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Abstract: The maximum resection of small tumor structures such as enhancing and non-enhancing tumor increases 

the overall survival rate of patients in all age groups. Therefore, it is necessary to precisely detect and delineate the 

tumor sub-regions such as necrosis, enhancing tumor and non-enhancing tumor in brain MR images for effective 

prognosis of tumor. To achieve this objective, in this study, we implement semantic segmentation using nested U-Net 

with an enhanced attention gate to classify, localize and segment the tumor sub-regions effectively. Additionally, we 

propose a compound loss function to handle the problem of class imbalance seen dominantly in brain MR images. We 

trained and tested the proposed model using two multimodal MRI benchmark datasets, BraTS 2019 and BraTS 2020. 

We achieved dice scores of 0.91, 0.92 and 0.93 with BraTS 2019 and dice scores of 0.91, 0.92 and 0.92 with BraTS 

2020 dataset for the whole tumor, enhancing tumor and tumor core respectively. Experimental results on both datasets 

showed that our proposed model outperforms state-of-the-art 2D brain tumor segmentation frameworks using deep 

learning in the prediction of small tumor structures such as enhancing tumor, necrosis and non-enhancing tumor. 

Keywords: Attention gate, Compound loss, Focal tversky loss, Nested U-Net, Weighted binary cross-entropy. 

 

 

 

1. Introduction 

A brain tumor is one of the lethal and devastating 

diseases. Patients with highly malignant tumors have 

only median survival despite the best available 

treatment procedures such as surgery, radiation 

therapy and chemotherapy [1]. According to the 

international agency for research on cancer (IARC), 

an agency of the world health organization (WHO), 

the worldwide incidence rate and mortality rate of 

brain and central nervous system (CNS) cancer, in 

2018 for both males and females of all ages is 

2,96,851 and 2,41,037 respectively. It also estimates 

that the number of incident cases of brain and CNS 

cancer for both sexes of all ages worldwide, from 

2018 to 2040, is 4,35,554 [2]. 

The type of brain tumor that originates in the 

brain’s glial cells is called gliomas. Based on the 

intensity of its spread, gliomas are classified as high-

grade glioma (HGG) and low-grade glioma (LGG). 

Glioma cells are divided into different regions such 

as peritumoral edema (ED), necrotic core (NCR), 

enhancing tumor (ET) and non-enhancing tumor 

(NET). The life expectancy of patients with HGG is 

very less with a median survival rate of 12 to 14 

months since diagnosis, despite advances in 

treatment procedures such as microsurgical resection, 

radiation, and chemotherapy [3]. The overall survival 

rate of patients in all age groups can be increased 

through maximum resection of ET and NET sub-

regions of a brain tumor [4]. Therefore, it would be 

desirable to non-invasively diagnose the extent of the 

brain tumor meticulously before doing any invasive 

procedure. 

Magnetic resonance imaging (MRI) is the best 

non-invasive method used for the differential 

diagnosis of brain tumors. Normally, tumors are 

manually segmented from brain MRI by radiologists. 

The efficacy of manual segmentation depends on the 

perception of the expertise. Such subjective errors 

can be reduced by using automatic segmentation. 

However, precise automatic segmentation of tumor 

sub-regions from MRI becomes a complicated task 
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mainly due to two reasons: (1) gliomas are 

heterogeneous and infiltrative (2) In brain MR 

images, there are more non-tumor regions pixels than 

the tumor pixels, resulting in greater class imbalance.   

Semantic segmentation is a computer vision task 

where similar parts of the image with the same class 

are grouped. It involves both localization and 

segmentation. Presently, deep learning architectures 

with encoder-decoder structures are effective in the 

process of semantic segmentation. Encoder-decoder 

architectures such as U-Net [5] and its variants such 

as 3D U-Net [6], Attention U-Net [7], V-Net [8], 

conditional generative adversarial networks (cGAN) 

[9], nested U-Net (U-Net++) [10] are more 

prevalently used in the medical image segmentation.  

