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Abstract: Recently, electric vehicles (EVs) have surged in demand to reduce greenhouse gas emissions produced by 

gasoline cars. However, most EV batteries could not be utilized for traction purposes when they have reached 80% of 

their normal capacity. This has led to the waste disposal of EV batteries, which has caused ever increasing severe 

damages to the environment. To handle this issue, we propose the use of retired batteries from electric vehicles (REVB) 

for coping with the dynamic economic dispatch (DED) problem. In this study, the REVB was employed to reduce the 

impact of the intermittent output power of photovoltaic (PV). To examine the efficacy of the proposed technique, the 

IEEE 30 and 118 buses were utilized as a test system. The objective of this study was to minimize the fuel cost of 

thermal generation. The DED optimization problem was approached and solved by implementing General Algebraic 

Modelling System (GAMS) Software and quadratically-constrained programming (QCP) method based on CONOPT 

solver. From the simulation results, it was found that the application of REVB could minimize the fuel cost of thermal 

power generation for the DED problem including PV compared to other techniques provided in this paper. The REVB 

could reduce the total fuel cost by 10.78 % compared to the standard DED problem for IEEE 30 Bus. For IEEE 118 

bus, the lowest best total fuel cost produced by REVB reached the amount of 11.75 % compared to conventional DED 

problem. 

Keywords: Electric vehicles (EV), Retired electric vehicle battery (REVB), Dynamic economic dispatch (DED), 

Photovoltaic (PV). 

 

 

1. Introduction 

Nowadays, the rapid development of renewable 

energy technology has merit as a solution to the world 

energy problem [1]. In Indonesia, photovoltaic (PV) 

as a type of renewable energy source rapidly grows 

because this country lies in the equator path and gets 

solar irradiation over years [2]. Nevertheless, the 

spread out and expansion of PV trigger a severe 

problem for electric power system operations. The 

treatment of PV output is the main subject in power 

system operation [3].  

The dynamic economic dispatch (DED) problem 

has been studied for a long time as an important 

subject in power system operation which has a 

function to reduce the total thermal generation costs 

by optimal dispatching of generation output. Due to 

the high level of intermittent and unpredictable PV 

output, the DED study faces a new challenge to 

maintain the power system operation in secure, stable, 

and reliable [4]. In [4], the authors proposed the DED 

problem considering the emission and valve point 

effect. In this study, the mathematical model of the 

DED problem with wind-solar-thermal integrated 

energy was developed. Furthermore, an enhanced 

moth-flame optimization algorithm has been 

proposed to solve the multi-objective DED problem. 

While a DED model considering the uncertainty of 

wind generation was proposed in [5]. In [5], the 

authors developed a special technique based on the 

decomposition algorithm to facilitate real-time 

application. The optimization model was constructed 

as a two-stage stochastic optimization problem. In [6], 

the intermittent of the wind power output was studied 
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for the DED problem and solved using a robust 

optimization model. Artificial intelligence method 

has been successfully applied for solving economic 

load dispatch problems such as chaotic social group 

optimization (CSGO) [7], squirrel search optimizer 

(SSO) [8], orthogonal particle swarm optimization 

[9], and water wave optimization algorithm 

(WWOA) [10].  

In [7], CSGO has been applied to solve the 

economic dispatch problem with multiple fuel 

sources. The efficacy of this technique is examined 

by using four tested systems (10-units, 20-units, 30-

units, and 40-units). In [8], the SSO algorithm was 

utilized to solve various types of economic load 

dispatch problems by minimizing the total generation 

cost of units while satisfying various constraints such 

as power balance constraints, prohibited operating 

zones, ramp rate constraints, and operating limits of 

generators. In [9], the effect of load demand 

management for the DED problem was analyzed. An 

orthogonal PSO algorithm was utilized to minimize 

cost and emission. In [10], WWOA was utilized for 

solving economic dispatch problems with generator 

constraints. In this study, the generator such as ramp-

rate limits, prohibited operating zones including the 

system transmission losses are considered to examine 

the efficacy of the proposed approach. In [11], robust 

optimization was proposed to increase the level of 

renewable energy sources while minimizing the total 

operating cost and respecting the spinning reserves 

required to maintain continuity of supply. In this 

study, the optimization problem was constructed as a 

multi-objective DED problem with renewable 

obligation requirements. In [12], the authors 

proposed modified teaching-learning-based 

optimization to solve the DED issue including 

thermal generations and wind power. In this study, 

the planning issue comprises the total fuel cost 

function with valve-point loading effect and the 

transmission power losses. All proposed techniques 

[5-10] have shown sophisticated results in solving the 

DED problem. Moreover, the methods above require 

more experiments and statistical analysis to obtain 

their best performance due to being stochastically 

solved. 

