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Abstract: Deep video hashing (DVH) is a very appealing way to decrease storage costs and query times. In this 

work we propose a hashing model using two separated modules. A 3DCNN is proposed with a bidirectional encoder 

representations from transformers (BERT) layer. And a hashing neural network (NN) module will learn to encode 

those features into hash codes. The proposed model that separates feature extraction from hash generation process 

results in better performance with respect to training time consumption and accuracy. We achieve a significant 

improvement in video retrieval performance on two benchmark datasets compared to state-of-the-art deep learning 

models for video retrieval that use convolutional neural networks (CNN)s or 3DCNNs along with other temporal 

feature extraction techniques and supervised hashing methods. For UCF101, HMDB51 datasets, more than 2 % mAP 

and 24 % improvement is achieved respectively for tested bit sizes. 

Keywords: Video hashing, Deep learning, Bidirectional encoder representations from transformers (BERT), 

3DCNN. 

 

 

1. Introduction 

In the modern world the amount of video data 

has increased significantly, especially with YouTube, 

Facebook and other cloud-based websites that 

provide the ability to store recording or live streams. 

Videos usually contain many images and a 

significant percentage of redundant information [1]. 

Images only contain a lot of different visual patterns 

made up of low-level visual features. Videos 

contains in addition to visual patterns, temporal, and 

spatial information, which forms high-level features 

or structures such as an event or an action happening 

across the frames [2, 3]. 

With the emergence of large amounts of video 

data, an efficient way of representing the videos is 

needed to be able to search for it quickly when given 

a query video. This leads us to video hashing, which 

is easy to search with and requires a small amount of 

storage. Hashing is the process of mapping given 

numerical features into binary codes, while still 

preserving similarity in the original features domain. 

The method used to map the features is called a 

hashing function. The binary hash codes are usually 

small in the size, thus saving a lot of storage cost. 

Due to the usual amount of data to be searched 

in real applications, the nearest neighbor search is 

usually the go to for quick retrievals in many fields 

of application like computer vision, data mining and 

deep learning [4]. But in many cases when 

retrieving the results to a query, there is no need for 

the retrieved matches returned to be exact, and 

sometimes what is asked to be retrieved is only 

similar matches. Thus, the approximate nearest 

neighbor (ANN) search is used instead which 

achieves satisfying retrieval performance [4, 5].  

ANN searches with binary codes can be 

achieved in a sub-linear to constant time complexity 

[6]. Therefore, hash codes have been used for an 

efficient ANN search on large datasets, to achieve 

low query time and low storage cost [6-9]. Images 

usually contain a lot of data, and videos, being made 

of multiple images, contain even more data. Most of 

the data contained in the video is usually redundant 

due to repetition of similar images with minor 

differences and same scenery (the meaning is 
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usually within the flow of the images) and 

generating hash codes by hashing videos is a very 

appealing way of reducing cost of storing features 

(by storing binary hash code features instead) and by 

efficiently reducing search time using ANN search. 

Exploiting spatial-temporal information in 

videos to generate hash methods is still very 

desirable. Existing hashing approaches for videos 

use deep learning models to learn hashes by first 

extracting features from the videos then learn to 

hash those features [5, 10, 11]. While others 

incorporate the hashing in the feature learning 

process to make the hash guide the feature learning 

process too [12-15]. 

Advanced deep CNN methods have been used to 

learn to extract representative features from images 

[16, 17], some have started adapting those methods 

to be able to learn extract features from videos [11, 

14, 15]. This is through learning temporal 

information either by using sequential data 

processing deep learning models like recurrent 

neural network (RNN), long short-term memory 

(LSTM) or transformers [14, 15, 43]. 

Another way is extending the CNNs to 

incorporate temporal information by adding a 

temporal dimension to become 3DCNNs. 3DCNNs 

are CNN with an added dimension to include the 

temporal information, so they usually span, in 

addition to the regular 2D dimension of an image in 

a CNN, a series of frames (which adds the temporal 

factor) depending on the size of the filter being used. 

Deep learning techniques such as CNN models 

have gone through a lot of advancement and are 

now able to achieve very high results on various 

datasets [18-20]. But require a lot of memory and 

computing power during training due to having a lot 

of parameters. And 3DCNNs, which one of their 

uses is in videos feature learning, cost even more 

memory and compute power. This makes training a 

model harder. 

In this work we try to solve the problem of video 

retrieval through extracting video features and 

hashing those features. The hashes are then used for 

comparing videos in the retrieval process. We utilize 

a deep learning model to produce hash codes for 

short video clips. The trained model can then be 

applied on both the database clips and any query 

clips to produce hash codes. The hash code of the 

query video clip is then used to retrieve videos 

similar to it through a hash code search. Learning to 

produce hash codes for videos is more complex than 

images because the increase of diversity of 

information than what the images provide. 

