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Abstract: This study presents a comparison between multi-objective optimization methods used to obtain solution 

for generator maintenance scheduling (GMS) problem. The GMS problem with three objectives which include the 

total operation cost minimization, system’s reliability (gross reserve) maximization and convenience is considered in 

this study. Convenience objective is represented by the minimization of the violation in the number of units’ 

maintenance outage constraint. To solve the problem of GMS, there is a need for GMS model to represent the 

requirements of electrical power system and optimization method to implement the model and obtain solution for the 

GMS. The proposed Pareto ant colony system (PACS) algorithm is based on ant colony system algorithm and Pareto 

approach. Pareto approach is used to make trade-off between the obtained solutions based on the three objectives. In 

this study comparison is made based on the results of experiments using the IEEE RTS 32- and 36-unit systems 

while the demand for the 32- and 36-unit systems is based on IEEE RTS demand systems.  In addition, four common 

multi-objective algorithms based on Pareto approach i.e., the Non-dominated Sorting Genetic Algorithm II, Strength 

Pareto Evolutionary Algorithm 2, Multi-objective Simulated Annealing, and Multi-objective Particle Swarm 

Optimization are used in the evaluation of the proposed PACS algorithm. The multi-objective GMS model is 

implemented by all the algorithms and five performance metrics i.e., the grey relational grade (GRG), coverage, 

distance to Pareto front, overall Pareto spread and the number of non-dominated solutions are used in the evaluation. 

The Friedman test is also used to evaluate the algorithms’ performance statically, which is made based on GRG 

metric. The experimental results showed that the proposed PACS algorithm was able to obtain a robust solution by 

considering different initial operational hours of the units. In term of GRG metric, the PACS algorithm was able to 

obtain the best results for the 32-unit systems in all the maintenance windows. However, for the 36-unit system, the 

PACS algorithm secured the second-best results at the early stages of the operation time but outperformed other 

algorithms during other operation times. For other metrics, overall the PACS algorithm has the best performance in 

terms of coverage, distance to Pareto front and overall Pareto spread metrics while the NSGAII has the best result in 

terms of the number of obtained non-dominated solutions. Friedman test implies that the PACS algorithm is 

significantly better than the other comparative algorithms. 

Keywords: Optimization, Pareto approach, Scheduling, Generator maintenance, Multi-objective. 

 

 

1. Introduction 

Generator maintenance scheduling (GMS) 

problem is a complex and nonlinear optimization 

problem that specifies the schedule for carrying out 

planned preventive maintenance on power 

generation units [1]. To solve the problem of GMS, 

there is a need for a model and optimization method. 

Various generator maintenance scheduling models 

were developed to represent the single objective [2-

8] and multi-objective [9-11] electrical power 

system requirements to generate schedules for 

maintaining generating units. Optimization methods 

are required to obtain solutions for any GMS. There 

are two types of optimization methods: single 

objective and multi-objective optimization methods. 
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Single objective optimization methods aim to obtain 

solution for the single objective problems [1]. Multi-

objective optimization problems aim to uncover the 

best compromise between conflicting and multiple 

objectives [12]. Thus, due to the need of 

simultaneous optimization of several objectives at 

that single moment, and the difficulty and 

complications in providing a solution, the multi-

objective optimization methods are often 

experienced by researchers [12, 13]. Multi-objective 

optimization methods are classified as classical 

methods (aggregative methods) and intelligent 

methods (multi-objective metaheuristics) [14, 15]. 

Aggregative methods (i.e., classical methods) 

convert the multi-objective problem into a single 

objective problem either through creating an 

aggregate objective function or via an optimization 

of one objective and considering the other as a 

constraint [10, 16]. These methods are pushed 

towards uncovering only one solution and are 

essential in instances in which preferential 

information relating to the objectives is clearly 

understood in advance. The most generic methods in 

the aggregation approach are the weighted sum, and 

the ε-constraint methods [14]. The main drawback 

of classical methods is that the user must execute 

several runs through different parameter settings for 

the purpose of generating a representative 

approximation of the overall Pareto front (i.e., 

optimal solutions) [14]. Furthermore, transforming 

the multi-objective problem into a single objective 

problem cannot achieved the feasibility of trade-offs 

among multi-objectives [17].  

Intelligent methods which have been developed 

for solving multi-objective problems simultaneously 

are in contrast to aggregation methods. Aggregation 

methods are reasonably straightforward, and no 

modifications are required for the basic algorithm 

[16]. The most common intelligent methods that are 

used in the domain of multi-objective GMS are the 

Non-dominated Sorting Genetic Algorithm II 

(NSGAII), Strength Pareto Evolutionary Algorithm2 

(SPEA2), Pareto Ant Colony Optimization, Multi-

objective Simulated Annealing (MOSA), and Multi-

objective Particle Swarm Optimization (MOPSO) [9, 

18-26].  

Based on the literature [27, 28], classical 

methods are considered to be non-Pareto based 

techniques, while the intelligent methods are 

considered to be Pareto based techniques. The basic 

idea of Pareto based techniques is that Pareto front 

is directly incorporated into the concept of Pareto 

optimum. Non-Pareto based techniques are 

approaches that do not directly incorporate the 

concept of Pareto optimum [27]. In addition, [29] 

give a classification to algorithms depending on 

whether the output of the algorithms is a set of 

Pareto solutions (i.e., a set of optimal solutions) or 

the output is a single solution. The Pareto 

dominance approach uses the Pareto dominance 

relation to select non-dominated solutions. 

According to the Pareto dominance relation, the 

dominance concept can be expressed as: A solution 

X1 can be said to have dominance over another 

solution X2 if both conditions, as follows, are true: 

(i) solution X1 is not considered worse than X2 in 

the entire objectives; and (ii) solution X1 is 

considered a better solution than X2 in one of the 

objectives at least [15]. In the case of conflicting 

objectives in multi-objective optimization, Pareto 

efficiency or Pareto optimality are ideal solutions. 

The Pareto space is considered by most authors [15]. 

Securing a set of Pareto-optimal solutions supports 

the decision maker with further comprehensive 

understanding of the whole feasible solutions to 

enable an acceptable final plan for GMS compared 

to one single optimal solution [10, 13, 14, 30].  

This paper presents a comparison of five multi-

objective optimization algorithms for GMS for a 

multi-objective GMS model described in [1]. The 

novelty of this paper lies in demonstrating the 

proposed multi-objective PACS algorithm in 

obtaining better solution for the multi-objective GMS 

problem with strategy based on operational hours, 

compared to other multi-objective optimization 

methods (i.e., NSGAII, SPEA2, MOSA, and 

MOPSO). New results based on different metrices 

provided in this paper have proved the effectiveness 

of the proposed algorithm. Section 2 discusses 

previous studies on multi-objective optimization 

methods. This is followed by Section 3 which 

describes the proposed optimization method. In 

Section 4 experimental design to evaluate the 

performance of the proposed method is presented and 

Section 5 describes the results of the experiments. 