Since PV generation is categorized as a non-

dispatchable generation unit and depends on the 

change of weather conditions, the battery is utilized 

to compensate for the effect of PV output in the grid. 

Nowadays, battery plays a key role in the power 

system grid and electric vehicle. Nevertheless, the 

battery in an electric vehicle is only utilized up to 

80% of its nominal state of charge [13]. In the future, 

the waste of retired electric vehicle batteries (REVB) 

will affect the environment. A REVB simultaneously  
 

Table 1. List of notations used in this paper 

Symbol  Meaning 

ai, bi, ci : The cost coefficients of the i-th 

thermal generation unit 

CT : Total fuel cost of thermal 

generation units 

Ng : The number of thermal 

generation units 

PGi,t : Output of the i-th thermal unit at 

t-th time step 

T : Total time interval 

Nd : The number of loads 

Npv : The number of installed PVs 

Pdi,t : The demand of t-th hour 

PPVi,t : PV output power at t-th hour 

Pch-i,t : Power charge to REVB at t-th 

hour 

Pdisch-i,t : Power discharge of REVB at t-

th hour 

RU, RD : Ramp-up and ramp-down of 

thermal generator units 

𝑃𝐺𝑖
𝑚𝑖𝑛, 𝑃𝐺𝑖

𝑚𝑎𝑥  : Minimum and maximum of 

thermal power outputs 

𝑃𝑐ℎ−𝑖
𝑚𝑖𝑛 , 𝑃𝑐ℎ−𝑖

𝑚𝑎𝑥 : Minimum and maximum of 

power charge of REVB 

𝑃𝑑𝑖𝑠𝑐ℎ−𝑖
𝑚𝑖𝑛 , 𝑃𝑑𝑖𝑠𝑐ℎ−𝑖

𝑚𝑎𝑥  : Minimum and maximum of 

power discharge of REVB 

𝑆𝑂𝐶𝑖
𝑚𝑖𝑛,  

𝑆𝑂𝐶𝑖
𝑚𝑎𝑥  

: Minimum and maximum of 

state of charge of REVB 

𝑆𝑂𝐶𝑖,𝑡 : State of charge of REVB at t-th 

hour 

𝜂𝑐ℎ : REVB charge efficiency 

𝜂𝑑𝑖𝑠𝑐ℎ : REVB discharge efficiency 

𝐵𝑁𝐵    : The number of batteries 

𝜑𝑏𝑐  : An available capacity of REVB 

𝜌𝑐  : A battery capacity in new 

condition 

𝛾𝑝  : The needs of injected active 

power from battery 

SOCmax : The maximum of state of 

charge of R-EVB where we 

assume it as 80% of nominal 

battery capacity 

 

reduces the waste of difficult-to-recycle batteries by 

being applied to the power system grid to 

accommodate for the effect of PV output power. In 

[13], the REVB was utilized for park-level integrated 

energy systems. In this study, the optimization 

problem was constructed as a bi-level optimization 

model. While the REVB was utilized to maintain the 

stability in the microgrid as in [14].  

Considering the potential of REVB as a 

promising energy storage system to utilize in power 

system operation, this paper proposed the use of 

REVB as an energy storage system to solve the DED 

problem. In addition, the high penetration of PV 

generation is included in the DED problem to 
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examine the efficacy of REVB for handling the 

intermittent PV output power. The DED problem is 

constructed as a quadratic optimization problem in 

GAMS software. The DED problem is constructed as 

a quadratic optimization problem and implemented 

using GAMS software. This DED problem is solved 

using a numerical optimization technique namely 

quadratically constrained programming (QCP) based 

on CONOPT solver in GAMS software. The 

objective of this study is to minimize the total cost of 

thermal generator units while maximizing the 

thermal output power affected by intermittent PV 

output power and REVB. 

