
Received:  March 22, 2022.     Revised: April 26, 2022.                                                                                                   156 

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022           DOI: 10.22266/ijies2022.0831.15 

 

 
Stochastic Komodo Algorithm 

 

Purba Daru Kusuma1*          Meta Kallista1 

 
1Computer Engineering, Telkom University, Indonesia 

* Corresponding author’s Email: purbodaru@telkomuniversity.ac.id 

 

 
Abstract: A novel metaheuristic algorithm is proposed in this paper, namely stochastic komodo algorithm (SKA). 

This proposed algorithm is an improved version of Komodo mlipir algorithm (KMA), which is inspired by the 

behaviour of Komodo during foraging and mating. The improvement is conducted by simplifying the basic form of 

KMA. Like KMA, it consists of three types of Komodo: big male, female, and small male. Male Komodo focuses on 

intensification. On the other side, females conduct diversification or intensification based on the search space radius. 

It eliminates sorting mechanism at the beginning of the iteration. Rather than determined from the quality (fitness 

score), the distribution of the types of Komodo is conducted stochastically at the beginning of every iteration. This 

proposed algorithm is then tested by using ten functions. Five functions are unimodal, while the five others are 

multimodal. The proposed algorithm is also compared with several well-known algorithms: football game-based 

optimization, hide objects game optimization, cloud-theory-based simulated annealing, harmony search, and KMA. 

The result shows that this proposed algorithm is very competitive compared with these benchmark algorithms in both 

unimodal and multimodal functions. A female-dominant formation is proven to achieve optimal result. 

Keywords: Komodo mlipir algorithm, Metaheuristic, Multi-agent, Multimodal, Swarm intelligence. 

 

 

1. Introduction 

Optimization is one of the popular subjects. It is 

implemented in many areas, such as manufacturing 

[1], logistics [2], transportation [3], education [4], 

communication [5], multimedia [6], and so on. In 

general, the objective of optimization is to find a 

solution, formation, or configuration that gives the 

optimal score, which can be either a minimum value 

(minimization) or a maximum value (maximation), 

depending on its objective. Therefore, there are many 

optimization methods, both mathematical and 

computational. 

Metaheuristic algorithm is one popular method in 

optimization studies. This algorithm adopts an 

approximate approach. As an approximate method, a 

true optimal solution is not guaranteed to be found [7]. 

The metaheuristic algorithm focuses on finding near-

optimal, sub-optimal, or acceptable solution. This is 

different from the exact method where true optimal 

solution is guaranteed to be found. But the exact 

method is not feasible to solve large space or high 

dimensional problems due to excessive computational 

consumption [7]. Fortunately, a metaheuristic 

algorithm can solve this problem. But, as an 

approximate method, it can be trapped in a local 

optimal solution while the true optimal solution is still 

somewhere else in the problem space. 

Many shortcoming studies that propose new 

metaheuristic algorithm are trapped into three 

conditions. The first one is that many shortcoming 

algorithms use metaphors rather than declare distinct 

mechanism as the algorithm name [8]. These 

shortcoming algorithms used nature as the source of 

inspiration, especially animals, such as marine 

predator [9], monkey [10], whale [11], deer [12], 

penguin [13], dolphin [14], grasshopper [15], 

butterfly [16], and so on. The second one is that these 

algorithms become complicated in the process and in 

the calculation. The third one is that these studies 

focused on beating the previous algorithms by 

providing better result in achieving a near-optimal 

solution. 

The examples are as follows. Fatholahi-Fard, 

Hajiaghaei-Keshteli, and Tavakkoli-Moghaddam [12] 

compared their proposed algorithm, red deer 



Received:  March 22, 2022.     Revised: April 26, 2022.                                                                                                   157 

International Journal of Intelligent Engineering and Systems, Vol.15, No.4, 2022           DOI: 10.22266/ijies2022.0831.15 

 

algorithm (RDA) with genetic algorithm (GA), 

simulated annealing (SA), particle swarm 

optimization (PSO), imperialist competitive 

algorithm (ICA), and firefly algorithm (FA). Ding, 

Chang, Li, Feng, and Zhang [11] compared their 

algorithm, mixed-strategy-based whale optimization 

algorithm (MSWOA), with GA, PSO, gravitational 

search algorithm (GSA), ant lion optimization (ALO), 

whale optimization algorithm (WOA), and enhanced 

whale optimization algorithm (EWOA). Braik, Sheta, 

and Al-Hiary [10] compared their algorithm, capuchin 

search algorithm (CSA), with PSO, multi-verse 

optimizer (MVO), sine cosine algorithm (SCA), GSA, 

GA, and harmony search (HS). Dehghani, Dehghani, 

Mardaneh, Guerrero, Malik, and Kumar [18] 

compared their algorithm, football game-based 

optimization (FBGO), with GA, PSO, teaching-

learning based optimization (TLBO), grasshopper 

optimization algorithm (GOA), emperor-penguins 

colony optimization (EPO), and shell game 

optimization (SGO), and hide objects game 

optimization (HOGO). Dehghani, Montazeri, Saremi, 

Dehghani, Malik, Al-Haddad, and Guerrero [19] 

compared their other algorithm, HOGO, with GA, 

PSO, GSA, TLBO, grey wolf optimization (GWO), 

GOA, spotted hyena optimizer (SHO), and EPO.  