Finally, Section 6 depicts the conclusions and future 

work. 

2. Related literature 

The studies of [1, 9-11, 18, 20, 26] consider the 

approach of Pareto based techniques which has 

proved its efficiency to get better solutions in 

optimization of the multi-objective problems. 

Moreover, all the optimization methods are 

developed to solve one problem with multi-

objectives, except the study in [1], which was  

developed to solve multi problems with multi-

objectives.  
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Table 1 summarizes the most recent studies of 

solution methods in multi-objective optimization 

that are used to obtain solutions for multi-objective 

GMS problem. The study of [10] consider 

optimization method to obtain solution for GMS 

with three types of objective functions; comprising 

producer profit, system reliability which is defined 

as the minimization of the standard deviation of the 

reliability index, and total generation cost. The study 

of [20] considers optimization method to obtain 

solution to GMS with two objectives i.e., profit 

minimization and reliability maximization. The 

system reliability objective is defined to be the 

average value of the reliability index. In [9], an 

optimization method for two objective functions (i.e., 

maximizing reliability by minimizing the sum of 

squared reserves and minimizing cost through 

electricity production cost) has been proposed. The 

optimization method considered by [11] obtained 

solution for GMS with the objectives of minimizing 

the overall operational cost and maximizing the 

deterministic reliability of the power system by 

maximizing the average value of reliability index in 

the planning period. The study in [26] considered 

optimization method to obtain solution with two 

objectives comprising maximizing reliability 

through maximizing the expected rate of energy and 

minimizing cost through minimizing the total 

expected costs related to maintenance efforts. In 

[18] considered optimization method that obtained 

solution with objectives of cost minimization 

through maintenance cost. Furthermore, reliability is 

considered by providing adequate power reserve and 

the sustainability impacts on a wind farm system. 

The study in [1] considered optimization method to 

obtain solution for GMS with the objectives of total 

operation cost minimization, system’s reliability 

maximization and minimizing the violation in the 

number of units that send for maintenance outage. 

Despite all the mentioned studies considered 

optimization methods to implement multi-objective 

GMS models and obtained solution for GMS in 

form of multi-objective. However, all these studies 

have considered optimization methods to implement 

unit commitment problem in conjunction with unit 

maintenance scheduling problem.  
Unit commitment are units which are not 

schedule for maintenance. The unit commitment 

problem seeks to determine which units are either, i) 

connected to the power generation system or ii) not 

connected to the power generation system. This is 

different from the problem of GMS which seeks to 

determine which units that are scheduled for 

maintenance that should enter the maintenance 

outage. The presented solutions from [9-11, 18, 20, 

26] are not efficient enough because unit 

commitment does not undergo maintenance and 

have to be solved separately to get more efficient 

maintenance scheduling of generators. In addition, 

all the optimization methods did not consider 

operational hours strategy, where this strategy can 

extend the lifespan of generating units and can be 

applied with different types of generating units such 

as gas turbine [4].  

The studies of [9-11, 18, 20] have considered 

periodic strategy for maintenance scheduling since 

this strategy is convenient to implement. However, 

the sequential strategy is more appropriate when the 

system requires frequent maintenance as it ages [4, 31, 

32]. The study of [26] considers sequential 

maintenance strategy but the age of the unit is 

calculated as a proportion of the time the unit has 

been in the system. This does not reflect the actual 

working time of the units. The method that has been 

adopted in [4] in deciding the age reflects the exact 

working hours of the generating unit.  Thus, in our 

previous work [1] we developed the work of [4] and 

proposed PACS algorithm to be suitable in 

implementing multi-objective GMS model and 

produce solution for the GMS with multi-objective. 

In [1], a multi-objective PACS algorithm is 

presented which considered GMS and unit 

commitment problems separately to be solved 

simultaneously. The obtained solution method can 

provide more efficient maintenance scheduling 

represent the requirements of electrical power 

system. The Pareto strategy has been employed in 

these studies because of its efficiency in solving 

multi-objective problems. 

3. The proposed method 

The proposed PACS algorithm for the multi-

objective GMS scheduling problem adopts and 

adapts the structure of the single objective ACS 

algorithm presented by [4]. The proposed algorithm 

with the scheduling problem explained in our 

previous work [1].  

There are eight constraints in the scheduling 

problem include GMS constraints, unit commitment 

constraints and the coupling constraints between 

GMS and unit commitment. The GMS constraints 

are maintenance outage units, and continuous 

maintenance, whilst unit commitment constraints are 

load balance, minimum system reserve, minimum 

and maximum capacity of generating units, and 

minimum up and down time constraints. However, 

the coupling constraints require participation in an 

activity of maintenance scheduling between unit 

commitment and GMS which comprise maintenance  
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Table 1. Multi-objective solution methods for GMS models 

Reference 
Pareto-based 

technique approach 

Single 

problem 

Multi 

problem 
Optimization methods 

[10] √ √ X Group search optimizer with multiple 

producers. 

 

[9] √ √ X Dominance-based multi-objective 

Simulated Annealing algorithm. 

 

[11] √ √ X Fuzzy clustered multi-objective hybrid 

Differential Evolution algorithm. 

 

[18] √ √ X Non-dominated Sorting Genetic 

Algorithm II. 

 

[20] √ √ X Non-dominated Sorting Genetic 

Algorithm II. 

 

[26] √ √ X Multi-objective Particle Swarm 

Optimization. 

 

[1] √ X √ Pareto ant colony system. 

 
online status, as well as maintenance windows. The 

objectives of the scheduling problem are minimizing 

the operation cost, maximizing the system reliability, 

and minimizing the number of violations in 

maintenance outage units’ constraint. 

The proposed PACS algorithm is an 

enhancement of the algorithm presented in [4]. The 

main difference is the inclusion of more than one 

objective function, and operational hours are 

calculated by two factors; the operating hours and 

start-up times as compared to [4], it is calculated as 

the accumulated operating hours which neglects the 

engine start-up times. Inventors have discovered that 

one engine start is equivalent to 10 hours of 

operation in terms of the impact on the life of the 

engine [31]. In addition, the enhancement includes 

the Pareto approach to make a trade-off between the 

objectives. The functions for the local and global 

pheromone updates have also been changed to cater 

for the multiple objectives.  

Table 2 displays the symbols and variables that 

are used in the pseudo codes.  