The rest of the paper is described as follows: 

Section 2 describes the problem formulation of DED 

including PV and REVB. The implementation of the 

proposed method is shown in Section 3. Section 4 

shows the simulation results of the proposed idea and 

its analysis. Section 5 highlighted the conclusions of 

the research. 

2. Problem formulation 

Dynamic economic dispatch (DED) becomes 

high random due to the high integration of 

photovoltaic (PV) generation compared to 

conventional DED. The approach considered in this 

paper assumes that a retired electric vehicle battery 

(REVB) is utilized to overcome the problem caused 

by intermittent PV output power. PV output power is 

affected by weather conditions and is classified as the 

most often non-dispatchable generation source. 

Therefore, the goal of DED in this study is to obtain 

the minimum fuel cost of thermal generation output 

affected by intermittent PV output with considering 

power system balance, power output limits, ramp-

rate bounds, and battery capacity limits. The 

notations utilized in this paper are provided in Table 

1. 

2.1 Fuel cost function for thermal generation units 

In this paper, it was considered a power supply 

system composed by Ng number of thermal and Npv 

number of PV generating units to supply Nd number 

of loads for 24 hours power system operation. The 

fuel cost of thermal generation units in $/h Eq. (1) 

utilized as the objective function [15] is formulated 

as a quadratic function.  

 

min CT = 

∑ (∑ 𝐶𝑖(𝑃𝐺𝑖, 𝑡) = ∑ 𝑐𝑖 + 𝑏𝑖𝑃𝐺𝑖,𝑡 + 𝑎𝑖𝑃𝐺𝑖,𝑡
2𝑁𝑔

𝑖=1
𝑁𝑔
𝑖=1 )𝑇

𝑡=1  

(1) 
The coefficient of thermal generator ai, bi, ci are 

in $/MW2h, $/MWh, and $/h, respectively.  

2.2 Equality constraints 

Power balance as representative of equality 

constraint considering the effect of PV power output 

and REVB is defined in Eq. (2).  

 

∑ 𝑃𝐺𝑖,𝑡
𝑁𝑔
𝑖=1 =  

∑ 𝑃𝑑𝑖,𝑡
𝑁𝑑
𝑖=1 − ∑ 𝑃𝑃𝑉𝑖,𝑡

𝑁𝑝𝑣
𝑖=1 + ∑ 𝑃𝑐ℎ−𝑖,𝑡

𝑁𝑝𝑐
𝑖=1   

− ∑ 𝑃𝑑𝑖𝑠𝑐ℎ−𝑖,𝑡
𝑁𝑝𝑑
𝑖=1  (2) 

2.3 Inequality constraint 

Inequality constraints in this DED problem are 

represented by thermal generator limits Eq. (3), 

ramp-rate limits Eqs. (4a) and 4(b), power charge 

limits of REVB Eq. (5), power discharge limits of 

REVB Eq. (6), and state of charge (SOC) of REVB 

Eqs. (7a) and (7b). 

2.3.1. Upper and lower bounds of thermal generator 

Each thermal generator has a different output 

power capacity to supply the electrical load demands. 

The upper and lower thermal generator are given by 

Eq. (3).  

 

𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖,𝑡  ≤  𝑃𝐺𝑖

𝑚𝑎𝑥                   (3) 

2.3.2. Ramp-up and ramp-down of thermal generator 

Power system requires flexibility for their 

dynamic operating. Therefore, a dynamic constraint 

for each thermal generator is very important to 

increase or decrease the thermal generator output 

power to supply the sudden change of electrical load 

demands on interval time T. The dynamic constraints 

of thermal generator units are provided in Eqs. (4a) 

and (4b). 

 

𝑃𝐺𝑖,𝑡 − 𝑃𝐺𝑖,𝑡−1  ≤ 𝑅𝑈                   (4a) 

 

𝑃𝐺𝑖,𝑡−1 − 𝑃𝐺𝑖,𝑡  ≤ 𝑅𝐷                   (4b) 

2.3.3. Lower and upper limits of charge and discharge 

power of REVB 

To ensure the normal use and guarantee the cycle 

life of the retired electrical vehicle battery (REVB), 

it is important to give limitations for the charge or 

discharge power of REVB. 

