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Abstract: One of the primary causes of cancer-related mortality is liver cancer. Computed tomography (CT) is a 

commonly utilised imaging technique for the assessment and staging of hepatic tumors. Manually scanning 

volumetric CT scans is time intensive and ambiguous. Despite the fact that numerous deep learning models for 

semantic segmentation have been developed, the U-Net model remains extremely successful. In this work, we 

propose a method for segmenting liver tumors from abdominal CT images that is entirely based on the U-Net model 

and demonstrate the model's simplicity and efficacy. The U-Net architecture is employed at two levels. The first 

level of segmentation is used to segment the liver from CT slices, while the second level is utilised to segment 

tumours from masked CT images. Using CT scans from the LiTS dataset, the proposed technique achieved a dice 

global score of 94 percent for liver segmentation and 73 percent for tumour segmentation. 

Keywords: Liver tumor segmentation, Computed tomography, Deep learning, U-Net. 

 

 

1. Introduction 

One of the fastest-spreading cancers in the world 

is liver cancer. According to a statistical study 

published in 2019 [1], there were 841080 new cases 

of liver cancer in 2018, with Asia having the highest 

incidence and mortality rates. The majority of cases 

go unreported. The majority of liver cancers go 

undiagnosed or are detected too late to offer 

treatment. Early detection of liver tumors is always 

beneficial in terms of providing effective treatment.  

Liver tumor segmentation is a real challenge due 

to the subtle differences between normal and tumor 

tissues. Segmentation is impossible when using low 

contrast Computed Tomography images. As a result, 

segmentation is performed using contrast enhanced 

CT scans. Increased contrast also increases image 

noise due to the anatomical differences between 

tissues and tumors. 

Typically, radiologists delineate tumors 

manually from CT images. Manual segmentation 

varies according to the individual and the subtlety of 

the tumors. Numerous studies are being conducted 

in the field of liver tumor segmentation. Various 

semi-automatic and automatic liver tumor 

segmentation techniques have been proposed to 

minimize manual intervention. The accuracy of 

most segmentation methods is enhanced through the 

use of various pre-processing and post-processing 

techniques. Many such promising methods are based 

on deformable models, thresholding models, region 

growing models, graph cut models, statistical shape 

models, and neural network models. The majority of 

traditional segmentation models are based on prior 

knowledge and tissue characteristics. As a result, 

these techniques are unreliable for performing 

accurate segmentation. Deep learning models based 

on ResNet, AlexNet, FCNs, DenseUnets, MA-Net, 

and their variants improve tumour detection and 

segmentation accuracy significantly, but they also 

require a significant amount of processing power [2]. 

In this work, we present a simple yet effective 

deep learning model based on U-Net that can 

automatically segment liver tumours from CT 

images while consuming very little computational 

power. With the proper hyperparameter settings, the 

U-Net model can be effectively utilised to 

accurately segment tumours from CT images. The 
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proposed system is composed of two cascading U-

Nets with distinct hyperparameter settings. In order 

to avoid vanishing gradient or exploding gradient 

problems, Kiaming initialization is used for 

initialising the weights in the first U-Net. The 

second U-Net employs a multi-class cross entropy 

loss function, which is effective for segmentation 

tasks. In comparison to other deep learning 

approaches that use a multiplicity of layers and 

demand significant processing power with similar 

accuracy, the suggested method is simple, effective, 

and consumes minimum resources and time. 

The remainder of this work is organized in the 

following manner. In section 2, we provide a 

concise overview of existing methods for 

segmenting the liver and liver tumor from 

abdominal CT images. The suggested technique is 

explained in depth in section 3. In section 4, the 

experimental design and outcomes are presented in 

detail. The conclusion is presented in section 5. 

2. Literature review and related work 

The U-Net, ResNet, AlexNet, and VGG-net 

models, as well as versions of these models, account 

for the vast majority of effective deep learning 

algorithms for semantic segmentation of the liver 

and tumor from abdominal CT images.  