All these studies stated that their proposed 

algorithm outperformed the benchmark algorithms. 

Ironically, although these old-fashioned algorithms 

have been beaten many times by many shortcoming 

algorithms, they are still widely used in many 

optimization studies. 

One latest metaheuristic algorithm is Komodo 

mlipir algorithm (KMA). This algorithm is inspired 

by the behavior of Komodo dragon, a monitor lizard 

that lives on Komodo island, Indonesia [20]. It is a 

combination between swarm intelligence and 

evolutionary algorithm. In it, the population of 

Komodo is divided into three groups: big male, 

female, and small male [20]. Each Komodo behaves 

based on the characteristics of the group. In this work, 

Suyanto, Ariyanto, and Ariyanto [20], who proposed 

this algorithm, compared their algorithm with several 

metaheuristic algorithms: genetic algorithm (GA), 

success-history based parameter adaptation 

differential evolution (SHADE), LSHADE with 

ensemble sinusoidal differential covariance matrix 

adaptation with Euclidean neighborhood (LSHADE-

cnEpSin), equilibrium optimizer (EO), marine 

predator algorithm (MPA), and slime mold algorithm 

(SMA). Like other studies, this work claimed that 

KMA is better than these algorithms. 

Despite its positive result in achieving near 

optimal and optimal solution, there are several notes 

for KMA. Both intensification and diversification are 

conducted by several mechanisms so that there is 

redundancy. Meanwhile, the effectiveness of every 

mechanism and parameter in this algorithm has not 

been explored yet. Calculation in KMA is also 

complicated. Based on these circumstances, there is a 

challenge to simplify this algorithm without losing its 

performance significantly. 

Based on this problem, this work aims to propose 

a new metaheuristic algorithm based on KMA, 

namely stochastic Komodo algorithm (SKA). The 

contribution of this work is as follows. 

1) This work modifies the KMA by simplifying the 

algorithm and reducing its redundancy. 

2) This work investigates parameters in the SKA, 

which some of them are like KMA, and analyses 

their sensitivity. 

The remainder of this paper is organized as follows. 

The detail model of KMA and the prospect of its 

improvement is explained in section two. The 

proposed algorithm is described in section three. The 

simulation and the result are shown in section four. 

More profound analysis and its findings are discussed 

in section five. The conclusion and future work are 

summarized in section six. 

2. Related works 

KMA is a metaheuristic algorithm that is inspired 

by the behavior of Komodo dragon [20]. Komodo 

dragon is a kind of monitor lizard that lives mostly on 

Komodo island, Indonesia. The big male Komodo 

eats prey such as deer, cow, goat, and so on. During 

eating, some other Komodo are attracted to join. But 

the big Komodo refuses to share. Some small 

Komodo eats prey that is left by the big Komodo. 

Female produces offspring by two ways. The first one 

is by mating with a male. The second one is called 

parthenogenesis or asexual reproduction. The KMA is 

developed based on this behavior.  

In general, KMA is a population-based 

metaheuristic algorithm. In it, there are a several 

individuals in a population. KMA is also a swarm 

intelligence. As a swarm intelligence, there are certain 

number of agents (Komodo) that act autonomously to 

find a near-optimal or sub-optimal solution within the 

problem space [21]. Although each agent acts 

autonomously, there is collective intelligence that is 

shared among them [21]. But in KMA, this swarm 

intelligence is hybridized with evolutionary 

intelligence, where better solutions are produced by 

combining some selected previous solutions. 

In KMA, the population of Komodo is divided into 

three types or groups: big male, small male, and 

female [20]. The main role of the big male is 

conducting intensification with certain diversification. 
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The small male focuses on intensification. Meanwhile, 

the female can engage in both intensification and 

diversification. The distribution of the Komodo 

depends on the quality of solution that is sorted in 

every iteration. High quality solutions become big 

males. A moderate quality solution becomes female. 

Low quality solutions become small male. The more 

detailed behavior of every type of Komodo will be 

described below. 

There are two forces or circumstances conducted 

to the big male: attraction and distraction [20]. 