 

𝑃𝑐ℎ−𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑐ℎ−𝑖,𝑡  ≤  𝑃𝑐ℎ−𝑖

𝑚𝑎𝑥                  (5) 

 

𝑃𝑑𝑖𝑠𝑐ℎ−𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑐ℎ−𝑖,𝑡  ≤  𝑃𝑑𝑖𝑠𝑐ℎ−𝑖

𝑚𝑎𝑥              (6) 
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2.3.4. Lower and upper limits of SOC of REVB and 

SOC computation 

To ensure the level of charge of REVB relative to 

its capacity, it is important to give limitations for the 

SOC of REVB.  

 

𝑆𝑂𝐶𝑖
𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑖,𝑡  ≤  𝑆𝑂𝐶𝑖

𝑚𝑎𝑥           (7a) 

 

𝑆𝑂𝐶𝑖,𝑡 = 𝑆𝑂𝐶𝑖,𝑡−1 + (𝑃𝑐ℎ−𝑖,𝑡 × 𝜂𝑐ℎ −
𝑃𝑑𝑖𝑠𝑐ℎ−𝑖,𝑡

𝜂𝑑𝑖𝑠𝑐ℎ
) (7b) 

2.4 Retired electric vehicle battery calculation 

In this study, we use a retired electric vehicle 

battery from Tesla electric vehicle with a nominal 

capacity in new condition as of 100kWh. The 

availability of REVB capacity (𝜑𝑏𝑐) is computed by 

Eq. (9) where the injected active power (𝛾𝑝) divided 

by the SOCmax of REVB. The number of REVB that 

are required in solving DED problem affected by PV 

generation unit is formulated as in Eq. (9) where the 

availability of REVB capacity is divided by a REVB 

capacity in its new condition. 

 

𝐵𝑁𝐵 =
𝜑𝑏𝑐

𝜌𝑐
                            (8) 

 

𝜑𝑏𝑐 =
𝛾𝑝

𝑆𝑂𝐶𝑚𝑎𝑥
                         (9) 

3. Implementation of the proposed approach 

In this section, a brief overview of a mathematical 

modelling language called GAMS for solving DED 

problems is described.  

3.1 GAMS language 

GAMS language is the most powerful tool based 

on a high-level language to overcome mathematical 

optimization problems with abbreviate algebraic 

representations. Many optimization solvers are 

included in GAMS language such as CPLEX, 

KNITRO, CONOPT, DICOPT, etc [16]. These 

solvers are employed to solve different types of 

optimization problems such as linear, non-linear, and 

mixed-integer optimization problems. GAMS 

language is commonly utilized to overcome a large 

and complex problem that may involve much 

improvement to build a precise model. Models can be 

constructed, tackled, and recorded simultaneously by 

preserving the same GAMS model file. The 

framework of a mathematical optimization model 

implemented in GAMS has the portions including 

sets, data, variable, equation, model, and output.  

3.2 Solving DED problems using GAMS language 

In this section, the procedures to solve the DED 

problem are provided where the GAMS code is 

inspired from [17]. The procedures of DED 

optimization process considering the effect of PV 

generating unit are shown as follow, 

1. Define the GAMS model indicating number of 

thermal generating units, time interval t, etc.  

a. Set the time interval for 24 hours power 

system operation. GAMS code is shown as 

follow, 
Set 

t hours /t1*t24/ 

b. Set number of thermal generating units. 

GAMS code for IEEE 30 bus with 6 thermal 

generating units is written as follows, 
i thermal units /p1*p6/ 

2. Define the input of GAMS model in the form of 

parameters, scalars, and tables i.e. generator 

limits, fuel cost generator, ramp-rate, SOC 

battery, etc.  

a. Set the charge (𝜂𝑐ℎ or eta_c) and discharge 

(𝜂𝑑𝑖𝑠𝑐ℎor eta_d) efficiencies of REVB, SOC 

maximum, initial SOC of REVB. The charge 

(𝜂𝑐ℎ) and discharge (𝜂𝑑𝑖𝑠𝑐ℎ) efficiencies of 

REVB are set as 0.95. SOC maximum of 

REVB is 30 MW. The amount of initial SOC 

of REVB is 6 MW (20% of SOC maximum). 

GAMS code is shown as follows, 
Scalar 
eta_c  /0.95/ 

eta_d  /0.95/ 

SOCMax /30/; 

SOC0 = 0.2*SOCMax; 

b. Set the coefficient of thermal generator (ai, bi, 

and ci), the maximum and minimum of 

thermal generating units (Pmax and Pmin), and 

ramp-rate thermal generator (RU and RD).  

