 

most informative features or gene signatures while 

avoiding the less informative and irrelevant features. 

In this study, the wrapper method is utilized by 

estimating the mutual information (MI) for the 

available pairs of gene signatures. MI is computed 

for each feature subset and the process will be 

terminated if the maximum MI value is obtained. MI 

is estimated as the amount of information via the 

reduction in entropy which measures the diversity in 

the attributes and helps in obtaining the impurity of 

information to quantify the uncertainty of the given 

variables. Hence the entropy is first formulated to 

compute the MI. Let 𝑦 denote the discrete random 

variable attribute with two possible outcomes i.e. 

relevant (𝑅) and irrelevant (�̅�) to the ideal features. 

The binary function H can be expressed as a 

logarithmic value. 

 

𝐻(𝑦) = −𝑝(𝑅) log 𝑝(𝑅) − 𝑝(�̅�) log 𝑝(�̅�) (9) 

 

Here (𝑅, �̅�)  denotes the possible classes- 

relevant and irrelevant, 𝑝(𝑅) indicate the probability 

of the sample being 𝑦 ∈ (𝑅) and 𝑝(�̅�) represent the 

probability of the sample being 𝑦 ∈ (�̅�) . 

Conditional entropy defines the quantity of the 

uncertainties of each feature in the decision process 

and it is computed between two events X and Y 

where X has the value of feature 𝑥, 

 

𝐻(𝑌|𝑋) =∑ 𝑝𝑥(𝑥) 𝐻(𝑌|𝑋 = 𝑥)
𝑥∈𝑋

= 

∑ ∑ 𝑝𝑥𝑦(𝑥, 𝑦) log 𝑝𝑦(𝑦|𝑥)𝑦∈𝑌𝑥∈𝑋            (10) 

 

The smaller values of the impurity will result in 

more skewed class distributions. The values of 

entropy and the misclassification errors will be the 

highest when the class distribution is uniform and 

the minimum value of entropy is obtained when all 

the samples belong to the same class. MI of 𝑦 can be 

computed using the entropy and conditional entropy 

from a feature 𝑥 as 

 

𝐼𝐺(𝑦|𝑥) = 𝐻(𝑦) − 𝐻(𝑦|𝑥)          (11) 

 

Larger IG defines the higher discriminative 

power for the decision process and determines the 

relevance of the gene signatures with respect to the 

classification problem. 

3.5 MKUSVM 

Universum samples are included in the SVM so 

that the classifier learns the patterns of unknown 

classes and also the known classes effectively with 

prior knowledge. USVM constructs the data-

dependent architecture of SVM based on the set of 

tolerable functions using the universum samples. It 

is more appropriate to obtain the set of universum 

samples for the SVM learning process instead of 

defining the data distributions explicitly. Since the 

universum samples do not belong to any of the pre-

defined classes, the MKUSVM hyper-plane will fall 

inside the margin borders determined by C due to 

the usage of the maximal margin procedure. 

Therefore, the MKUSVM must utilize a maximal 

soft-margin procedure and maximum number of 

universum samples that are distributed around the 

hyper-plane. The procedure of MKUSVM follows 

the process of SVM with the universum definitions.  
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A training set with given Universum samples is 

defined as 

 

𝑆 = {(𝑥1, 𝑦1), … . (𝑥𝑠, 𝑦𝑠)} ∪ {𝑥1
∗, 𝑥2

∗, … , 𝑥𝑢
∗}        (12) 

 

Here 𝑥𝑗
∗ ∈ 𝑅𝑛, 𝑗 = 1,2,… , 𝑢  denote the 

universum samples in 𝑅𝑛 search space, 𝑥𝑖 ∈ 𝑅
𝑛, 𝑖 =

1,2,… , 𝑠  and 𝑦𝑖 ∈ {1,−1}  for binary classification 

and 𝑦𝑖 ∈ 𝑅
𝑛, 𝑖 = 1,2,… , 𝑠  for multi-class 

classification. As the Universum samples provide 

the prior knowledge of the network traffic 

classification by approximating the hyper-plane 

𝑔(𝑥) = 0, the primal optimization algorithm of the 

MKUSVM with the maximal soft-margin procedure 

is given as 

 

min
𝑤,𝑏,𝜉

1

2
‖𝑤‖2 + 𝐶𝑡 ∑ 𝜉𝑖

𝑠
𝑖=1 + 𝐶𝑡∑ (𝜓𝑡 + 𝜓𝑡

∗)𝑢
𝑡=1    (13) 

 

Subject to 𝑦𝑖(𝑤.Φ(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 ,     − 𝜀 −
𝜓𝑡
∗ ≤ 𝑤.Φ(𝑥𝑡

∗) + 𝑏 ≤ 𝜀 + 𝜓𝑡 ,   𝜉𝑖 ≥ 0,     𝑖 =
1,2,… , 𝑠 and 𝜓𝑡 , 𝜓𝑡

∗ ≥ 0,     𝑡 = 1,2,… , 𝑢. 