The first of which was proposed by the 

Automatic Liver and Lesion Segmentation method 

by [3] and later in [4] which are based on Cascaded 

Fully Convolutional Neural Networks and dense 3D 

Conditional Random Fields. U-Net architecture was 

used to implement FCNs. Refining was done using 

3D CRF that improves both appearance and spatial 

coherence as part of the post processing step. The 

method was applied on the medical image database 

provided by 3DIRCADb dataset (3d Image 

Reconstruction for Comparison of Algorithm 

Database).  

In [5], the researcher proposed an automated 

liver tumor segmentation based on DCNN. This 

model was based on Fully Convolutional neural 

networks (FCNs). This model uses both U-Net [6] 

and ResNet [7] architectures based on FCN. Another 

fully automatic approach based on FCN was 

proposed by [8]. The lengthy training period and 

less precise segmentation are the main drawbacks of 

these techniques. 

In [9], the author presented an automatic liver 

tumor detection method based on cascaded deep 

residual networks (ResNets). The method 

overcomes the drawbacks of the traditional FCNs by 

using ResNets that uses skip connections or residual 

connections between Convolutional layers to solve 

the problem of model degradation in deep neural 

networks. The method proposed by [10] uses CNNs 

built on the 2D UNet architecture along with 

random forest classifier to segment liver lesions.  

The method proposed by [11] called as the 

Hybrid Densely Connected Unet (H-DenseUNet) 

was ranked first in LiTs 2017 segmentation 

challenge at the time of submission. The proposed 

method uses a cascade of three layers. The first layer 

identifies the inter-slice and intra-slice features 

using 2D DenseUnet followed by a 3D DenseUnet 

with 65 convolutional layers to extract hybrid 

features. On two NVIDIA Titan Xp GPUs with 12 

GB of RAM, this approach took 60 hours of training 

to converge. The high computational cost and 

lengthy training period are also downsides of this 

approach. 

In [12], the researcher has developed a three-

dimensional FCN made up of several Attention 

Hybrid Connection Blocks (AHCBlocks) to segment 

liver tumors from CT images. The new network 

model proposed called the AHCBlock contains the 

Attention Gate (AG) unit and the hybrid connection 

unit. The AG module highlights the important 

features in the input image using long skip 

connections and removes irrelevant regions. The 

lower level as well as the higher-level features can 

be combined together using the AG module. Hybrid 

connection module is used for short skip 

connections using the lower level and output feature 

map which improves the flow of information. On 

the LiTs dataset, the findings reveal a segmentation 

accuracy of only 59 percent, suggesting the model's 

low generalisation capabilities. 

A model based on multiple deep encoder-

decoder CNN (EDCNN) was proposed by [13]. The 

model architecture was based on SegNet and VGG-

16 models which consists of encoder-decoder part to 

construct a symmetrical structure and a last layer for 

pixel wise classification. A similar approach was 

used by [14] using a modified SegNet model. Both 

algorithms used the 3DIRCADb dataset for training 

and were unable to obtain the expected tumour 

segmentation results with many false positives. 

Another novel approach based on using the 3D 

fractal residual network (3D FRN), multi-scale 

candidate generation method (MCG) and active 

contour model (ACM) was proposed by [15]. In this 

approach, liver segmentation was done using a 3D 

U-Net model, followed by tumor candidate 

generation using MCG. Classification of tumor 

candidates was done by combining the fractal 

structure and residual structure using 3D FRN. The 

problem with this approach is that tumour 

boundaries are imprecise, and numerous 
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neighbouring tumours may be segmented into a 

single tumour area.  

[16] proposed a method based on modified U-

Net (mU-Net). The residual path and the skip 

connections were modified in the standard U-Net 

model, which improved the feature extraction 

process. The approach was unable to capture 

structural similarities sufficiently since it employed 

mean square error as the loss function. The work in 

[17] also used a similar approach of modified U-Net 

for segmentation. The method lowered the number 

of filters across each convolutional unit and added 

an additional dropout layer and batch normalization 

after each convolutional block. Even with additional 

data augmentation, the method was able to achieve a 

dice score of only 0.63 in liver tumor segmentation.  

In [18], the author has proposed a model that 

alters the original U-Net encoding process by 

incorporating a dense module, an inception module, 

and a dilated convolution to improve information 

flow and increase the receptive field.  