However, the potential issue of the encoder-

decoder architecture is that the skip connections in 

the encoder-decoder architecture concatenate the 

inadequate contextual information in the high-level 

features extracted at the beginning of the encoder 

path, with the corresponding feature map at the end 

of the decoder path. This results in poor performance 

of such networks [11]. To address this issue, attention 

gates proposed by Schlemper et al. are integrated 

with encoder-decoder architectures, since they 

automatically learn to focus on the structures at the 

region of interest without the need for additional 

supervision. 

The attention gate was first integrated into the U-

net model by Oktay et al. to realize spatial 

localization and subsequent segmentation. It was 

integrated into nested U-Net (ANU-Net) by Cheng Li 

et al. to improve the segmentation results [12].  

Class imbalance is a major issue in medical image 

segmentation. Various studies have been performed 

to compare optimization achieved by different loss 

functions to deal with the class imbalance. Sanchez –

Peralta et al. compared seven loss functions on the 

CVC-EndoScenestill dataset and observed that the 

region-based losses give better performance than the 

cross-entropy loss [13]. Jadon conducted a 

comparison of fifteen losses using the NBFS skull-

stripped dataset and found that the region-based 

losses such as focal Tversky loss and Tversky loss 

outperformed the other loss functions [14]. Ma et al. 

compared twenty loss functions using four datasets 

for liver, liver tumor, pancreas and multi-organ 

segmentation and concluded that the compound loss 

functions perform better than the region-based and 

distribution-based loss functions [15]. The literature 

shows that the region-based or compound loss 

functions perform more consistently than the 

distribution-based loss functions.  

The motivation of our work is to predict with 

greater accuracy all the tumor sub-regions from brain 

MR images for the effective prognosis of the disease. 

To achieve this objective, in this study, we implement 

semantic segmentation using encoder-decoder 

architecture, to classify, localize and segment the 

tumor sub-regions effectively. Further, we enhanced 

the structure of the attention gate so that it aids in the 

deep selection of the hierarchically extracted relevant 

features. We adopted a nested U-Net without deep 

supervision as the base model for evaluating the 

performance of the proposed attention gate. The 

proposed attention gate is integrated between all the 

convolution blocks in the nested U-Net model. 

Additionally, we propose a compound loss function 

by combining focal Tversky loss and weighted binary 

cross-entropy loss functions to handle the class 

imbalance issue common in the brain MRI dataset. 

The proposed model was trained and evaluated on 

brain tumor segmentation (BraTS) 2019 and 2020 

challenge datasets using metrics dice similarity 

coefficient (DSC), hausdorff distance (HD), 

sensitivity and specificity. The dataset providers 

conventionally use three sub-regions for evaluating 

the brain tumor segmentation such as  

1) tumor core (TC) where TC contains ET, NET, and 

NCR  

2) whole tumor (WT) where WT comprises TC and 

ED  

3) ET  

The paper focuses on the semantic segmentation 

of small tumor structures such as NCR, enhancing 

and non-enhancing tumors using Nested U-Net with 

enhanced attention gate and compound loss function. 

Related works are described in section 2 of the paper. 

Datasets, proposed network architecture, and 

proposed compound loss function used for the 

effective segmentation of the tumor sub-regions are 

discussed in section 3. Results and discussion of the 

experiments are given in section 4 and the conclusion 

in section 5. 

2. Related works 

Deep learning algorithms are gaining popularity 

with state-of-the-art results in brain tumor 

segmentation. Convolutional neural network (CNN) 

is the popular deep learning method. This section 

discusses some of the recent studies based on 2D 

convolutional neural networks using BraTS 2019 and 

BraTS 2020 datasets for brain tumor segmentation.  

Shi et al. [16] developed a multiple feature 

extraction network based on dense channels 2D U-

Net. The network was trained and evaluated on the 

BraTS 2019 dataset. Hamghalam, Baiying and Wang 

[17] proposed a framework to convert 3D patches  
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Figure. 1 Structure of attention gate proposed by 

Schlemper et al. [22] 

 

 
Figure. 2 Enhanced attention gate 

 

into 2D images which are then fed into classifier 

blocks with 2D kernels for the prediction. Agravat 

and Raval [18] use three-layer deep U-Net based 

encoder-decoder architecture for semantic 

segmentation. Each layer of the encoding side 

includes dense modules and the decoding side uses 

convolution modules. The network was trained on the 

BraTS 2019 dataset using soft dice loss and focal loss 

function. Wang et al. [19] proposed a modality 

pairing network to segment brain tumor substructures. 

