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Abstract: In this work, the wild horse optimization (WHO) algorithm, known for its ease of use, efficiency, and fast 

convergence, is explored in solving the reliability redundancy allocation problem (RRAP) for series-parallel systems. 

This problem has as of late caught the attention of researchers in this area, especially in today’s rapidly growing field 

of artificial intelligence. The NP-hard RRAP problem deals with maximizing of reliability under certain constraints. 

This work uses WHO algorithm to maximize the overall system reliability by determining how many redundant 

components are to be used along with their reliabilities in each subsystem, such reliability is constrained by cost, 

volume, and weight. Testing is carried out to show the effectiveness of this algorithm using four known numerical 

examples, results are to be compared with simplified swarm algorithm (SSO), attraction-repulsion imperialist 

competitive algorithm (AR-ICA), hybrid salp swarm algorithm and teaching-learning based optimization (HSS-

TLBO), particle swarm optimization (PSO), and gradient based optimization (GBO). Computational results show that 

WHO was able to find better feasible near-optimal solutions effectively and efficiently in terms of population size and 

number of iterations.  

Keywords: Swarm intelligence, Wild horse optimization, Reliability, Series-parallel systems, Optimization. 

 

1. Introduction 

The optimization of system reliability is an 

important type of optimization problems, it covers a 

vital topic in real-life applications such as systems of 

telecommunication, transformation, space 

exploration, textile manufacturing, and airport 

security systems [1]. Many researchers considered 

the improvement of the reliability for systems or 

products to compete in business enterprises. In series-

parallel systems, individual components largely 

affect the probability of a failure-free operation. Such 

systems are supposed to operate and be available for 

the extreme possible period to make the most of the 

overall profit. Still, failures are practically 

unavoidable phenomena in machine-driven systems, 

that is why, the analysis of reliability has grown to be 

a very important topic [2].  

This problem is identified as NP-hard problems. 

Commonly, there two main approaches to gain better 

reliability for a system; either by increasing the 

reliability of system components, or by using 

redundancy in subsystems. In the first approach, 

system reliability can be reasonably enhanced, yet 

this enhancement may be unachievable despite using 

the most reliable parts. Employing the second 

methodology, on the other hand, involves selecting 

the ideal component combination and redundancy, 

that is, while enhancing the reliability, features such 

as cost, weight, and volume will increase too. No 

matter which approach is chosen, there exists some 

feasible techniques to improve the reliability such as 

unifying both approaches or reassigning substitutable 

elements. Such problems that maximize system 

reliability via redundancy and component reliability 

selections are called reliability redundancy allocation 

problems (RRAP) [3].  

RRAP problems implicate the definition of 

reliability objectives for components/subsystems to 

fulfil the constraints for consuming resources such as 

cost. Thus, RRAPs are emerging as progressively 

significant mechanisms in the early stages of 

planning, designing, and systems control. 
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Depending on the approach used to improve 

system reliability, problems of designing reliability 

are divided into integer and mixed integer problems. 

Using integer reliability problems (RAPs), the 

allocation of component redundancy is to be 

determined while the component reliabilities are at 

hand. Whereas in mixed-integer reliability problems 

(RRAPs), the quantity of redundant components and 

their corresponding reliabilities are to be determined 

simultaneously. 

It has been stated that the problems of nonlinear 

mixed-integer programming are further complicated 

than the basic redundancy allocation problems. It is 

also found that exact optimal solutions to RRAP 

cannot be not easily obtained due to high complexity 

of computation [2]. It is very complicated to reduce 

the system cost and improve the reliability at the 

same time, this is a result of the non-stochastic 

uncertain and conflicting factors of the problem [4]. 

That is why researchers in this field became 

devoted to use intelligent algorithms that can 

discover near optimal solutions in a fast and efficient 

manner, rather than the traditional exact solution 

methods that become unfeasible with large search 

spaces. Swarm intelligent algorithms are being 

widely employed, these population-based search 

algorithms have proved its ability to find good 

solutions in a relatively short time or less iterations. 

One of the lately introduced swarms is the wild horse 

optimization (WHO) symbolizing the behaviour of 

wild horses with their known decent mating feature 

prohibiting family members from mating with each 

other, thus providing variety and diversity in 

producing new solutions. 

The increasing demand for high reliable systems 

necessitates the study of reliability optimization. 

Many researchers have attempted to solve this 

problem using various methods and techniques. 

Starting at 2008, Moghaddam et. al., used genetic 

algorithms to tackle the RRAP and proved its 

efficiency [5]. A PSO grounded on Gaussian 

distribution and chaotic sequence was employed in 

2009 by Dos and Coelho in solving the RRAPs [6]. 