This method additionally takes advantage of the 

bottleneck feature supervised (BS) U-Net, which 

bridges the gap by using U-Net as an auto-encoder 

and collecting additional information from the 

bottleneck layer for supervision. Despite the fact 

that training required very little time, the approach 

could only attain a tumour segmentation accuracy of 

56.9% dice per case. 

In [19], the researcher has suggested a model 

based on U-Nets that was refined using the level set 

technique and fuzzy c-means clustering. The 

network design was composed of 2D U-Net models 

and 3D FCN models, each with its own encoder-

decoder structure and skip connections. The results 

of the investigation on the LiTS dataset indicated a 

Dice per case of 71.8%. The disadvantage of this 

method is that holes are created during liver 

segmentation, which may impact tumour 

segmentation accuracy. 

In [20], the author presented a Multi-scale 

Attention Network (MA-Net), which utilizes a self-

attention technique to adaptively integrate local 

characteristics with their global links. The design 

included two blocks: a Position-wise Attention 

Block (PAB) for capturing the spatial relationships 

between pixels in a global perspective, and a Multi-

scale Fusion Attention Block (MFAB) for capturing 

the channel relationships between any feature maps 

via multi-scale semantic feature fusion. The problem 

with this strategy is that the addition of attention 

blocks complicates the model without significantly 

improving its precision. 

The UV-Net approach suggested by [21] 

combines U-Net and V-Net with multi-scale feature 

extraction. V-Net was utilised to prevent inter-layer 

information loss, which is common in 3D medical 

picture processing. The V-Net, which is prone to 

overfitting difficulties, is a downside of this 

approach. 

[22] proposes a model with three layers: Spatial 

ConvNet for extracting intra-slice features, 

Temporal ConvNet for obtaining inter-slice features, 

and a squeeze-and-excitation layer to help direct 

these features correctly. The addition of these extra 

layers increases the computational cost without 

significantly enhancing the accuracy. 

In [23], the author proposes a model based on a 

self-attention module and a deep attention neural 

network. A high-resolution branch is also used to 

preserve spatial features. The disadvantage of this 

method is that it ignores inter-slice contextual 

information. 

[24] suggested the Hybrid Dense X-net model, 

which consists of a 2D dense U-Net layer followed 

by a 3D dense U-Net layer cascaded together. 

Despite the model's ability to attain high 

segmentation accuracy, its complexity resulted in 

longer training times. 

In [25], a new model called Un-net was created, 

in which the convolution node was altered to 

transmit the output characteristics of one layer to the 

next layer and skip connections. Dilated convolution 

without a pooling function was also used in this 

study. The drawback with this method is that using 

many convolution layers in each encoder and 

decoder increases the model's complexity and 

training time. 

U-ADenseNet, a model based on U-Net and 

DenseNet, was described in [26]. Atrous spatial 

pyramid pooling is used in this method to capture 

image context at different scales. The HFRU-Net 

framework was proposed in [27], and it included 

modified U-Net, Squeeze-and-Excitation networks, 

and an atrous spatial pyramid pooling module. Both 

of these strategies involve extensive training. 

Almost all of these deep learning approaches 

have made their structures more complicated by 

combining models like U-Net, V-Net, AlexNet, 

ResNet, DenseUnet, MA-Net and others. 

Furthermore, because these approaches use 

numerous levels, they may require a substantial 

amount of computer resources and training time. 

The major purpose of this research is to find a good 

balance between model simplicity and training time. 

This is accomplished through the use of a simplified 

variant of the basic U-Net model and appropriate 

hyperparameter settings. The configurations include 

the uniform application of the Leaky ReLu 

activation function, Kaiming Initialization [28], L2 
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regularisation, suitable batch normalisation 

parameters, and feature dropout. 

3. Methodology 

3.1 Overview of the framework 

In the first stage, all slices were pre-processed 

by windowing Hounsfield unit values between -100 

and 400 and increasing the contrast by histogram 

equalization. The proposed framework is based on 

the application of two tiers of the basic U-Net model 

[8] as indicated in Fig 1. The first U-Net is utilized 

to segment the liver from abdominal CT slices, and 

the second U-Net is utilized to segment tumors from 

masked CT slices.  