The proposed network consists of paralleled branches 

using different modalities as input. The model was 

trained on the BraTS 2020 dataset using modality 

pairing loss. 

The above studies in the literature show that the 

DSC scores for the regions ET and TC are less, 

reducing the effect of segmentation. This would 

adversely affect the prognosis of the disease. In the 

proposed study, in order to increase the predictive 

accuracy of small tumor structures such as ET, NET 

and NCR, enhanced attention gates are used with 

nested 2D U-Net to focus more on the hierarchically 

extracted relevant features of the structures at the 

region of interest. Further, a novel compound loss 

function is used to deal with the class imbalance issue 

seen in brain MRI. 

3. Materials and methods 

This section describes the dataset used for 

experimentation, the architecture of the nested U-Net 

model with the enhanced attention gate and the 

compound loss function. 

3.1 BraTS dataset 

This work uses 3D MR images of 150 HGG 

patients from the BraTS 2019 training dataset and 

150 MR images from the BraTS 2020 training dataset. 

Each patient case has four MRI sequences such as 

T1-weighted (T1), T1-weighted with gadolinium 

contrast (T1Gd), T2-weighted (T2), fluid-attenuated 

inversion recovery (FLAIR) and ground truth. The 

ground truths in these datasets are manually 

segmented and annotated by the experts as 

background (label 0), NET (NCR/NET) (label 1), ED 

(label 2) and ET (label 4). Label 3 is not used by the 

experts. The images are co-registered, skull stripped 

and re-sampled to 1 mm3 [20, 21]. 

3.2 Network architecture  

The network architecture proposed in our work is 

based on the attention gate and nested U-Net model. 

The structure of the attention gate was enhanced and 

incorporated between the convolution blocks of the 

nested U-Net model. The model is trained and tested 

using a novel compound loss function. 

Enhanced attention gate: In the original 

attention gate shown in Fig. 1 proposed by Schlemper 

et al., only two inputs are used (1) the up-sampling 

feature in the decoder also known as gating signal (g) 

and (2) the corresponding depth feature of the 

encoder. 

In this work, we redesigned the gate to accept 

feature maps from the previous nodes in the same 

skip connection pathway along the same depth as 

input, in addition to the inputs used with the original 

attention gate. The hypothesis is that the addition of 

the feature maps of the skip connections to the 

attention gate greatly optimizes the gradient flow and 

helps to reduce the semantic gap between the encoder 

and decoder feature map. The structure of the 

proposed attention gate is shown in Fig. 2. 

 

The inputs to the attention gate are as follows : 

 (1)  up-sampled gating signal (g)  

 (2)  encoder feature map (f) and 

      (3) feature map s[i] of the skip connections at 

same level, where (i = 1…n) and n indicates the 

number of nodes before the encoder. 

The attention gate between nodes X0,2 and X0,3 in 

Fig. 3 accepts as input the feature maps of X0,0 and 

X0,1, up-sampled output from X1,2 and feature map of 

the encoder X0,2. The gating signal is used to select 

more essential features from the encoded feature  
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Figure. 3 Nested U-Net with enhanced attention gate 
 

maps and forwards them to the next decoder. 

Convolution operation (W) and batch normalization 

(b) are performed on each of these inputs and are then 

added together pixel by pixel. The combined output 

is then activated using rectified linear unit (ReLU) σ1 

as defined in Eq. (1). 

 

𝜎1 = max(0, 𝑥)(1) 
 

This is followed by convolution operation (W0), 

batch normalization (b0) and sigmoid activation σ2 as 

defined in Eq. (2). 

 

𝜎2 =
1

1 + 𝑒−𝑥
(2) 

 

This enables the network to learn to predict values in 

the range [0,1] and it is used as the attention 

coefficient ϕ. The attention coefficient ϕ, feature 

maps of the encoder and that of the skip connections 

are multiplied element-wise to generate the output as 

shown in Eq. (3). 

