
Received: March 15, 2022. Revised: May 24, 2022. 113

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.11

Deep Video Hashing Using 3DCNN with BERT

Salah Mostafa El Abyad1* Mona M. Soliman1,2 Khaled Mostafa El Sayed1

1Faculty of Computer and Artificial Intelligence, Cairo University, Egypt

2Member of Scientific Research Group in Egypt, Egypt

* Corresponding author’s Email: s.elabyad@fci-cu.edu.eg

Abstract: Deep video hashing (DVH) is a very appealing way to decrease storage costs and query times. In this

work we propose a hashing model using two separated modules. A 3DCNN is proposed with a bidirectional encoder

representations from transformers (BERT) layer. And a hashing neural network (NN) module will learn to encode

those features into hash codes. The proposed model that separates feature extraction from hash generation process

results in better performance with respect to training time consumption and accuracy. We achieve a significant

improvement in video retrieval performance on two benchmark datasets compared to state-of-the-art deep learning

models for video retrieval that use convolutional neural networks (CNN)s or 3DCNNs along with other temporal

feature extraction techniques and supervised hashing methods. For UCF101, HMDB51 datasets, more than 2 % mAP

and 24 % improvement is achieved respectively for tested bit sizes.

Keywords: Video hashing, Deep learning, Bidirectional encoder representations from transformers (BERT),

3DCNN.

1. Introduction

In the modern world the amount of video data

has increased significantly, especially with YouTube,

Facebook and other cloud-based websites that

provide the ability to store recording or live streams.

Videos usually contain many images and a

significant percentage of redundant information [1].

Images only contain a lot of different visual patterns

made up of low-level visual features. Videos

contains in addition to visual patterns, temporal, and

spatial information, which forms high-level features

or structures such as an event or an action happening

across the frames [2, 3].

With the emergence of large amounts of video

data, an efficient way of representing the videos is

needed to be able to search for it quickly when given

a query video. This leads us to video hashing, which

is easy to search with and requires a small amount of

storage. Hashing is the process of mapping given

numerical features into binary codes, while still

preserving similarity in the original features domain.

The method used to map the features is called a

hashing function. The binary hash codes are usually

small in the size, thus saving a lot of storage cost.

Due to the usual amount of data to be searched

in real applications, the nearest neighbor search is

usually the go to for quick retrievals in many fields

of application like computer vision, data mining and

deep learning [4]. But in many cases when

retrieving the results to a query, there is no need for

the retrieved matches returned to be exact, and

sometimes what is asked to be retrieved is only

similar matches. Thus, the approximate nearest

neighbor (ANN) search is used instead which

achieves satisfying retrieval performance [4, 5].

ANN searches with binary codes can be

achieved in a sub-linear to constant time complexity

[6]. Therefore, hash codes have been used for an

efficient ANN search on large datasets, to achieve

low query time and low storage cost [6-9]. Images

usually contain a lot of data, and videos, being made

of multiple images, contain even more data. Most of

the data contained in the video is usually redundant

due to repetition of similar images with minor

differences and same scenery (the meaning is

Received: March 15, 2022. Revised: May 24, 2022. 114

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.11

usually within the flow of the images) and

generating hash codes by hashing videos is a very

appealing way of reducing cost of storing features

(by storing binary hash code features instead) and by

efficiently reducing search time using ANN search.

Exploiting spatial-temporal information in

videos to generate hash methods is still very

desirable. Existing hashing approaches for videos

use deep learning models to learn hashes by first

extracting features from the videos then learn to

hash those features [5, 10, 11]. While others

incorporate the hashing in the feature learning

process to make the hash guide the feature learning

process too [12-15].

Advanced deep CNN methods have been used to

learn to extract representative features from images

[16, 17], some have started adapting those methods

to be able to learn extract features from videos [11,

14, 15]. This is through learning temporal

information either by using sequential data

processing deep learning models like recurrent

neural network (RNN), long short-term memory

(LSTM) or transformers [14, 15, 43].

Another way is extending the CNNs to

incorporate temporal information by adding a

temporal dimension to become 3DCNNs. 3DCNNs

are CNN with an added dimension to include the

temporal information, so they usually span, in

addition to the regular 2D dimension of an image in

a CNN, a series of frames (which adds the temporal

factor) depending on the size of the filter being used.

Deep learning techniques such as CNN models

have gone through a lot of advancement and are

now able to achieve very high results on various

datasets [18-20]. But require a lot of memory and

computing power during training due to having a lot

of parameters. And 3DCNNs, which one of their

uses is in videos feature learning, cost even more

memory and compute power. This makes training a

model harder.

In this work we try to solve the problem of video

retrieval through extracting video features and

hashing those features. The hashes are then used for

comparing videos in the retrieval process. We utilize

a deep learning model to produce hash codes for

short video clips. The trained model can then be

applied on both the database clips and any query

clips to produce hash codes. The hash code of the

query video clip is then used to retrieve videos

similar to it through a hash code search. Learning to

produce hash codes for videos is more complex than

images because the increase of diversity of

information than what the images provide.

To address the problem of video retrieval we

propose a deep learning model made up of two sub-

modules that are trained separately. The first module

is made up of a 3DCNN and a bidirectional encoder

representations from transformers (BERT) layer,

this module aims to extract main features from video

clips. The 3DCNN is used to extract spatial and

temporal features from the input video clip, and the

BERT layer is a temporal attention mechanism that

can learn to extract temporal features. BERT

efficiently learns to fuse contextual information

from both temporal directions. BERT has also

shown to be better than the just the average pooling

layer at the end of a 3DCNN [21]. We use only one

layer of BERT in our model as to decrease some

computational cost. BERT can be fine-tuned for

various tasks, and in here we use it to extract

contextual information [22].

The second module, which handles feature

hashing, is a neural network made up of a few fully

connected layers to hash the features extracted by

the first module. Both modules can be fused after

training and then applied directly on database videos

and query videos to produce hash codes.

They are separate in the training phase to be able

to fine-tune each learning processes individually.

And to decrease the variance in the result between

each hash code size as can be noticed in [42]. Other

works that relied on the model learning to hash end

to end through hashing losses show minor to

noticeable variance between the results [34, 37].

The reported results are evaluated using UCF101

[18] and HMDB51 [19] datasets. The UCF101

dataset contains 13320 short clips distributed in 101

action classes and 27 hours of video data, while the

HMDB51 dataset contains a total of 7000 short clips

distributed in 51 action classes. Experimental results

show how BERT’s success in improving 3DCNNs

to achieve better results compared with state-of-the-

art models. Furthermore, the proposed separation of

the two modules allows each module to learn its task

faster without overhead. The running of the feature

extraction module every iteration during the learning

process incurs a large overhead on its own to run

and leaves less room for experimenting the hashing

part.