3.2 U-net model 

The U-Net model is utilized at two levels. The 

network architecture is U-shaped, with a downward 

moving path followed by an upward-moving path. 

The downward path is composed of four blocks. 

Each block has two convolution layers with the 

Leaky ReLu activation function, succeeded by a 

max pooling layer with stride 2. In the first block, 

the two convolution layers use 32 filters each, with a 

filter size of 3x3. In the upward path, the up 

sampling was done using 2x2 transposed 

convolution, and the feature map from the 

corresponding downward path was concatenated. 

The upward path also contains four blocks. Each 

block contains two convolution layers with 3x3 

filters and a Leaky ReLu activation function. The 

Leaky Relu activation function is used because it is 

inexpensive to compute, converges quickly, and is 

sparsely activated. If the function receives negative 

input, it returns 0, but for positive input, it returns 

the input value as shown in Eq. (1), where x is the 

input. 

 

f(x)=max(0,x)                          (1) 

 

While the same U-Net model is utilized at both 

levels, the hyper parameter values are different at 

each level. 

The first U-Net (U-Net-1) uses a filter size of 3X3. 

The weights are initialized using Kaiming 

Initialization [28]. Kaiming Initialization is a 

method for initializing neural networks that takes 

the nonlinearity of activation functions, such as 

ReLU activations, into consideration. This approach 

avoids exponentially lowering or magnifying the 

size of input signals which might lead to vanishing 

or exploding gradients problem. A response of each  
 

 
Figure. 1 U-Net based architecture for Liver tumor 

segmentation 

 

convolution layer can be represented as given in Eq. 

(2). 

 

𝑦𝑙 = 𝑊𝑙  𝑥𝑙 + 𝑏𝑙                           (2) 

 

Here, x is a k2c x 1 vector that represents co-

located k x k pixels in c input channels. k is the 

spatial filter size of the layer. n = k2c is the number 

of connections of a response. W is a d x n matrix, 

where d is the number of filters and each row of W 

represents the weights of a filter. b is a vector of 

biases, and y is the response at a pixel of the output 

map.  𝑥𝑙 = 𝑓(𝑦𝑙−1) where f is the activation and 𝑙 is 

the layer index. 

The sufficient condition to avoid gradients 

problem is given in Eq. (3) 

 
1

2
 𝑛𝑙Var[𝑤𝑙] = 1        ∀𝑙                  (3) 

 

Where 𝑤𝑙 is random variable of each element in 

𝑊𝑙 and Var represents variance.  

This gives an initialization of the form shown in 

Eq. (4):  

 

𝑤𝑙 ~ 𝒩(0, 2/ 𝑛𝑙)                     (4) 

 

That is, a zero-centered Gaussian with standard 

deviation of√2/𝑛𝑙. 

The U-Net-1 setup uses L2 regularization to 

avoid over fitting. Regularization essentially 

increases the penalty as the complexity of the model 

increases. Regularization term lambda(λ) penalizes 

all parameters except the intercept, ensuring that the 

model adequately generalizes the data and does not 

over fit. L2 regularization is advantageous when co-

dependent features exist. L2 regularization (R) is 

represented in Eq. (5). Here W indicates the weight 

matrix with indices i and j.  

 

𝑅(𝑊) =  ∑  𝑖 ∑ 𝑊𝑖,𝑗
2

𝑗                     (5) 



Received:  March 9, 2022.     Revised: May 30, 2022.                                                                                                      155 

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022           DOI: 10.22266/ijies2022.1031.14 

 

The U-Net-1 also uses drop out of 0.2 to avoid 

over fitting. Dropout is a regularization technique 

for neural networks that aids in decreasing 

interdependent learning among the neurons. 

The loss function used is Multi class cross 

entropy loss which is the commonly used in 

classification and segmentation tasks.  This is used 

to quantify the performance of a classification 

model whose output is a probability value ranging 

from 0 to 1. As the expected probability diverges 

from the actual label, the cross-entropy loss grows. 

Multi class cross entropy loss (L) is shown in Eq. 

(6). Here 𝑦  is the target value, �̂�  is the predicted 

value and 𝑦(𝑘)  is 0 or 1 based on the correct 

prediction of label k. 