Attraction means a big male is attracted to other big 

males. Distraction means the big male avoids 

interaction with other big males. In general, a big male 

moves closer to other big males whose fitness score is 

better or by a certain probabilistic number. Else, this 

big male chooses to move farther away from the 

related other big males. This process is conducted by 

the accumulation of weighted vector between a big 

male and all other big males.  

There are two actions that can be chosen by female 

Komodo in every iteration: mating with the best big 

male or asexual reproduction (parthenogenesis) [20]. 

The mating process is like cross-over in genetic 

algorithm. There are two new solutions produced by 

this mating process. The first solution is relatively 

near the female while the second solution is relatively 

near the best big male. The chosen offspring is a 

solution whose fitness score is better. In the 

parthenogenesis process, a female’s next position is 

determined stochastically around its search space. The 

mating process is an intensification, while 

parthenogenesis can be either an intensification or 

diversification, depending on the search space size. 

In general, the small male follows the big male 

[20]. This process is conducted by accumulating 

vectors between the small male and all the big males 

with a certain speed. But, in the multi-dimensional 

problem, not all dimensions are considered. The 

number of dimensions that are considered is 

determined by the mlipir rate, which is related to the 

number of dimensions that are modified. 

Different from many algorithms, KMA 

implements a population adaptation scheme. In this 

scheme, the population size fluctuates depending on 

the circumstance. If stagnation occurs, the population 

size will increase. On the other hand, when there exist 

successive improvements, the population size 

decreases. The population size may increase until the 

maximum population is reached. On the other hand, 

the population size may decrease until a minimum 

population is reached.  

There are several notes related to this original 

model of KMA. Several mechanisms are 

intensification while several others are diversification. 

It seems that there is duplication in both 

intensification and diversification. It is different from 

many well-known algorithms, such as genetic 

algorithm, simulated annealing, tabu search, harmony 

search, invasive weed optimization, and so on. 

The division of an agent in KMA is like the 

division in red deer algorithm (RDA) or grey wolf 

optimizer (GWO). In RDA, the population is divided 

into commanders, hinds, and harems [12]. In GWO, 

there are four types of agents: alpha, beta, delta, and 

omega [22]. In all these algorithms, every type of 

agent works parallelly in every iteration. It is different 

from the artificial bee colony (ABC). In ABC, there 

are three phases of bees, employed bee, onlooker bee, 

and scout bee [23]. These three types are conducted 

serially [23]. Moreover, the dominance of the types of 

Komodo has not been explored. These notes then 

become the baseline to propose the improved version 

of KMA as stated in this work.  

3. Model 

The concept behind this proposed algorithm is as 

follows. Like KMA, a group of Komodo is divided 

into three types: big male, female, and small male. But 

the main difference between KMA and the proposed 

algorithm is that in the proposed algorithm, the role of 

every Komodo is determined stochastically in every 

iteration. On the other hand, in KMA, the division of 

the role is dynamic in every iteration based on the 

fitness score of each Komodo. The objective of this 

stochastic approach is to give every agent a chance to 

conduct various roles in every iteration without 

considering their fitness score. Moreover, this 

stochastic division eliminates the sorting process at 

the beginning of every iteration. That is why this 

proposed algorithm is named as stochastic Komodo 

algorithm (SKA). 

The actions of every Komodo or agent are as 

follows. The big male always tries to get closer to 

other Komodo whose fitness score is better by 

accumulating the vector between this big male and all 

other Komodo whose fitness score is better. The 

female conducts parthenogenesis by creating a certain 

number of candidates (not only two) around it. Then 

the best candidate is selected from among them. If the 

fitness score of the best candidate is better than this 

female, this best candidate will replace the female. 

The small male tries to get closer to the highest quality 

Komodo with a certain speed. In this proposed 

algorithm, mlipir mechanism is eliminated. Every 

time a Komodo finishes its action, the highest quality 

Komodo is updated. The highest quality Komodo is 

Komodo whose fitness score is the best. This process  
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Algorithm 1: stochastic Komodo algorithm 

1 output: kbest 

2 //initiation 

3 for i = 1 to n(K) 

4     ki = initialize(P) 

5     kbest = global-update (ki, kbest) 

6 end for 

7 //iteration 

8 for t = 1 to tmax 

9   for i = 1 to n(K) 

10     r = U (0, 1) 

11     If r < g1 then 

12       s(ki) = big male 

13     else 

14       if r < g2 then 

15         s(ki) = female 

16       else 

17         s(ki) = small male 

18     if s(ki) = big male then 

19       ki = big-male-move (ki, K) 

20       kbest = global-update (ki, kbest) 

21     if s(ki) = female then 

22       for j = 1 to n(C) 

23         cj = generate-candidate (ki) 

24       end for 

25       cbest = find-best-candidate (C) 