To address the problem of video retrieval we 

propose a deep learning model made up of two sub-

modules that are trained separately. The first module 

is made up of a 3DCNN and a bidirectional encoder 

representations from transformers (BERT) layer, 

this module aims to extract main features from video 

clips. The 3DCNN is used to extract spatial and 

temporal features from the input video clip, and the 

BERT layer is a temporal attention mechanism that 

can learn to extract temporal features. BERT 

efficiently learns to fuse contextual information 

from both temporal directions. BERT has also 

shown to be better than the just the average pooling 

layer at the end of a 3DCNN [21]. We use only one 

layer of BERT in our model as to decrease some 

computational cost. BERT can be fine-tuned for 

various tasks, and in here we use it to extract 

contextual information [22]. 

The second module, which handles feature 

hashing, is a neural network made up of a few fully 

connected layers to hash the features extracted by 

the first module. Both modules can be fused after 

training and then applied directly on database videos 

and query videos to produce hash codes. 

They are separate in the training phase to be able 

to fine-tune each learning processes individually. 

And to decrease the variance in the result between 

each hash code size as can be noticed in [42]. Other 

works that relied on the model learning to hash end 

to end through hashing losses show minor to 

noticeable variance between the results [34, 37]. 

The reported results are evaluated using UCF101 

[18] and HMDB51 [19] datasets. The UCF101 

dataset contains 13320 short clips distributed in 101 

action classes and 27 hours of video data, while the 

HMDB51 dataset contains a total of 7000 short clips 

distributed in 51 action classes. Experimental results 

show how BERT’s success in improving 3DCNNs 

to achieve better results compared with state-of-the-

art models. Furthermore, the proposed separation of 

the two modules allows each module to learn its task 

faster without overhead. The running of the feature 

extraction module every iteration during the learning 

process incurs a large overhead on its own to run 

and leaves less room for experimenting the hashing 

part. 

The main contributions of this work can be 

summarized as follow: 

 

(1) A deep video hashing model made up of two 

sub-modules for video retrieval. The first module is 

made up of a 3DCNN and a BERT layer, this 

module handles feature extraction. The second 

module, which handles feature hashing, is a neural 

network made up of a few fully connected layers to 

hash the features extracted by the first module. 

(2) We apply transfer learning and use a 
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pretrained 3D CNN model on an extremely large 

dataset of video clips. 

(3) Generate hash codes of different sizes which 

yields higher accuracy with little variance between 

them compared to other models. This is due to the 

separation of the feature learning process from the 

hash learning process. 

(4) We evaluate the model on two datasets for 

video action recognition UCF101 [18] and 

HMDB51 [19] to show that the suggested model 

outperforms numerous state-of-the-art approaches. 

 

This paper is organized as follows: First we 

provide a basic background related to the used 

methods in section 2. We briefly review the related 

work of deep video hashing and retrieval in section 

3. In section 4 we elaborate on the details of the 

proposed model. Section 5 discusses the used 

database, retrieval and evaluation methods. Finally, 

experimental results are provided in section 6, 

followed by our conclusions in section 7. 

2. Basic background 

2.1 2D convolutional neural network 

2D CNNs apply 2D convolution between a 2D 

input image or feature map and a filter to extract 

features to the next layer’s feature map. For a 

feature map f of size X width, and Y height, the 

value at position (x, y) where x ∈ {1, X} and y ∈ {1, 

Y} is calculated as show in Eq. (1). 

 

f
xy

 = g( ∑  wij  m (i+x) (j+y) 
i, j

+ b)       (1) 

 

Where m is the input feature map, and wij are the 

weights of the 2D filter of size I, J, and i ∈ {1, I} 

and j ∈ {1, J} and b is the bias. And g is an 

activation function for non-linearity. Since the same 

filter passes over the entire image to extract the 

feature map, the weights needed are reduced, the 

filter becomes translation invariant, and its 

generality is increased since it is repeated over the 

input image. A convolution layer usually contains 

multiple filters to extract multiple feature maps. 

Pooling layers are sometimes added to reduce the 

size of the feature maps. The most used pooling 

layers are max and average pooling. A CNN is 

usually made up of multiple convolutional layers 

and pooling layers, usually by pooling every few 

convolutional layers. The weights of the filters are 

updated through training, by back propagating the 

errors of the results. This way the CNN has its filters 

adapt to the inputs to be able to extract good spatial 

features. 

2.2 3D convolutional neural network 

3D CNNs apply 3D convolution between an 

input video (series of frames/images) and a 3D filter 

to extract features to the next layer’s feature map. 

The different here is that 3DCNNs incorporate not 

only spatial features but also temporal features. For 

a feature map f of size X width, Y height, and 

temporal depth T, the value at position (x, y, t) 

where x ∈ {1, X}, y ∈ {1, Y}, and t ∈ {1, T} is 

calculated as show in Eq. (2). 

 

f
xyt

 = g( ∑  wijk  m (i+x) (j+y) (k+t) 
i, j,k

+ b)  (2) 

 

Where m is the input feature map, and wijk are 

the weights of the 3D filter of size I, J, K, and i ∈ {1, 

I}, j ∈ {1, J}, and k ∈ {1, K} and b is the bias. And 

g is an activation function for non-linearity. The 

filter here moves, in addition to vertically and 

horizontally, across multiple frames to get temporal 

features in addition to the spatial features that a 2D 

CNN extracts. Multiple 3D filters are used to extract 

multiple feature maps in each 3D convolutional 

layer. 3DCNNs are trained by back propagation of 

error like regular CNNs. 