 

Here 𝐶𝑡 denotes the margin parameter or penalty 

parameter of SVM, 𝐶𝑢 denotes the margin parameter 

of MKUSVM, 𝜓𝑡, 𝜓𝑡
∗ denotes the slack variables of 

MKUSVM and 𝜀  represents the in-sensitive loss 

function for Universum samples. Eq. (13) of 

MKUSVM maximizes the margin between the 

classifying hyper-planes and also maximizes the 

amount of Universum samples to be distributed 

around the hyper-plane.  If  𝐶𝑢 = 0, Eq. (13) will be 

equivalent to the standard SVM equations 

 

min
𝛼,𝜇,𝑣

1

2
∑ ∑ 𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗

𝑠
𝑗=1

𝑠
𝑖=1  𝐾(𝑥𝑖, 𝑥𝑗) +

1

2
∑ ∑ (𝜇𝑡−𝑣𝑡)(𝜇𝑧−𝑣𝑧)𝐾(𝑥𝑡

∗, 𝑥𝑧
∗)𝑢

𝑧=1
𝑢
𝑡=1 +

∑ ∑ 𝑦𝑖𝛼𝑖(𝜇𝑡−𝑣𝑡)𝐾(𝑥𝑖 , 𝑥𝑡
∗)𝑢

𝑡=1
𝑠
𝑖=1 − ∑ 𝛼𝑖

𝑠
𝑖=1 +

𝜀 ∑ (𝜇𝑡+𝑣𝑡)
𝑢
𝑡=1                 (14) 

 

Subject to ∑ 𝑦𝑖𝛼𝑖 +
𝑠
𝑖=1 ∑ (𝜇𝑧−𝑣𝑧)

𝑢
𝑡=1 = 0;     0 ≤

𝛼𝑖 ≤ 𝐶𝑡, 𝑖 = 1,2,… , 𝑠;      0 ≤ 𝜇𝑡 , 𝑣𝑡 ≤ 𝐶𝑢, 𝑡 =
1,2,… , 𝑢. 
 

Here 𝜇𝑖  and 𝑣𝑖  are Lagrangian multipliers 

similar to 𝛼𝑖. Instead of selecting the linear kernel, 

this MKUSVM selects the appropriate kernel 

function 𝐾(𝑥𝑖 , 𝑥𝑗) from the multiple kernels namely 

linear, polynomial, RBF and Sigmoid Tanh kernels. 

By using these equations, 𝛼∗ = (𝛼1
∗, 𝛼2

∗, … , 𝛼𝑠
∗)𝑆 , 

𝜇∗ = (𝜇1
∗, 𝜇2

∗ , … , 𝜇𝑢
∗ )𝑆  and 𝑣∗ = (𝑣1

∗, 𝑣2
∗, … , 𝑣𝑢

∗)𝑆  are 

obtained. 

Then the optimal classifying hyper-plane with 

the Universum prior knowledge is estimated as 

 

𝑔(𝑥) = ∑ 𝑦𝑖𝛼𝑖
∗𝑠

𝑖=1  𝐾(𝑥𝑖 , 𝑥) − ∑ (𝑣𝑡
∗ −𝑢

𝑡=1

𝜇𝑡
∗)𝐾(𝑥𝑡

∗, 𝑥) + 𝑏∗               (15) 

 

𝑏∗ = 𝑦𝑖 − ∑ 𝑦𝑖𝛼𝑖
∗𝑠

𝑖=1  𝐾(𝑥𝑖, 𝑥𝑗) + ∑ (𝑣𝑡
∗ −𝑢

𝑡=1

𝜇𝑡
∗)𝐾(𝑥𝑡

∗, 𝑥𝑗)                (16) 

3.6 RBFELM 

The proposed RBFELM uses the RBF kernel for 

optimal estimation of the weights and bias. The 

input features are mapped to the hidden layer H 

using the mapping function 𝐻 = 𝑎(𝑊𝑥 + 𝑏) where 

W denotes the input weight matrix, 𝑎(. ) denote the 

activation function and b represent the bias vector. 