The pseudo code of the proposed PACS 

algorithm is as follows: 

 

For each 𝒆 ∈ 𝑬  

 Step1. For each 𝒈 ∈ 𝑮 (construct 

maintenance scheduling solution) 

  1.   For each 𝒋 ∈ 𝑱  

   i.  Decide maintenance outage 

of units according to PACS 

rules; /refer Section 3.1/  

   ii. Implement unit 

commitment heuristic; /refer 

Section 3.2/ 

   iii. Calculate amount of 

production for online units 

/refer Section 3.3/ 

       Endfor 

  2.  Calculate objective functions; 

  3.  Update best so far solution; 

  4. Perform local pheromone update for 

ants’ group; 

  5. If g>1 

         Apply Pareto approach; 

            Endfor 

   Step2. Perform global pheromone update for 

best ants’ groups; 

Endfor 

Record Pareto front.  

 

The algorithm starts with the iteration (e) and in 

each iteration, there are two processes (i.e., 2 steps). 

Step 1 is to generate the maintenance scheduling of 

the generators followed by the update of the global 

pheromone (in step 2). There are five tasks in step 1 

for each ants’ group (g), The first task determines 

which unit goes into which period (j) for 

maintenance using the PACS algorithm. PACS rules 

determine what unit should be on maintenance in 

every period (week). It is assumed, in this research, 

that the maintenance duration is two periods (i.e., 2 

weeks) and is identical for all units in the generated 

test systems. Next, the algorithm will solve the unit 

commitment problem. In each period, the unit 

commitment problem is solved when it satisfies the  
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Table 2. Nomenclature 

Symbol Meaning 

E Set of main iterations. 

G Set of ant groups. 

R Set of offline units that are free to be 

online according to the downtime 

constraint. 

F Set of offline units that are forced to be 

offline according to the downtime 

constraint. 

O Set of units out for maintenance without 

force (i.e., the operational hours of these 

units are between the lower and upper 

maintenance window endpoints, however, 

there is at least one week, 168 h, until the 

upper endpoint of the window). 

Exp Exploration rate. 

φ Indicator variable that is 1 if the problem is 

feasible. 

𝑖 Index of generating units. 

𝑗 Index of periods (weeks). 

𝑡 Index of hours. 

𝐼 Set of generating units. 

𝐽 Set of periods (weeks). 

𝑇 Set of hours. 

𝐿𝑇 Total hours in each period (168 h in a 

week). 

𝑝𝑒𝑛𝑑𝑖,𝑗 Operational hours of unit i at the beginning 

of period j after the last maintenance 

outage if the outage is started in period j; 

otherwise, it equals to zero. 

𝑜𝑝ℎ𝑖
𝑚𝑎𝑥𝑎𝑣 Maximum available operational hours for 

unit 𝑖 between the last maintenance outage 

and the next one. 

𝑜𝑝ℎ𝑖
𝑚𝑖𝑛𝑟𝑞

 Minimum required operational hours for 

unit 𝑖 between the last maintenance outage 

and the next one. 

𝑁𝑖 Maximum number of units for 

maintenance outages in period j. 

𝐷𝑖  Duration (of periods) of the maintenance 

outage for unit i. 

𝑝𝑖𝑗𝑡 Power generation dispatch of unit i in 

period j and time t. 

𝐷𝑗𝑡  System demand in period j and time t. 

𝑅𝑗𝑡
𝑚𝑖𝑛 Minimum reserve requirement in period j 

and time t. 

𝑃𝑖
𝑚𝑖𝑛 Minimum capacity of unit i. 

𝑃𝑖
𝑚𝑎𝑥 Maximum capacity of unit i. 

𝐺𝑖𝑗𝑡  Power generating capacity of unit i during 

period j and time t. 

𝐶𝑖
𝑃 Production cost ($/MWh) of unit i. 

 

load demand by determining the operation schedule 

of the generating units at every hour interval with 

varying loads at the lowest production cost (i.e., unit 

commitment responsible to determine the status of 

On/Off units outside the maintenance outage). 

However, the obtained solution might be infeasible 

in terms of the reserve constraint. Therefore, to 

make it feasible, four feasibility rules are developed. 

The algorithm then calculates the production amount 

for online unit so that the load balance constraint is 

satisfied. The purpose of this constraint is to ensure 

the load demand equals the total power production 

of units in each period and each hour.  

The second task is to calculate the objective 

function after an ants’ group has constructed a GMS. 

This is followed by the updating of the best so far 

solution (in the third task) and the task of updating 

the local pheromone for the ants’ group is performed. 

The final task is to check if the there is more than 1 

ants’ group, the Pareto approach is applied to make 

a trade-off between the obtained solutions from the 

ants’ groups. After the all the ants’ groups in each 

iteration are completed, the global pheromone 

update is performed to the best ants’ groups. When 

the iterations are completed, the last Pareto front is 

recorded for the best GMS solutions.  

The following sections describe how to 

determine the maintenance outage, implementation 

of the unit commitment heuristic and calculation of 

the production. 

3.1 Maintenance outage determination 

An algorithm has been developed to determine 

the maintenance outage as follows: 

 

While (I ≠ Փ) 

 Step 1. Choose unit i with highest 
𝑝𝑒𝑛𝑑𝑖,𝑗

𝑜𝑝ℎ𝑖
𝑚𝑎𝑥𝑎𝑣 from 

I; 

 Step 2. If (𝑝𝑒𝑛𝑑𝑖,𝑗  ≥  𝑜𝑝ℎ𝑖
𝑚𝑎𝑥𝑎𝑣 − 𝐿𝑇 )  

  Perform unit maintenance outage for 

this period; 

     Else if 

(number of units in maintenance <

 𝑁𝑖  𝐚𝐧𝐝 𝑝𝑒𝑛𝑑𝑖,𝑗 ≥ 𝑜𝑝ℎ𝑖
𝑚𝑖𝑛𝑟𝑞

) 

   1.  Compute two heuristic values and 

Pr from unit i according to 

Equations (1-3);  

   2.  Generate random number r1 

between (0,1); 

   3. If (r1 < Exp) 

    i. Generate another random 

number r2 between (0,1); 

    ii. If (r2 < Pr) 

     a.  Perform unit 

maintenance outage for 

this period; 

     b. Put i in O; 

     else 
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      Do not perform unit 

maintenance outage for 

this period; 

 

      Else if (Pr > 0.5) 

     i. Perform unit maintenance 

outage for this period; 

     ii. Put i in O; 

              Else 

     Do not perform unit 

maintenance outage for this 

period; 

                  Endif 

                Else 

       Do not perform unit maintenance 

outage for this period; 

                    Endif 

             Endif 

 Step 3. Take unit i out from set I;  

End (while) 

 

In this maintenance outage determination 

algorithm, PACS rules make decisions about the 

maintenance outage of each generating unit in three 

major steps. The GMS and coupling constraints 

between unit commitment and GMS are considered 

in this algorithm. Eqs. (1) and (2) are used to 

calculate the two heuristic values in the probability 

of unit maintenance outage used in Eq. (3). The 

probability of the outage increases if operational 

hours without maintenance for each unit is near to 

the upper endpoint of the maintenance window.  In 

addition, pheromone values in Eq. (3) are obtained 

from the updated trail information during previous 

steps. Three pheromone values are defined where 

one pheromone is for each objective. The decision 

of YES for pheromone and heuristic in Eq. (3) means 

the unit should enter maintenance outage, On the 

contrary, the NO indicates not to enter the 

maintenance outage. 