The main contributions of this work can be

summarized as follow:

(1) A deep video hashing model made up of two

sub-modules for video retrieval. The first module is

made up of a 3DCNN and a BERT layer, this

module handles feature extraction. The second

module, which handles feature hashing, is a neural

network made up of a few fully connected layers to

hash the features extracted by the first module.

(2) We apply transfer learning and use a

Received: March 15, 2022. Revised: May 24, 2022. 115

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.11

pretrained 3D CNN model on an extremely large

dataset of video clips.

(3) Generate hash codes of different sizes which

yields higher accuracy with little variance between

them compared to other models. This is due to the

separation of the feature learning process from the

hash learning process.

(4) We evaluate the model on two datasets for

video action recognition UCF101 [18] and

HMDB51 [19] to show that the suggested model

outperforms numerous state-of-the-art approaches.

This paper is organized as follows: First we

provide a basic background related to the used

methods in section 2. We briefly review the related

work of deep video hashing and retrieval in section

3. In section 4 we elaborate on the details of the

proposed model. Section 5 discusses the used

database, retrieval and evaluation methods. Finally,

experimental results are provided in section 6,

followed by our conclusions in section 7.

2. Basic background

2.1 2D convolutional neural network

2D CNNs apply 2D convolution between a 2D

input image or feature map and a filter to extract

features to the next layer’s feature map. For a

feature map f of size X width, and Y height, the

value at position (x, y) where x ∈ {1, X} and y ∈ {1,

Y} is calculated as show in Eq. (1).

f
xy

 = g(∑ wij m (i+x) (j+y)
i, j

+ b) (1)

Where m is the input feature map, and wij are the

weights of the 2D filter of size I, J, and i ∈ {1, I}

and j ∈ {1, J} and b is the bias. And g is an

activation function for non-linearity. Since the same

filter passes over the entire image to extract the

feature map, the weights needed are reduced, the

filter becomes translation invariant, and its

generality is increased since it is repeated over the

input image. A convolution layer usually contains

multiple filters to extract multiple feature maps.

Pooling layers are sometimes added to reduce the

size of the feature maps. The most used pooling

layers are max and average pooling. A CNN is

usually made up of multiple convolutional layers

and pooling layers, usually by pooling every few

convolutional layers. The weights of the filters are

updated through training, by back propagating the

errors of the results. This way the CNN has its filters

adapt to the inputs to be able to extract good spatial

features.

2.2 3D convolutional neural network

3D CNNs apply 3D convolution between an

input video (series of frames/images) and a 3D filter

to extract features to the next layer’s feature map.

The different here is that 3DCNNs incorporate not

only spatial features but also temporal features. For

a feature map f of size X width, Y height, and

temporal depth T, the value at position (x, y, t)

where x ∈ {1, X}, y ∈ {1, Y}, and t ∈ {1, T} is

calculated as show in Eq. (2).

f
xyt

 = g(∑ wijk m (i+x) (j+y) (k+t)
i, j,k

+ b) (2)

Where m is the input feature map, and wijk are

the weights of the 3D filter of size I, J, K, and i ∈ {1,

I}, j ∈ {1, J}, and k ∈ {1, K} and b is the bias. And

g is an activation function for non-linearity. The

filter here moves, in addition to vertically and

horizontally, across multiple frames to get temporal

features in addition to the spatial features that a 2D

CNN extracts. Multiple 3D filters are used to extract

multiple feature maps in each 3D convolutional

layer. 3DCNNs are trained by back propagation of

error like regular CNNs.

The downside of 3DCNNs is that they are more

expensive computation, memory and storage wise,

but they can capture temporal information. This

makes them able to classify videos more accurately

than regular CNNs. Another challenge in 3DCNNs

is frame selection, which can affect how good or bad

the 3DCNN is trained and its results while testing

[1].

2.3 Bidirectional encoder representations from

transformers (BERT)

BERT [22] is the state-of-the-art model for

natural language processing (NLP), this is due not

only to its architecture, but the way it is trained.

BERT uses the same multi-head attention

mechanism used in the transformer model [22-23],

but it is organized and trained differently. The

attention function has the goal of mapping a query

and a set of key-value pairs to an output, where all

the keys, values, query and output are all vectors.

The attention is calculated as a scaled dot-product of

the query Q and the keys K, and then the result is

divided by the square root of dk (the dimension of

the keys). A softmax is applied to the attention

(relation between the keys K and the query Q) and

then it is multiplied by the Value vector to get the

Received: March 15, 2022. Revised: May 24, 2022. 116

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.11

value that the query maps to:

Attention (Q, K, V) = softmax (
QKT

√dk

) V (3)

This attention mapping is based on a model used

in databases to retrieve matching results of a query

[24]. The query is matched to the nearest key(s) and

the values of those nearest keys are retrieved. In

regard to the Neural Network model of the attention-

head layer, all 3 Q, K, V are calculated through a

linear model which learns to calculate them through

backpropagation. Then the value the query Q maps

to is calculated based on its relation to the available

keys K. The multi-head attention is one layer, and

there can be multiple of it with different head sizes

(dependent on input size) and different linear layer

sizes (most of the linear layers must be of equal

sizes).

BERT is different from the regular transformer

in that it only encodes, there is no decoding part.

BERT is also trained in a bidirectional fashion. The

input has some parts of it masked while training, and

the model tries to predict those masked parts

(Usually words in a sentence in the NLP domain).

This random masking helps BERT to learn to use all

the words in a sentence at the same time to predict

the missing word. And hence it is not limited by one

direction and can learn contextual information.

BERT can be fine-tuned to solve a variety of

problems in NLP, and in here we use it to learn to

extract more temporal features from the features

extracted from the 3DCNN.

3. Related work on deep hashing

Deep video hashing is an area of research that

has gained a lot of attention of the past few years,

and research on it is still an appealing topic as the

amount of video data generated is growing every

day due to many websites that allow upload of

recorded videos and even streaming videos (along

with chat messages). So, it is becoming more and

more of a necessity to organize these videos and

search for them with minimal amount of space and

time, and this is exactly what hashing provides by

generating hash codes.

Present methods for hashing videos are mainly

used in two ways. The first is near-duplicate video

search where hashing techniques are used to identify

near-duplicate videos. The other method hashes are

used for is content based video retrieval which

addresses retrieving videos that are similar to a

supplied query video.