In 2011, Yeh and Hsieh suggested using artificial Bee 

colony algorithm, as this algorithm possess benefits 

of memory, multi-character local search and a 

method of improving solutions by being able to 

discover new optimal solution [7]. But their results 

were found to be infeasible in 2015 by Huang et. 

al.,[8]. In 2013, Garg and Sharma proposed a penalty-

based PSO aiming to search for the optimal solution 

with nonlinear constraints for a pharmaceutical plant 

[9]. In the same year, Afonso et. al, used an idea of 

attraction and repulsion with the imperialist 

competitive algorithm (ICA) for solving four 

different designs of the RRAPs, their approach (AR-

ICA) showed an improved search for the problem 

[10]. A hybrid procedure of advanced genetic 

algorithm and PSO to find best solutions was adopted 

by Sahoo et. al., in 2014 [11]. The simplified swarm 

optimization (SSO) was suggested by Huang and Yeh 

for solving the RRAP and improve computational 

proficiency in 2015 [8]. In 2017, Valaei and 

Behnamian considered the redundancy allocation 

problem and the sequencing of standby elements for 

the 1-out-of-N:G heterogeneous cold standby 

systems, concurrently [12]. By 2020, Taghiyeh et. al., 

proposed two diverse approaches, using Zadeh’s 

extension principle and modification of fuzzy 

parametric programming, to consider uncertainty in 

the overspeed protection system [13]. Lately in 2021, 

Jaleel and Abd presented a modified PSO approach 

with analysis to evaluate reliability and estimate 

optimal locations and capacities of the DGs units 

using multi-objective functions for reducing power-

loss and improving voltage profile [14]. Also in 2021, 

Ashraf et. Al., used A parameter free penalty gradient 

based optimizer (GBO) to provide feasible solutions 

for the RRAPs of the pharmaceutical plant [15]. Most 

recently in 2022, Kundu et. al., used a hybrid salp 

swarm algorithm (HSS-TLBO) based on teaching-

learning based optimization (TLBO) for RRAPs, 

aiming to merge the SSA ability of global search with 

the fast converging of (TLBO) to maximize 

reliability [16]. 

In this work, the wild horse optimization is 

considered for solving the RRAP problems aiming to 

maximize the overall system reliability under certain 

constraints. The primary focus is the adjustment of 

the number of component and their reliabilities to 

meet the constraints of resource utilization denoted 

by system cost, weight, and volume. To test the 

efficiency of the algorithm, four numerical examples 

are used. 

2. The reliability redundancy allocation 

problem (RRAP) 

In general, a system can be organized into any of 

the following categories: Series, parallel, series–

parallel, and complex systems. Components or 

subsystems connected in series means that when one 

of them fail, then the whole system fails. While in 

parallel configurations, all the components have to 

fail in order for the whole system to fail. As for the 

complex/bridge system, it has an interconnection 

component that transmits the excess capacity to other 

components or subsystems. Every component is 

made up of (n) parallel components.  

The reliability optimization problem has three 
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distinctive forms: redundancy allocation, reliability 

allocation, and reliability redundancy allocation 

problems (RRAP). The approach for solving each of 

them differs depending on the problem assumptions 

and type. Redundancy allocation problems denote 

systems of discrete component types having fixed 

reliability, cost and weight. The problem is selecting 

optimal collection of components types that meet the 

constraints to attain the objective function, these 

problems are used with series-parallel systems. The 

problem of reliability allocation, on the other hand, 

has a fixed system structure and continuous decision 

variables for component reliability. The cost, weight, 

and volume are functions of component reliability, 

using more components to increase system reliability 

can increase cost, and possibly weight and volume 

[17]. 

As for the reliability redundancy allocation 

problem, it is considered to have the utmost general 

problem representation. The system and subsystems 

can be in any arrangement and all subsystems have 

(ni) components and (ri) reliabilities. The task is to 

allocate the optimal redundancy and reliability to the 

components of these subsystems with the purpose of 

optimizing the overall system reliability. 

In dealing with RRAPs, the objective function is 

the maximization of the total system reliability (Rs), 

this is done by resolving the number of components 

and their reliability for individual subsystems 

simultaneously under several constraints [18]. 

In series systems, the overall system reliability 

can be computed as in Eq. (1), whereas in parallel 

systems, system reliability is computed as in Eq. (2). 