GAMS code is shown as follows, 
Table gendata(i,*)  

P1 a       b c Pmin Pmax RU 

RD        

   0.00375 2 0 50   200  50 

50 

*  *       * * *    *    *  *   

*  *       * * *    *    *  * 

p6 0.02500 3 0 12   40   10 10; 

c. Set the load and PV output power for 24 

hours. GAMS code is written as follows, 
Table RE(t,*)  

    PV Load 

t1  0  166 

*   *  *  

*   *  * 
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t24 0  196; 

3. Set the decision variable such as thermal fuel 

cost [costThermal], thermal generation 

output at time t [p(i,t)], charge power of 

REVB at time t [pcbat(t)], discharge 

power of REVB at time t [pdbat(t)], SOC 

of REVB at time t [SOC(t)] as in (7b), 

minimum and maximum thermal generating 

output at time t [p.lo(i,t), 

p.up(i,t)] as in Eq. (3), maximum and 

minimum charge power of REVB at time t 

[pcbat.up(t), pcbat.lo(t)] as in 

(5), minimum and maximum discharge 

power of REVB at time t [pdbat.up(t), 

[pdbat.lo(t)] as in Eq. (6), and the 

limits of SOC at time t [SOC.up(t), 

SOC.lo(t)] as in Eq. (7a). The maximum 

values of charge power, discharge power, 

and SOC at time t are set to 80% of SOC 

maximum. While the lower limit of SOC at 

time t is set to 20% of SOC maximum. The 

minimum values of charge and discharge 

power of REVB are set to 0. Furthermore, 

initial SOC of REVB [SOC0] is set to 20% 

of SOC maximum at 24 o’clock. GAMS code 

is described in below, 
Variable 

costThermal 

p(i,t)    

pdbat(t)  

pcbat(t)  

SOC(t) 

p.up(i,t)= gendata(i,'Pmax'); 

p.lo(i,t)= gendata(i,'Pmin'); 

SOC.up(t)     = 0.8*SOCmax; 

SOC.lo(t)     = 0.2*SOCmax; 

SOC.fx('t24') = SOC0; 

pcbat.up(t)   = 0.8*SOCmax; 

pcbat.lo(t)   = 0; 

pdbat.up(t)   = 0.8*SOCmax; 

pdbat.lo(t)   = 0; 

4. Define the equations that construct the 

connections between data and variables i.e. 

thermal fuel cost, ramp-rate constraints, 

power balance constraints, state of charge 

battery, etc.  

a. Set the thermal cost function as in Eq. (1). 

GAMS code is written in below, 
Equation Ramp-Up, Ramp-

Down, ObjFunc, balance, 

SOC_Bat,  

ObjFunc..costThermal=e=sum(

(t,i),gendata(i,'a')*power(

p(i,t),2)+gendata(i,'b')*p(

i,t)+gendata(i,'c')); 

b. Set the power balance of DED problem 

as in Eq. (2). GAMS code is written in 

below, 
balance(t)..sum(i, 

p(i,t))=g= (RE(t,'Load'))-

(RE(t,'PV'))+(pcbat(t)-

pdbat(t))$SOCMax; 

c. Set the ramp-rate of thermal generating 

unit as in Eqs. (4a)-(4b). GAMS code is 

written in below, 
Ramp-Up(i,t)..p(i,t+1)-

p(i,t)=l=gendata(i,'RU'); 

Ramp-Down(i,t)..p(i,t-1)-

p(i,t)=l=gendata(i,'RD'); 

d. Set the SOC of REVB as in Eq. (7b). 

GAMS code is written in below, 
SOC_Bat(t)$SOCMax..SOC(t) 

=e= SOC0$(ord(t)=1)+SOC(t-

1)$(ord(t)>1)+pcbat(t)*eta_

c - pdbat(t)/eta_d; 

5. Solve DED problem using QCP method by 

minimizing the total thermal cost. The 

GAMS code for this part is described as 

follows, 
model DEED /all/; 

solve DEED using qcp 

minimizing costThermal; 

6. Print out the solution of DED model such as 

optimal thermal generating output power, 

optimal total thermal generating cost, charge 

and discharge power of REVB, and SOC of 

REVB. The GAMS code is provided as 

follows, 
display p.l, costThermal.l, 

pcbat.l, pdbat.l, SOC.l; 

4. Results and analysis 

This section provides the data of generator 

characteristics such as fuel cost and ramp-rate for 

IEEE 30 and 118 buses, the simulation result, and the 

result analysis. 