 

𝜂𝑦𝑒𝑠 = 1 −
𝑜𝑝ℎ𝑖

𝑚𝑎𝑥𝑎𝑣−𝑝𝑒𝑛𝑑𝑖,𝑗

𝑜𝑝ℎ𝑖
𝑚𝑎𝑥𝑎𝑣−𝑜𝑝ℎ𝑖

𝑚𝑖𝑛𝑟𝑞               (1) 

 

 𝜂𝑛𝑜 =
𝑜𝑝ℎ𝑖

𝑚𝑎𝑥𝑎𝑣−𝑝𝑒𝑛𝑑𝑖,𝑗

𝑜𝑝ℎ𝑖
𝑚𝑎𝑥𝑎𝑣−𝑜𝑝ℎ𝑖

𝑚𝑖𝑛𝑟𝑞                   (2) 

 

𝑃𝑟 =
(𝐴𝑦𝑒𝑠)

𝛼
.[𝜂𝑦𝑒𝑠]

𝛽

(𝐴𝑦𝑒𝑠)
𝛼

.[𝜂𝑦𝑒𝑠]
𝛽

+(𝐴𝑛𝑜)𝛼.[𝜂𝑛𝑜]𝛽 
             (3) 

 

where, 

𝐴𝑦𝑒𝑠 = [𝐶. 𝜏𝑦𝑒𝑠
𝑐 ] + [𝑅. 𝜏𝑦𝑒𝑠

𝑟 ] + [𝑉. 𝜏𝑦𝑒𝑠
𝑣 ] 

 

𝐴𝑛𝑜 = [𝐶. 𝜏𝑛𝑜
𝑐 ] + [𝑅. 𝜏𝑛𝑜

𝑟 ] + [𝑉. 𝜏𝑛𝑜
𝑣 ] 

3.2 Unit commitment heuristic 

The unit commitment heuristic should be 

implemented for each period in the PACS algorithm. 

The algorithm for the unit commitment heuristic 

comprises two major steps. In the first step, for 

every hour (t) of the present period, the scheduling 

used for turning the units on or off by considering 

minimum up-time and down-time constraints. In the 

second step of the unit commitment heuristic, some 

of the developed heuristic approaches, named 

feasibility rules, are implemented to make the 

acquired solution feasible if reserve constraint of the 

acquired solution in the first step is not satisfied. 

The pseudo code of unit commitment heuristic 

algorithm is as follows: 

 
For each 𝒕 ∈ 𝑻  

 Step1. For each 𝒊 ∈ 𝑰 

  Decide whether unit should be on or 

off; /refer subsection 3.2.1/ 

 Step2. If (unit commitment is infeasible)  

  Implement feasibility rules; /refer 

subsection 3.2.2/  

Endfor 

3.2.1. On/Off units’ status determination 

The heuristic of status determination is relevant 

to unit commitment decisions in which the up-time 

and down-time constraints are recognized. The 

major task here is to get a selection whether units 

have to be on or off at the present period and hour. 

Corresponding to this portion of the solution 

algorithm, at the earlier hour, if the online unit 

fulfils the up-time constraint and there is no need for 

it to continue working, the unit turns off by default 

to minimize the total operational cost. The free units 

to be turned on, which satisfy the down-time 

constraint, are maintained in set R. The pseudo code 

for the status determination algorithm is presented in 

as follows: 

 

If (unit is on maintenance outage) 
 Let unit be off at the current hour; 

Else if (online unit at previous hour does not    

satisfy up-time constraint) 

  Let unit be online at current hour; 

       Else if (offline unit at the previous hour does 

not satisfy the down-time constraint)  

 Let the unit be off at the current hour 

and put i in F; 

               Else  

 a.Turn the unit off; /default setting/ 

 b. Put i in R 
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            Endif 

    Endif 

Endif 

3.2.2. Feasibility rules 

A total of four feasibility rules are developed to 

make the acquired solution feasible in terms of the 

reserve constraint. The respective pseudo codes for 

the rules are illustrated in the following.  

Corresponding to the first rule, enough units 

from set R have to be turned on until the reserve 

constraint is fulfilled. In this case, units with the 

lowest production cost are selected to be turn on. 

The pseudo code for the first rule is as follows: 

 

Feasibility rule #1 
If (φ = 0) 

 While (R≠ Փ)  

  If (∑ P𝑖
𝑚𝑎𝑥

𝑖∈(𝑜𝑛𝑢𝑛𝑖𝑡𝑠)  < 𝐷𝑗𝑡 + 𝑅𝑗𝑡
𝑚𝑖𝑛)  

   a. Choose unit i with lowest production 

cost from R; 

   b. Turn on unit i and take unit i out from 

set R; 

  Else 

   a. φ ← 1; 

   b. No more unit to be turned on 

  Endif 

 Endwhile 

Endif 

 

If the acquired solution does not fulfil the 

reserve constraint and set R is clear, the second 

feasibility rule must be performed. The second rule 

is to return the units which are scheduled for 

maintenance for the present period without 

obligation to be online. The priority is to return the 

units is based on the identified criterion expressed in 

the first task of the while loop in following pseudo 

code. 

 

Feasibility rule #2 
If (φ = 0) 

 While (O≠ Փ)  

  a. Choose the unit i with the lowest 

𝒄𝒊
𝒑

𝒑𝒊
𝒎𝒂𝒙×(𝑜𝑝ℎ𝑖

𝑚𝑎𝑥𝑎𝑣−𝑝𝑒𝑛𝑑𝑖,𝑗)
 from O; 

  b. Do not perform unit maintenance outage 

at this period and return unit i to the 

power system; 

  c. Turn it on to be available at the current 

hour by considering the down-time 

constraint; 

  d. Take unit i out from set O; 

  e. If (∑ P𝑖
𝑚𝑎𝑥

𝑖∈(𝑜𝑛𝑢𝑛𝑖𝑡𝑠)  > 𝐷𝑗𝑡 + 𝑅𝑗𝑡
𝑚𝑖𝑛)  

   i. φ ← 1; 

   ii. No more unit to be turned on 

     Endif 

 Endwhile 

Endif 

 

The third feasibility rule will be considered if 

infeasible solution still occurs because of not 

fulfilling the reserve constraint. The units in set F 

(those that are obliged to be offline according to the 

down-time constraint) are probable candidates to be 

turned on to make the solution feasible. The chosen 

unit have to be turned on from the earlier hours on 

which it was turned off by default. For example, if a 

unit is off for 2 hours, then it must be off for another 

2 hours because of the down-time constraint. 