 

𝑅𝑠 = ∏ 𝑅𝑖
𝑚
𝑖=1      (1) 

 

𝑅𝑠 = 1 − ∏ (1 − 𝑅𝑖)
𝑚
𝑖=1     (2) 

 

Where (Ri) is the reliability for (ith) subsystem 

defined in Eq. (3) by using (ni) as the quantity of 

redundant components for that subsystem and (ri) is 

the individual component reliability. 

 

𝑅𝑖 = 1 − (1 − 𝑟𝑖)
𝑛𝑖    (3) 

 

RRAP seeks to enhance the whole system 

reliability in a definite controlled setting, depending 

on the constraints of cost, weight, and volume of the 

system. The cost function (𝑓𝑐𝑜𝑠𝑡) relies on the count 

of the subsystems (m) and their reliabilities along 

with the components count in each subsystem (ni) as 

indicated in Eq. (4). The value )1000) is supposed to 

be the mean time between failures, (αi) and (βi) are 

function parameters for cost. 

The function controlling the weight of the system 

(𝑓𝑤𝑒𝑖𝑔ℎ𝑡) is subject to the count of subsystems and the 

count of components in each subsystem, (wi) is the 

parameter of weight function. Its definition is given 

in Eq. (5). 

As for the volume function ( 𝑓𝑣𝑜𝑙𝑢𝑚𝑒 ), it is 

similarly established on the count of subsystems and 

the count of components in each one using (vi) as the 

volume function parameter as shown in Eq. (6). 

 

𝑓𝑐𝑜𝑠𝑡 = ∑ 𝑓𝑐𝑜𝑠𝑡𝑖 = ∑ 𝛼𝑖(
−1000

𝑙𝑛 𝑟𝑖
)𝛽𝑖  (𝑛𝑖 +𝑚

𝑖=1
𝑚
𝑖=1

𝑒
𝑛𝑖
4 )    (4) 

 

𝑓𝑤𝑒𝑖𝑔ℎ𝑡 = ∑ 𝑓𝑤𝑒𝑖𝑔ℎ𝑡𝑖 = ∑ 𝑤𝑖. 𝑛𝑖. 𝑒
𝑛𝑖
4  𝑚

𝑖=1
𝑚
𝑖=1  (5) 

 

𝑓𝑣𝑜𝑙𝑢𝑚𝑒 = ∑ 𝑓𝑣𝑜𝑙𝑢𝑚𝑒𝑖
= ∑ 𝑣𝑖 . 𝑛𝑖

2 𝑚
𝑖=1

𝑚
𝑖=1  (6) 

 

In general, an RRAP can be stated as in Eq. (7), 

where the reliability is the objective function. 

 

𝑀𝑎𝑥 𝑅𝑠 = 𝑓(𝑟𝑖, 𝑛𝑖)    (7) 

 

Subject to 

𝑓𝑐𝑜𝑠𝑡(𝑟𝑖, 𝑛𝑖, 𝛼𝑖, 𝛽𝑖) ≤  𝐶  

𝑓𝑤𝑒𝑖𝑔ℎ𝑡(𝑛𝑖, 𝑤𝑖) ≤  𝑊  

𝑓𝑣𝑜𝑙𝑢𝑚𝑒(𝑛𝑖, 𝑣𝑖) ≤  𝑉  

 

Where C, W, and V signify upper boundaries for 

system cost, weight and volume respectively. [18] 

3. Wild horse optimizer (WHO) 

Wild horses are stable family groups consisting 

of a single stallion horse along with one or many 

mares and offspring. A stallion is usually a male 

horse used for breeding, and a mare is an adult female 

horse. Single groups have an adult stallion and 

youthful horses, and a stallion is put next to mares to 

give them a chance to mate. In family groups, foals 

typically start to graze in their first week, and as they 

grow older, they graze more and need less rest. They 

depart their groups before puberty, male horses 

usually join single groups to grow up and mate, while 

females enrol in other family groups. This parting is 

done to avoid mating of father with its daughter or 

siblings [19]. 

There is a noticed intergroup dominance in the 

groups of wild horses in dry seasons, as groups of 

upper ranks have access to a water resource whenever 

they request, while groups of lesser ranks wait for 

their turn. The leader of a group is responsible of the 

moving speed and direction. The family leader is 

typically the most dominant, and the remaining come 

in sequence of lessening dominance, the stallion  
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Figure. 1 Population construction process 

 

 
Figure. 2 Parting from groups for mating 

 

come after the group in a short distance. 

3.1 The wild horse optimization algorithm 

The algorithm starts with a randomly initialized 

population of (N) individual divided into (S) groups, 

where (S) is calculated as (N × PS), with (PS) being 

the ratio of stallions in the over-all population. The 

remaining foal individuals (N–S) are equally 

distributed amongst these groups. Fig. 1 is a sample 

of constructing such a population. Group leaders are 

chosen according to the fitness of individuals of the 

group, as the fittest individual becomes the leader 

[19]. 