 

𝐿 (�̂�, 𝑦) =  − ∑ 𝑦(𝑘) 𝑙𝑜𝑔 �̂�(𝑘)𝐾
𝑘             (6) 

 

Batch normalization layer is used that helps each 

layer of the network to operate independently of the 

others. This is used to normalize the preceding 

layers' output. In U-Net-1, 90% of the dataset is 

used for training and 10% for validation.  

The second U-Net (U-Net-2) also uses L2 

regularization and a drop out of 0.2. The loss 

function used is Multi class cross entropy loss over 

Multiclass Dice Loss. The setup uses a batch size of 

4 and batch normalization is used to avoid over 

fitting.  90% of the dataset is used for training and 

10% for validation. The training dataset is expanded 

using a variety of data augmentation techniques, 

including rotation, magnification, horizontal flipping, 

and vertical flipping. 

The detailed illustration of the structure of the 

U-Net model used is shown in Table 1. The five-

level U-Net network consists of a contracting path 

followed by an expansive path. Each column in 

Table 1 shows the sequence of operations applied at 

each level. The table shows in detail the size of the 

filter, convolution parameter sizes, batch 

normalization parameter sizes (BatchNorm), 

activation functions (Leaky Relu, Softmax), dropout, 

and convolution transpose parameter sizes. 

4. Experiments and results 

4.1 Dataset 

The model was evaluated using 200 abdominal 

CT images in NIfTI format from the Liver Tumor 

Segmentation Challenge (LiTS) of MICCAI 2017 

[29]. Among the 200 CT images, 130 were used for 

training (containing liver and lesion masks) and 70 

were used for evaluating the method (without 

masks). Out of 130, 105 were used for actual 

training and another 25 were for validation purposes. 

4.2 Performance evaluation metrics 

Typically, the outputs of the segmentation 

process are validated against ground truth offered by 

various challenges. Different criteria are used to 

assess segmentation accuracy and performance. The 

most widely used statistical metrics are based on 

several research publications [2], and the various 

issues are outlined below. 

Considering A as the segmented region and B as 

the ground truth, the definitions of the different 

metrics are explained below.  

Volumetric Overlap Error (VOE) can be 

calculated by dividing the total number of pixels in 

an inter-section of a segmented region by the total 

number of pixels in the ground truth, and the total 

number of pixels in a union of the segmented region 

and the ground truth by the total number of pixels in 

the segmented region. Values close to zero indicate 

a successful segmentation, while increases in the 

score indicate differences between segmented 

images. VOE can be calculated using the formula 

given below in Eq. (7): 

 

VOE = ( ( |A ∩ B| / |A ∪ B| ) – 1 ) X 100    (7) 

 

The Dice Similarity Coefficient (DSC) measures 

the segmentation of pixels in a region of interest. A 

decent segmentation should have values that are 

relatively close to one, whereas a score close to 0 

indicates differences in the segmented picture. DSC 

can be calculated using the formula given in Eq. (8):  

 

DSC = 2 |A ∩ B| / ( |A| + |B| )             (8) 

 

Relative Volume Difference (RVD) gives the 

ratio of the total volume of the segmented region 

and the ground truth. Under segmentation should 

give negative values and over segmentation should 

give positive values. RVD is calculated using the 

following formula given in Eq. (9): 

 

Relative Volume Difference = (( total volume of the 

segmented region / total volume of the ground truth) 

− 1) X 100                                                            (9) 

 

In Average Symmetric Surface Distance (ASD), 

the voxels in the borders of segmented region and 

the ground truth are determined. For every voxel 

along segmented region border, the closest voxel 

along the ground truth border is determined. ASD is 

the average of all these distances calculated 
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Table 1. Detailed architecture of the proposed U-Net model 

Contracting path (left side)   Expansive path (right side) 
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BatchNo

rm 

Param 

Sizes:(51

2) (512) 

BatchNo

rm 

Param 

Sizes:(25

6) (256) 

BatchNo

rm 

Param 

Sizes:(12

8) (128) 

BatchNo

rm 

Param 

Sizes:(64

) (64) 

Leaky_Relu 

Convolutio

n Param 

Sizes:(64, 

32, 3, 3) 