 

𝐹 = 𝜎1(𝑎 + (𝑊𝑓 × 𝑓 + 𝑏𝑓) + (𝑊𝑔 × 𝑔 + 𝑏𝑔)) 

where𝑎 = ∑ (𝑊𝑠[𝑖]
𝑛
𝑖=1 × 𝑠[𝑖] + 𝑏𝑠[𝑖]) 

𝜙 =𝜎2[𝑊0 × 𝐹 + 𝑏0] 
 𝑂𝑢𝑡𝑝𝑢𝑡 = ∏ 𝑠[𝑖]𝑛

𝑖=1 × 𝑓 × 𝜙(3) 
 

Nested U-Net with enhanced attention gate: In 

this study, we adopted nested U-Net without deep 

supervision as the backbone for our network 

architecture. We inserted the redesigned attention 

gate between each of the convolution blocks in the 

nested U-Net model as shown in Fig. 3. 

The nested U-Net model consists of encoder and 

decoder parts. The encoder captures the context 

information and passes it to the decoder of the 

corresponding convolution block through the 

attention gate so that more precise and relevant 

location features of the foreground objects are 

extracted. The input to each convolution block in the 

decoder part is the concatenated output of two feature 

maps (1) output from the attention gate before the 

decoder and (2) the up-sampled feature map from the 

lower deconvolution block. 

3.3 Compound loss function  

The classes defined for the tumor sub-regions are 

less in volume than the background classes 

representing the healthy brain tissues. This results in 

the average prediction of tumor sub-regions. From 

the literature, it is realized that the region-based loss 

functions and compound loss functions work 

effectively with class imbalance dataset. Hence in our 

work, we propose a compound loss function that 

combines focal Tversky (region-based loss function) 

and weighted binary cross-entropy (distribution-

based loss function) loss functions.  

Weighted binary cross-entropy defined in Eq. (4), 

assigns different weights to different classes, 

enabling us to distinguish regions of different classes 

and learn significant patterns in the image.  

 

𝐿𝑜𝑠𝑠𝑤𝑏𝑐𝑒 = 
−(𝑇 × log(𝑃) × 𝑤 + (1 − 𝑇) × log (1 − 𝑃))

𝑁
 

(4) 

 

where T indicates ground truth values, P indicates 

predicted values, N indicates the number of samples 

and w is a hyper parameter that enables a tradeoff 

between false positives and false negatives. In order 

to reduce the number of false negatives, w > 1 is used 

and to reduce the number of false positives, w < 1 is 

used. 

Focal Tversky loss is an extension of Tversky loss 

with the hyper parameter γ. It helps to focus well on 

the hard classes within the region of interest and 

predict those classes with greater accuracy. The 

value of the hyper parameter is chosen in such a way 

that there is a balance between precision and recall. 

The focus on hard classes can be increased with γ < 

1. The focal Tversky loss is given in Eq. (5). 

 

 𝐿𝑜𝑠𝑠𝑓𝑡 = (1 − 𝑇𝐼)𝛾 (5) 

 

where Lossft represents focal Tversky loss, γ is a 

hyper parameter whose value may range between 0 

and 1 and TI represents Tversky index as defined in 

Eq. (6) and (1-TI) represents Tversky loss. 
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𝑇𝐼 = 

∑ 𝑝𝑖𝑐𝑔𝑖𝑐 + 𝜀𝑁
𝑖=1

∑ 𝑝𝑖𝑐𝑔𝑖𝑐 + 𝛼∑ 𝑝𝑖𝑐𝑔𝑖𝑐̅ + 𝛽∑ 𝑝𝑖𝑐̅𝑔𝑖𝑐 + 𝜀𝑁
𝑖=1

𝑁
𝑖=1

𝑁
𝑖=1

 

(6) 
 

where pic is the predicted value of the pixel i, of tumor 

class c and 𝑝𝑖𝑐̅ is the predicted value of pixel i, of the 

non-tumor class 𝑐̅, 𝑔𝑖𝑐 and 𝑔𝑖𝑐̅ represent the ground-

truth value of the pixel i of the tumor class c and non-

tumor class 𝑐̅, respectively. Hyper parameters α and 

β enable a trade-off between false positives and false 

negatives to improve recall in the case of large class 

imbalance. The values of α and β may range between 

0 and 1, such that α + β = 1. 𝜀 is a small constant to 

avoid division by zero error [23]. 