After dividing the population comes the graze 

and mate operations. As already mentioned, foals 

graze around their group for the majority of their time. 

To implement this behaviour, a stallion is considered 

to be the midpoint of the grazing area, while other 

group individuals explore round it. 

The grazing behaviour is simulated using Eq. (8), 

to resemble the movement of group members and the 

searching process surrounding the leader with a 

varied radius (VR) given in Eq. (9). 

 

𝑋𝑛𝑒𝑤𝑖,𝑆
𝑗

= 𝑉𝑅 × (𝑆𝑡𝑗 − 𝑋𝑖,𝑆
𝑗

) + 𝑆𝑡𝑗    (8) 

 

𝑉𝑅 = 2𝑍 𝑐𝑜𝑠(2𝜋𝑅𝑍)   (9) 

 

Where (𝑋𝑖,𝑆
𝑗

) is the individual current location, 

(𝑋𝑛𝑒𝑤𝑖,𝑆
𝑗

) is the new location of the group individual 

as it grazes. The location of the stallion is denoted by 

(𝑆𝑡𝑗 ), and (R) symbolizes a random number that 

uniformly ranges between [−2, 2], it changes the 

angles of rotation for grazing (360) degrees.  The 

(Cos) function is used to vary the radius of the 

movement and (Z) is calculated using Eq. (10). 

 

𝑃 = 𝑅1
⃗⃗⃗⃗ < 𝑇𝐷𝑅; 𝐼𝐷𝑋 = (𝑃 = 0);  𝑍 =

𝑅2 𝛩 𝐼𝑛𝑑𝑥 + 𝑅3
⃗⃗ ⃗⃗  𝛩(∼ 𝐼𝑛𝑑𝑥)        (10) 

 

Here (P) is a vector of 0s and 1s of size equal to 

the problem dimension, (�⃗� 1), (�⃗� 3) denote random 

vectors that are distributed uniformly between [0, 1]. 

The (R2) signifies a random number uniformly 

distributed in the range [0, 1], the values of (Indx) are 

indexes of (�⃗� 1) satisfying the condition (P=0). While 

(TDR) refers to a parameter that starts at (1) and 

decreases to end at (0) through the execution (Eq. 

(11)), given that (iter) denotes current iteration, and 

(max-itr) is the maximum iterations [20]. 

 

 𝑇𝐷𝑅 =  1 −  𝑖𝑡𝑒𝑟 × (
1

𝑚𝑎𝑥−𝑖𝑡𝑟 
)             (11) 

 

Horses possess a unique behaviour opposed to 

other sorts of animals; it is, as stated earlier, the 

practice of parting foals from the group in order to 

mate when they reach puberty. To implement this 

action, a foal (assumed to be a male) leaves group (i), 

and a foal (assumed to be a female) leaves group (j), 

they can mate (crossover) as they are not related to 

each other. But their offspring must leave them and 

joins a distinct group, assumed (k). This series of 

parting, mating and reproduction is repetitive for all 

groups as illustrated in Fig. 2. This process is 

formulated in Eq. (12). 
 

𝑋𝑆,𝐾
𝑝

= 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑋𝑆,𝑖
𝑞

, 𝑋𝑆,𝑗
𝑍 )              (12) 

𝑓𝑜𝑟 𝑖 ≠ 𝑗 ≠ 𝑘, 𝑝 = 𝑞 = 𝑒𝑛𝑑. 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟:𝑚𝑒𝑎𝑛   

 

Where (𝑋𝑆,𝐾
𝑝

) signifies the location for horse (p) 

in group (k) that leaves the group granting its location 

to an offspring whose parents had parted group (i) 

and (j). The (𝑋𝑆,𝑖
𝑞

) is the position of foal (q) parting 

group (i) to mate with horse (z) that has parted from 

group (j).  

As for leading the group, the leader has to guide 
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. 
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the individuals of his group to an appropriate area 

near a “water hole”, other groups walk likewise to the 

same water hole. Here, leaders have to compete for 

dominating that water hole, other groups can’t use 

that water unless the domination group leave it. Eq. 

(13) symbolizes this attitude mathematically [20]. 