The hidden layer is plotted into the remodelled input 

vector 𝑥 = 𝑎(𝑊𝐻 + 𝑏). The training process of the 

HH-ELM parameters is performed by minimizing 

the remodelling errors between the actual input and 

encoded outcomes. For the N training features with 

input X and output O with varying dimensions, the 

estimated function can be learned through the 

computation of the output weights. The training 

stage performs random mapping and least-squares 

constraints solving. Random mapping forms the 

hidden layer with neurons mapped by RBF function 

 

∑ 𝛾𝑖
𝑁
𝑖=1 𝜃𝑖(𝑥𝑗) = 𝑜𝑗           (17) 

 

Here, 𝛾𝑖 denotes the output weight vector of the 

i-th kernel, 𝜃𝑖  denotes the output of kernel and 𝑜𝑗 

denotes the output of the hidden layer. In this hidden 

layer, the output vector is modelled as 𝐻(𝑥) = 𝑅𝑁×𝜉, 

where r is the dimension of variables and 𝜉 denotes 

the number of hidden nodes. The output can be 

modelled as 

 

�̂�𝑛 = 𝐻(𝑥𝑛)𝛾,    𝑛 = 1,2, …𝑁           (18) 

 

Here 𝛾 is the output weight of the hidden layer 

obtained by reducing the cost function Γ𝐸𝐿𝑀 

 

min
𝛾∈𝑅𝐻×𝑟

𝛤𝐸𝐿𝑀 = ‖𝑂 − �̂�‖
2
= ‖𝑂 −𝐻𝛾‖2          (19) 

 

The output weight can be modelled using least-

squares constraints solving to obtain the modified 

output weights 𝛾′. 
 

𝛾′ = 𝐻†𝑂              (20) 

 

Where 𝐻†  denote the moore–penrose 

generalized inverse of H. 
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Table 2. Comparison of pre-processing methods 

Normalization methods MVI methods 

Methods SS p-

value 

Methods PC p-

value 

GFS 0.811 0.75 VIPER 0.8241 0.7692 

FSQN 0.835 0.72 BN 0.8341 0.7810 

bayNorm 0.803 0.81 WEDGE 0.8034 0.7214 

Sanity 0.830 0.79 JFCM 0.8238 0.7571 

APR 0.819 0.78 IKNN 0.8412 0.7526 

REFS 0.867 0.84 GWKNN 0.8661 0.7961 

 

Table 3. Comparison of psoriasis classification methods 

Method A (%) P (%) R (%) F (%) MCC T (s) 

NB 79.17 80.18 80 80.09 0.654 0.549 

ANN 83.33 84.52 83.33 83.92 0.714 0.501 

SVM 87.5 88.64 86.96 87.79 0.777 0.440 

ELM 90.67 91.58 89.91 90.74 0.812 0.473 

MKUSVM-

RBFELM 

91.67 92.58 90.94 91.75 0.845 0.373 

 

3.7 MKUSVM-RBFELM classifier model 

The hybrid classifier model of MKUSVM-

RBFELM is built by a simple process of selecting 

the optimal number of RBFELM nodes using 

MKUSVM. Firstly, the selected gene signatures by 

the MI method are fed as input to the MKUSVM 

and RBFELM separately to obtain individual 

classification results. Then the results of MKUSVM 

are used as targets for deriving the mean error rate 

of the trained RBFELM model. These training errors 

are projected to the MKUSVM dimensions and the 

hidden nodes that are inactive are pruned out by the 

MKUSVM to obtain the final classification results. 

4. Results and discussion 

The proposed MKUSVM-RBFELM classifier 

with the REFS-GWKNN pre-processing method is 

evaluated over the psoriasis gene expression dataset 

obtained from the GEO repository. The evaluations 

are conducted using the MATLAB tool (R2016b 

version 9.1) installed on the computer with 

specifications of i5 processor, 8GB RAM and 

512GB SSD with Windows 10 operating system. 

The performance of all three proposed methods is 

evaluated and compared with state-of-the-art models. 

4.1 Evaluation of pre-processing methods 

The proposed REFS method is evaluated and 

compared with existing GFS [11], FSQN [12], 

bayNorm [13], Sanity [14] and APR [15]. The 

comparisons are made in terms of the Silhouette 

score (SS) and p-value. The proposed GWKNN 

imputation method is evaluated and compared with 

existing VIPER [16], BN [17], WEDGE [18], JFCM 

[19] and IKNN [20]. The comparisons are made in 

terms of pearson correlation (PC) and p-value. Table 

2 shows the obtained results for REFS-GWKNN 

against the existing methods over the GSE55201 

dataset. 