26       if f(cbest) < f(ki) then 

27         ki = cbest 

28         kbest = global-update (ki, kbest) 

29     if s(ki) = small-male then 

30       ki = small-move (ki, kbest) 

31   end for 

32 end for 

  

bl, bu lower bound, upper bound 

c candidate 

C set of candidates 

g1 threshold between big male and female 

g2 threshold between female and small 

male 

k komodo 

K set of Komodo 

kbest the best Komodo 

P problem space 

rs search space ratio 

s type of Komodo 

nbet number of better Komodo 

t time / iteration 

tmax maximum iteration 

U uniform random 

w1, w2 big male weight, small male weight 

 

is conducted in every iteration until the maximum 

iteration is reached. In the end, the highest quality 

Komodo becomes the final solution.  

This concept is then transformed into a 

mathematical model. Several annotations used in this 

model are as follows. Moreover, the algorithm of 

SKA is shown in Algorithm 1. 

The explanation of Algorithm 1 is as follows. In 

the beginning, all Komodo are initialized randomly 

within the problem space. This process is formalized 

in Eq. (1). Then, best Komodo is updated. At the 

beginning of every iteration, a random number is 

generated. This random number is used to determine 

whether a Komodo becomes big male, female, or 

small male. Every big male or small male moves 

based on its characteristics. Meanwhile, every female 

generates candidates, select the best candidate, and 

evaluating whether this best candidate will replace 

this female. After finishing their job, the best Komodo 

is updated.  

 

𝑘 = 𝑈(𝑏𝑙 , 𝑏𝑢)            (1) 

 

The big male updates its position based on all the 

other Komodo whose fitness is better than it. If there 

not exist Komodo whose fitness score is better, then 

this Komodo stays in its current location. This 

mechanism is formalized by using Eq. (2) and Eq. (3). 

Eq. (2) shows that if there exists Komodo whose 

fitness score is better than the big male, the candidate 

is determined by calculating the average position of 

all Komodo whose fitness score is better. Eq. (3) states 

that the new location of the big male is determined by 

the summation of its weighted current location and its 

weighted location of its candidate. 

 

𝑐𝑏,𝑖 = {

0, 𝑛𝑏𝑒𝑡,𝑖 = 0
∑ 𝑘𝑗𝑛𝑏𝑒𝑡,𝑖

𝑛𝑏𝑒𝑡,𝑖
, 𝑒𝑙𝑠𝑒

       (2) 

 

𝑘𝑖
′ = 𝑤1𝑘𝑖 + (1 − 𝑤1)𝑐𝑏,𝑖  (3) 

 

The female generates several candidates near it. 

The location of every candidate is determined 

randomly and follows uniform distribution. This 

mechanism is formalized by using Eq. (4). Then, the 

location of this candidate is fitted so that it is still 

inside the problem space. 

 

𝑐𝑖 = 𝑘𝑖 + 𝑈(−0.5,0.5)𝑟𝑠(𝑏𝑢 − 𝑏𝑙)  (4) 

 

The small male updates its location based on its 

current location and the location of the best Komodo. 

This is formalized by using Eq. (5). Meanwhile, the 

updating process of the best Komodo is formalized by 

using Eq. (6). 
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Figure. 1 Benchmark function 

 

 

𝑘𝑖
′ = 𝑤2𝑘𝑖 + (1 − 𝑤2)𝑘𝑏𝑒𝑠𝑡   (5) 

 

𝑘𝑏𝑒𝑠𝑡
′ = {

𝑘𝑖, 𝑓(𝑘𝑖) < 𝑓(𝑘𝑏𝑒𝑠𝑡)

𝑘𝑏𝑒𝑠𝑡 , 𝑒𝑙𝑠𝑒
   (6) 

 

The explanation of Eq. (5) and Eq. (6) is as follows. 

Eq. (5) states that the small male moves toward the 

highest quality big male with certain step size. Eq. (6) 

states that the current Komodo will replace the highest 

quality big male only it is better than the current 

highest quality big male. 

4. Simulation and Result 

Simulation is then conducted to evaluate this 

proposed algorithm. There are ten common 

benchmark functions in this work. Five functions are 

unimodal functions: Sphere, Rosenbrock, 

Bohachevsky, Zakharov, and Booth functions. The 

other five functions are multimodal functions: Ackley, 

Rastrigin, Griewank, Bukin, and Michalewicz 

functions. A two-dimensional description of ten 

benchmark functions can be seen in Fig. 1. 

Bohachevsky and Griewank functions represent 

problem with large problem space. The optimal 

fitness score for Michalewicz function is -4.6876 

while the others are 0. The detailed specifications of 

these ten functions are shown in Table 1.  