 

𝑆𝑡𝑛𝑒𝑤𝑆𝑖
=

{
𝑉𝑅 × (𝑊𝐻 − 𝑆𝑡𝑆𝑖

) + 𝑊𝐻  𝑖𝑓 𝑅𝑛 > 0.5

𝑉𝑅 × (𝑊𝐻 − 𝑆𝑡𝑆𝑖
) − 𝑊𝐻  𝑖𝑓 𝑅𝑛 ≤ 0.5

}     (13) 

 
Where (𝑆𝑡𝑛𝑒𝑤𝑆𝑖

) is the new location of the leader 

of group (i), (WH) is the location of the water hole,  

 

 
Figure. 3 Flowchart of the wild horse optimization 

and (𝑆𝑡𝑆𝑖
) is the previous known location for the 

leader of group (i). Here (Rn) is a uniform random 

number ranging between [-2, 2]. Updating the 

location of the new stallion location is done relatively 

to the best location.  

In the initialization, leaders are chosen in random, 

later in the algorithm, they are chosen according to 

fitness. when one of the individuals is fitter than the 

group leader, their locations are exchanged Eq. (14).  

 

𝑆𝑡𝑆𝑖
=  

{
𝑋𝑆,𝑖   𝑖𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑆,𝑖) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑡𝑆𝑖

)

𝑆𝑡𝑆𝑖
  𝑖𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑆,𝑖) > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑡𝑆𝑖

)
}       (14) 

 

Where (𝑆𝑡𝑆𝑖
) is the location for leader of group (i), 

and (𝑋𝑆,𝑖) denotes individuals in the group. 

 Wild horse optimization has some inherent 

characteristics when dealing with optimization 

problems, such as in parting and mating with 

individuals from other groups, there exists a higher 

probability for overcoming local optima. The 

calculation of random horse movements allows for 

improved diversity in populations. It is also noticed 

that through optimization, leaders move to the 

locations of best horses which are the important zones 

of the searching space.  Value of the best leader is 

stored for each iteration and is then measured up to 

the best leader obtained lately [19]. 

Fig. 3 gives the flowchart for the wild horse 

algorithm optimization. 

4. Test examples and parameter setting 

Assessing the efficiency and capability of the 

employed algorithm requires the exploration of a 

number of numerical problems chosen from the 

literature as benchmark problems. Results are to be 

compared with previously found ones. Table 1 gives 

the parameter settings for WHO used in solving the 

RRAP problems. 

Testing involves exploring four problems: Series-

parallel system (P1), complex/bridge system (P2), the 

overspeed protection system (P3) and the 

pharmaceutical plant. These problems are discussed 

in next paragraphs.  

Problem (P1) symbolizes the series-parallel  

 
Table 1. Parameter setting for WHO used in testing 

Parameter Setting 

PS 0.2 

PC 0.13 

Crossover Mean 

Population Size 25 - 100 

No. of Iterations 75 - 250 

Start 

Input Parameters: n-pop, max-iter, PC, PS 

Compute: N-stallion, N-foal with PS, 

Create groups of foals, Select Stallions 

 

Evaluate fitness for each individual 

Calculate TDR for grazing 

 

Initialize i and j to 1 

Compute Z using (Eq. 10) 

 

R> PC? 

No Yes 

Foal Position  

updating (Eq. 8) 

 

Foal Position  

updating (Eq. 12) 

 

Evaluate fitness for each individual 

j < N-foal? 
Yes 

j = j+1 

No 

Stallion Position updating (Eq. 13) 

 

Fitness evaluation 

Stallion selection (Eq. 14) 

 
Yes 

i < N-stallions? 

No 
No 

Output best obtained solution 

 

Terminate? 

Yes 

End 

i = i+1 

j=1 
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Figure. 4 The series-parallel system (P1) 

 

Table 2. Data used in problem P1 

Subsys i αi×105 βi wivi
2 wi V C W 

1 2.500 1.5 2 3.5 

180 175 100 

2 1.450 1.5 4 4.0 

3 0.541 1.5 5 4.0 

4 0.541 1.5 8 3.5 

5 2.100 1.5 4 
4.5 

3.5* 

* As used by [16] 

 

 
Figure. 5 The complex/bridge system (P2) 

 

system depicted in Fig. 4; the problem is 

mathematically formulated as in Eq. (15). Table 2 

shows the test input data [2], the (w5) value differs 

according to [16] as specified in Table 2, this is to be 

considered in the comparisons. 