The downside of 3DCNNs is that they are more 

expensive computation, memory and storage wise, 

but they can capture temporal information.  This 

makes them able to classify videos more accurately 

than regular CNNs. Another challenge in 3DCNNs 

is frame selection, which can affect how good or bad 

the 3DCNN is trained and its results while testing 

[1]. 

2.3 Bidirectional encoder representations from 

transformers (BERT) 

BERT [22] is the state-of-the-art model for 

natural language processing (NLP), this is due not 

only to its architecture, but the way it is trained. 

BERT uses the same multi-head attention 

mechanism used in the transformer model [22-23], 

but it is organized and trained differently. The 

attention function has the goal of mapping a query 

and a set of key-value pairs to an output, where all 

the keys, values, query and output are all vectors. 

The attention is calculated as a scaled dot-product of 

the query Q and the keys K, and then the result is 

divided by the square root of dk (the dimension of 

the keys). A softmax is applied to the attention 

(relation between the keys K and the query Q) and 

then it is multiplied by the Value vector to get the 
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value that the query maps to: 

 

Attention (Q, K, V) = softmax ( 
QKT

√dk

 )  V    (3) 

 

This attention mapping is based on a model used 

in databases to retrieve matching results of a query 

[24]. The query is matched to the nearest key(s) and 

the values of those nearest keys are retrieved. In 

regard to the Neural Network model of the attention-

head layer, all 3 Q, K, V are calculated through a 

linear model which learns to calculate them through 

backpropagation. Then the value the query Q maps 

to is calculated based on its relation to the available 

keys K. The multi-head attention is one layer, and 

there can be multiple of it with different head sizes 

(dependent on input size) and different linear layer 

sizes (most of the linear layers must be of equal 

sizes). 

BERT is different from the regular transformer 

in that it only encodes, there is no decoding part. 

BERT is also trained in a bidirectional fashion. The 

input has some parts of it masked while training, and 

the model tries to predict those masked parts 

(Usually words in a sentence in the NLP domain). 

This random masking helps BERT to learn to use all 

the words in a sentence at the same time to predict 

the missing word. And hence it is not limited by one 

direction and can learn contextual information. 

BERT can be fine-tuned to solve a variety of 

problems in NLP, and in here we use it to learn to 

extract more temporal features from the features 

extracted from the 3DCNN. 

3. Related work on deep hashing 

Deep video hashing is an area of research that 

has gained a lot of attention of the past few years, 

and research on it is still an appealing topic as the 

amount of video data generated is growing every 

day due to many websites that allow upload of 

recorded videos and even streaming videos (along 

with chat messages). So, it is becoming more and 

more of a necessity to organize these videos and 

search for them with minimal amount of space and 

time, and this is exactly what hashing provides by 

generating hash codes. 

Present methods for hashing videos are mainly 

used in two ways. The first is near-duplicate video 

search where hashing techniques are used to identify 

near-duplicate videos. The other method hashes are 

used for is content based video retrieval which 

addresses retrieving videos that are similar to a 

supplied query video. 

3.1 Near-duplicate video search 

Finding duplicate videos has multiple uses, some 

of the most patent uses would be indexing and 

searching, copyright protection and copy right 

infringement. Hashing techniques in [10, 12, 13] 

were used to search for and identify duplicate videos 

efficiently. [12] preserves the global and local 

structures of video features by using multi-view 

hashing (done by using multiple video features) 

while learning hashing functions. The proposed 

learning method is efficient and less time consuming 

because it is done through mapping to an eigenvalue 

decomposition problem and solving it. It does not 

require iterations for hash learning. [10] relies on 

extracting multi-view hashing by extracting multiple 

features from keyframes extracted from videos. The 

hash codes are then computed through a mapping 

function, which is updated through the errors 

calculated by a regularized probabilistic model 

based on pairwise similarities between the videos 

and their extracted frames. [6] uses kernels which 

are trained in a supervised manner to extract hash 

codes from already extracted features. [41] applies a 

disaggregation hashing in which they incorporate 

PCA in learn different hashing functions for 

different parts of the hash code, that are applied to 

different groups of dimensions in the extracted 

features. 

A summary of methods mentioned in [13] 

includes:  

Feature combination methods such as Gaussian 

estimation over pairwise distances for multiple 

feature combination, global view hashing which 

uses relations between multiple views of a video.  

Matching methods such as: A- frame-level 

matching by computing the probability of the videos 

matching through the number of matched frames 

between videos, a similarity measurement used to 

contribute to the probability score is bin-to-bin 

comparison of a bag of words feature of a frame. B- 

video-level matching where the video is usually 

represented by a global feature like an indexing 

pattern or an aggregate feature vector, and a 

similarity measure like euclidean distance or 

hamming distance is used to compare similarity. C- 

hybrid-level matching which combines parts of the 

previous two, usually to preserve global and local 

features of the video. 