(64) 

Convolutio

n Param 

Sizes:(128, 

64, 3, 3) 

(128) 

Convolutio

n Param 

Sizes:(256, 

128, 3, 3) 

(256) 

Convoluti

on Param 

Sizes:(512

, 256, 3, 

3) (512) 

Convolut

ion 

Param 

Sizes:(25

6, 512, 

3, 3) 

(256) 

Convolut

ion 

Param 

Sizes:(12

8, 256, 

3, 3) 

(128) 

Convolut

ion 

Param 

Sizes:(64

, 128, 3, 

3) (64) 

Convolut

ion 

Param 

Sizes:(32

, 64, 3, 

3) (32) 

BatchNorm 

Param 

Sizes: (16) 

(16) 

Leaky_Relu Leaky_Relu Leaky_Relu 
Leaky_Re

lu 

Leaky_R

elu 

Leaky_R

elu 

Leaky_R

elu 

Leaky_R

elu 

Convolutio

n Param 

Sizes:(32, 

16, 3, 3) 

(32) 

Feature 

Dropout 

Feature 

Dropout 

Feature 

Dropout 

Feature 

Dropout 

Feature 

Dropout 

Feature 

Dropout 

Feature 

Dropout 

Feature 

Dropout 

Leaky_Relu 

BatchNorm 

Param 

Sizes:(64) 

(64) 

BatchNorm 

Param 

Sizes:(128) 

(128) 

BatchNorm 

Param 

Sizes:(256) 

(256) 

BatchNor

m Param 

Sizes:(512

) (512) 

BatchNo

rm 

Param 

Sizes:(25

6) (256) 

BatchNo

rm 

Param 

Sizes:(12

8) (128) 

BatchNo

rm 

Param 

Sizes:(64

) (64) 

BatchNo

rm 

Param 

Sizes:(32

) (32) 

Feature 

Dropout 

Convolutio

n Param 

Sizes:(64, 

64, 3, 3) 

(64) 

Convolutio

n Param 

Sizes:(128, 

128, 3, 3) 

(128) 

Convolutio

n Param 

Sizes:(256, 

256, 3, 3) 

(256) 

Convoluti

on Param 

Sizes:(512

, 512, 3, 

3) (512) 

Convolut

ion 

Param 

Sizes:(25

6, 256, 

3, 3) 

(256) 

Convolut

ion 

Param 

Sizes:(12

8, 128, 

3, 3) 

(128) 

Convolut

ion 

Param 

Sizes:(64

, 64, 3, 

3) (64) 

Convolut

ion 

Param 

Sizes:(32

, 32, 3, 

3) (32) 

BatchNorm 

Param 

Sizes: (32) 

(32) 

Leaky_Relu Leaky_Relu Leaky_Relu 
Leaky_Re

lu 

Leaky_R

elu 

Leaky_R

elu 

Leaky_R

elu 

Leaky_R

elu 

Convolutio

n Param 

Sizes:(32, 

32, 3, 3) 

(32) 

Feature 

Dropout 

Feature 

Dropout 

Feature 

Dropout 

Feature 

Dropout 

Feature 

Dropout 

Feature 

Dropout 

Feature 

Dropout 

FeatureD

ropout 

Leaky_Relu       

Convoluti

on 

Transpose 

Param 

Sizes:(512

, 256, 4, 

4) (256) 

Convolut

ion 

Transpos

e Param 

Sizes:(25

6, 128, 

4, 4) 

(128) 

Convolut

ion 

Transpos

e Param 

Sizes:(12

8, 64, 4, 

4) (64) 

Convolut

ion 

Transpos

e Param 

Sizes:(64

, 32, 4, 

4) (32) 

Convolut

ion 

Param 

Sizes:(2, 

32, 1, 1) 

(2) 

Feature 

Dropout 
              Softmax 

 



Received:  March 9, 2022.     Revised: May 30, 2022.                                                                                                      157 

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022           DOI: 10.22266/ijies2022.1031.14 

 

using Euclidean distance. Perfect segmentation is 

represented by a value of 0 mm. 