4.1 Simulation results and analysis for IEEE 30 

bus 

We have conducted all the simulations in this 

study using Core i7 with 2.80 GHz and 8 GB of RAM. 

The proposed technique has been implemented and 

validated using GAMS language [16] and solved by 

a CONOPT solver. The data of thermal generator fuel 

cost, upper and lower limits of thermal generator 

output power, and ramp-rate are shown in Table 2 and 

3, respectively. The load and PV output power 
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patterns are shown in Fig. 1, respectively. All data of 

IEEE 30 bus are depicted from [18, 19]. For Fig. 1, 

the abscissa is the time point t at 1, 2, ..., 24 o’clock, 

where t = 1 is the current time at which the load and 

PV output predictions are carried out for 24 hours. 

The peak load as seen in Fig. 1 is 283.4 MW [19-21]. 

The installed PV power capacity is set to 126 MW 

(44.46% of load peak) [18]. Furthermore, the 

installed REVB required by the system is set to 30 

MW (10.59% of load peak). In this study, R-EVB is 

prepared to maintain the power needs for 24 hours of 

power system operation. By using Eqs. (8) and (9), 

we require 375 of REVB to supply the power system 

operation as of 30MW with the SOC maximum 

around 80% of its nominal value in new condition 

(100kWh). The comparison of total generator output 

and its fuel cost generated by conventional DED, 

DED with PV, and DED with PV and REVB is 

illustrated in Fig. 2 and 3. To examine and validate 

the efficacy and accuracy of the proposed method 

(QCP), we firstly utilize QCP method to solve static 

economic dispatch problem affected by PV and 

REVB to fulfill the load demand as of 283.4 MW [19-

21]. The simulation result and its comparison to other 

techniques are shown in Table 4. It could be seen 

from Table 4 that the thermal generating cost of the 

proposed method is less when compared to other 

algorithms. The value of the cost minimization 

objective of proposed method is 721.345 $, ESCA is 

796.345 $, FPA is 799.696 $, IPSO is 801.978 $, 

SGA is 803.699 $, MOPSO is 802.39 $, and FPSO is 

800.72 $. Hence from the comparison of other 

algorithms it can be said that proposed method in 

 
Table 2. Thermal generator fuel cost 

No Bus 
Fuel cost coefficient 

ai bi ci  

1 0.00375 2.0 0 

2 0.01750 1.75 0 

5 0.06250 1.0 0 

8 0.00834 3.25 0 

11 0.02500 3 0 

13 0.02500 3 0 

 
Table 3. Thermal generator limit and ramp-rate 

No Bus 
𝑃𝐺𝑖

𝑚𝑖𝑛  

(MW) 

𝑃𝐺𝑖
𝑚𝑎𝑥 

(MW) 

Generator ramp-rate 

(MW) 

RU RD 

1 50 200 50 50 

2 20 80 20 20 

5 15 50 13 13 

8 10 35 9 9 

11 10 30 8 8 

13 12 40 10 10 

Table 4. Comparison of different methods for solving 

static economic dispatch problem 

Approach 
Fuel 

Cost ($) 

Fuzzy Particle Swarm Optimization (FPSO) 

[19] 
800.72 

Multi-Objective Particle Swarm 

Optimization (MOPSO) [20] 
802.39 

Simple Genetic Algorithm (SGA) [21] 803.699 

Improved Particle Swarm Optimization 

(IPSO) [21] 
801.978 

Flower Pollination Algorithm (FPA) [21] 799.696 

Enhanced Sine Cosine Algorithm (ESCA) 

[21] 
796.345 

Proposed Method (ED-PV-REVB 

optimized by QCP)  
721.373 

 

 
Figure. 1 Load and PV output power 

 

 
Figure. 2 The comparison of total thermal generator 

output 
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Figure. 3 The comparison of total fuel cost 

 
Table 5. Comparison different methods for solving DED 

problem 

Method 
Total Fuel 

Cost ($) 

Genetic Algorithm (GA) [22, 23] 13135 

Particle Swarm Optimization (PSO) 

[22, 24] 
13155 

Artificial Bee Colony Algorithm 

(ABCA) [22, 25] 
13121 

Artificial Immune System (AIS) [22, 

26] 
13111 

Gravitational Search Algorithm 

(GSA) [22] 
13100 

DED (QCP) 12710 

DED-PV (QCP) 11392 

DED-PV-REVB (QCP) 11340 

 

Figure. 4 The comparison of power charge, discharge, 

and SOC-REVB 

 

this study is the best in minimization of cost objective. 