However, if the unit is needed, it can be off for only 

the first 2 hours and turn on for the next 2 hours to 

satisfy the reserve constraints. This will violate the 

downtime constraint. The pseudo code for the third 

rule is as follows: 

 

Feasibility rule #3 
If (φ = 0)  

 While (F≠ Փ) 

  a. Choose the unit i with the highest 
𝒑𝒊

𝒎𝒂𝒙

𝒄𝒊
𝒑  

from F; 

  b. Turn unit on earlier at time unit has been 

turned off by default (this time might be 

at previous period) and keep it on up to 

current time; 

  c. Take unit i out from set F; 

  d. If (∑ P𝑖
𝑚𝑎𝑥

𝑖∈(𝑜𝑛𝑢𝑛𝑖𝑡𝑠)  > 𝐷𝑗𝑡 + 𝑅𝑗𝑡
𝑚𝑖𝑛)  

   i. φ ← 1; 

   ii. No more unit to be turned on 

      Endif 

 Endwhile 

Endif 

 

The last feasibility rule has to be applied if the 

first three rules do not take the lead to a feasible 

solution. In this rule, the units where their 

maintenance outage is started within the previous 

period without any power, and are on the 

maintenance outage at this time, are possible 

candidates to be turn on (back into operation).  

If the feasibility rules failed to find a feasible 

solution up to the present step, the recent ants’ group 

passes and the next group of ants will begin from the 

beginning to get a feasible solution. The pseudo 

code for the fourth rule is presented in the 

following: 
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Feasibility rule #4 
If (φ = 0)  

 While (O≠ Փ) /*set O belongs to previous 

period*/ 

  a. Choose the unit i with lowest 
𝒄𝒊

𝒑

𝒑𝒊
𝒎𝒂𝒙×(𝑜𝑝ℎ𝑖

𝑚𝑎𝑥𝑎𝑣−𝑝𝑒𝑛𝑑𝑖,𝑗)
 ; 

  b. Revise unit maintenance outage at 

previous period and return unit i to the 

system; 

  c. Turn it off up to current hour and turn 

it on now; 

  d. Take unit i out from set O; 

  e. If (∑ P𝑖
𝑚𝑎𝑥

𝑖∈(𝑜𝑛𝑢𝑛𝑖𝑡𝑠)  > 𝐷𝑗𝑡 + 𝑅𝑗𝑡
𝑚𝑖𝑛)  

  i. φ ← 1; 

  ii. No more unit to be turned on 
      Endif 

 Endwhile 

Endif 

3.2.3. Calculating the amount of production for online 

units 

The production for each online unit is calculated 

after a feasible solution is found for the GMS 

problem. The amount of production is to determine 

if this amount is equal to the load demand, thus the 

load balance constraint is fulfilled. The pseudo code 

for the calculation is as follows:  

 

For each 𝒋 ∈ 𝑱 
 For each 𝒕 ∈ 𝑻 

  1. Set the production amount of online units to 

minimum; 

  2. While (𝐷𝑗𝑡 > ∑ 𝑃𝑖𝑗𝑡𝑖∈(𝑜𝑛𝑢𝑛𝑖𝑡𝑠) ) 

   i. Select online unit i that has the lowest 

production cost and has not been chosen 

before; 

   ii. Set production of unit i to min (𝑝𝑖
𝑚𝑎𝑥 −

𝑝𝑖
𝑚𝑖𝑛, 𝐷𝑗𝑡 − ∑ 𝑃𝑖𝑗𝑡𝑖∈(𝑜𝑛𝑢𝑛𝑖𝑡𝑠) ) 

    Endwhile 

 Endfor 

Endfor 

4. Experimental design 

Experiments have been performed to evaluate 

the performance of the multi-objective PACS 

algorithm. All experiments were conducted using 

Python 3.7 programming language on a machine 

with 16 GB RAM in a Windows 10 environment. 

The benchmark elements of the experiments’ 

evaluation comprises the IEEE-RTS systems dataset 

with 32, and 36 units as used in [1, 4, 33]. Four 

metrics which comprise coverage, distance to Pareto 

front, overall Pareto spread, the number of obtained 

non-dominated solutions, and grey relational grade 

(GRG). These metrics are also used in [34] in their 

study on multi-objective scheduling problems. In 

particular, the GRG metric is used in [35, 36] in 

their multi-objective studies. Friedman test is also 

used to show the significant of the algorithm’s 

performance.  

Four (4) algorithms related to GMS problems 

which are commoly, and recently  used in the 

literature within the domain of GMS are used as 

benchmark algorithms in the comparison. The  

algorithms are NSGAII, SPEA2, MOSA, and 

MOPSO [9, 18, 20, 23, 25, 26, 34, 37-39]. These 

argorithms are multi-objective metaheuristic search 

algorithms, which are classified as intelligent 

methods, and Pareto approach has been adopted. 

The NSGAII, and SPEA2 algorithms are classified 

as metheuristic and also evolutionary algorithms. 

The MOSA algorithm is metheuristic and classified 

as local search algorithms. Finally, MOPSO is 

classified under metheuristic and also  swarm 

intelligence algorithms. The multi-objective 

algorithms can cater one problem with a multi-

objective (i.e., the unit commitment problem 

implemented in conjunction with unit maintenance 

scheduling problem, with consideration the 

objective of cost minimization, reliability 

maximization, and violation minimization). The 

proposed multi-objective GMS model and 

sequential maintenance strategy based on 

operational hours have been implemented in all the 

algorithms   

The parameter settings for the experiments are 

adopted from [1]. The parameters and the values for 

the algorithms are adopted from previous GMS 

studies. Different parameters are used in each study, 

such as parameters for PACS algorithm from [4]; for 

NSGAII and SPEA2 from [34]; for MOSA from 

[23]; and, finally for MOPSO from [37-39]. 

5. Results and discussion 

This section presents the performance evaluation 

of the proposed multi-objective PACS algorithm. 

The results of the proposed algorithm are compared 

with the four benchmark algorithms based on 

several performance metrics related to the three (3) 

objective functions. The best results are highlighted.  

Table 3 and 4 present the results for two (2) test 

systems based on three (3) objectives: cost, 

reliability (gross reserve), and convenience 

(violation). In general, the results from Table 3 and 

4 show that the PACS algorithm outperforms other 
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algorithms in terms of cost and reliability but is at 

par with MOSA for the violation objective. The 

Grey Relational Analysis method in [40] was  

adopted to select the best solution with low cost, 

high reliability, and low violation in Table 3 and 4.  