This proposed model is compared with three 

metaheuristic algorithms: cloud-theory based 

simulated annealing (CTA), HS, football game-based 

optimization (FBGO), hide object game optimization 

(HOGO), and KMA. The reason for choosing these 

algorithms is as follows. CTA and HS represent well-

known and easy metaheuristic algorithms. CTA is 

chosen because it is a derivative of simulated 

annealing (SA) which offers better result by 

transforming the basic form of SA into population-

based SA [24]. HS is chosen because it represents the 

non-population-based algorithm [25]. In it, 

diversification and intensification are conducted 

based on probabilistic calculation [25]. FBGO and 

HOGO represent the shortcoming game-based 

metaheuristic algorithm. HOGO [19] and FBGO [18] 

are also chosen because the adjusted parameters in 

these algorithms are minimal. Meanwhile, KMA is 

chosen because the proposed algorithm in this work is 

a derivative of the basic form of KMA. Based on that, 

it is important to compare the improvement proposed 

by this work with its original form. 

The general setting of parameters in all algorithms is 

as follows. The maximum iteration is set at 100, 

except in HS, where the maximum iteration is 2000 

because HS is not a population-based algorithm. The 

population size is set at 20. There are 30 runs for every 

function. The specific setting for every algorithm is 

described below.  
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Table 1. Benchmark functions 

No Function Model Search Space Dimension 

1 Sphere ∑𝑥𝑖
2

𝐷

𝑖=1

 [-5.12, 5.12] 5 

2 Rosenbrock ∑(100(𝑥𝑖+1 + 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2)

𝐷−1

𝑖=1

 [-5, 10] 5 

3 Bohachevsky 𝑥1
2 + 2𝑥2

2 − 0.3 cos(3𝜋𝑥1) − 0.4 cos(4𝜋𝑥2) + 0.7 [-100, 100] 2 

4 Zakharov ∑𝑥𝑖
2

𝐷

𝑖=1

+ (∑0.5𝑖𝑥𝑖

𝐷

𝑖=1

)

2

+ (∑0.5𝑖𝑥𝑖

𝐷

𝑖=1

)

4

 [-5, 10] 5 

5 Booth (𝑥1 + 2𝑥2 + 7)
2 + (2𝑥1 + 𝑥2 + 5)

2 [-10, 10] 2 

6 Ackley 

−20 ⋅ 𝑒𝑥𝑝

(

 −0.2 ⋅ √
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1
)

 

− 𝑒𝑥𝑝 (
1

𝐷
∑cos2𝜋𝑥𝑖

𝐷

𝑖=1

) + 20

+ 𝑒𝑥𝑝(1) 

[-32, 32] 5 

7 Rastrigin 10𝑑 +∑(𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖))

𝐷

𝑖=1

 [-5.12, 5.12] 5 

8 Griewank 
1

4000
∑ 𝑥𝑖

2𝐷
𝑖=1 −∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝐷

𝑖=1 +1 [-600, 600] 5 

9 Bukin 100√|𝑥2 − 0.01𝑥1
2| + 0.01|𝑥1 + 10| 

𝑥1 ∈ [−15,−5] 

𝑥2 ∈ [−3,3] 
2 

10 Michalewicz −∑((sin 𝑥𝑖) ⋅ (sin (
𝑖𝑥𝑖
2

𝜋
))

2𝑚

)

𝐷

𝑖=1

, 𝑚 = 10 [0, π] 5 

 

The specific setting for the proposed algorithm is 

as follows. The formation of the Komodo is almost 

balance (0.35; 0.35; 0.3). The search space ratio is set 

0.01. The big-male weight is set at 0.5. The small-

male weight is set at 0.5. In CTA, the initial 

temperature is 10, terminating temperature is 0, and 

the Boltzmann constant is 0.0001. In HS, harmony 

memory considering rate is 0.8 and pitch adjusting 

rate is 0.5. In KMA, the big male proportion is 0.2, the 

number of females is 1, the radius of parthenogenesis 

is 0.5. In this simulation, the population size of the 

Komodo in KMA is constant so it is comparable with 

other algorithms. The result is shown in Table 2. 

Table 2 shows that the proposed algorithm 

achieves the objective of metaheuristic algorithm. It 

can find the near optimal solution for all benchmark 

functions. As indicated in solving multimodal 

functions, it is proven that this proposed algorithm can 

avoid the local optimal trap.  

Comparing among benchmark algorithms, the 

proposed algorithm is competitive enough. This 

algorithm outperforms all algorithms in solving three 

benchmark functions: Rosenbrock, Booth, and 

Griewank. This algorithm also outperforms four 

algorithms in solving six functions: Sphere, 

Bohachevksy, Zakharov, Ackley, Rastrigin, and 

Bukin. This algorithm outperforms three algorithms 

in solving Michalewicz function. The proposed 

algorithm outperforms KMA in solving nine 

functions. HOGO becomes the most difficult 

algorithm to beat. HOGO becomes the best algorithm 

in solving four functions. But the proposed algorithm 

is still better than HOGO in solving six functions. 