 

𝑀𝑎𝑥 𝑓(𝑟, 𝑛) = 1 − (1 − 𝑅1𝑅2)(1 − (1 −
𝑅3)(1 − 𝑅4)𝑅5)             (15) 

 

Subject to 

𝑓𝑐𝑜𝑠𝑡(𝑟, 𝑛) = ∑ 𝛼𝑖(
−1000

𝑙𝑛 𝑟𝑖
)𝛽𝑖  (𝑛𝑖 + 𝑒

𝑛𝑖
4 ) 𝑚

𝑖=1  ≤ 𝐶  

𝑓𝑤𝑒𝑖𝑔ℎ𝑡(𝑟, 𝑛) = ∑ 𝑤𝑖𝑛𝑖
𝑚
𝑖=1  exp (𝑛𝑖/4)  ≤ 𝑊   

𝑓𝑣𝑜𝑙𝑢𝑚𝑒(𝑟, 𝑛) = ∑ 𝑤𝑖𝑣𝑖
2𝑛𝑖

2𝑚
𝑖=1  ≤ 𝑉   

0 ≤ 𝑟𝑖 ≤ 1, 𝑛𝑖 ∈ 𝑍+   
 

For problem P2, the complex/bridge system is 

illustrated in Fig. 5, the formulation of the problem is 

shown in Eq. (16). The input data used for the test are 

given in Table 3 [2].  
 

𝑀𝑎𝑥 𝑓(𝑟, 𝑛) = 𝑅1𝑅2 + 𝑅3𝑅4 + 𝑅1𝑅4𝑅5 +
𝑅2𝑅3𝑅5 − 𝑅1𝑅2𝑅3𝑅4 −
𝑅1𝑅2𝑅3𝑅5 − 𝑅1𝑅2𝑅4𝑅5 −
𝑅1𝑅3𝑅4𝑅5 − 𝑅2𝑅3𝑅4𝑅5 +
2𝑅1𝑅2𝑅3𝑅4𝑅5                 (16) 

 

Subject to  

 𝑓𝑐𝑜𝑠𝑡(𝑟, 𝑛), 𝑓𝑤𝑒𝑖𝑔ℎ𝑡(𝑟, 𝑛), and  𝑓𝑣𝑜𝑙𝑢𝑚𝑒(𝑟, 𝑛) 
0 ≤ 𝑟𝑖 ≤ 1, 𝑛𝑖 ∈ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 1 ≤ 𝑖 ≤ 𝑚  

 

Table 3. Input data used in P2 

Subsys i αi×105 βi wivi
2 wi V C W 

1 2.33 1.5 1 7 

110 175 200 

2 1.450 1.5 2 8 

3 0.541 1.5 3 8 

4 8.050 1.5 4 6 

5 1.950 1.5 2 9 

 

 
Figure. 6 The overspeed protection system (P3) 

 
Table 4. Data used in problem P3 

Subsys i αi×105 βi vi wi V C W T 

1 1 1.5 1 6 

250 400 500 1000 
2 2.3 1.5 2 6 

3 0.3 1.5 3 8 

4 2.3 1.5 2 7 

 

 
Figure. 7 The pharmaceutical plant 

 
Table 5. Data used in problem P4 

Subsys i αi×105 βi vi wi 

1 0.611360 1.5 4.0 9.0 

2 4.032464 1.5 5.0 7.0 

3 3.578225 1.5 3.0 5.0 

4 3.654303 1.5 2.0 9.0 

5 1.163718 1.5 3.0 9.0 

6 2.966955 1.5 4.0 10.0 

7 2.045865 1.5 1.0 6.0 

8 2.649522 1.5 1.0 5.0 

9 1.982908 1.5 4.0 8.0 

10 3.516724 1.5 4.0 6.0 

V C W T 

289 553 483 1000 

 

Whereas problem P3 symbolizes the “overspeed 

protection system” of a turbine having a time-related 

cost function as illustrated in Fig. 6. The control 

system in this problem is a 4-staged mixed series-

parallel system. The problem assumes that 

1 2 
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throughout the operation time, system components 

are not allowed to fail. [13] The problem is expressed 

in Eq. (17). The input data are in Table 4. 
 

𝑀𝑎𝑥 𝑓(𝑟, 𝑛) = ∏ [1 − (1 − 𝑟𝑖)
𝑛𝑖]𝑚

𝑖=1           (17) 

 

Subject to 

𝑓𝑐𝑜𝑠𝑡(𝑟, 𝑛) = ∑ 𝛼𝑖(
−1000

𝑙𝑛 𝑟𝑖
)𝛽𝑖  (𝑛𝑖 + 𝑒

𝑛𝑖
4  )𝑚

𝑖=1 ≤ 𝐶  

𝑓𝑤𝑒𝑖𝑔ℎ𝑡(𝑟, 𝑛) = ∑ 𝑤𝑖𝑛𝑖
𝑚
𝑖=1  𝑒

𝑛𝑖
4 ≤ 𝑊   

𝑓𝑣𝑜𝑙𝑢𝑚𝑒(𝑟, 𝑛) = ∑ 𝑣𝑖𝑛𝑖
2𝑚

𝑖=1  ≤ 𝑉   

0.5 ≤ 𝑟𝑖 ≤ 1 − 10−6, 𝑟𝑖 ∈  𝑅+  

1.0 ≤ 𝑛𝑖 ≤ 10, 𝑛𝑖 ∈ 𝑍+  
 

Problem P4 considers a larger and more 

complicated problem of optimizing the reliability of 

a pharmaceutical plant depicted in Fig. 7. [4] The 

model is expressed in Eq. (18), Table 5 shows the 

data used in the test. 