Fig. 1 and 2 show the schedule for window 

[3000-5000] used with 32 & 36 unit system for one 

year (i.e. 52 periods). However it will take 53 

periods if the unit enter for maintenance in period 52, 

the maintenance for that unit will exceed to period 

53, because it considered the maintenance duration 

is identical for all units  (i.e., two weeks). 

 

 

 
Table 3. Results with 32-unit system 

Objectives 

Maintenance 

window 

(hours) 

PACS NSGAII SPEA2 MOSA MOPSO 

Cost 

[1000-2000] [1] 205,146,072.03 206,604,384.38 206,568,158.38 206,634,273.82 206,735,374.23 

[1000-3000] 190,157,169.39 202,247,526.91 202,593,302.37 202,107,932.49 202,633,621.08 

[2000-3000] [1] 185,775,386.64 192,031,766.33 191,007,725.92 192,345,982.42 190,955,430.31 

[2000-4000] 178,487,720.69 192,667,426.86 190,463,356.98 192,116,673.00 190,968,332.48 

[3000-4000] [1] 179,335,380.59 180,367,100.03 180,192,347.76 179,576,005.54 180,099,557.96 

[3000-5000] 173,935,482.76 181,265,811.21 179,798,368.61 181,116,547.97 179,844,689.91 

Reliability 

[1000-2000] [1] 1,431,412.00 1,424,785.00 1,425,841.00 1,419,417.00 1,415,644.00 

[1000-3000] 1,454,207.00 1,442,805.00 1,445,844.00 1,438,357.00 1,443,378.00 

[2000-3000] [1] 1,464,603.00 1,453,328.00 1,438,035.00 1,457,727.00 1,429,630.00 

[2000-4000] 1,450,120.00 1,458,812.00 1,450,718.00 1,452,353.00 1,452,287.00 

[3000-4000] [1] 1,458,503.00 1,455,497.00 1,458,059.00 1,443,849.00 1,452,430.00 

[3000-5000] 1,476,805.00 1,470,602.00 1,446,993.00 1,466,722.00 1,454,947.00 

Violation 

[1000-2000] [1] 12 14 13 12 13 

[1000-3000] 0 1 1 0 1 

[2000-3000] [1] 0 1 1 0 1 

[2000-4000] 0 1 1 0 1 

[3000-4000] [1] 0 1 1 0 1 

[3000-5000] 0 1 1 0 1 

 
Table 4. Results with 36-unit system 

Objectives 

Maintenance 

window 

(hours) 

PACS NSGAII SPEA2 MOSA MOPSO 

Cost 

[1500-2500] Infeasible Infeasible Infeasible Infeasible Infeasible 

[1500-3000] 363,550,376.90 359,775,789.69 360,580,576.79 360,577,078.12 360,104,489.48 

[2000-3000] 362,531,811.91 360,057,115.47 359,152,332.89 359,272,269.41 360,394,194.66 

[2000-4000] 345,982,571.97 357,650,404.50 358,072,000.87 354,220,012.33 357,434,265.27 

[3000-4000] 344,402,896.69 345,577,570.97 345,984,272.55 345,693,900.02 345,182,624.24 

[3000-5000] 336,980,517.06 343,973,413.00 342,525,154.58 345,104,911.49 344,931,659.59 

Reliability 

[1500-2500] Infeasible Infeasible Infeasible Infeasible Infeasible 

[1500-3000] 2,397,544.00 2,399,419.00 2,388,078.00 2,384,118.00 2,385,822.00 

[2000-3000] 2,404,129.00 2,396,192.00 2,373,904.00 2,397,081.00 2,389,507.00 

[2000-4000] 2,409,526.00 2,399,400.00 2,410,216.00 2,400,994.00 2,402,316.00 

[3000-4000] 2,401,092.00 2,412,488.00 2,413,045.00 2,411,542.00 2,406,736.00 

[3000-5000] 2,414,183.00 2,394,430.00 2,399,111.00 2,411,148.00 2,413,521.00 

violation 

[1500-2500] Infeasible Infeasible Infeasible Infeasible Infeasible 

[1500-3000] 0 1 2 0 2 

[2000-3000] 0 1 1 0 1 

[2000-4000] 0 1 1 0 1 

[3000-4000] 0 1 1 0 1 

[3000-5000] 0 1 1 0 1 
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Figure. 1 Scheduling for window [3000-5000] with 32-unit system 

 

 
Figure. 2 Scheduling for window [3000-5000] with 36-unit system 

 

Table 5 presents the GRG values for the PACS 

and benchmark algorithms. The GRG for each 

algorithm is calculated using the values of the three 

(3) objectives (i.e., operation cost, reliability, and 

violation). The best solution is indicated by the 

highest GRG value [40]. The PACS algorithm was 

able to obtain the best results for the 32-unit systems. 

For the 36-unit system, the PACS algorithm secured 

the second-best results at the early stages of the 

operation time, but outperformed other algorithms 

during other operation times. The GRG’s 

improvement is also presented to show the 

performance improvement between PACS and every 

benchmark algorithm, as shown in Table 6. In 

general, PACS has better performance in all unit 

systems. 
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Table 5. Comparison for GRG and rank 

Test Systems 
Maintenance 

Window (hours) 

PACS NSGAII SPEA2 MOSA MOPSO 

GRG 

R
a

n
k

 

GRG 

R
a

n
k

 

GRG 

R
a

n
k

 

GRG 

R
a

n
k

 

GRG 

R
a

n
k

 

32-unit system 

[1000-2000] 1 1 0.410 4 0.481 3 0.582 2 0.389 5 

[1000-3000] 1 1 0.361 5 0.385 3 0.559 2 0.363 4 

[2000-3000] 1 1 0.429 3 0.372 4 0.684 2 0.352 5 

[2000-4000] 
0.778 

 
1 0.556 3 0.352 5 0.581 2 0.365 4 

[3000-4000] 1 1 0.459 4 0.551 3 0.672 2 0.428 5 

[3000-5000] 1 1 0.458 3 0.350 5 0.645 2 0.374 4 

36-unit system 

[1500-2500] Infeasible Infeasible Infeasible Infeasible Infeasible 

[1500-3000] 0.712 2 0.833 1 0.479 5 0.678 3 0.515 4 

[2000-3000] 0.778 2 0.547 4 0.556 3 0.872 1 0.473 5 

[2000-4000] 0.962 1 0.336 5 0.556 3 0.598 2 0.362 4 

[3000-4000] 0.778 1 0.550 4 0.556 3 0.726 2 0.441 5 

[3000-5000] 1 1 0.345 5 0.384 4 0.699 2 0.536 3 

 
Table 6. Comparison for GRG improvement 

Test systems  
Maintenance 

window (hours) 

GRG 

Improvement 

(PACS, 

NSGAII) 

GRG 

Improvement 

(PACS, SPEA2) 