The second simulation is conducted to observe 

the convergence of this algorithm. This simulation is 

conducted by running the algorithm with different 

maximum iterations. In this simulation, there are 

three values of maximum iteration: 25, 50, and 75.  
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Table 2. Simulation result 

Functions 

Average Fitness Score 

Better than 
HS [25] 

FBGO 

[18] 
CTA [24] HOGO [19] 

KMA 

[20] 
SKA 

Sphere 0.0744 1.1020 0.0139 2.295 x 10-11 0.2096 0.0002 
HS, FBGO, 

CTA, KMA 

Rosenbrock 31.2933 553.3336 14.9298 4.2072 32.3806 3.7275 

HS, FBGO, 

CTA, HOGO, 

KMA 

Bohachevsky 0.1136 0.0162 0.0029 3.581 x 10-18 0.0988 1.932 x 10-6 
HS, FBGO, 

CTA, KMA 

Zakharov 0.8468 21.1929 0.5871 9.736 x 10-6 11.3257 0.0012 
HS, FBGO, 

CTA, KMA 

Booth 0.0126 0.0498 2.235 x 10-5 0.0058 0.0126 1.88 x 10-6 

HS, FBGO, 

CTA, HOGO, 

KMA 

Ackley 4.2009 8.4469 17.1523 5.725 x 10-5 5.1953 0.3524 
HS, FBGO, 

CTA, KMA 

Rastrigin 3.4953 10.4677 14.7338 5.1754 9.5951 3.9895 
FBGO, CTA, 

HOGO, KMA 

Griewank 1.1714 3.1896 17.9473 0.2036 1.6560 0.2028 

HS, FBGO, 

CTA, HOGO, 

KMA 

Bukin 1.7777 0.1388 0.1255 3.0671 0.0136 0.0168 
HS, FBGO, 

CTA, HOGO 

Michalewicz -4.4845 -4.0125 -3.4931 -3.4559 -3.2032 -3.8639 
CTA, HOGO, 

KMA 

 
Table 3. Convergence result 

Function Average Fitness Score 

tmax = 25 tmax = 50 tmax = 75 

Sphere 0.0004 0.0002 0.0003 

Rosenbrock 252.3004 16.7223 4.7256 

Bohachevsky 
0.0006 0.0008 9.737 x 

10-5 

Zakharov 6.4849 0.5160 0.2454 

Booth 
1.692 x 10-

6 

6.520 x 10-

7 

3.780 x 

10-6 

Ackley 1.5253 0.3839 0.5962 

Rastrigin 4.0836 4.9611 4.6044 

Griewank 0.3752 0.2523 0.2005 

Bukin 0.0305 0.0185 0.0136 

Michalewicz -3.6197 -3.4524 -3.8218 

 

The proposed algorithm, as shown in Table 3, can 

quickly achieve the convergence condition. In 

general, convergence occurs when the maximum 

iteration is less than 100. Convergence occurs when 

maximum iteration is 25 in solving Rastrigin and 

Michalewicz functions. Meanwhile, convergence 

occurs when the maximum iteration is 50 in solving 

Sphere and Ackley functions. Convergence occurs 

when maximum iteration is 75 in solving Bukin and 

Griewank functions. 

The following simulations are conducted to 

evaluate the parameters sensitivity. The objective is  

 

Table 4. Formation test result 

Function Average Fitness Score 

0.6:0.2:0.2 0.2:0.6;0.2 0.2;0.2;0.6 

Sphere 
0.0004 6.391 x 10-

5 

0.0004 

Rosenbrock 4.1617 3.7049 3.7706 

Bohachevsky 
0.0037 6.659 x 10-

5 

0.0025 

Zakharov 0.8892 0.0006 0.0431 

Booth 
9.049 x 10-

6 

2.345 x 10-

7 

1.624 x 10-

6 

Ackley 1.9707 0.1778 2.2871 

Rastrigin 3.3976 3.3260 4.8470 

Griewank 0.3161 0.0822 0.3473 

Bukin 0.0160 0.0206 0.0194 

Michalewicz -3.7029 -3.9707 -3.5994 

 

to find which parameters significantly affect the 

performance and which parameters do not. These 

adjusted parameters do not affect the complexity or 

computational time. The first parameter is formation 

of the Komodo. 