Hashing methods which can be deep hashing 

methods using neural networks (through 2D 

convolutional neural networks (CNN) or 3D CNN). 

Or a learned mapping function through a 

probabilistic model. 
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3.2 Content based video retrieval 

The amount of video data that is being generated 

has increased significantly in terms of both the 

quantity and categories. And just like image search 

which has boomed in the past few years, video 

search based on content of a query video will also 

gradually be in demand too. [5, 11, 14, 15] use 

different techniques to retrieve videos similar to a 

query video. [14] uniformly sample frames and 

applies a CNN to extract features from them then 

the features are fed through an RNN for hashing, 

then the frames are reconstructed again from the 

code (for training purposes). The model is trained 

via 3 losses, neighborhood similarity, visual content 

reconstruction and neighborhood information 

reconstruction losses. [5] uses quantization-based 

hashing. The hashing is done through multiplying by 

an affinity matrix. The matrix values are updated 

through minimizing similarity error (hamming 

distance) and quantization error which the l2 norm 

between the hash code cluster centers and the data 

point. Both errors contain a hyper parameter for 

tuning. The models are trained on labeled and non-

labeled datasets. 

[11] uses CNN to detect 5 concepts in the image 

(Who is in the image in terms of the quantity of 

persons and what is in the image, where is the image 

taken, when was it taken (its daytime) and how was 

it taken in terms of camera shot type). The CNN is 

trained to both extract those features through 

classification error, and to extract a long and short 

binary hash code from those features while still 

having the hashing process contributing to the 

learning at the same time as the classification. An 

addition of face recognition and identification is also 

used alongside the hash codes to extract more 

information. The system after training retrieves 

similar clips to the queried one based on the 

concepts extracted (through short binary code 

matching then long binary code matching which are 

extracted through the CNN) and the face recognition 

is added to further improve the relevancy of the 

retrieved results by having the same person(s). 

[15] uses CNN followed by gated recurrent units 

(GRU)s for learning temporal information to 

achieve a deep hashing model. The weights of the 

model are trained and updated through quantization 

and triplet loss.  

There have been several methods that adapted 

the use of 2D CNNs along with a sequential data 

processing NN layer(s) in addition to additional 

losses to obtain a video hashing deep model that 

hashes in an end-to-end manner [11, 14, 15, 26-31]. 

The additional sequential data processing NNs are 

used to obtain temporal features that are not 

extracted from the CNNs. [14] used VGG16 CNN to 

extract features from M uniformly sampled frames, 

and then uses LSTM auto encoders to generate hash 

codes. They also add neighborhood similarity loss 

on the hash codes and visual content reconstruction 

loss for the decoders to help train the model. [11] 

uses VGG16 CNN to extract features of the place 

(or environment) in the video and learns to generates 

long and short hash codes for them, in addition to 

other features that are extracted using other CNNs to 

be able to identify similarities in videos and get 

similar videos for any query video. [15] uses 

Resnet34 CNN for features and deep gated recurrent 

units GRUs to get hash codes. 

In [26] after extracting features using VGG19 an 

attention-based LSTM is used to further process the 

features then a fully connected (FC) layer to get the 

hashes. [27] uses differential LSTM (DLSTM) 

along with a variation of AlexNet to encode the 

features into hashes. [28] uses Bi-directional LSTM 

(BLSTM) along with LSTM in some of the layers 

with VGG19 CNN to extract features and then get 

the hash codes through the LSTMs, depending on 

the LSTM to obtain temporal information. [29] uses 

VGG16 and resnet50 each for a different dataset to 

extract features then pass them into 1-D CNNs 

networks to encode and decode the hash codes and 

for the decoding addition LSTM layers are used for 

decoding. The 1D-CNNs and LSTM are used to 

auto encode, the LSTM is only present in decoding. 

A stack of CNNs which they call HetConv-MK 

(stacked multi kernel convolutional models) is used 

in [30] to extract features through the multiple CNN 

and then the features are fused and passed through a 

BLSTM and then an FC to get the hash codes. [31] 

uses Alexnet CNN with LSTM to get the hash codes. 

Some works have tried making slight variations 

in the CNN architecture. [32] applies a CNN on 

multiple frames to extract features then a weighted 

sum function is applied to the features, the weights 

are learned during training, the result is passed 

through a layer fully connected layer to produce 

hash codes, the hash codes are evaluated to generate 

masks for each category which are used to further 

increase accuracy. [33] uses slow fusion architecture 

which is a mixture of early and late fusions on a 

CNN architecture to generate hash codes. The CNN 

is applied on multiple frames then features are fused 

and are passed through fully connected layers to 

generate hash codes. The location of the fusing of 

the features determines whether it is an early or late 

fusion architecture. [34] use a fully connected layer 

on CNN features to generate hash codes, the codes 

are used to filter the query input through hash code 
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similarity. Then the query is ranked according to the 

similarity of the feature vectors extracted from the 

CNN layer before hashing them. [35] slice the 

features extracted from the CNN into segments, 

each segment is fully connected to one neuron, each 

neuron generates 1 bit in the hash code. 