Root Mean Square Symmetric Surface Distance 

(RMSD) is a variation of ASD where the root value 

of the ASD is used. Perfect segmentation is 

represented by a value of 0 mm. 

Maximum symmetric surface distance (MSD) is 

also a variation of ASD where the maximum of all 

distances between voxels of segmented and ground 

truth border voxels are used. Perfect segmentation is 

represented by a value of 0 mm. 

4.3 Experimental setup 

Training was done on Dell R430 Bay Server 2 

E5 2603v2, 128 GB RAM with a Tesla p100 16GB 

GPU. CPU utilization went up to 20 GB and about 8 

GB of GPU memory was utilized. 

5. Experiments and results 

5.1 Liver segmentation training 

Liver segmentation training was done for 20 

epochs and took around 25 hours to complete as 

shown in Fig 2. Table 2 shows the time taken, 

training loss, training dice and validation dice during 

the different epochs. 
 

Table 2. Details of liver segmentation training 

Epoch 

Time 

(hours) 

Training 

Loss 

Training 

Dice 

Validation 

Dice 

0 1.2 0.755994 0.821975 0.902976 

1 1.2 0.721102 0.889706 0.911630 

2 1.2 0.715543 0.905051 0.9292170 

3 1.2 0.711219 0.915280 0.932751 

4 1.19 0.708147 0.922648 0.917786 

5 1.19 0.706152 0.928129 0.946567 

6 1.19 0.704345 0.933088 0.93837 

7 1.19 0.702488 0.936639 0.950231 

8 1.19 0.701034 0.940624 0.950548 

9 1.19 0.700426 0.943203 0.933103 

10 1.19 0.700206 0.944979 0.948467 

11 1.19 0.698753 0.947725 0.942909 

12 1.2 0.698252 0.948305 0.955342 

13 1.2 0.697388 0.950206 0.952161 

14 1.19 0.696774 0.950762 0.938993 

15 1.2 0.696675 0.951715 0.936448 

16 1.19 0.696622 0.952992 0.946203 

17 1.2 0.695863 0.952538 0.949968 

18 1.19 0.695617 0.954981 0.954899 

19 1.19 0.695447 0.955852 0.954835 

 

5.2 Lesion segmentation training 

Training was done for 25 epochs and took 

around 12 hours to complete as shown in Fig 3. 

Table 3 shows the time taken, training loss, training 

dice and validation dice during the different epochs. 

5.3 LiTS results 

The validation set provided by the LiTS 

challenge was checked with the designed 

architecture. The lesion masks created were 

submitted to the Coda Lab LiTS Competition 

website (with Username - Deepak).   

The following results were obtained for the liver 

segmentation: Dice per case of 0.9380, Dice global 

of 0.9400, VOE of 0.116, RVD of -0.072, ASSD of 

2.084, MSD of 32.802 and RMSD of 3.960. 

The following results were obtained for the liver 

tumor segmentation: Dice per case of 0.5840, Dice 

global of 0.7300, VOE of 0.424, RVD of -0.168, 

ASSD of 1.387, MSD of 7.782 and RMSD of 2.052. 

6. Comparison with related work 

Table 4 compares our findings to those obtained 

using state-of-the-art approaches applied to the LiTS 

dataset and published in other papers. (* indicates 

results are not submitted to the LiTs competition 

website. Results with italic font indicate that the 

method uses variations of U-Net model. -- indicates 

results not published.) In comparison to other 

strategies that need a huge number of layers and 

extensive training, our basic model requires very 

little training and performs on par with the others. 

The proposed method's efficacy stems from the U-

Net model's simplicity and the use of proper 

hyperparameter settings. The results illustrate the 

 

 
Figure. 2 Liver segmentation training performance 
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efficacy of the U-Net model in the biomedical image 

segmentation process. Some of the sample liver and 

lesion segmentation results are shown in Fig. 4 and 

5. 
 