GRG 

Improvement 

(PACS, MOSA) 

GRG 

Improvement 

(PACS, 

MOPSO) 

32-unit 

system 

 [1000-2000] 0.590 0.519 0.418 0.611 

 [1000-3000] 0.639 0.615 0.441 0.637 

 [2000-3000] 0.571 0.628 0.316 0.648 

 [2000-4000] 0.222 0.426 0.196 0.413 

 [3000-4000] 0.541 0.449 0.328 0.572 

 [3000-5000] 0.542 0.650 0.355 0.626 

36-unit 

system 

 [1500-2500] Infeasible Infeasible Infeasible Infeasible 

 [1500-3000] -0.121 0.233 0.034 0.197 

 [2000-3000] 0.231 0.222 -0.094 0.305 

 [2000-4000] 0.626 0.407 0.365 0.601 

 [3000-4000] 0.228 0.222 0.051 0.337 

 [3000-5000] 0.655 0.616 0.301 0.464 

 

To show the comparison statically, Table 7 

summarizes the results obtained by Friedman test in 

which the p value is used to show the significance of 

the proposed algorithm. The GRG results for all the 

maintenance windows have been used to calculate 

the p values for the two (2) unit systems. In 

Friedman test, the significant level is set to 0.05. 

The mean rank indicates the difference in 

performance between the algorithms. The highest 

rank, which reflects the best algorithm, is assigned 

to the biggest value of the mean rank. It can be seen 

that the proposed PACS algorithm outperforms 

other algorithms. The computed p values for all the 

unit systems are less than 0.05 which shows that 

there is a significant difference in terms the GRG 

values between the proposed PACS algorithm and 

the other four (4) multi-objective algorithms. This 

implies that the PACS algorithm is significantly 

better than the other comparative algorithms. The 

GRG metric has been chosen for this kind of 

comparison because, in generator maintenance 

scheduling, getting the optimal maintenance 

scheduling with low cost, high reliability, and low 

violation is of utmost importance. The cost, 

reliability, and violation values are included in the 

GRG calculation. 

In addition, four metrics were also used in the 

performance analysis of the multi-objective 

algorithms as presented in [34]. The performance 

metrics used for comparison comprise coverage (C), 

distance to Pareto front (D1R), overall Pareto spread 

(OS), and the number of the obtained non-

dominated solutions (NO.).  

The C(A,B) value signifies the percentage of 

solutions in B that are dominated by at least one 

solution of A. It is essential to calculate C(B, A) and  
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Table 7. Results of friedman test 

Test systems Algorithms Mean rank Ranking 

32-unit system 

PACS 5.00 1 

NSGAII 2.33 3 

SPEA2 2.17 4 

MOSA 4.00 2 

MOPSO 1.50 5 

 P value 0.000  

36-unit system 

PACS 4.60 1 

NSGAII 2.20 4 

SPEA2 2.40 3 

MOSA 4.00 2 

MOPSO 1.80 5 

 P value 0.017  

 

Table 8. Comparison based on C metric 

Test 

system

s 

Maintenanc

e window 

(hours) 

C
 

(P
A

C
S

, 

N
S

G
A

II
) 

C
 

(N
S

G
A

II
, 

P
A

C
S

) 

C
 

(P
A

C
S

, 

S
P

E
A

2
) 

C
 

(S
P

E
A

2
, 

P
A

C
S

) 

C
 

(P
A

C
S

, 

M
O

S
A

) 

 C
 

(M
O

S
A

, 

P
A

C
S

) 

C
 

(P
A

C
S

, 

M
O

P
S

O
) 

C
 

(M
O

P
S

O
, 

P
A

C
S

) 

32-unit 

system 

[1000-2000] 0.99 0.02 0.99 0.02 0.81  0.07 0.78 0.00 

[1000-3000] 1.00 0.00 1.00 0.00 0.97  0.11 0.99 0.00 

[2000-3000] 0.99 0.00 1.00 0.00 0.95  0.17 0.96 0.00 

[2000-4000] 1.00 0.00 1.00 0.00 1.00  0.00 1.00 0.00 

[3000-4000] 1.00 0.00 1.00 0.00 0.96  0.14 0.99 0.00 

[3000-5000] 1.00 0.00 1.00 0.00 1.00  0.00 1.00 0.00 

36-unit 

system 

[1500-2500] 
Infeasibl

e 

Infeasibl

e 

Infeasibl

e 

Infeasibl

e 

Infeasibl

e 

 Infeasibl

e 

Infeasibl

e 

Infeasibl

e 

[1500-3000] 0.89 0.01 0.90 0.00 0.59  0.14 0.59 0.00 

[2000-3000] 0.51 0.03 0.47 0.01 0.19  0.46 0.41 0.01 

[2000-4000] 1.00 0.00 0.99 0.00 0.95  0.27 0.97 0.00 

[3000-4000] 0.97 0.00 0.97 0.00 0.76  0.49 0.60 0.00 

[3000-5000] 0.95 0.00 0.93 0.00 0.58  0.43 0.47 0.00 

 
Table 9. Comparison based on D1R metric 

Test 

system

s 

Maintenanc

e window 

(hours) 

𝐃
𝟏

𝑹
 

(P
A

C
S

) 

𝐃
𝟏

𝑹
 

(N
S

G
A

II
) 

𝐃
𝟏

𝑹
 

(P
A

C
S

) 

𝐃
𝟏

𝑹
 

(S
P

E
A

2
) 

𝐃
𝟏

𝑹
 

(P
A

C
S

) 

𝐃
𝟏

𝑹
 

(M
O

S
A

) 

𝐃
𝟏

𝑹
 

(P
A

C
S

) 

𝐃
𝟏

𝑹
 

(M
O

P
S

O
) 

32-unit 

system 

[1000-2000] 0.01 0.27 0.00 0.23 0.01 0.01 0.00 0.01 

[1000-3000] 0.00 0.21 0.00 0.26 0.04 0.04 0.00 0.01 

[2000-3000] 0.00 0.28 0.00 0.16 0.10 0.03 0.00 0.01 

[2000-4000] 0.00 4.58 0.00 4.22 0.00 0.61 0.00 0.21 

[3000-4000] 0.00 0.56 0.00 0.37 0.06 0.05 0.00 0.02 

[3000-5000] 0.00 3.04 0.00 3.02 0.00 0.47 0.00 0.17 

36-unit 

system 

[1500-2500] 
Infeasibl

e 

Infeasibl

e 

Infeasibl

e 

Infeasibl

e 

Infeasibl

e 

Infeasibl

e 

Infeasibl

e 

Infeasibl

e 

[1500-3000] 0.00 0.05 0.00 0.04 0.05 0.01 0.00 0.01 

[2000-3000] 0.00 0.05 0.00 0.06 2.01 0.10 0.00 0.03 

[2000-4000] 0.00 0.51 0.00 0.53 0.16 0.16 0.00 0.03 

[3000-4000] 0.00 0.32 0.00 0.34 0.80 0.14 0.00 0.01 

[3000-5000] 0.00 0.96 0.00 0.92 0.44 0.09 0.00 0.02 

 