The proposed compound loss defined in Eq. (7) is 

the combination of weighted binary cross-entropy 

and focal Tversky loss functions. 

 

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑤𝑏𝑐𝑒 + 𝐿𝑜𝑠𝑠𝑓𝑡(7) 

3.4 Evaluation metrics  

We tested the performance of the model using 

evaluation metrics such as DSC, sensitivity, 

specificity and HD [24, 25]. DSC measures the 

amount of overlap between the predicted mask and 

ground truth labels as indicated in Eq. (8). Sensitivity 

measures the rate of true positives considering the 

positives in both ground truth and predicted mask and 

is calculated using Eq. (9). Specificity measures the 

true negative rate considering the negatives in both 

the ground truth mask and the predicted mask as 

mentioned in Eq. (10). HD computes the distance 

between the set of non-zero pixels of two images 

according to Eq. (11). HD is one of the most 

informative and useful criteria because it is an 

indicator of the largest segmentation error [26]. 

 

𝐷𝑆𝐶 =
2 × |𝑇 ∩ 𝑃|

|𝑇| + |𝑃|
(8) 

 

where T represents ground truth pixels and P defines 

predicted pixels. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(9) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(10) 

 

where TP indicates the number of true positives, FN 

indicates the number of false negatives, TN indicates 

the number of true negatives and FP represents false 

positives. 

 

𝐻𝐷(𝑇, 𝑃) = max(ℎ(𝑇, 𝑃), ℎ(𝑃, 𝑇))(11) 
 

where 

 

ℎ(𝑇, 𝑃) = max
𝑡∈𝑇

min
𝑝∈𝑃

‖𝑡 − 𝑝‖ 

 

and ‖𝑡 − 𝑝‖ is the Euclidean distance on the points t 

and p, T represents the ground truth values and P 

represents the predicted values. 

4. Results and discussion 

In this study, we investigated the performance of 

the proposed model using two 3D multimodal MRI 

datasets of the BraTS challenge, BraTS 2019 and 

BraTS 2020. 150 MR images of HGG patients from 

the BraTS 2019 and 150 MR images from the BraTS 

2020 dataset were used for training and testing. In 

both datasets, each patient case has four MRI 

modalities such as T1, T2, T1Gd and FLAIR. Each 

image has a dimension of 240x240x155 where 

240x240 indicates the height and width of a slice and 

155 specifies the number of slices (depth). Each 

modality is significant in identifying different tumor 

regions. In T1Gd, the area that has ET appears 

brighter and TC appears darker, whereas WT appears 

brighter in FLAIR images. So, in this work, we 

combine all four sequences of MRI for the effective 

segmentation of the various sub-regions of the tumor.  

Contextual information about the tumor structures 

can be better observed in 3D volumetric MR images. 

However, due to the computational and memory 

limitations, we extracted only the middle ninety 2D 

slices from each modality since the remaining slices 

do not convey much information. These extracted 

slices from each modality are then merged to form 2D 

images. Additionally, each image is cropped to a size 

of 192x192. Hence, the dimension of the input image 

becomes 192x192x4. The dataset is split in the ratio 

6:2:2 for training, validation and testing. The data is 

then preprocessed using a simple normalization 

technique to scale the pixel values in the range of 

[0,1]. 

The proposed model was trained on both BraTS 

2019 and BraTS 2020 datasets separately using an 

Adam optimizer with a learning rate of 3e-5. The 

network is trained for 80 epochs with a batch size of 

16.  
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Table 1.  Performance metrics of the proposed  model using different values of the hyper parameters α, β, γ and w, on 

HGG cases of BraTS 2019 dataset 
Proposed Model 

 

 w      α          β          γ 

                DSC 

 

   WT         ET          TC 

Sensitivity 

 

  WT       ET          TC 

Specificity 

 