3.1 Near-duplicate video search

Finding duplicate videos has multiple uses, some

of the most patent uses would be indexing and

searching, copyright protection and copy right

infringement. Hashing techniques in [10, 12, 13]

were used to search for and identify duplicate videos

efficiently. [12] preserves the global and local

structures of video features by using multi-view

hashing (done by using multiple video features)

while learning hashing functions. The proposed

learning method is efficient and less time consuming

because it is done through mapping to an eigenvalue

decomposition problem and solving it. It does not

require iterations for hash learning. [10] relies on

extracting multi-view hashing by extracting multiple

features from keyframes extracted from videos. The

hash codes are then computed through a mapping

function, which is updated through the errors

calculated by a regularized probabilistic model

based on pairwise similarities between the videos

and their extracted frames. [6] uses kernels which

are trained in a supervised manner to extract hash

codes from already extracted features. [41] applies a

disaggregation hashing in which they incorporate

PCA in learn different hashing functions for

different parts of the hash code, that are applied to

different groups of dimensions in the extracted

features.

A summary of methods mentioned in [13]

includes:

Feature combination methods such as Gaussian

estimation over pairwise distances for multiple

feature combination, global view hashing which

uses relations between multiple views of a video.

Matching methods such as: A- frame-level

matching by computing the probability of the videos

matching through the number of matched frames

between videos, a similarity measurement used to

contribute to the probability score is bin-to-bin

comparison of a bag of words feature of a frame. B-

video-level matching where the video is usually

represented by a global feature like an indexing

pattern or an aggregate feature vector, and a

similarity measure like euclidean distance or

hamming distance is used to compare similarity. C-

hybrid-level matching which combines parts of the

previous two, usually to preserve global and local

features of the video.

Hashing methods which can be deep hashing

methods using neural networks (through 2D

convolutional neural networks (CNN) or 3D CNN).

Or a learned mapping function through a

probabilistic model.

Received: March 15, 2022. Revised: May 24, 2022. 117

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.11

3.2 Content based video retrieval

The amount of video data that is being generated

has increased significantly in terms of both the

quantity and categories. And just like image search

which has boomed in the past few years, video

search based on content of a query video will also

gradually be in demand too. [5, 11, 14, 15] use

different techniques to retrieve videos similar to a

query video. [14] uniformly sample frames and

applies a CNN to extract features from them then

the features are fed through an RNN for hashing,

then the frames are reconstructed again from the

code (for training purposes). The model is trained

via 3 losses, neighborhood similarity, visual content

reconstruction and neighborhood information

reconstruction losses. [5] uses quantization-based

hashing. The hashing is done through multiplying by

an affinity matrix. The matrix values are updated

through minimizing similarity error (hamming

distance) and quantization error which the l2 norm

between the hash code cluster centers and the data

point. Both errors contain a hyper parameter for

tuning. The models are trained on labeled and non-

labeled datasets.

[11] uses CNN to detect 5 concepts in the image

(Who is in the image in terms of the quantity of

persons and what is in the image, where is the image

taken, when was it taken (its daytime) and how was

it taken in terms of camera shot type). The CNN is

trained to both extract those features through

classification error, and to extract a long and short

binary hash code from those features while still

having the hashing process contributing to the

learning at the same time as the classification. An

addition of face recognition and identification is also

used alongside the hash codes to extract more

information. The system after training retrieves

similar clips to the queried one based on the

concepts extracted (through short binary code

matching then long binary code matching which are

extracted through the CNN) and the face recognition

is added to further improve the relevancy of the

retrieved results by having the same person(s).

[15] uses CNN followed by gated recurrent units

(GRU)s for learning temporal information to

achieve a deep hashing model. The weights of the

model are trained and updated through quantization

and triplet loss.

There have been several methods that adapted

the use of 2D CNNs along with a sequential data

processing NN layer(s) in addition to additional

losses to obtain a video hashing deep model that

hashes in an end-to-end manner [11, 14, 15, 26-31].

The additional sequential data processing NNs are

used to obtain temporal features that are not

extracted from the CNNs. [14] used VGG16 CNN to

extract features from M uniformly sampled frames,

and then uses LSTM auto encoders to generate hash

codes. They also add neighborhood similarity loss

on the hash codes and visual content reconstruction

loss for the decoders to help train the model. [11]

uses VGG16 CNN to extract features of the place

(or environment) in the video and learns to generates

long and short hash codes for them, in addition to

other features that are extracted using other CNNs to

be able to identify similarities in videos and get

similar videos for any query video. [15] uses

Resnet34 CNN for features and deep gated recurrent

units GRUs to get hash codes.

In [26] after extracting features using VGG19 an

attention-based LSTM is used to further process the

features then a fully connected (FC) layer to get the

hashes. [27] uses differential LSTM (DLSTM)

along with a variation of AlexNet to encode the

features into hashes. [28] uses Bi-directional LSTM

(BLSTM) along with LSTM in some of the layers

with VGG19 CNN to extract features and then get

the hash codes through the LSTMs, depending on

the LSTM to obtain temporal information. [29] uses

VGG16 and resnet50 each for a different dataset to

extract features then pass them into 1-D CNNs

networks to encode and decode the hash codes and

for the decoding addition LSTM layers are used for

decoding. The 1D-CNNs and LSTM are used to

auto encode, the LSTM is only present in decoding.

A stack of CNNs which they call HetConv-MK

(stacked multi kernel convolutional models) is used

in [30] to extract features through the multiple CNN

and then the features are fused and passed through a

BLSTM and then an FC to get the hash codes. [31]

uses Alexnet CNN with LSTM to get the hash codes.

Some works have tried making slight variations

in the CNN architecture. [32] applies a CNN on

multiple frames to extract features then a weighted

sum function is applied to the features, the weights

are learned during training, the result is passed

through a layer fully connected layer to produce

hash codes, the hash codes are evaluated to generate

masks for each category which are used to further

increase accuracy. [33] uses slow fusion architecture

which is a mixture of early and late fusions on a

CNN architecture to generate hash codes. The CNN

is applied on multiple frames then features are fused

and are passed through fully connected layers to

generate hash codes. The location of the fusing of

the features determines whether it is an early or late

fusion architecture. [34] use a fully connected layer

on CNN features to generate hash codes, the codes

are used to filter the query input through hash code

Received: March 15, 2022. Revised: May 24, 2022. 118

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.11

similarity. Then the query is ranked according to the

similarity of the feature vectors extracted from the

CNN layer before hashing them. [35] slice the

features extracted from the CNN into segments,

each segment is fully connected to one neuron, each

neuron generates 1 bit in the hash code.