Other works have suggested that just working 

with 2DCNN is insufficient [36] and that sometimes 

even when LSTMs are used the model is unable to 

model complex motion features [37]. So those 

works used 3DCNN instead and modified it to get 

an end-to-end hashing model. [38] Uses pretrained 

3DCNN MFNet, it is fine-tuned after adding a 

hashing FC to get hash codes. Additional losses are 

added on the generated hashes, losses include 

learning to map each hash code to a pre-generated 

hash center to represent the class. [36] uses 

C3DCNN to obtain features then passes it through a 

feature selection method. A global average pool is 

used after feature selection along with a principal 

component analysis (PCA) model to generate the 

final hash code. 

Some models tend to train an end-to-end fashion 

where the feature extraction and hashing is trained 

together to guide the feature extraction through the 

hashes. But this usually achieves a high variation of 

the accuracy of the results when increasing or 

decreasing the hash code size, that is why we chose 

to separate learning 3D feature extraction from the 

learning of hash generation. Another advantage of 

separating the two learning modules is the ability to 

train the hash generation module only when the 

objective is adjusting the hashing model’s size or 

hash code output size instead of retaining the whole 

model. 

4. Proposed method 

We propose a deep video hashing model to obtain 

hash codes for short video clips. Our model is 

trained and tested on action recognition videos. The 

model is made up of two sub-modules. The first sub-

module is the feature extraction module that uses 

 

 

 

 

 
Figure. 1 Framework of the proposed deep hashing model 
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3DCNN to extract spatial and temporal features, 

followed by BERT to further process the features 

extracted and learn to extract contextual information. 

The second sub-module is a series of linear (Fully 

connected) neural network layers, that takes in the 

features extracted from the first model and learns to 

generate hash codes from them. 

4.1 The proposed deep video hashing framework 

The framework of our deep hashing model is 

shown in Fig. 1. The first part made up of 3DCNN 

and BERT which is applied to the videos to extract 

features and then the features are passed to the 

second part a neural network to generate hash codes. 

After training the two parts of the model, hash codes 

are extracted and saved from the database videos 

(which are the training videos for our case). 

Whenever there is a query video, it is passed 

through both parts of the model to generate its hash 

code, then the hash code is compared with the saved 

hash codes of the database videos and then the most 

similar videos are retrieved based on the most 

similar hash codes.  

4.2 3DCNN and BERT for feature extraction 

Our digital video hashing model is started by 

feature extraction from video using 3DCNN. The 

3DCNN used is r(2+1)d which has shown to 

perform better than regular 3DCNNs in action 

recognition [39]. It is different in terms of splitting 

the 3D convolution into 2D convolution to extract 

spatial features followed by 1D convolution for 

extracting temporal features. The 3DCNN used is 

based of Resnet 34 in the number of layers but 

replaces 3D kernels with 2D followed by 1D kernels. 

Fig. 2 illustrates the inner layers of the 3DCNN. 

Every 2D+1D convolution is considered a layer, as 

the purpose of one layer here is to extract both 

spatial information through 2D convolution on each 

frame and temporal information through the 1D 

convolution applied on multiple frames.  

After each 3D convolution layer, a 3D batch 

normalization is applied followed by an activation 

function Rectified Linear Unit (ReLU). More layers 

can be added to the model, but that comes at a cost 

of memory and complexity with usually minor 

improvements. K frames from a video are selected 

and fed through the 3DCNN passing over the 

multiple convolutional layers to extract temporal 

and spatial features. At the end of the model usually 

an average pooling layer is used for temporal 

pooling layer is used for feature pooling. We keep a 

spatial average pooling but use BERT for temporal 

 

 
Figure. 2 The architecture of the 3DCNN part of the 

model which is made up of r(2+1)d convolutions 

 

pooling as it can learn contextual information and to 

extract the better temporal features. BERT encodes 

data from both directions using self-attention 

mechanisms. It has helped in further advancement in 

the Natural Language Processing (NLP) domain as 

it can use contextual information from both sides 

instead of relying on just one (left-to-right or right-

to-left).  

A BERT layer is added after the 3DCNN to 

perform temporal pooling. After the features are 
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Figure. 3 The architecture of BERT layer 

 

extracted from K frames in a video by passing it 

through the 3DCNN without temporal pooling at the 

end. First a classification embedding token is add 

(ftkn) is added to the extracted feature maps from the 

3DCNN. The token is stacked on the temporal 

dimension. A positional encoding which is learned 

is added at to these features. Then those features are 

passed into a multi-head attention layer as can be 

seen in Fig. 3. 

The output token (ytkn) from the output of the 

attention layer is passed through a linear layer to get 

the classification vector ŷ. We use 8 attention heads 

in our only one attention layer. More layers can be 

added to the model to further increase the learning 

capacity of the model, though that would likely need 

an increase in the size of the features extracted from 

the 3DCNN by adding more kernels. A Binary cross 

entropy loss is used to backpropagate the error in 

classification back to the model and update its 

weights. A summary of this sub-module of the 

model can be seen on the left part of Fig. 4.  