WT         ET          TC 

2 0.3 0.7 0.75 .8985 .9131 .9303 .9261 .8802 .9318 .9993 .9995 .9997 

2 0.3 0.7 0.9 .8974 .9137 .9274 .9263 .8801 .9280 .9993 .9996 .9998 

2 0.7 0.3 0.75 .9065 .9165 .9335 .9650 .9162 .9602 .9985 .9994 .9996 

2 0.7 0.3 0.9 .8989 .9111 .9299 .9619 .9118 .9617 .9984 .9994 .9995 

4 0.3 0.7 0.75 .8975 .9170 .9306 .9318 .8997 .9331 .9992 .9995 .9998 

4 0.3 0.7 0.9 .8996 .9141 .9284 .9288 .8924 .9364 .9993 .9996 .9997 

4 0.7 0.3 0.75 .9125 .9170 .9341 .9594 .9517 .9582 .9988 .9994 .9996 

4 0.7 0.3 0.9 .8841 .9108 .9324 .9565 .9015 .9549 .9988 .9995 .9996 

 

 
Table 2. Performance comparison of the proposed model 

with state-of-the-art 2D frameworks on BraTS 2019 

dataset 

Method 
DSC 

WT ET TC 

W.Shi et al. [16] 0.9019 0.8266 0.8394 

M. Hamghalam et al. 

[17] 
0.89 0.74 0.80 

R.R Agravat and M. S 

Raval [18] 
0.89 0.74 0.85 

Proposed 0.9125 0.9170 0.9341 

 

 
Figure. 4 Example of segmentation results on HGG cases 

of BraTS 2019 dataset. In the ground truth and predicted 

images, green area shows edema, blue shows ET and 

yellow shows NET and NCR sub-regions 

 

4.1 Performance on BraTS 2019 dataset 

We experimented with different values for the 

hyper parameters α, β, γ and w, on the BraTS 2019 

dataset. In the experiment, since the classes 

representing tumor structures are fewer than the 

healthy tissues, we use w > 1 which catalyzes the 

decrease in the number of false negatives. Table 1 

shows the DSC, sensitivity and specificity scores for 

WT, ET and TC sub-regions of the tumor using HGG 

cases in the BraTS 2019 dataset for the different 

values of the hyper parameters α, β, γ and w. It is 

observed that the model gives comparable 

performance measures for the sub-regions such as ET 

and TC (ET+NCR+NET) with all values of hyper 

parameters. Since the model gives optimum results 

for the values w = 4, α = 0.7, β = 0.3 and γ = 0.75, we 

used the evaluation metrics and segmentation results 

using these values for comparison against other 

models.  

Fig. 4 shows examples of the segmentation results 

on two patient cases in the BraTS 2019 dataset. Fig. 

5 (a) and (b) show the box plots using DSC and HD 

metrics respectively for the tumor sub-regions WT, 

TC and ET. The performance of the proposed model 

is compared against the state-of-the-art 2D 

segmentation frameworks based on BraTS training 

dataset since our study utilizes only 2D slices from 

3D MRI BraTS dataset. Table 2 compares the DSC 

scores of the proposed model with the state-of-the-art 

2D segmentation frameworks on the BraTS 2019 

dataset. 

4.2 Performance on BraTS 2020 dataset 

We also experimented with different values for 

the hyper parameters α, β, γ and w, on 150 cases in 

the BraTS 2020 dataset. Table 3 shows the DSC, 

sensitivity and specificity scores for WT, ET and TC 

using the BraTS 2020 dataset for the different values 

of the hyper parameters α, β, γ and w. It is observed 

that the model gives comparable results for ET and 

TC with all hyper parameter values.  

Although the predictive accuracy of the smaller 

tumor structures is high, the accuracy of WT is low 

since the DSC score of ED is less. It is evident from 

the results that the model performs better than the 

state-of-the-art 2D deep learning-based brain tumor 

segmentation methods for the tumor sub-regions ET, 
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(a)                                                                                             (b) 

Figure. 5 Boxplots of the proposed model for WT, ET and TC sub-regions of brain tumors on the BraTS 2019 dataset 

for: (a) DSC and (b) HD metrics 

 
Table 3. Evaluation metrics for the proposed model using different values of the hyper parameters α, β, γ and w, on 

BraTS 2020 

Proposed Model 

 

w        α         β            γ 

DSC 

 