Other works have suggested that just working

with 2DCNN is insufficient [36] and that sometimes

even when LSTMs are used the model is unable to

model complex motion features [37]. So those

works used 3DCNN instead and modified it to get

an end-to-end hashing model. [38] Uses pretrained

3DCNN MFNet, it is fine-tuned after adding a

hashing FC to get hash codes. Additional losses are

added on the generated hashes, losses include

learning to map each hash code to a pre-generated

hash center to represent the class. [36] uses

C3DCNN to obtain features then passes it through a

feature selection method. A global average pool is

used after feature selection along with a principal

component analysis (PCA) model to generate the

final hash code.

Some models tend to train an end-to-end fashion

where the feature extraction and hashing is trained

together to guide the feature extraction through the

hashes. But this usually achieves a high variation of

the accuracy of the results when increasing or

decreasing the hash code size, that is why we chose

to separate learning 3D feature extraction from the

learning of hash generation. Another advantage of

separating the two learning modules is the ability to

train the hash generation module only when the

objective is adjusting the hashing model’s size or

hash code output size instead of retaining the whole

model.

4. Proposed method

We propose a deep video hashing model to obtain

hash codes for short video clips. Our model is

trained and tested on action recognition videos. The

model is made up of two sub-modules. The first sub-

module is the feature extraction module that uses

Figure. 1 Framework of the proposed deep hashing model

Received: March 15, 2022. Revised: May 24, 2022. 119

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.11

3DCNN to extract spatial and temporal features,

followed by BERT to further process the features

extracted and learn to extract contextual information.

The second sub-module is a series of linear (Fully

connected) neural network layers, that takes in the

features extracted from the first model and learns to

generate hash codes from them.

4.1 The proposed deep video hashing framework

The framework of our deep hashing model is

shown in Fig. 1. The first part made up of 3DCNN

and BERT which is applied to the videos to extract

features and then the features are passed to the

second part a neural network to generate hash codes.

After training the two parts of the model, hash codes

are extracted and saved from the database videos

(which are the training videos for our case).

Whenever there is a query video, it is passed

through both parts of the model to generate its hash

code, then the hash code is compared with the saved

hash codes of the database videos and then the most

similar videos are retrieved based on the most

similar hash codes.

4.2 3DCNN and BERT for feature extraction

Our digital video hashing model is started by

feature extraction from video using 3DCNN. The

3DCNN used is r(2+1)d which has shown to

perform better than regular 3DCNNs in action

recognition [39]. It is different in terms of splitting

the 3D convolution into 2D convolution to extract

spatial features followed by 1D convolution for

extracting temporal features. The 3DCNN used is

based of Resnet 34 in the number of layers but

replaces 3D kernels with 2D followed by 1D kernels.

Fig. 2 illustrates the inner layers of the 3DCNN.

Every 2D+1D convolution is considered a layer, as

the purpose of one layer here is to extract both

spatial information through 2D convolution on each

frame and temporal information through the 1D

convolution applied on multiple frames.

After each 3D convolution layer, a 3D batch

normalization is applied followed by an activation

function Rectified Linear Unit (ReLU). More layers

can be added to the model, but that comes at a cost

of memory and complexity with usually minor

improvements. K frames from a video are selected

and fed through the 3DCNN passing over the

multiple convolutional layers to extract temporal

and spatial features. At the end of the model usually

an average pooling layer is used for temporal

pooling layer is used for feature pooling. We keep a

spatial average pooling but use BERT for temporal

Figure. 2 The architecture of the 3DCNN part of the

model which is made up of r(2+1)d convolutions

pooling as it can learn contextual information and to

extract the better temporal features. BERT encodes

data from both directions using self-attention

mechanisms. It has helped in further advancement in

the Natural Language Processing (NLP) domain as

it can use contextual information from both sides

instead of relying on just one (left-to-right or right-

to-left).

A BERT layer is added after the 3DCNN to

perform temporal pooling. After the features are

Received: March 15, 2022. Revised: May 24, 2022. 120

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.11

Figure. 3 The architecture of BERT layer

extracted from K frames in a video by passing it

through the 3DCNN without temporal pooling at the

end. First a classification embedding token is add

(ftkn) is added to the extracted feature maps from the

3DCNN. The token is stacked on the temporal

dimension. A positional encoding which is learned

is added at to these features. Then those features are

passed into a multi-head attention layer as can be

seen in Fig. 3.

The output token (ytkn) from the output of the

attention layer is passed through a linear layer to get

the classification vector ŷ. We use 8 attention heads

in our only one attention layer. More layers can be

added to the model to further increase the learning

capacity of the model, though that would likely need

an increase in the size of the features extracted from

the 3DCNN by adding more kernels. A Binary cross

entropy loss is used to backpropagate the error in

classification back to the model and update its

weights. A summary of this sub-module of the

model can be seen on the left part of Fig. 4.

4.3 2D CNN classification layer

The second part of the model is made up of

linear neural network layers. A dropout layer is

added at the start of the model. All the linear layers

have a batch normalization layer and a ReLU

activation after them except for the hashing layer

which is the 5th layer. It has Tanh as an activation

function. And the last (6th) linear layer that turns the

hashes into a classification vector has a softmax

after it, to enable computing of binary cross entropy

losses. The hashing layer is followed by a Tanh

activation function because it yields 1, -1 which can

be mapped to 1, 0 hash codes later when needed or

used as is. It converges faster and suffers less of a

vanishing gradient problem than the sigmoid. The

purpose of this classification layer is training the

model through classification loss. A summary of the

layers for the hashing sub-module can be seen on

the right part of Fig. 4.

4.4 Near-duplicate video search

The input of our model is 32 frames of a video

clip, each of a size 112x112, the frames as selected

from the middle of the video. We use the R(2+1)d

pretrained on IG65M [40] dataset. For BERT we use

the default configuration used in [21]. A FC layer is

added at the end with its size dependent on the

number of classes. Due to memory limit the batch

size used is 21 and the weights are updated every 6

iterations. For tuning the parameters of the model,

the loss used is the cross-entropy loss between the

classification output of the last layer and the target

class, and the optimizer is AdamW [41] which is

Adam optimizer with weight decay. The model is

trained for 40 epochs with a dropout of 0.8, with an

initial learning rate of 1e-5 which decays by a factor

Figure. 4 The architecture of the models for deep video

hashing through learning to extract features then learning

to hash those features

Received: March 15, 2022. Revised: May 24, 2022. 121

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.11

of 10 each time the loss does not decrease for 5

epochs.