4.3 2D CNN classification layer 

The second part of the model is made up of 

linear neural network layers. A dropout layer is 

added at the start of the model. All the linear layers 

have a batch normalization layer and a ReLU 

activation after them except for the hashing layer 

which is the 5th layer. It has Tanh as an activation 

function. And the last (6th) linear layer that turns the 

hashes into a classification vector has a softmax 

after it, to enable computing of binary cross entropy 

losses. The hashing layer is followed by a Tanh 

activation function because it yields 1, -1 which can 

be mapped to 1, 0 hash codes later when needed or 

used as is. It converges faster and suffers less of a 

vanishing gradient problem than the sigmoid. The 

purpose of this classification layer is training the 

model through classification loss. A summary of the 

layers for the hashing sub-module can be seen on 

the right part of Fig. 4. 

4.4 Near-duplicate video search 

The input of our model is 32 frames of a video 

clip, each of a size 112x112, the frames as selected 

from the middle of the video. We use the R(2+1)d 

pretrained on IG65M [40] dataset. For BERT we use 

the default configuration used in [21]. A FC layer is 

added at the end with its size dependent on the 

number of classes. Due to memory limit the batch 

size used is 21 and the weights are updated every 6 

iterations. For tuning the parameters of the model, 

the loss used is the cross-entropy loss between the 

classification output of the last layer and the target 

class, and the optimizer is AdamW [41] which is 

Adam optimizer with weight decay. The model is 

trained for 40 epochs with a dropout of 0.8, with an 

initial learning rate of 1e-5 which decays by a factor  

 

 
Figure. 4 The architecture of the models for deep video 

hashing through learning to extract features then learning 

to hash those features 
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of 10 each time the loss does not decrease for 5 

epochs. 

After the 3DCNN model is fine tuned to the 

selected dataset, we use it as a feature extractor. The 

output of the BERT layer which is taken as input to 

the classification layer becomes our feature vector. 

We use the average of 10 crops’ feature vector for a 

video as the input to the hashing model, the 10 crops 

are from the same 32 frames selected. 

The hashing model is made up of 6 FC layers the 

first layer starts with the size of 2048 and for each 

consecutive layer until the 4th layer, the size is 

halved, the fifth layer is the hashing layer with the 

size set to the preferred bit size, then a classification 

layer with the size depending on the dataset’s 

number of classes. The training of the hashing 

model is summarized in Algorithm 1. 

After the model is trained there is no use for the 

classification layer, and the sign function is used 

instead of tanh to get the hash codes in the fifth 

layer. This is because hash codes need to be either 1 

or -1, -1 being the same as 0 in binary hash codes. 

The batch size is set to the size of the input dataset 

for training since the model is relatively small, batch 

sizes of 64, 100, 200, 400 have also been 

experimented with and yielded similar or mostly 

lesser results so we chose all the data as batch size. 

5. Datasets and experiment setup 

5.1 The proposed deep video hashing framework 

We use two benchmark datasets for action 

recognition to evaluate our method and compare 

them against other methods: UCF101 [18] and 

HMDB51 [19]. 

5.1.1. UCF101 dataset 

The UCF101 dataset contains 13320 short clips 

distributed in 101 action classes and 27 hours of 

video data. The database is made up of realistic user 

uploaded videos which contains camera motion and 

cluttered background. The UCF101 dataset is an 

extension of the UCF50 dataset which contained 

different actions like biking, diving, drumming and 

adds to it more 51 more. The clips of one action are 

divided into 25 groups, each group contains 4 to 7 

clips each. The clips in one group have some 

common features that they share such as the persons 

or backgrounds in it.  

The average clip length is around 7 seconds. The 

dataset has 3-fold cross validation splits supplied 

with the videos, each split contains around more 

than 9000 clips for training and more than 3000 for 

validation. A subset of actions of the  

 

 Algorithm 1 Training Hashes 

Input: xi, the extracted video features using 

3DCNN and BERT. 

Output: hi the hash code representing the videos. 

Output: ui the classification of the. 

  Step 1 Initialization: 

Initialize the Hash NN weights with uniform 

random values. 

Set dropout probability to 0.8 

Set learning rate to 0.05 and momentum 0.9 for 

SGD optimizer 

Set learning decay to 0.8 and apply it every 60 

iterations 

  Step 2 Hash NN network learning: 

  for iter = 1, 2, … 360 do 

   for t = 1, 2, … Total batches: 

    Forward Propagation: 

Set X to the batch subset t of features from xi 

    for j = 1, 2, …, layers-2: 

     Apply dropout to the input X. 

Multiply input by weights of the layer j to 

generate output O. 

     Set O = ReLU(O)    

Apply batch normalization to O to get 

normalized output B. 