The third simulation is conducted to evaluate the 

relation of the Komodo formation and the algorithm 

performance. In the first simulation, the formation is 

equal. The formation is presented in (big male, 

female, small male). There are three scenarios: big 

male dominant, female dominant, and small male 

dominant. The result is shown in Table 4. 
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Table 5. Relation between search space ratio and fitness 

score 

Function Average Fitness Score 

rs = 0.005 rs = 0.05 rs = 0.5 

Sphere 
2.321 x 10-

5 

0.0017 0.0963 

Rosenbrock 39.3417 4.0048 28.2542 

Bohachevsky 
2.284 x 10-

5 

0.0017 0.1003 

Zakharov 4.1326 0.0011 0.5438 

Booth 
1.448 x 10-

7 

1.949 x 

10-6 

6.671 x 10-

5 

Ackley 2.5683 1.0478 4.1469 

Rastrigin 4.1801 3.2449 6.0456 

Griewank 0.3233 0.2693 0.8895 

Bukin 0.0213 0.0695 0.0823 

Michalewicz -3.9649 -4.2858 -3.9066 

 

Table 4 shows that the relation between the 

formation of Komodo and the performance of the 

algorithm is various depends on the problem. 

Female-dominant formation tends to create better 

performance rather than male-dominant formation. 

Female-dominant formation achieve the best 

performance significantly in solving sphere, 

Bohachevksy, Zakharov, Booth, Ackley, and 

Griewank functions. On the other side, the formation 

does not affect the result in solving Rosenbrock, 

Rastrigin, Bukin, and Michalewicz functions. 

The fourth simulation is conducted to evaluate 

the search space ratio during parthenogenesis and the 

algorithm performance. In this simulation, the 

formation of Komodo is set as female-dominant (0.2, 

0.6, 0.2). There are three values of this ratio: 0.005, 

0.05, and 0.5. The result is shown in Table 5. 

Table 5 shows that the relation between the search 

space ratio and the algorithm performance is different 

depending on the problem to be solved. In general, 

moderate search space ratio is preferred. The result 

shows that moderate search space ratio performs as 

the best option in solving six functions. On the other 

side, low search space ratio is the best in solving four 

functions. The significance of the search space ratio 

is different between unimodal functions and 

multimodal functions. The search space ratio affects 

significantly in solving unimodal functions. On the 

other side, it is less significant in solving multimodal 

functions.  

The fifth simulation is conducted to observe the 

relation between the big male weight and the 

algorithm performance. This simulation is conducted 

in small-male dominant formation. There are three 

values of the big male weight: 0.25, 0.5, and 0.75. 

The result is shown in Table 6. In this simulation, the 

search space ratio is set at 0.01. 

 

Table 6. Relation between big-male weight and fitness 

score 

Function Average Fitness Score 

wb = 0.25 wb = 0.5 wb = 0.75 

Sphere 0.0003 0.0003 0.0003 

Rosenbrock 3.8646 4.1395 8.4086 

Bohachevsky 0.0054 0.0041 0.0011 

Zakharov 0.3910 0.3286 0.2187 

Booth 
1.248 x 10-

5 

4.326 x 10-

6 

4.915 x 10-

7 

Ackley 2.1659 0.8505 0.8102 

Rastrigin 3.6719 3.9134 5.6942 

Griewank 0.2819 0.3056 0.2610 

Bukin 0.0139 0.0163 0.0165 

Michalewicz -3.4800 -3.6754 -3.9131 

 
Table 7. Relation between small-male weight and fitness 

score 

Function Average Fitness Score 

ws = 0.25 ws = 0.5 ws = 0.75 

Sphere 0.0004 0.0004 0.0003 

Rosenbrock 3.7438 3.7506 4.5787 

Bohachevsky 0.0036 0.0007 0.0002 

Zakharov 0.0067 0.0028 0.2965 

Booth 
8.857 x 10-

6 

5.237 x 10-

6 

1.405 x 10-

6 

Ackley 2.5533 1.7182 0.6771 

Rastrigin 7.8517 5.6671 4.4317 

Griewank 0.4097 0.3103 0.2177 

Bukin 0.0212 0.0189 0.0147 

Michalewicz -3.6236 -3.5800 -3.8558 

 

Table 6 shows that the relation between the big-

male weight and the performance of the proposed 

algorithm is various depends on the function to solve. 

Higher big-male weight improves the performance in 

six functions. Meanwhile, lower big-male weight 

improves the performance in three functions. In 

general, the big-male weight does not affect the 

performance significantly, except in Booth function. 

The sixth simulation is conducted to observe the 

relation between the small male weight and the 

algorithm performance. This simulation is conducted 

in small-male dominant formation. In this simulation, 

there are three values of the small male weight: 0.25, 

0.5, and 0.75. The result is shown in Table 7. In this 

simulation, the search space ratio is set at 0.01. 