 

𝑀𝑎𝑥  𝑓(𝑟, 𝑛) = ∏ [1 − (1 − 𝑟𝑖)
𝑛𝑖]10

𝑖=1             (18) 

 

Subject to 

𝑓𝑐𝑜𝑠𝑡(𝑟, 𝑛) = ∑ 𝛼𝑖 (
−1000

𝑙𝑛 𝑟𝑖
)
𝛽𝑖

(𝑛𝑖 + 𝑒
𝑛𝑖
4 ) ≤ 𝐶  10

𝑖=1   

𝑓𝑤𝑒𝑖𝑔ℎ𝑡(𝑟, 𝑛) = ∑ 𝑤𝑖𝑛𝑖
10
𝑖=1  𝑒𝑥𝑝 (𝑛𝑖/4)  ≤ 𝑊   

𝑓𝑣𝑜𝑙𝑢𝑚𝑒(𝑟, 𝑛) = ∑ 𝑣𝑖𝑛𝑖
210

𝑖=1  ≤ 𝑉   
 
0.5 ≤ 𝑟𝑖 ≤ 1 − 10−6, 𝑟𝑖 ∈  𝑅+  
1.0 ≤ 𝑛𝑖 ≤ 5, 𝑛𝑖 ∈ 𝑍+  
0.5 ≤ 𝑅𝑠 ≤ 1 − 10−6  

5. Results and comparisons 

The WHO algorithm is used to find suitable 

solutions to the previously discussed problems. in 

such optimization problems, the number of redundant 

components (n) and the corresponding reliability (r) 

of each component in all the subsystems with various 

constraints must be determined concurrently. 

Results gained after applying WHO to P1, P2, and 

P3 are compared to those of the simplified swarm 

algorithm (SSO) [8], and the attraction-repulsion 

imperialist competitive algorithm (AR-ICA) [10], 

and hybrid salp swarm algorithm with teaching-

learning based optimization (HSS-TLBO) [16] As for 

P4, the obtained results are compared to PSO [9] and 

GBO [13]. Results are given in Table 10, the best 

solution for each problem is stated and compared to 

the above-mentioned methods. 

To assess the enhancement achieved, the 

“maximum possible improvement” (MPI) is 

calculated to show the amount of improvement made 

in the obtained solutions over previous ones. The MPI  
 

Table 6. Comparing WHO with AR-ICA and SSO for P1 

 Rs ni ri MPI 

A
R

-IC
A

 

0.99997661 2 2 2 2 4 

0.82201264 

0.84365640 

0.89129092 

0.89869886 

0.86824939 

0.166% 

S
S

O
 

0.99997657   0.337% 

W
H

O
 

0.9999766489 2 2 2 2 4 

0.8199933074 

0.8451438315 

0.8955732508 

0.8954101684 

0.8683173737 

 

 

Table 7. Comparing WHO with HSS-TLBO for P1 

 Rs ni ri MPI 
H

S
S

-T
L

B
O

 

0.99998633737 
3 2 2 2 

4 

0.7753618512628 

0.8714241422773 

0.8903702230415 

0.8914438741116 

0.8630261550595 

0.0031 

% 

W
H

O
 

0.99998633779 
3 2 2 2 

4 

0.775007936893 

0.871112710024 

0.891103780170 

0.891343630734 

0.863097073724 

 

 
Table 8. Comparing WHO with AR-ICA, SSO, and HSS-

TLBO for P2 

 Rs ni ri MPI 

A
R

-IC
A

 

0.99988963 3 3 2 4 1 

0.82764257 

0.85747845 

0.91419677 

0.64927379 

0.70409200 

0.007% 

S
S

O
 

0.99988862  
 

0.91% 

H
S

S
-T

L
B

O
 

0.99988963738 3 3 2 4 1 

0.8280051677 

0.8578130972 

0.9142533044 

0.6482662731 

0.7038807118 

0.0001 

% 

W
H

O
 

0.9998896375 3 3 2 4 1 

0.8281266446 

0.8577893836 

0.9142001356 

0.6482089690 

0.7038280579 

 

 

is given as in Eq. (19) [7]. 