Therefore, the study in this paper is extended to being 

a dynamic economic dispatch (DED) problem for 24 

hours power system operation. The total thermal 

generator output power and its fuel cost in 24 hours 

are shown in Table 5. Then, Fig. 4 shows the 

comparison of power charge, discharge, and SOC-

REVB. 

Fig. 2 shows the comparison results of total 

power supply for 24 hours. This condition can 

directly measure the flexibility of the total power 

supply. The result corresponds to the use of REVB 

for DED including PV where it could reduce the total 

power supply at 15:00, 18:00, and 20:00. Fig. 3 

shows the same computation with the total fuel cost 

setting. This setting can directly measure the total 

fuel cost of power supply resulted from optimization 

process. Note that the employment of REVB can 

decrease fuel cost of power supply three times around 

15:00, 18:00, and 20:00. Table 4 shows the value of 

the cost minimization objective of proposed method 

is 11340 $, DED-PV (QCP) is 11392 $, DED (QCP) 

is 12710 $, GA is 13135 $, PSO is 13155 $, ABCA is 

13121 $, AIS is 13111 $, and GSA is 13100 $. It can 

be seen from Table 4 and Fig. 2 and 3 that the 

proposed method produced the lowest best total cost 

of 11340 $ and total power supply of 4451 MW. The 

second lowest best total cost of 11392 $ and total 

power supply of 4464 MW obtained by DED 

including PV based on QCP. The proposed method 

could compress the fuel cost around 10.78 % of fuel 

cost produced by standard DED. Meanwhile, DED 

with PV can reduce the fuel cost by 10.36% from fuel 

cost resulted by conventional DED. As shown in Fig. 

4, the REVB was discharged of their power two times 

at 05:00 and 18:00 while the REVB was charged at 

02:00 and 10:00. Both the REVB charge and 

discharge power were within their SOC. 

4.2 Simulation Results and Analysis for IEEE 118 

bus 

An IEEE 118 bus test system is used in this 

section to demonstrate 24-hour DED based on the 

proposed method. The system data, generator fuel 

cost data, thermal generating unit output power limits, 

are cited from [1], including ramp-rate data. The daily 

total load and PV data collected from [1, 29] are 

given in Fig. 5.  The peak load in this power system 

model is 6600 MW and occurred at 21:00 o’clock. 

We assume the total installed PV capacity of five PV 

modules is 2110 MW (31.97% of load peak) [1, 30] 

as given in Fig. 5. Furthermore, the total installed 

REVB capacity for three REVBs is 660 MW (10% of 

load peak). In this work, REVB is employed to keep 

the power needs for 24 hours. We require 2750 of 

REVB corresponding to Eqs. (8) and (9) to supply the 

power system grid as of 660MW. The SOC 
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maximum is set to 80% from its nominal value 

(100kWh). The total generator output and its fuel cost 

produced by conventional DED, DED incorporating 

PV, and proposed technique are illustrated in Fig. 6 

and 7. To ensure the robustness and accurateness of 

the proposed method, the proposed method is applied 

to static economic dispatch problem considering the 

PV generation unit and REVB to supply the load 

demand as of 6600 MW. The comparison methods 

for solving static economic dispatch problem are 

shown in Table 6. It can be said from Table 6 that the 

thermal generator fuel cost produced by the proposed 

method is less compared to other algorithms. The 

value of the cost minimization objective of proposed 

method is 103064 $, IPSOIW is 130033 $, PSOCFA 

is 130001 $, BBO is 129735 $, and ALC PSO is 

129546 $. Hence from the comparison of other  

 
Table 6. Comparison of different methods for solving 

static economic dispatch problem 

Approach 
Fuel 

Cost ($) 