   WT      ET           TC 

Sensitivity 

 

   WT       ET          TC 

Specificity 

 

   WT       ET          TC 

2 0.3 0.7 0.75 .8881 .9220 .9211 .9244 .8814 .9211 .9992 .9997 .9996 

2 0.3 0.7 0.9 .9121 .9349 .9334 .9353 .9121 .9318 .9994 .9997 .9996 

2 0.7 0.3 0.75 .9004 .9254 .9271 .9512 .9162 .9502 .9985 .9995 .9993 

2 0.7 0.3 0.9 .9137 .9276 .9327 .9656 .9104 .9638 .9986 .9996 .9992 

4 0.3 0.7 0.75 .8944 .9179 .9193 .9188 .8656 .9162 .9993 .9997 .9996 

4 0.3 0.7 0.9 .9004 .9275 .9261 .9271 .9008 .9349 .9995 .9997 .9996 

4 0.7 0.3 0.75 .9137 .9329 .9330 .9578 .9385 .9575 .9989 .9996 .9993 

4 0.7 0.3 0.9 .9039 .9213 .9246 .9548 .9221 .9555 .9984 .9992 .9994 

 

 

 
Figure. 6 Segmentation results on BraTS 2020 dataset 

 
Table 4. Performance comparison of the proposed model 

with state-of-the-art 2D segmentation framework on 

BraTS 2020 dataset 

Method 
DSC 

WT ET TC 

Y.Wang et al. [28] .924 .863 .898 

Proposed .9137 .9213 .9246 

Table 5. HD metrics on BraTS 2019 and BraTS 2020 

dataset for w=4, α=0.7,β=0.3 and γ=0.75. 

Dataset Hausdorff Distance 

WT ET TC 

BraTS 2019 6.4 4.6 4 

BraTS 2020 6.5 4.9 4.6 

 

NET and NCR. The segmentation results of two 

patients in the BraTS 2020 dataset using the model is 

shown in Fig. 6. Table 4 compares the DSC scores of 

the proposed model with the state-of-the-art 2D 

segmentation frameworks on the BraTS 2020 dataset. 

Table 5 reports the HD metrics on both datasets using 

values w = 4, α = 0.7, β = 0.3 and γ = 0.75. 

From the Tables 2 and 4, it is evident that the 

proposed model applied on both datasets gives better 

results for the tumor sub-regions ET and TC, since 

the enhanced attention gates increases the learning of 

the small tumor sub-regions effectively. Attention 

gates also accelerate the efficacy of the dense skip 

connections. The addition of the feature maps of the 

skip connections at the same depth, as input to the 
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attention gate greatly optimizes the gradient flow and 

helps to reduce the semantic gap between the encoder 

and decoder feature map. 

5. Conclusion 

In this work, we enhanced the structure of the 

attention gate and proposed a novel compound loss 

function for effective segmentation of all tumor sub-

regions such as WT, ET and TC. Further, the model 

helps to work out class imbalance problems seen in 

brain MR images. The proposed compound loss 

function is the combination of weighted binary cross-

entropy and focal Tversky loss functions. The 

enhanced gate is incorporated into nested U-Net 

architecture. The proposed model was trained and 

evaluated using two multimodal MRI BraTS datasets, 

BraTS 2019 and BraTS 2020. We achieved dice 

scores of 0.91, 0.92 and 0.93 with BraTS 2019 and 

dice scores of 0.91, 0.92 and 0.92 with the BraTS 

2020 dataset for the whole tumor, enhancing tumor 

and tumor core respectively. Compared to state-of-

the-art 2D segmentation methods using deep 

learning, our proposed method gave superior results 

for sub-regions such as ET and TC. The model 

accomplished better performance due to the deep 

selection of relevant information from the 

hierarchically extracted features along the skip 

connection pathway using an enhanced attention gate 

and since the compound loss function focuses more 

on the relevant foreground pixels. Utilizing increased 

computational power and high memory, the accuracy 

of the model can be improved further by training 

more samples. The prediction accuracy can be further 

improved by using multimodal 3D volumetric 

images, instead of the 2D slices extracted from the 

3D images, since volumetric images convey more 

spatial information about the tumor structures. 
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