After the 3DCNN model is fine tuned to the

selected dataset, we use it as a feature extractor. The

output of the BERT layer which is taken as input to

the classification layer becomes our feature vector.

We use the average of 10 crops’ feature vector for a

video as the input to the hashing model, the 10 crops

are from the same 32 frames selected.

The hashing model is made up of 6 FC layers the

first layer starts with the size of 2048 and for each

consecutive layer until the 4th layer, the size is

halved, the fifth layer is the hashing layer with the

size set to the preferred bit size, then a classification

layer with the size depending on the dataset’s

number of classes. The training of the hashing

model is summarized in Algorithm 1.

After the model is trained there is no use for the

classification layer, and the sign function is used

instead of tanh to get the hash codes in the fifth

layer. This is because hash codes need to be either 1

or -1, -1 being the same as 0 in binary hash codes.

The batch size is set to the size of the input dataset

for training since the model is relatively small, batch

sizes of 64, 100, 200, 400 have also been

experimented with and yielded similar or mostly

lesser results so we chose all the data as batch size.

5. Datasets and experiment setup

5.1 The proposed deep video hashing framework

We use two benchmark datasets for action

recognition to evaluate our method and compare

them against other methods: UCF101 [18] and

HMDB51 [19].

5.1.1. UCF101 dataset

The UCF101 dataset contains 13320 short clips

distributed in 101 action classes and 27 hours of

video data. The database is made up of realistic user

uploaded videos which contains camera motion and

cluttered background. The UCF101 dataset is an

extension of the UCF50 dataset which contained

different actions like biking, diving, drumming and

adds to it more 51 more. The clips of one action are

divided into 25 groups, each group contains 4 to 7

clips each. The clips in one group have some

common features that they share such as the persons

or backgrounds in it.

The average clip length is around 7 seconds. The

dataset has 3-fold cross validation splits supplied

with the videos, each split contains around more

than 9000 clips for training and more than 3000 for

validation. A subset of actions of the

 Algorithm 1 Training Hashes

Input: xi, the extracted video features using

3DCNN and BERT.

Output: hi the hash code representing the videos.

Output: ui the classification of the.

 Step 1 Initialization:

Initialize the Hash NN weights with uniform

random values.

Set dropout probability to 0.8

Set learning rate to 0.05 and momentum 0.9 for

SGD optimizer

Set learning decay to 0.8 and apply it every 60

iterations

 Step 2 Hash NN network learning:

 for iter = 1, 2, … 360 do

 for t = 1, 2, … Total batches:

 Forward Propagation:

Set X to the batch subset t of features from xi

 for j = 1, 2, …, layers-2:

 Apply dropout to the input X.

Multiply input by weights of the layer j to

generate output O.

 Set O = ReLU(O)

Apply batch normalization to O to get

normalized output B.

 Set X to O, to be the input for the next layer

 end for

 Multiply X by the weights of the hash layer to

 get output O

Apply Tanh on output O to get H the hash

codes of the features. Every row in the matrix

H is hi which is the hash code of the ith feature.

Pass through hi through the last layer to get

the classification vectors ui.

 Backward Propagation:

Compute gradients of losses using the SGD

settings, the losses are computed through

applying softmax loss on the classification

vector ui.

Apply SGD on the losses to update the

weights of the network.

 end for

 end for

 Return: Trained Hash NN

UCF101 data set is shown in Fig. 5.

5.1.2. HMDB51

The HMDB51 dataset contains a total of 7000

short clips distributed in 51 action classes. Each of

the 3 splits for the dataset contains a subset of 5100

clip. Each action gets 100 clips in every split, 70 for

training and 30 for validation. HMDB51 is used to

evaluate performance of human action recognition

Received: March 15, 2022. Revised: May 24, 2022. 122

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.11

Figure. 5 Sample actions of UCF101 dataset

Figure. 6 Sample actions of HMDB51 dataset

Table 1. Comparison of mAP results with other hashing methods on UC101 and HMDB51 datasets

 (a) UCF 101 mAP
Bit length

Method used
16 32 64 128 256 512

DH[41] 0.300 0.290 0.470 - - -

SRH[30] 0.716 0.692 0.754 0.781 - -

DVH[32] 0.701 0.705 0.712 - - -

KSH[6] - - 0.716 0.786 0.810 0.848

DBH[33] - - 0.681 0.736 0.766 0.785

DNNH[34] - - 0.740 0.789 0.817 0.835

SVHM[42] - - 0.798 0.801 0.806 -

CSQ[37] 0.838 0.875 0.874 - - -

DHWCM[31] - 0.857 0.901 0.949 0.959 0.953

R(2+1)

BERT

(Proposed)

0.985 0.986 0.986 0.985 0.986 0.986

 (b) HMDB51 mAP
Bit length

Method used
16 32 64 128 256 512

DH[41] 0.360 0.360 0.310 - - -

SRH[30] 0.491 0.503 0.509 - - -

DVH[32] 0.441 0.456 0.518 - - -

KSH[6] - - 0.431 0.464 0.450 0.473

DBH[33] - - 0.389 0.391 0.386 0.346

DNNH[34] - - 0.487 0.503 0.493 0.480

CSQ[37] 0.527 0.565 0.579 - - -

SVHM[42] - - 0.562 0.565 0.575 -

DHWCM[31] - 0.487 0.605 0.588 0.588 0.672

R(2+1)

BERT

(Proposed)

0.848 0.849 0.854 0.852 0.849 0.849

system. The actions in this dataset are divided into 5

groups: General facial actions, general body

movements, facial actions, body movements and

body movement for human interaction.

This dataset although smaller is harder than

UCF101 to achieve a high accuracy on, usually

because of some of the facial actions included in it.

The sources of the video clips used are digitized

movies, public databases, YouTube, and other

videos available on the internet. A subset of actions

of the HMDB51 dataset can be seen in Fig. 6.

5.2 Evaluation measures

The we use the mean average precision (mAP)

to evaluate our results and compare them with the

work of others. The mAP can be calculated by first

getting the average precision (AP) for every test clip.

Then we get the mean of the average precisions we

get from all the test clips.