 

𝑀𝑃𝐼(%) =
𝑅𝑠_𝑊𝐻𝑂−𝑅𝑠_𝑜𝑡ℎ𝑒𝑟

1−𝑅𝑠_𝑜𝑡ℎ𝑒𝑟
  (19) 

 

Where the reliability is considered to be ≤1, Rs-

WHO is the system reliability obtained using WHO 

algorithm and Rs-other is that found by other methods 

in the comparison. 
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Table 9. Comparing WHO with AR-ICA, SSO, and HSS-

TLBO for P3 

 Rs ni ri MPI 

A
R

-IC
A

 

0.999954673 5 6 4 5 

0.90148988 

0.85003526 

0.94812952 

0.88823833 

0.0022% 

S
S

O
 

0.99995416  Not Given 1.12% 

H
S

S
-T

L
B

O
 

0.999954674664 5 6 4 5 

0.901623877 

0.849936249 

0.948146758 

0.888204712 

2.42689E-

05% 

W
H

O
 

0.999954674675 5 6 4 5 

0.901615299 

0.849920747       

0.948140499      

0.888223413     

 

 

Tables 6, 7, 8, and 9 show the comparison among 

WHO and the above-mentioned methods for test 

problems P1, P2, and P3. In problem P1, HSS-TLBO 

[16] used a different value for (w5) input as previously 

indicated in Table 2. That is why two comparisons 

are made, Table 6 shows the results using (w5 = 4.5), 

whereas Table 7 displays the results of (w5 = 3.5). 

Each table represents a comparison with previous 

algorithms according to the (w5) value they used. 

Results show that WHO achieved better results 

than the other methods using only (25) population 

individuals in less than (75) iterations. As for the 

(MPI), it indicated a small amount of improvement in 

the solutions.  

Table 10 shows the results of comparing WHO to 

PSO and GBO for test problem P4. These results 

clearly signify the ability of WHO in attaining best 

obtainable results of high reliability in an efficient 

manner using (100) individual in (250) iterations. 

Here the MPI shows a noticeable improvement in the 

solution found. 

Adding up all the results together, the WHO 

algorithm has proven, through testing and 

comparisons, to act efficiently in navigating through 

the search space of this complicated problem. It also 

showed a fast convergence in finding acceptable and 

better near-optimal solutions in terms of overall 

system reliability.  

6. Conclusion 

In this work, the wild horse optimization (WHO) 

was employed to tackle the NP-hard reliability 

redundancy allocation problem (RRAP), this 

employment was tested using four known numerical 

examples, namely: series-parallel, complex/bridge, 

overspeed protection, and the pharmaceutical plant  
 

Table 10. Comparing WHO with PSO and GBO for P4 

 Rs ni ri MPI 

P
S

O
 

0.956021 

3 3 3 3 

3 3 3 3 

3 3 

0.871922 

0.827480 

0.835569 

0.800000 

0.865663 

0.831345 

0.864687 

0.800000 

0.858897 

0.832932 

6.463 

% 

G
B

O
 

0.958861643 

3 3 3 3 

3 3 3 3 

3 3 

0.88225093405317 

0.82111281375906 

0.82584880693797 

0.82524467049383 

0.86440310806613 

0.83308511765053 

0.84593367878544 

0.83667825093861 

0.84796655134447 

0.82602987045366 

0.0037 

% 
W

H
O

 

0.9588631552 

3 3 3 3 

3 3 3 3 

3 3 

0.882091158677     

0.821309427801     

0.825819434365     

0.825204093069     

0.864077669011     

0.832956278073     

0.846094331706      

0.83690268494     

0.847159384971     

0.826596578285 

 

 

systems to investigate this complex optimization 

problem. The test aimed to find best solutions in 

terms of high overall system reliability. Results of 

WHO algorithm has proven its ability to discover 

new optimal solutions, and as demonstrated in the 

testing process and comparisons, solutions found 

outperformed those found by simplified swarm, 

attraction-repulsion imperialist competitive, hybrid 

salp swarm with teaching-learning based 

optimization, particle swarm optimization, and 

gradient based optimization in terms of optimality. It 

can be concluded that the overall performance of the 

used algorithm was superior even when the MPI was 

small, as it still indicated an enhancement in the 

solutions attained.  

As for future work, other swarm intelligent 

algorithms can be considered to further enhance 

solutions or be used to solve other numerical 

examples. In addition, mutli objective optimization 

RRAPs can be analysed and studied. 
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