From the results obtained in Table 2, it is 

concluded that the suggested REFS has better 

performance than the other implemented methods. 

REFS achieved 4.8 %, 3.7 %, 6.4 %, 3.2 % and 

5.6 % higher silhouette scores than APR, sanity, 

bayNorm, FSQN and GFS methods. Similarly, it has 

achieved 6 %, 5 %, 3 %, 12 % and 9 % higher p-

values than the existing APR, sanity, bayNorm, 

FSQN and GFS methods. This improvement is 

attributed to the use of the relative entropy score 

function to the gene fuzzy scores. 

It is also concluded that the GWKNN has better 

performance than the implemented existing methods. 

GWKNN imputation method has achieved 2.49 %, 

4.23 %, 6.27 %, 3.2 % and 4.2 % higher pearson 

correlation than the IKNN, JFCM-VQNNI, 

WEDGE, BN and VIPER methods. Similarly, it has 

achieved 4.35 %, 3.9 %, 7.47 %, 1.51 % and 2.69 % 

higher p-values than the existing IKNN, JFCM-

VQNNI, WEDGE, BN and VIPER methods. This 

better performance of the GWKNN imputation 

method is because of the use of benefits from 

genetic programming in selecting the features of the 

KNN imputation method which has increased the 

effectiveness of missing values prediction. 
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4.2 Evaluation of classifier methods 

The proposed MKUSVM-RBFELM classifier 

method is evaluated and compared with existing NB 

[21], ANN [22], SVM [23] and ELM [24]. The 

comparisons are made in terms of accuracy (A), 

precision (P), recall (R), f-measure (F) and mathew 

correlation coefficient (MCC). The processing time 

(T) for each classifier is also estimated in seconds 

(s). Table 3 shows the obtained results for 

MKUSVM-RBFELM and other classifier methods 

for psoriasis identification from the GSE55201 

dataset. 

For a fair comparison, the existing classifiers are 

implemented similar to the proposed MKUSVM-

RBFELM under similar environmental settings over 

the GSE55201 dataset. From the results obtained in 

Table 3, it is concluded that the MKUSVM-

RBFELM has improved performance than the other 

implemented classifier methods. The MI based 

feature selection method has removed 5088 features 

from the total 54675 features and the remaining 

features are utilized for classification. MKUSVM-

RBFELM achieved 1 %, 4.17 %, 8.34 % and 12.5 % 

higher accuracy than the existing ELM, SVM, ANN 

and NB classifiers. It has also achieved 1 %, 3.94 %, 

8.06 % and 12.4 % higher precision, 1.03 %, 3.98 %, 

7.61 % and 10.94 % higher recall, and 1.01 %, 

3.96 %, 7.83 % and 11.66 % higher f-measure, than 

the existing ELM, SVM, ANN and NB classifiers, 

respectively. In terms of processing time, the 

proposed MKUSVM-RBFELM classifier consumed 

0.373 seconds for the GSE55201 dataset which is 

21.14 %, 15.25 %, 25.6 % and 32.1 % lesser than 

the time consumed by the existing ELM, SVM, 

ANN and NB classifiers. MKUSVM-RBFELM has 

achieved a higher MCC value of 0.8452 indicating 

the perfect classification. The MCC values of 

MKUSVM-RBFELM is 3.3 %, 6.78 %, 13.09 % 

and 19.05 % higher than the existing ELM, SVM, 

ANN and NB classifiers. This better performance of 

the proposed classifier is because of the integration 

of the two classifier models with minimized error 

rates.  

5. Conclusion 

This paper presented an efficient pre-processing 

method using REFS normalization and the GWKNN 

imputation method for increasing the proficiency of 

psoriasis classification. In addition, an advanced 

classification model of MKUSVM-RBFELM has 

been developed. This proposed approach of pre-

processing has improved the data quality and 

reduced the negative impacts of noise and outliers. 

The proposed REFS-GWKNN pre-processing and 

MKUSVM-RBFELM classifier models are 

evaluated using a publically available gene 

expression dataset for psoriasis classification. The 

experimental results were compared with the state-

of-the-art methods and it implied that the suggested 

approaches have significantly improved the 

identification of psoriasis disease from the gene 

expression data with 91.67 % accuracy, 92.58 % 

precision, 90.94 % recall, 91.75 % F-measure, and 

0.8452 MCC values with a reduced processing time 

of 0.373 seconds. In future, the possibility of 

evaluating multi-source gene expression data will be 

investigated. Also, the gene signature (feature) 

selection and classification models will be examined 

in parallel to the fast-rising deep learning methods. 
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