A is better than B if C(A,B) > C(B,A) [34]. The 

metric of D1R is utilized to evaluate the distance of 

front A to a reference front (i.e., the Pareto-optimal 

front or a near Pareto-optimal front). The smaller the 

value of D1R (A) compared to D1R (B) the better the 

front A is [34]. The metric of overall Pareto spread 

(OS) measures the relative spread of two fronts. If 

OS(A, B)>1, front A is said to be favored to front B  
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Table 10. Comparison based on OS metric 

Test systems 
Maintenance window 

(hours) 

O
S

 (
P

A
C

S
, 

N
S

G
A

II
) 

O
S

 (
P

A
C

S
, 

S
P

E
A

2
) 

O
S

 (
P

A
C

S
, 

M
O

S
A

) 

O
S

 (
P

A
C

S
, 

M
O

P
S

O
) 

32-unit system 

[1000-2000] 1.60 2.11 5.19 6.72 

[1000-3000] 5.87 5.11 9.23 42.08 

[2000-3000] 3.07 3.35 5.38 10.54 

[2000-4000] 1.29 1.26 3.38 5.74 

[3000-4000] 1.84 2.22 4.80 7.30 

[3000-5000] 1.16 1.25 2.12 3.89 

36-unit system 

[1500-2500] Infeasible Infeasible Infeasible Infeasible 

[1500-3000] 4.25 5.44 9.41 22.46 

[2000-3000] 6.15 4.66 7.60 81.10 

[2000-4000] 3.50 3.36 7.82 19.95 

[3000-4000] 1.38 1.54 3.36 11.98 

[3000-5000] 2.40 2.54 10.03 17.76 

 
Table 11. Comparison based on NO. metric 

Test systems 
Maintenance window 

(hours) 

NO. 

PACS 
NO. NSGAII NO. SPEA2 NO. MOSA NO. MOPSO 

32-unit system 

[1000-2000] 101.80 99.71 99.64 10.20 8.80 

[1000-3000] 97.20 100.00 100.00 13.60 7.50 

[2000-3000] 98.90 100.00 100.00 16.50 7.20 

[2000-4000] 53.60 100.00 100.00 14.80 5.30 

[3000-4000] 59.90 100.00 100.00 18.50 9.10 

[3000-5000] 54.50 100.00 100.00 17.00 6.60 

36-unit system 

[1500-2500] Infeasible Infeasible Infeasible Infeasible Infeasible 

[1500-3000] 36.70 8.70 7.90 4.20 3.70 

[2000-3000] 28.80 6.00 6.50 4.10 3.70 

[2000-4000] 43.00 95.10 94.70 12.50 5.90 

[3000-4000] 35.10 64.20 63.00 9.60 4.67 

[3000-5000] 30.70 98.70 98.20 9.40 4.10 

 
with regard to the overall spread [34]. The last 

metric is the number of the obtained non-dominated 

solutions. Tables 8 to 11 display the comparison 

results of PACS with every other algorithm. In all 

the tables, the best results are highlighted. 

In term of the coverage metric, the PACS 

algorithm outperformed the NSGAII, SPEA2, 

MOSA, MOPSO algorithms in all the maintenance 

windows with 32-unit system. With 36-unit system 

the PACS algorithm also outperformed other 

algorithms in all the maintenance windows, except 

for the window [2000-3000], where the MOSA 

outperforms the proposed algorithm. 

For the distance to Pareto front metric, the 

proposed algorithm outperformed NSGAII, SPEA2, 

and MOPSO for the two-unit systems and in all the 

maintenance windows. However, in the comparison 

with MOSA, in 32-unit system there was mixed 

results, but in 36-unit system the MOSA 

outperforms the PACS algorithm. For the overall 

Pareto spread metric the proposed algorithm 

outperformed all the other four algorithms in all the 

maintenance windows for the two-unit systems. 

Finally, the number of obtained non-dominated 

solutions metric with 32-unit system the NSGAII, 

and SPEA2 algorithms outperformed other 

algorithm in four maintenance windows, while the 

proposed PACS algorithm was better in one 

maintenance window. With 36-unit system the 

NSGAII algorithm outperformed other algorithms 

with three maintenance windows, while the PACS 

algorithm was better in two maintenance windows. 

It is observed that the infeasible case only 

appeared in the early stage of operation time for the 

36-unit system. This result is the same as in [4]. In 

the window [1500-2500] many units entered for 

maintenance. Thus, the high load demand is not 

satisfied, and the infeasible case occurs. This is 

expected in the 36-unit system where the demand is 

double of the demand used with 32-unit system. It 

can be summarised that, in all the test unit systems, 

the PACS algorithm has the best performance in 

terms of GRG, coverage, distance to Pareto front 

and overall Pareto spread metrics while the NSGAII 
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has the best result in terms of the number of 

obtained non-dominated solutions. The statical test 

shows that the performance of the PACS was 

significantly better than the four algorithms.  

6. Conclusion 

Performance evaluation of the proposed multi-

objective PACS algorithm has shown that the 

proposed algorithm is superior to the benchmark 

algorithms in producing the solution for the GMS in 

terms of the multi-objective based on four metrics 

(i.e., GRG, coverage, distance to Pareto front, and 

overall Pareto spread), but with number of obtained 

non-dominated solutions metric the NSGAII 

algorithm was better. In addition, the Friedman test 

showed the significance performance of the 

proposed algorithm. As a result, from these 

comparisons, the proposed multi-objective PACS 

algorithm have proved it efficiency in terms of 

solution quality to reach the Pareto-optimal front or 

a near Pareto-optimal front in producing scheduling 

solution for generator maintenance. The PACS 

algorithm is a multi-objective metheuristic 

algorithm and swarm intelligence based algorithms. 

The proposed algorithm is based on Pareto approach, 

and developed to cater two problems with three 

objectives (i.e., the problems of GMS and unit 

commitment, in addition to the objectives of cost 

minimzation, reliablity maximization, and the 

violation minimzation). Single colony that 

comprises of several groups of ants has been used in 

the implementaion of the algorithm. 

Future work related to method such as 

enhancement in the algorithm to increase its 

performance. The performance of the algorithm 

decreases as the data size increases. Future work can 

also look into the PACS algorithm working with big 

datasets by using multiple colonies instead of a 

single colony. Multiple colonies of ants have shown 

to be advantageous when the problem size gets 

bigger. In multiple colonies more than one colony is 

cooperating in order to better explore the problem 

space. 
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