     Set X to O, to be the input for the next layer 

    end for 

   Multiply X by the weights of the hash layer to 

   get output O 

Apply Tanh on output O to get H the hash 

codes of the features. Every row in the matrix 

H is hi which is the hash code of the ith feature. 

Pass through hi through the last layer to get 

the classification vectors ui. 

    Backward Propagation: 

Compute gradients of losses using the SGD 

settings, the losses are computed through 

applying softmax loss on the classification 

vector ui. 

Apply SGD on the losses to update the 

weights of the network. 

   end for 

  end for 

  Return: Trained Hash NN 

 

UCF101 data set is shown in Fig. 5. 

5.1.2. HMDB51 

The HMDB51 dataset contains a total of 7000 

short clips distributed in 51 action classes. Each of 

the 3 splits for the dataset contains a subset of 5100 

clip. Each action gets 100 clips in every split, 70 for 

training and 30 for validation. HMDB51 is used to 

evaluate performance of human action recognition 
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Figure. 5 Sample actions of UCF101 dataset 

 

 
Figure. 6 Sample actions of HMDB51 dataset 

 

Table 1. Comparison of mAP results with other hashing methods on UC101 and HMDB51 datasets 

 (a) UCF 101 mAP 
Bit length 

Method used 
16 32 64 128 256 512 

DH[41] 0.300 0.290 0.470 - - - 

SRH[30] 0.716 0.692 0.754 0.781 - - 

DVH[32] 0.701 0.705 0.712 - - - 

KSH[6] - - 0.716 0.786 0.810 0.848 

DBH[33] - - 0.681 0.736 0.766 0.785 

DNNH[34] - - 0.740 0.789 0.817 0.835 

SVHM[42] - - 0.798 0.801 0.806 - 

CSQ[37] 0.838 0.875 0.874 - - - 

DHWCM[31] - 0.857 0.901 0.949 0.959 0.953 

R(2+1) 

BERT 

(Proposed) 

0.985 0.986 0.986 0.985 0.986 0.986 

 (b) HMDB51 mAP 
Bit length 

Method used 
16 32 64 128 256 512 

DH[41] 0.360 0.360 0.310 - - - 

SRH[30] 0.491 0.503 0.509 - - - 

DVH[32] 0.441 0.456 0.518 - - - 

KSH[6] - - 0.431 0.464 0.450 0.473 

DBH[33] - - 0.389 0.391 0.386 0.346 

DNNH[34] - - 0.487 0.503 0.493 0.480 

CSQ[37] 0.527 0.565 0.579 - - - 

SVHM[42] - - 0.562 0.565 0.575 - 

DHWCM[31] - 0.487 0.605 0.588 0.588 0.672 

R(2+1) 

BERT 

(Proposed) 

0.848 0.849 0.854 0.852 0.849 0.849 

 

system. The actions in this dataset are divided into 5 

groups: General facial actions, general body 

movements, facial actions, body movements and 

body movement for human interaction. 

This dataset although smaller is harder than 

UCF101 to achieve a high accuracy on, usually 

because of some of the facial actions included in it. 

The sources of the video clips used are digitized 

movies, public databases, YouTube, and other 

videos available on the internet. A subset of actions 

of the HMDB51 dataset can be seen in Fig. 6. 

5.2 Evaluation measures 

The we use the mean average precision (mAP) 

to evaluate our results and compare them with the 

work of others. The mAP can be calculated by first 

getting the average precision (AP) for every test clip. 

Then we get the mean of the average precisions we 

get from all the test clips. 

The AP is defined as the mean of the precision 

scores after each relevant document is retrieved. The 
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precision score is the precision of the top r retrieved 

document. The Precision score when retrieving r 

documents is as follows calculated as follows: 

 

P@r = 
Relevant documents

r
           (4) 

 

The AP when the total number of relevant 

documents available is R: 

 

AP = 
∑ P@rR

r

R
                  (5) 

 

Sometimes not all the relevant documents for 

each query are the same. And sometimes we are not 

interested in all of them, just the top k of them. In 

this case mAP@k is used. This is the same as mAP, 

but instead of the total number of relevant 

documents being R. The total number becomes the 

minimum of k and R. Where we test it on the top k, 

but if there aren’t enough then we test on all that is 

available. The mAP for the HMDB51 dataset is 

mAP@70 and for UCF101 mAP@100. 

We also use precision-recall (PR) curve to 

evaluate the performance of the proposed model. 

The PR curve is calculated through calculating the 

precision and recall when predicting classes at 

different thresholds on their similarity score making 

the ones that pass the threshold belong to the class. 

The clips that are predicted as belonging to the class 

are positives and the ones that aren’t, are negatives. 

If that prediction is correct then that prediction is 

true, otherwise it would be false. 

The precision is calculated as the number of true 

positives (TP) over the number of true and false 

positives (FP), which is percentage of positives 

being correct. And the recall is the number of true 

positives over the number of true positives and false 

negatives (FN), which is also the number of samples 

belonging to the class recalled over all the samples 

that belong to the class that exist. 