The AP is defined as the mean of the precision

scores after each relevant document is retrieved. The

Received: March 15, 2022. Revised: May 24, 2022. 123

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.11

precision score is the precision of the top r retrieved

document. The Precision score when retrieving r

documents is as follows calculated as follows:

P@r =
Relevant documents

r
 (4)

The AP when the total number of relevant

documents available is R:

AP =
∑ P@rR

r

R
 (5)

Sometimes not all the relevant documents for

each query are the same. And sometimes we are not

interested in all of them, just the top k of them. In

this case mAP@k is used. This is the same as mAP,

but instead of the total number of relevant

documents being R. The total number becomes the

minimum of k and R. Where we test it on the top k,

but if there aren’t enough then we test on all that is

available. The mAP for the HMDB51 dataset is

mAP@70 and for UCF101 mAP@100.

We also use precision-recall (PR) curve to

evaluate the performance of the proposed model.

The PR curve is calculated through calculating the

precision and recall when predicting classes at

different thresholds on their similarity score making

the ones that pass the threshold belong to the class.

The clips that are predicted as belonging to the class

are positives and the ones that aren’t, are negatives.

If that prediction is correct then that prediction is

true, otherwise it would be false.

The precision is calculated as the number of true

positives (TP) over the number of true and false

positives (FP), which is percentage of positives

being correct. And the recall is the number of true

positives over the number of true positives and false

negatives (FN), which is also the number of samples

belonging to the class recalled over all the samples

that belong to the class that exist.

Precision =
TP

TP+FP
 (6)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (7)

The hash code generated from the model are

rounded to 1, -1 due to the Tanh. The similarity of

the hash code is thus calculated by multiplying

every bit in the query hash code with the bit in the

database hash codes in its same position and then

the result is summed. The higher the sum, the more

similar the codes are. The hash codes can be mapped

to the binary 1, 0, and then XORed to help get the

hamming distance. But it was faster to use them as

they are for testing. After finding the similarity and

ordering the results from most similar to least

similar the mAP is calculated.

6. Experimental results

The comparison for the UCF101 and HMDB51

is illustrated in Table 1. Values of other compared

methods are taken from [31, 37, 42] or the

referenced papers directly. The metric compared

being the mean average precision (mAP).

Table 1 compare the proposed hashing model

against different state of the art models based on

mAP using different bit length (e.g. 16, 32, 64, 128,

256, and 512). As shows in table 1 the proposed

model outperforms the state-of-the-art by at least

2 % for each bit length in UCF101 and more than

20 % for the HMDB51. This is because the 3DCNN

can extract better features through the help of a

transformer layer BERT which learns contextual

information which is not present in other models.

And it was trained solely on extracting features to

classify each video’s actions, not being affected by

hashing training.

Although 3DCNN part can train on both feature

extraction and hashing at the same time and using

one module but the stability in the mAP values

across different bit lengths will vary. You’ll find the

least variance in mAP in our model because of

separating the feature learning and hash learning

process. And minor variance in [42]. This is due to

having the model train on feature extraction first,

then the model was modified to incorporate hash

learning as fine-tuning of the model. But more

variance in [31, 32, 34, 37] where the model learns

end to end.

Training a 3DCNN to generate hash codes end

to end can be difficult to fully optimize. Such a

model usually requires other losses like

classification loss in addition to hashing losses to get

better results [15, 25, 27]. This, although better than

training on hash losses alone, may require grid

search to find optimal values to combine the losses

to achieve the best results. And it also faces the

challenge that the hashing part of the model is

learning to generate hash codes for features that

keep slightly changing. As the feature extraction

part of the model keeps updating itself as well to

learn to generate better features as well. So, the

features are constantly changing and thus the

hashing layer keeps needing to change to adapt as

well.
The average time for extracting the features of

10 crops of a single video is 3.475s for the UCF101

Received: March 15, 2022. Revised: May 24, 2022. 124

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.11

(a)

(b)

Figure. 7 Comparison of PR curves for different hash

code bit sizes for both (a) UCF101 and (b) HMBD51

datasets

dataset and 1.628s for the HMDB51 dataset. The

average for a single crop of a single video is 0.544s

for the UCF101 and 0.272 for the HMDB51. This

variation in time is probably due to the UCF101

videos having more frames, as the time calculated

includes loading the videos and running them. The

time also does not include running a batch of videos

(except for the 10 crops of a single video), which is

faster than extracting features from videos one by

one.

The average time for generating has codes is

around 2 to 3 Microsecond for both UCF101 and

HMDB51. Features are passed through the hashing

layer’s neural network in batches between 1000 and

2000, because it takes up less memory.

Fig. 7 shows the precision-recall (PR) curve for

the HMDB51 dataset, and the UCF101 dataset using

different hash code sizes. The PR curve is a plot of

the precision against the recall. The area under the

curve (AUC) in a PR curve helps determine how

good a classifier is, the bigger the AUC, the better

the classifier.

We have observed that incorporating the hash

learning into the model instead of separating it

causes variations in the hashing performance across

different bit sizes. This because the hash layers

don’t get enough training due to the features being

extracted changing with no freezing for feature

extraction layers in the learning process. Once, they

are frozen the hashing layer is not gaining enough

training due to the time and processing cost.

Separating feature extraction module from hash

generation module will result in better training of

hashing values from extracted features by allowing

more processing power for the tuning and testing

different hyper parameters. State-of-the-art models

incorporate the hashing process in training the

model and thus result in high variations among mAP

values. The learning process of these models is

affected by the hashing layer’s performance.

7. Conclusion

We proposed using 3DCNN with BERT model

as a deep hashing model for action recognition. We

separate the task of hashing onto two models that

can be combined after training. One for feature

extraction and one for hashing. This separation

allowed the model to learn each task to its best

individually. Experimental results show that the

proposed model yields state-of-the-art performance

on video retrieval. It improves the previous best

mAP by more than 2 % and 24 % for UCF101 and

HMDB51 datasets respectively. We also achieve a

decreased variance among mAP in different bit sizes

compared with other models’ results.

8. Future work

We plan to improve the model in future works

by trying to reduce the feature extraction model size

to increase the model’s speed, while keeping the

same or close accuracy. We will also experiment

with using more frame samples of a video and

adding additional transformer layers like BERT. We

plan to experiment with other video datasets as well.

Conflicts of interest

The authors declare that they have no conflict of

interest.

Author contributions

The conceptualization, methodology, software,

validation, analysis, comparison, writing draft, and

visualizations have been done by first author. The

supervision, writing and work review and project

administration, have been done by second and third

authors.