Table 3. Details of Lesion segmentation training 

Epoch 

Time 

(hours) 

Training 

Loss 

Training 

Dice 

Validation 

Dice 

0 0.434046 1.448718 0.704702 0.649292 

1 0.416835 1.406488 0.758737 0.668117 

2 0.408057 1.391843 0.779482 0.644747 

3 0.406941 1.386037 0.788345 0.660027 

4 0.405036 1.381469 0.791324 0.627486 

5 0.411827 1.378742 0.799279 0.714896 

6 0.405320 1.372064 0.803000 0.706388 

7 0.404948 1.368929 0.805757 0.648888 

8 0.405751 1.367342 0.810938 0.675198 

9 0.405105 1.363973 0.813065 0.687165 

10 0.405161 1.366202 0.812975 0.690613 

11 1.669217 1.362061 0.812927 0.688881 

12 0.412667 1.359462 0.820076 0.667424 

13 0.406653 1.359249 0.818985 0.663633 

14 0.407001 1.357430 0.819083 0.693245 

15 0.406374 1.353592 0.825494 0.659096 

16 0.406378 1.357945 0.820551 0.690153 

17 0.405654 1.353387 0.826103 0.714149 

18 0.404935 1.350716 0.829779 0.648876 

19 0.405034 1.351276 0.824490 0.699840 

20 0.405233 1.350913 0.829195 0.697623 

21 0.405276 1.350635 0.831178 0.676359 

22 0.411750 1.351804 0.827172 0.727283 

23 0.405151 1.347117 0.830887 0.658026 

24 0.405202 1.349376 0.831404 0.697593 

 

 
Figure. 3 Lesion segmentation training performance 

Table 4. Comparison of liver tumor segmentation results 

(LiTS) of different techniques 

Appr

oach 

Data 

set 

VO

E 
RVD 

AS

D 

(mm

) 

MS

D 

(mm

) 

DICE 

Globa

l (%) 

[4] LiTs 0.45 0.04 6.66 57.9 67 

[9] LiTs -- -- -- -- 64 

[10] LiTs -- -- -- -- 65 

[11] LiTs -- -- -- -- 72.2 

[12] 
3Dir

cadb 
1.35 0.129 1.07 6.27 73.4 

[13] 
3Dir

cadb 
-- -- -- -- 63.4 

[14] 
3Dir

cadb 
-- -- -- -- 86 

[15] 
3Dir

cadb 
0.32 0.194 4.40 7.11 76.4 

[17] LiTs -- -- -- -- 63 

[18] LiTs -- -- -- -- 56.9 

[19] LiTs 0.40 0.25 3.04 4.99 72.45 

[20] LiTs 0.21 -0.18 -- -- 74.9 

[21] LiTs -- -0.045 7.52 -- 84.4 * 

[22] LiTs 0.36 -0.072 -- 6.22 82.4 * 

[23] LiTs -- -- -- -- 76.3 

[24] LiTs 0.35 -0.369 0.96 5.40 84.3 * 

[25] LiTs 37.8 -15.78 -- -- 73.6 

[26] LiTs 0.35 -0.124 -- -- 74.5 

[27] LiTs 0.38 0.223 1.24 7.42 61.4 

Our 

meth

od 

LiTs 0.42 0.168 1.38 7.78 73 

 

 

 
Figure. 4 Liver segmentation sample results 
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Figure. 5 Liver tumor segmentation sample results 

7. Conclusion 

In this paper, we demonstrated the U-Net 

model's simplicity and effectiveness in semantic 

biomedical image segmentation. The proposed 

architecture based on the variation of the basic U-

Net model can be utilized to effectively segment 

liver and tumors from abdominal CT images. We 

can achieve comparable accuracy to complex state-

of-the-art methods by adjusting the core U-Net 

model's hyper parameter settings according to the 

kind of dataset. The model was evaluated using the 

LiTS dataset and a liver tumor segmentation 

accuracy of 73 % (Dice Global) was achieved. The 

segmented results from the validation set were 

submitted to the LiTS website for verification, and 

the results demonstrate the efficacy of our approach. 

Despite of the limited dataset, limited resources and 

the less training time, the model was able to achieve 

very good accuracy. 

Other medical modalities, such as MRI and 

ultrasound, can also be segmented using the 

suggested methodology. As part of our ongoing 

research, we will continue to investigate new deep 

learning models in conjunction with the U-Net 

model in order to further improve segmentation 

accuracy. Automatic segmentation of tiny liver 

tumor patches remains a major challenge. 
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