Improved Particle Swarm Optimizer with 

Inertia Weight (IPSOIW) [27] 
130033 

Particle Swarm Optimization with 

Constriction Factor Approach (PSOCFA) 

[27] 

130001 

Biogeography Based Optimization (BBO) 

Algorithm [27] 
129735 

Particle Swarm Optimization with An 

Aging Leader and Challengers Algorithm 

(ALC PSO) [28] 

129546 

Proposed Method (ED-PV-REVB 

optimized by QCP)  
103064 

 

 
(a) 

 

 
(b) 

Figure. 5: (a) Load and (b) PV output power 

 
Figure. 6 The comparison of total generator output 

 

 
Figure. 7 The comparison of total fuel cost 

 

algorithms, it can be said that the proposed method in 

this study is the best for minimizing of cost objective. 

Moreover, the study in this paper is extended to being 

a dynamic economic dispatch (DED) problem for 24 

hours power system operation. The total thermal fuel 

cost for 24 hours of power system operation are 

shown in Table 7. Fig. 8 shows the comparison of 

power charge, discharge, and SOC for three REVBs 

utilized in this system power model. 

From Fig. 6, the proposed approach can reduce 

the total generator output at 07:00, 08:00, 14:00, 

15:00, and 21:00. The use of REVB can affect the 

generator units to produce their output power more 

flexible under the uncertainty of PV output. The 

result corresponds to the use of REVB for DED 

including PV where it could reduce the total power 

supply at 15:00, 18:00, and 20:00. Fig. 3 shows the 

same computation with the total fuel cost setting. 

This setting can directly measure the total fuel cost of 

power supply resulted from the optimization process.  
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(a) 

 

 
(b) 

 

 
(c) 

Figure. 8 The comparison of (a) Power charge, (b) 

Discharge, and (c) SOC-REVB 

 
Table 7. Total generator output power and its fuel cost in 

24 hours 

Methods 

Total 

Fuel 

Cost ($) 

Genetic Algorithm (GA) [22, 23] 5733318 

Particle Swarm Optimization (PSO)  

[22, 24] 
5800886 

Artificial Bee Colony Algorithm (ABCA) 

[22, 25] 
5912620 

Artificial Immune System (AIS) [22, 26] 5609163 

Gravitational Search Algorithm (GSA)[22] 5576667 

DED (QCP) 1936200 

DED-PV (QCP) 1725800 

DED-PV-REVB (QCP) 1708700 

 

Note that the employment of REVB can decrease the 

fuel cost of power supply three times around 15:00, 

18:00, and 20:00. Table 7 shows the value of the cost 

minimization objective of proposed method is 

1708700 $, DED-PV (QCP) is 1725800 $, DED 

(QCP) is 1936200 $, GA is 5733318 $, PSO is 

5800886 $, ABCA is 5912620 $, AIS is 5609163 $, 

and GSA is 5576667 $. It can be seen from Table 7 

and Fig. 6 that the proposed method produced the 

lowest best total cost of 1708700 $ and a total power 

supply of 112620 MW. The second lowest best total 

cost of 1725800 $ and total power supply of 113410 

MW obtained by DED including PV. The lowest 

worst total cost of 193620 $ and total power supply 

of 125616 MW for conventional DED. 

The proposed method could compress the fuel 

cost around 11.75 % of fuel cost produced by 

standard DED solved by QCP. Meanwhile, DED with 

PV can reduce the fuel cost as 10.87% from fuel cost 

resulted from conventional DED. As shown in Fig. 8, 

Both charge and discharge power for three REVB 

were within their SOC. From Fig. 5 to 8 and Table 6 

and 7, it is figured out that the employment of REVB 

can produce conventional generators more 

economical cost compared to only conventional 

generator optimization and integrated PV unit. 

5. Conclusion 

This paper has been proposed the application of 

REVB to solve the DED problem affected by the 

intermittent PV power output. The REVB could 

reduce the total fuel cost by around 10.78 % 

compared to the conventional DED problem for IEEE 

30 Bus. For IEEE 118 bus, the lowest best total fuel 

cost is yielded by REVB around 11.75 % from 

standard DED problem. The REVB is a very 

promising energy storage utilized to manage and 

distribute the power flow in power system operation 

considering the PV generation unit. In the future, the 

study of the DED problem could be extended by 

including the N-1 security criterion, congestion 

management, etc. 
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