 

Precision = 
TP

TP+FP
             (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
              (7) 

 

The hash code generated from the model are 

rounded to 1, -1 due to the Tanh. The similarity of 

the hash code is thus calculated by multiplying 

every bit in the query hash code with the bit in the 

database hash codes in its same position and then 

the result is summed. The higher the sum, the more 

similar the codes are. The hash codes can be mapped 

to the binary 1, 0, and then XORed to help get the 

hamming distance. But it was faster to use them as 

they are for testing. After finding the similarity and 

ordering the results from most similar to least 

similar the mAP is calculated. 

6. Experimental results 

The comparison for the UCF101 and HMDB51 

is illustrated in Table 1. Values of other compared 

methods are taken from [31, 37, 42] or the 

referenced papers directly. The metric compared 

being the mean average precision (mAP). 

Table 1 compare the proposed hashing model 

against different state of the art models based on 

mAP using different bit length (e.g. 16, 32, 64, 128, 

256, and 512). As shows in table 1 the proposed 

model outperforms the state-of-the-art by at least 

2 % for each bit length in UCF101 and more than 

20 % for the HMDB51. This is because the 3DCNN 

can extract better features through the help of a 

transformer layer BERT which learns contextual 

information which is not present in other models. 

And it was trained solely on extracting features to 

classify each video’s actions, not being affected by 

hashing training. 

Although 3DCNN part can train on both feature 

extraction and hashing at the same time and using 

one module but the stability in the mAP values 

across different bit lengths will vary. You’ll find the 

least variance in mAP in our model because of 

separating the feature learning and hash learning 

process. And minor variance in [42]. This is due to 

having the model train on feature extraction first, 

then the model was modified to incorporate hash 

learning as fine-tuning of the model. But more 

variance in [31, 32, 34, 37] where the model learns 

end to end. 

Training a 3DCNN to generate hash codes end 

to end can be difficult to fully optimize. Such a 

model usually requires other losses like 

classification loss in addition to hashing losses to get 

better results [15, 25, 27]. This, although better than 

training on hash losses alone, may require grid 

search to find optimal values to combine the losses 

to achieve the best results. And it also faces the 

challenge that the hashing part of the model is 

learning to generate hash codes for features that 

keep slightly changing. As the feature extraction 

part of the model keeps updating itself as well to 

learn to generate better features as well. So, the 

features are constantly changing and thus the 

hashing layer keeps needing to change to adapt as 

well.  
The average time for extracting the features of 

10 crops of a single video is 3.475s for the UCF101  
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(a) 

 
(b) 

Figure. 7 Comparison of PR curves for different hash 

code bit sizes for both (a) UCF101 and (b) HMBD51 

datasets 

 

dataset and 1.628s for the HMDB51 dataset. The 

average for a single crop of a single video is 0.544s 

for the UCF101 and 0.272 for the HMDB51. This 

variation in time is probably due to the UCF101 

videos having more frames, as the time calculated 

includes loading the videos and running them. The 

time also does not include running a batch of videos 

(except for the 10 crops of a single video), which is 

faster than extracting features from videos one by 

one. 

The average time for generating has codes is 

around 2 to 3 Microsecond for both UCF101 and 

HMDB51. Features are passed through the hashing 

layer’s neural network in batches between 1000 and 

2000, because it takes up less memory. 

Fig. 7 shows the precision-recall (PR) curve for 

the HMDB51 dataset, and the UCF101 dataset using 

different hash code sizes. The PR curve is a plot of 

the precision against the recall. The area under the 

curve (AUC) in a PR curve helps determine how 

good a classifier is, the bigger the AUC, the better 

the classifier.  

We have observed that incorporating the hash 

learning into the model instead of separating it 

causes variations in the hashing performance across 

different bit sizes. This because the hash layers 

don’t get enough training due to the features being 

extracted changing with no freezing for feature 

extraction layers in the learning process. Once, they 

are frozen the hashing layer is not gaining enough 

training due to the time and processing cost. 

Separating feature extraction module from hash 

generation module will result in better training of 

hashing values from extracted features by allowing 

more processing power for the tuning and testing 

different hyper parameters. State-of-the-art models 

incorporate the hashing process in training the 

model and thus result in high variations among mAP 

values. The learning process of these models is 

affected by the hashing layer’s performance. 

7. Conclusion 

We proposed using 3DCNN with BERT model 

as a deep hashing model for action recognition. We 

separate the task of hashing onto two models that 

can be combined after training. One for feature 

extraction and one for hashing. This separation 

allowed the model to learn each task to its best 

individually. Experimental results show that the 

proposed model yields state-of-the-art performance 

on video retrieval. It improves the previous best 

mAP by more than 2 % and 24 % for UCF101 and 

HMDB51 datasets respectively. We also achieve a 

decreased variance among mAP in different bit sizes 

compared with other models’ results.  

8. Future work 

We plan to improve the model in future works 

by trying to reduce the feature extraction model size 

to increase the model’s speed, while keeping the 

same or close accuracy. We will also experiment 

with using more frame samples of a video and 

adding additional transformer layers like BERT. We 

plan to experiment with other video datasets as well. 
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