Received: March 15, 2022. Revised: May 24, 2022. 125

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.11

References

[1] S. Chakraborty, O. Tickoo, and R. Iyer,

“Adaptive Keyframe Selection for Video

Summarization”, In: Proc. of 2015 IEEE

Winter Conference on Applications of

Computer Vision, pp. 702-709, 2015, doi:

10.1109/WACV.2015.99.

[2] W. Hu, N. Xie, L. Li, X. Zeng, and S. Maybank,

“A Survey on Visual Content-Based Video

Indexing and Retrieval”, IEEE Transactions on

Systems, Man, and Cybernetics, Part C

(Applications and Reviews), Vol. 41, No. 6, pp.

797-819, Nov. 2011, doi:

10.1109/TSMCC.2011.2109710.

[3] D. Huang, V. Ramanathan, D. Mahajan, L.

Torresani, M. Paluri, L. F. Fei, and J. C.

Niebles, “What Makes a Video a Video:

Analyzing Temporal Information in Video

Understanding Models and Datasets”, In: Proc.

of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 7366-

7375, 2018.

[4] A. Adoni, P. Indyk, and I. Razenshteyn,

“Approximate Nearest Neighbor Search in

High Dimensions”, In: Proc. of the

International Congress of Mathematicians

(ICM 2018), pp. 3287-3318, 2019, doi:

10.1142/9789813272880_0182.

[5] J. Song, L. Gao, L. Liu, X. Zhu, and N. Sebe,

“Quantization-based hashing: a general

framework for scalable image and video

retrieval”, Pattern Recognition, Vol. 75, pp.

175-187, 2018, ISSN 0031-3203,

https://doi.org/10.1016/j.patcog.2017.03.021.

[6] W. Liu, J. Wang, R. Ji, Y. Jiang, and S. Chang,

“Supervised hashing with kernels”, In: Proc. of

2012 IEEE Conference on Computer Vision

and Pattern Recognition, pp. 2074-2081, 2012,

doi: 10.1109/CVPR.2012.6247912.

[7] A. Gionis, P. Indyk, and R. Motwani,

“Similarity search in high dimensions via

hashing”, In: Proc. of International Conference

on Very Large Data Bases, pp. 518–529, 1999.

[8] B. Kulis and K. Grauman, “Kernelized locality-

sensitive hashing for scalable image search”,

In: Proc. of 2009 IEEE 12th International

Conference on Computer Vision, pp. 2130-2137,

2009, doi: 10.1109/ICCV.2009.5459466.

[9] Y. Guo, G. Ding, L. Liu, J. Han, and L. Shao,

“Learning to hash with optimized anchor

embedding for scalable retrieval”, IEEE

Transactions on Image Processing, Vol. 26, No.

3, pp. 1344–1354, 2017.

[10] Y. Hao, T. Mu, R. Hong, M. Wang, N. An, and

J. Y. Goulermas, “Stochastic Multiview

Hashing for Large-Scale Near-Duplicate Video

Retrieval”, IEEE Transactions on Multimedia,

Vol. 19, No. 1, pp. 1-14, 2017, doi:

10.1109/TMM.2016.2610324.

[11] M. Mühling, N. Korfhage, E. Müller, C. Otto,

M. Springstein, T. Langelage, U. Veith, R.

Ewerth, and B. Freisleben, “Deep learning for

content-based video retrieval in film and

television production”, Multimed Tools Appl.,

Vol. 76, pp. 22169–22194, 2017,

https://doi.org/10.1007/s11042-017-4962-9.

[12] X. Nie, W. Jing, C. Cui, C. J. Zhang, L. Zhu,

and Y. Yin, “Joint Multi-View Hashing for

Large-Scale Near-Duplicate Video Retrieval”,

IEEE Transactions on Knowledge and Data

Engineering, Vol. 32, No. 10, pp. 1951-1965,

2020, doi: 10.1109/TKDE.2019.2913383.

[13] L. Shen, R. Hong, and Y. Hao, “Advance on

large scale near-duplicate video retrieval”,

Front. Comput. Sci. Vol. 14, 145702, 2020,

https://doi.org/10.1007/s11704-019-8229-7.

[14] S. Li, Z. Chen, J. Lu, X. Li, and J. Zhou,

“Neighborhood Preserving Hashing for

Scalable Video Retrieval”, In: Proc. of 2019

IEEE/CVF International Conference on

Computer Vision (ICCV), pp. 8211-8220, 2019,

doi: 10.1109/ICCV.2019.00830.

[15] L. Shen, R. Hong, H. Zhang, X. Tian, and M.

Wang, 2019, “Video Retrieval with Similarity-

Preserving Deep Temporal Hashing”, ACM

Trans. Multimedia Comput. Commun. Appl.,

Vol. 15, No. 4, Article 109, 2020, doi:

10.1145/3356316.

[16] K. Simonyan and A. Zisserman, “Very Deep

Convolutional Networks for Large-Scale Image

Recognition”, arXiv 1409.1556, 2014.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep

Residual Learning for Image Recognition”, In:

Proc. of 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp.

770-778, 2016, doi: 10.1109/CVPR.2016.90.

[18] K. Soomro, A. Zamir, and M. Shah, UCF101:

A Dataset of 101 Human Actions Classes From

Videos in The Wild. CoRR., 2012

[19] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio,

and T. Serre, “HMDB: A large video database

for human motion recognition’, In: Proc. of

2011 International Conference on Computer

Vision, pp. 2556-2563, 2011, doi:

10.1109/ICCV.2011.6126543.

[20] F. C. Heilbron, V. Escorcia, B. Ghanem, and J.

C. Niebles, “ActivityNet: A large-scale video

benchmark for human activity understanding”,

In: Proc. of 2015 IEEE Conference on

Received: March 15, 2022. Revised: May 24, 2022. 126

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.11

Computer Vision and Pattern Recognition

(CVPR), pp. 961-970, 2015, doi:

10.1109/CVPR.2015.7298698.

[21] M. Kalfaoglu, S. Kalkan, and A. Alatan, “Late

Temporal Modeling in 3D CNN Architectures

with BERT for Action Recognition. Computer

Vision – ECCV 2020 Workshops”, In: Proc. of

ECCV 2020. Lecture Notes in Computer

Science, Vol. 12539. pp. 731–747, 2020, doi:

10.1007/978-3-030-68238-5_48.

[22] J. Devlin, M. W. Chang, K. Lee, and K.

Toutanova, BERT: Pre-training of Deep

Bidirectional Transformers for Language

Understanding, 2018.