Table 7 shows that in general, the increase in the 

small-male weight improves the performance of the 

proposed algorithm. This circumstance occurs in 

eight functions: three unimodal functions and five 

multimodal functions. The exception is in solving 

Rosenbrock and Zakharov functions. Although the 

increase in this weight can improve the performance, 

its improvement is not significant, except in solving 

Ackley function. 
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5. Discussion 

There are several findings due to the simulation 

result. First, this proposed algorithm can achieve the 

objective of metaheuristic algorithm. It can find the 

nearly optimal solution in all ten benchmark 

functions. Due to the multimodal functions, it is 

shown that this algorithm can avoid the local optimal 

trap. 

The second finding is that this proposed 

algorithm is competitive enough compared with the 

benchmark algorithms (FBGO, HOGO, CTA, HS, 

and KMA). This competitiveness gives prospect that 

this proposed algorithm is promising to be used in 

solving the real-world optimization problems. 

Comparing with the original KMA, this proposed 

algorithm is also competitive enough.  

There are several notes due to this 

competitiveness. This positive result is achieved by 

tuning parameters in the algorithm. Suyanto, 

Ariyanto, and Ariyanto [20] also tuned the KMA 

algorithm in their work so that it outperforms several 

well-known or short-coming algorithms. In general, 

every metaheuristic algorithm has several parameters 

that can be tuned to improve its performance based 

on the problem to solve. Based on it, although this 

proposed algorithm gives positive results in this work, 

there is not any guarantee that this algorithm is 

always better than the benchmark algorithms. By 

appropriate tuning, an algorithm can achieve its best 

result. On the other side, wrong tuning may produce 

an unpleasant performance. Second, the performance 

of any metaheuristic algorithm also depends on the 

problem to solve as it is stated in the no-free-lunch 

theory [26]. Although some algorithms are developed 

as general-purpose optimization algorithm, their 

performance would not be the best [26]. Although in 

general, this proposed algorithm is better than KMA, 

its performance is worse in solving Bukin function. 

Besides, better results can be simply achieved by 

expanding the maximum iteration or population size. 

The third finding is that the convergence of this 

proposed algorithm is fast enough. As indicated in 

Table 3, a near optimal solution can be achieved 

before the 50th iteration. After that, the fitness score 

tends to stagnant. Moreover, the acceptable optimal 

solution can be achieved in the 25th iteration.  

The fourth finding is that female affects 

significantly rather than male ones: big male or small 

male. Table 4 indicates this circumstance. In general, 

female-dominant formation achieves the best result 

compared with big-male dominant or small-male 

dominant formations. The reason is as follows. The 

role of the female is diversification. It implies that 

more females are required to explore the problem 

space. By increasing the proportion of females, 

exploration can be conducted more effectively. On 

the other side, females are also important in the 

intensification process by setting lower search space 

ratio. 

The existence of the male is still important in the 

optimization process. Big-male and small-male are 

important in making convergence. Moreover, 

collective intelligence is conducted in male Komodo. 

The small-male focuses on the one best solution. On 

the other side, the big male interacts with several of 

the best solutions. This means that the small-male is 

designed as the intensification only while the big-

male conducts intensification based on several 

alternatives. 

The fifth finding is that the search space ratio is a 

sensitive parameter while big-male and small-male 

weights are less sensitive. The sensitivity of the 

search space ratio is more significant in solving 

unimodal problems than multimodal problems. In 

general, moderate search space ratio is preferred due 

to its characteristic in balancing the exploration and 

exploitation. On the other side, higher big-male and 

small-male weights are preferred because higher 

value of these weights can make the selected solution 

closer to the current best solution faster. 

The complexity analysis of this proposed 

algorithm is as follows. Its complexity can be 

presented as O(tmax.n(K).n(C)). It is shown that the 

iteration depends on three parameters: maximum 

iteration, population size, and number of candidates. 

The assumption of this statement is that the number 

of candidates for female tends to be higher than better 

big male; and the female-dominant formation is 

chosen. 

6. Conclusion 

This work has demonstrated that the modification 

of the original KMA can provide better performance. 

This modified version is also simpler than the original 

one. Both diversification and intensification are still 

conducted properly without redundancy. By 

appropriate tuning, this proposed algorithm is 

competitive enough with the original KMA and other 

well-known algorithms. The simulation result shows 

that the female-dominant formation is preferred to 

male-dominant formation. The search space ratio 

becomes the most sensitive parameters with moderate 

value is preferred to make balance between 

intensification and diversification. 

There are several future research potentials due to 

this work. This work is an early improved version of 

the KMA. It means that the other improvements are 

still possible and promising. Moreover, studies that 
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implement this proposed algorithm to be used to solve 

real world optimization problems are needed to give 

more comprehensive evaluation to this algorithm. 
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