[23] A. Vaswani, N. Shazeer, N. Parmar, J.

Uszkoreit, L. Jones, A. N. Gomez, A. Kaiser,

and I. Polosukhin, “Attention is all you need”,

Advances in Neural Information Processing

Systems, Vol. 2017-Decem, pp. 5999-6009,

2017.

[24] T. Guo and H. Gao, “Bidirectional Attention

for SQL Generation”, arXiv:1801.00076, 2017.

[25] Y. Wang, X. Nie, Y. Shi, X. Zhou, and Y. Yin,

“Attention-Based Video Hashing for Large-

Scale Video Retrieval”, IEEE Transactions on

Cognitive and Developmental Systems, Vol. 13,

No. 3, pp. 491-502, 2021, doi:

10.1109/TCDS.2019.2963339.

[26] N. Zhuang, J. Ye, and K. A. Hua, “DLSTM

approach to video modeling with hashing for

large-scale video retrieval”, In: Proc. of 2016

23rd International Conference on Pattern

Recognition (ICPR), pp. 3222-3227, 2016, doi:

10.1109/ICPR.2016.7900131.

[27] J. Song, H. Zhang, X. Li, L. Gao, M. Wang,

and R. Hong, “Self-Supervised Video Hashing

With Hierarchical Binary Auto-Encoder”, IEEE

Transactions on Image Processing, Vol. 27, No.

7, pp. 3210-3221, 2018, doi:

10.1109/TIP.2018.2814344.

[28] S. Li, Z. Chen, X. Li, J. Lu, and J. Zhou,

“Unsupervised Variational Video Hashing With

1D-CNN-LSTM Networks”, IEEE

Transactions on Multimedia, Vol. 22, No. 6, pp.

1542-1554, 2020, doi:

10.1109/TMM.2019.2946096.

[29] R. Anuranji and H. Srimathi, “A supervised

deep convolutional based bidirectional long

short term memory video hashing for large

scale video retrieval applications”, Digital

Signal Processing, Vol. 102, 2020, doi:

10.1016/j.dsp.2020.102729.

[30] Y. Gu, C. Ma, and J. Yang, “Supervised

recurrent hashing for large scale video

retrieval”, In: Proc of the 24th ACM

international conference on Multimedia (MM

'16). Association for Computing Machinery,

New York, NY, USA, pp. 272–276, 2016, doi:

10.1145/2964284.2967225.

[31] X. Liu, L. Zhao, D. Ding, and Y. Dong, “Deep

Hashing with Category Mask for Fast Video

Retrieval”, arXiv:1712.08315, 2017

[32] V. E. Liong, J. Lu, Y. P. Tan, and J. Zhou,

“Deep Video Hashing”, IEEE Transactions on

Multimedia, Vol. 19, No. 6, pp. 1209-1219,

2017, doi: 10.1109/TMM.2016.2645404.

[33] K. Lin, H. F. Yang, J. H. Hsiao, and C. S. Chen,

“Deep learning of binary hash codes for fast

image retrieval”, In: Proc. of 2015 IEEE

Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), pp. 27-35,

2015, doi: 10.1109/CVPRW.2015.7301269.

[34] H. Lai, Y. Pan, Y. Liu, and S. Yan,

“Simultaneous feature learning and hash coding

with deep neural networks”, In: Proc. of 2015

IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 3270-3278,

2015, doi: 10.1109/CVPR.2015.7298947.

[35] A. Ullah, K. Muhammad, T. Hussain, S. W.

Baik, and V. H. C. D. Albuquerque, “Event-

Oriented 3D Convolutional Features Selection

and Hash Codes Generation Using PCA for

Video Retrieval”, IEEE Access, Vol. 8, pp.

196529-196540, 2020, doi:

10.1109/ACCESS.2020.3029834.

[36] Y. Chen, Y. Kalantidis, J. Li, S. Yan, and J.

Feng. (2018). “Multi-Fiber Networks for Video

Recognition. Computer Vision – ECCV 2018”,

In: Proc. of ECCV 2018. Lecture Notes in

Computer Science, Vol. 11205, pp. 364-380,

2018, doi: 10.1007/978-3-030-01246-5_22.

[37] L. Yuan, T. Wang, X. Zhang, F. E. Tay, Z. Jie,

W. Liu, and J. Feng, “Central Similarity

Quantization for Efficient Image and Video

Retrieval”, In: Proc. of 2020 IEEE/CVF

Conference on Computer Vision and Pattern

Recognition (CVPR), Seattle, WA, USA, 2020,

pp. 3080-3089, doi:

10.1109/CVPR42600.2020.00315.

[38] D. Tran, H. Wang, L. Torresani, J. Ray, Y.

Lecun, and M. Paluri, “A Closer Look at

Spatiotemporal Convolutions for Action

Recognition”, In: Proc. of 2018 IEEE/CVF

Conference on Computer Vision and Pattern

Recognition, pp. 6450-6459, 2018, doi:

10.1109/CVPR.2018.00675.

[39] D. Ghadiyaram, M. Feiszli, D. Tran, X. Yan, H.

Wang, and D. Mahajan, “Large-Scale Weakly-

Supervised Pre-Training for Video Action

Recognition”, In: Proc. of 2019 IEEE/CVF

Received: March 15, 2022. Revised: May 24, 2022. 127

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022 DOI: 10.22266/ijies2022.1031.11

Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 12038-12047, 2019,

doi: 10.1109/CVPR.2019.01232.

[40] I. Loshchilov and F. Hutter, “Decoupled weight

decay regularization”, In: Proc. of 2019

International Conference on Learning

Representations (ICLR 2019), 2019.

[41] J. Qin, L. Liu, M. Yu, Y. Wang, and L. Shao,

“Fast action retrieval from videos via feature

disaggregation”, Computer Vision and Image

Understanding, Vol. 156, pp. 104-116, 2017,

doi: 10.1016/j.cviu.2016.09.009.

[42] H. Chen, C. Hu, F. Lee, C. Lin, W. Yao, L.

Chen, and Q. Chen, “A Supervised Video

Hashing Method Based on a Deep 3D

Convolutional Neural Network for Large-Scale

Video Retrieval”, Sensors, Vol. 21, p. 3094,

2021, doi: 10.3390/s21093094.

[43] A. Hussain, T. Hussain, W. Ullah, and S. W.

Baik, “Vision Transformer and Deep Sequence

Learning for Human Activity Recognition in

Surveillance Videos”, Vol. 2022, pp. 1687-

5265, 2022, doi: 10.1155/2022/3454167.

